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Abstract 

 

Fluidic McKibben artificial muscles that operate pneumatically or hydraulically provide 

excellent performance, but require bulky pumps/compressors, valves and connecting lines. 

Use of a pressure generating material, such as thermally expanding paraffin wax, can 

eliminate the need for  these pumps and associated infrastructure. Here we further develop 

this concept by introducing the first bladderless McKibben muscle wherein molten paraffin is 

contained by surface tension within a tailored braid. Incorporation of electrically conductive 

wires in the braid allows for convenient Joule heating of the paraffin. The muscle is light 

(0.14 g) with a diameter of 1.4 mm and is capable of generating a tensile stress of 50 kPa 

(0.039 N) in 20 sec. The maximum contraction strain of 10% (7.6 kPa given load) was 

achieved in 60 sec with an applied electrical power of 0.35 W. 

 

Keywords: Actuator, McKibben artificial muscle, Paraffin, Braid. .  

 

1. Introduction:  

The main engineering function of skeletal muscles[1, 2] is to generate useful forces and 

displacements by converting chemical energy into mechanical energy in a relatively short 

period of time. This naturally developed machine is robust, lightweight [3], and exhibits an 

efficient delivery system to supply glucose and oxygen as fuel and withdraw heat and waste 

[4]. Although muscle performance varies between different species [5], linear mammalian 

skeletal muscles normally display 20%-40% tensile contraction strain, 350 kPa maximum 

tension intensity (stress), 8 kJ/m3 work density (the amount of mechanical work generated in 

one contraction cycle per unit volume of muscle) and fully contract in less than one second 

with an efficiency of 20%-40% [4, 6]. These properties have never been completely 

mimicked by any artificial muscle technology to date [7-9] and remains as a challenge for 

engineers and scientists [10].  



Joseph L. McKibben invented one the most pragmatic and remarkable contractile artificial 

muscles in the late 1950’s with great capability in robotic technology [11, 12]. The muscle 

operates simply by pumping pressurized gas into an inner bladder that is surrounded by a 

braided sleeve. The braided sleeve translates the volumetric increase of the inner bladder to 

linear contraction/expansion or force generation, depending on the operational conditions and 

braid parameters. More recently the pressurized gas had been substituted with different fluids 

and sensitive materials such as: pressurized water or oil [13-17], pH sensitive hydrogel 

spheres [18, 19] and paraffin wax [20] to introduce more compact, less noisy, easier to seal 

and lightweight actuator systems.     

Among various types of McKibben muscles, the new paraffin-filled McKibben muscle [20] 

heated with an electrical element embedded within the paraffin is attractive since it eliminates 

the need for a pump/compressor, valves and tubing. As a result, the actuator system is 

significantly smaller and lighter in comparison to other fluidic McKibben muscles. The 

paraffin wax inside the inner bladder was directly stimulated by an embedded metal wire that 

is electrically heated. The paraffin thermally expands with sufficient volume change and 

pressure required to operate the muscle. A paraffin-filled McKibben muscle 35mm in length 

and 6.8 mm in diameter generated a maximum isometric force of 2 N (or 71 kPa stress) or 9% 

free contraction strain after several minutes heating with a power supply of 7.94 W [20]. 

However, using the embedded heating element was found to restrict the muscle contraction as 

a consequence of metal element’s high stiffness. The embedded heating element also 

increases the system weight and limits the possibility of making smaller size muscle, which 

would theoretically heat and cool more rapidly and generate higher actuation strain rates.   

The main aim of the present study was to investigate the possibility of designing and 

developing a novel paraffin-filled McKibben muscle by eliminating the embedded heating 

element and the inner bladder to achieve a smaller size, lower weight muscle and a faster 

response. Here we introduce a conductive and bladderless paraffin filled McKibben muscle 

by using a conductive braided sleeve with an optimized cover factor. Elastic expansion of the 

bladder is known to reduce the pressure available to work against the braid in a McKibben 

muscle, thereby reducing the muscle performance [17]. The possibility of developing 

bladderless McKibben muscles was inspired by the recent demonstration of torsional and 

tensile actuation in paraffin-filled carbon nanotube twisted yarns [21]. In these systems, the 

paraffin wax was successfully contained within the porous carbon nanotube yarn by surface 

tension during heating and cooling through the melting transition. 



The suitability of containing molten paraffin within a braid can be evaluated using the 

approach used for porous membranes. The pressure needed to push a non-wetting liquid 

through the pores of a membrane is called the breakthrough pressure, P, and is related to the 

membrane and liquid properties by the following Young–Laplace equation [22]: 

r
P

θcosσ2
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                                                                                                         (1) 

where, r, is radius of the pores, σ and are the surface tension of the liquid and the contact 

angle, respectively. For any pair of materials the breakthrough pressure increase as the size of 

pores decreases. Pore sizes in a braid can be expressed in terms of the cover factor, C, which 

is defined as the ratio of  area occupied by yarn within a periodic pore unit to the total area of 

the pore unit, as shown in Figure 1. As derived by Zhang et al. [23], the cover factor is 

described by equation 2 and is a function of braid diameter, db, initial braid angle, α/2, yarn 

width, wy and number of threads, Nc . In this research, the cover factor of the braided sleeve 

was varied and assessed in terms of its ability to prevent the paraffin wax exuding from the 

braided sleeve in the expanded state. The cover factor was varied by independently 

decreasing the diameter of the braid as well as increasing the yarn width.  
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Figure 1. The schematic view of conductive braided sleeve indicating the diamond shaped periodic pore 

unit.(The right hand side schematic image includes four threads, or Nc=4) 

2. Experimental Methods  

α 

db 



The bladderless, conductive McKibben artificial muscles were fabricated as illustrated in 

Figure 2. Firstly, conductive braided sleeves were made with a braiding machine (Trenz-

Export Apartado 133) using steel wires (0.035 mm diameter) and cotton fibers (0.143 mm 

diameter). The steel wires and cotton fibers were purchased from Shijiazhuang Yunchong 

Trading Co., Ltd and were prepared for braiding as a feed yarn consisting of one cotton fiber 

and one steel wire in parallel. Within the limitations of the braiding machine three different 

braids were constructed with varying cover factor and the desired maximum diameter of 2 

mm (Table 1). Braids of 1.4 mm diameter (1.6 mm after paraffin injection) were prepared 

using either a single feed yarn (M2) or two feed yarns in parallel (M1) to adjust the yarn width 

and cover factor. A third braid (M3) was made using double feed yarns to a braid diameter of 

2 mm (or 2.2 mm after paraffin injection). The initial, unloaded length of all muscles was 40 

mm. The initial angles (αo/2) of the braided sleeves were determined using a LEICA-M205 

microscope to be 34o (40o after paraffin injection) for M1 and M2 muscles and 44o for M3 

muscle (Figure 3a, c and e). 

 

Table 1. Comparison of three different conductive and bladderless McKibben artificial muscles. 

 

The molten paraffin was injected into the braided sleeve using a fine needle (Figure 3b, d and 

f) and allowed to solidify by cooling. Finally, the top and bottom of the braided sleeve were 

sealed with rapid glue. Optical microscopy was used to determine whether the paraffin wax 

was contained within the braided sleeve after a series of heating and cooling cycles. It was 

found that significant paraffin wax escaped from the M2 and M3 muscles during the first 

heating cycle. Only the M1 braid with the highest cover factor and smallest pore size was able 

to prevent the wax exuding through the pores when heated (Table 1). The wax was contained 

within this braid for three consecutive heat and cool cycles. From these observations, it can 

be concluded that the minimum pore size needed to prevent the leakage of molten paraffin 

Muscle Braid Diameter  

(mm) 

Initial Braid 

angle (o) 

Yarn Width 

(mm) 

Braid Cover 

Factor 

Average pore 

size (mm) 

Molten Wax 

Contained? 

M1 1.4 34 0.294 0.73 0.27 Yes 

M2 1.4 34 0.147 0.56 0.55 No 

M3 2.0 44 0.294 0.63 0.69 No 



from the braid is less than the pore size of the M2 muscle (0.55 mm) and higher than the pore 

size of the M1 muscle (0.27 mm). Because of its success in containing the molten wax, the M1 

muscle was used for further actuator evaluation. The resistivity and weight of the M1 sample 

was measured to be ~18 Ω and 0.14 g, respectively.      

                                   

 

 

Figure 2. The schematic illustration of (a) braiding machine and (b) paraffin injection process into the braided 

sleeve. (c) Photograph of the entire muscle with connected wires.   
a) 

a) b) 

c) 



  

        

                  

                 

 

Figure 3. Microscopy images of M1 (a, b) M2 (c, d) and M3 (e, f) before and after paraffin (green colour) 

injection.  

 

The actuation testing system (Figure. 4) using a force-distance transducer (Lever Arm 300B, 

Aurora Scientific) was used to measure isotonic actuation strain, isometric force and response 

c) d) 

b) a) 

e) f) 



time. An E-corder data logger (ED 410, e-DAQ) was used to connect the lever arm unit to a 

computer, and e-DAQ Chart software was used to record the data. A DC power supply was 

also utilized to control the voltage and current applied to the braided sleeve for electrical 

heating. An infrared camera (Micro – EPSILON/TIM160) was also used to measure the 

surface temperature of the muscle, and the camera was separately calibrated using a 

thermocouple temperature reading. 

 

Figure 4. Schematic illustration of actuation set up of bladderless, conductive McKibben artificial muscle 

connected to the voltage power supply; force / distance transducer (Lever arm) and data acquisition system.  

.  

 

3. Results and Discussion:   

Analyses of isotonic contraction and the response time of the conductive McKibben muscle 

were performed by stimulating the muscle with 2.5 volts (0.35 W) under six different 

constant stresses ranging from 7.64 to 127 kPa. The stimulation was discontinued once the 

muscle reached the maximum contraction strain which was approximately 60 seconds in all 

cases. Figure 5 (a) indicates that the muscle contracted continuously during the heating 

stimulation period and a strain as high as 10% was achieved at the smallest applied load (7.64 

kPa). The actuation strains were calculated based on the unloaded length of the muscle. The 

maximum contraction strain decreased with increasing isotonic applied load and the muscle 

exhibited just 2.1% contraction strain in 60 sec under 127 kPa stress. This same trend is 

commonly observed in other McKibben muscles such as those operated pneumatically [25] 

Lever arm 

Power supply 

Data acquisition 



and with expandable fill materials [18,19]. The decrease in contraction strain with increasing 

applied isotonic load is likely due to a decrease in muscle stiffness [24] in the activated state 

as compared to the initial condition.  The net change in muscle length is the sum of the 

contraction due to the expanding paraffin acting on the braid and the lengthening due to the 

reduction in muscle stiffness. Since the latter effect increases with increasing applied load, 

the overall actuation contraction strain decreases in magnitude as the applied isotonic load 

increases.  The work density was calculated from the maximum contraction strain at each 

applied stress and is shown in Figure 5(b). The maximum work density of 3.5 kJ/m3 was 

achieved under the constant load of 98 kPa, and is almost half of the work density of natural 

muscle (8 kJ/m3).  

 

 

Figure 5. (a) Dynamic behavior of the conductive and bladderless McKibben muscle during isotonic contraction tests 

under six different stresses and a constant voltage of 2.5 V. (b) Work density output calculated from the maximum 

contraction strain for each of the six isotonic stresses shown in part (a).  

 

The cycle behavior of the conductive and bladderless McKibben muscle was investigated for five 

consecutive heat/cool cycles at an isotonic load of 127 kPa. It was observed that the muscle was 

able to recover 21 % of its initial contraction strain during cooling to room temperature as shown 

in Figure 6(a). After this first heat/cool cycle, the muscle showed a very consistent behavior for 

the next four cycles with a completely reversible contraction and expansion occurring during 

heating and cooling, respectively. The full shape recovery during the initial cooling cycle may be 

restricted by the solidification of the paraffin from the outside to the interior. Solidification of the 

surface paraffin could lock the braid into a shape corresponding to a still expanded paraffin 



volume. Once the muscle was  solidified at this new length, diameter and braid angle, the amount 

of contraction strain in the following cycles was then diminished [11]. In a second set of 

experiments the sample was manually stretched to its initial length immediately after stopping the 

heating stimulation. It was found that the muscle exhibited the same amount of large contraction 

strain during each subsequent heating process for three consecutive heating and cooling cycles 

(Figure 6(b)). Resetting the muscle to its starting dimensions after each heating cycle allowed the 

full contraction strain to be developed in the subsequent heating process. 

 

 

Figure 6. Contraction strain verses time for five different cycles under 127 kPa load (a) without re-stretching and (b) 

with external stretching during the cooling process. (Dashed lines represent the manually stretching).  

 

Isometric tests were also performed at three different input voltages/currents (Figure 7 (a)) to 

investigate the ability of muscle to generate force. The muscle was able to generate up to 39 

mN isometric force (50 kPa stress) in just 20 sec. The isometric force showed a very 

consistent cycle behavior with fully reversible force generation and relaxation during heating 

and cooling, respectively. The length and diameter of the braided sleeve were constant during 

these experiments, unlike in the isotonic tests, which accounts for the consistent force 

generation during consecutive cycles.  Figure 7 (b) indicates that the maximum surface 

temperature of 125 oC was achieved after 20 sec when an electrical power of 0.35 Watt was 

applied. As shown previously [20], the actuation rate can be manipulated by controlling the 

input electrical power.  According to previous work, the expected maximum force of the 

paraffin-filled McKibben muscle is given by [20]: 



 ))()(( 0

2

0max
baTTrF 

                                                                                                (3) 

where ro is the starting braid radius; T and To are the final and initial temperatures; a=3/tan2o; 

b=1/sin2o; o is the starting braid angle and  is the thermal pressure coefficient for paraffin, 

which has been found to be approximately constant at 87 Pa/K over the range of temperatures 

used here [20]. At the measured maximum temperature, the calculated maximum force is 34 

mN, which is very close to the measured force generated (35-39 mN).  

 

a                                                                        

        

Figure 7. (a) Isometric force verses time for four different voltages/currents. (b) Surface temperature images obtained 

with an infrared camera for an input voltage of 2.5 V and current of 0.14A during the isometric test. The dark blue 

color always represents the lowest temperature (22.6 oC) and the yellow color represents 35.0 oC, 63.9 oC, 100.3 oC, 

124.9 oC for 5,10,15,20 seconds, respectively. 

 

This bladderless McKibben muscle offers almost the same amount of contraction strain (10%) 

and stress (50 kPa) as the previously reported paraffin-filled McKibben artificial muscle with 

embedded heating filament (9% strain and 71 kPa stress) [20]. The smaller diameter of the 

bladderless McKibben muscle means that it responds considerably faster (20 seconds) than 

the previous system (90 seconds) where a larger diameter was needed to accommodate the 

embedded heating element. The bladderless system also used 23 times less power (0.35 W vs 

7.94 W) to reach the peak force and strain and 4 times less power to generate the same 

amount of isometric force as the previously described system.  

(a) (b) 



4. Conclusion: 

A conductive and bladderless McKibben artificial muscle is introduced for the first time. The 

conductive braided sleeve was made of intertwined steel wire and cotton fiber with a 

diameter of 1.4 mm. The temperature sensitive material (paraffin) was successfully 

constrained inside the conductive braided sleeve even at expanded state by increasing the 

yarn width and adjusting the braid angle to give a high cover factor of 0.89. The muscle 

generates a maximum isometric tensile stress of 50 kPa or a maximum free contraction strain 

of 10% in 20 and 60 sec, respectively, with a small input voltage of 2.5V. Further 

improvements in performance may be possible by reducing braid diameter to increase 

actuation rate; or using other braid fibers for increased braid stiffness, conductivity and cover 

factor.  
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