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Clusterin in the eye: an old dog with new tricks at the ocular surface

Abstract
The multifunctional protein clusterin (CLU) was first described in 1983 as a secreted glycoprotein present in
ram rete testis fluid that enhanced aggregation ('clustering') of a variety of cells in vitro. It was also
independently discovered in a number of other systems. By the early 1990s, CLU was known under many
names and its expression had been demonstrated throughout the body, including in the eye. Its homeostatic
activities in proteostasis, cytoprotection, and anti-inflammation have been well documented, however its roles
in health and disease are still not well understood. CLU is prominent at fluid-tissue interfaces, and in 1996 it
was demonstrated to be the most highly expressed transcript in the human cornea, the protein product being
localized to the apical layers of the mucosal epithelia of the cornea and conjunctiva. CLU protein is also
present in human tears. Using a preclinical mouse model for desiccating stress that mimics human dry eye
disease, the authors recently demonstrated that CLU prevents and ameliorates ocular surface barrier
disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none
concentration in the tears. When the CLU level drops below the critical all-or-none threshold, the barrier
becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating
stress in vivo, and in vitro to LGALS3 (galectin-3), a key barrier component. Positioned in this way, CLU not
only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further
damage to barrier structure. CLU depletion from the ocular surface epithelia is seen in a variety of
inflammatory conditions in humans and mice that lead to squamous metaplasia and a keratinized epithelium.
This suggests that CLU might have a specific role in maintaining mucosal epithelial differentiation, an idea that
can now be tested using the mouse model for desiccating stress. Most excitingly, the new findings suggest that
CLU could serve as a novel biotherapeutic for dry eye disease.

Disciplines
Medicine and Health Sciences | Social and Behavioral Sciences

Publication Details
Fini, M. Elizabeth., Bauskar, A., Jeong, S. & Wilson, M. R. (2016). Clusterin in the eye: an old dog with new
tricks at the ocular surface. Experimental Eye Research, 147 57-71.

This journal article is available at Research Online: http://ro.uow.edu.au/smhpapers/3769

http://ro.uow.edu.au/smhpapers/3769


Page 1 of 65 

Clusterin in the Eye: An Old Dog with New Tricks at 

the Ocular Surface 

 

M. Elizabeth Fini a, Aditi Bauskar b, Shinwu Jeong c and Mark R. Wilson d
 

 

a USC Institute for Genetic Medicine and Departments of Cell & Neurobiology and 

Ophthalmology, Keck School of Medicine of USC, University of Southern California, 2250 

Alcatraz St., Suite 240, Los Angeles, CA 90089-9037, USA 

Email: efini@usc.edu 

 

b USC Institute for Genetic Medicine and Graduate Program in Medical Biology, Keck School of 

Medicine of USC, University of Southern California, 2250 Alcatraz St., Suite 240, Los Angeles, 

CA 90089-9037, USA 

Email: bauskar@usc.edu 

 

c USC Institute for Genetic Medicine and Department of Ophthalmology, Keck School of 

Medicine of USC, University of Southern California, 2250 Alcatraz St., Suite 240, Los Angeles, 

CA 90089-9037, USA 

Email: shinwuje@usc.edu 

 

d Illawarra Health and Medical Research Institute, School of Biological Sciences, University of 

Wollongong, Northfields Avenue, Wollongong, New South Wales, Australia 2522 

Email: mrw@uow.edu.au 

 

 

 



Page 2 of 65 

Invited Perspectives Article submitted to Experimental Eye Research 

 

Main Text Word Count (revised version): 7,244 

 

Date submitted: March 14, 2016 

Reviews received: April 18, 2016 

Revised Version submitted: April 21, 2016 

 

Corresponding Author: Elizabeth Fini; email: efini@usc.edu 

 

Grant Support: An unrestricted grant from Research to Prevent Blindness, New York, NY to the 

University of Southern California. This organization made no contribution to the content of the 

manuscript.   

 

Competing Interests: US patent 9,241,974 B2 entitled “Clusterin pharmaceuticals and treatment 

methods using the same” (inventors: MEF and SJ), assigned to the University of Southern 

California, is connected with this work. MEF holds a management position with Proteris Biotech, 

Inc., Pasadena, CA, which is developing Protearin for dry eye based on clusterin. MRW 

declares that he has no competing interests.   



Page 3 of 65 

Abstract 

The multifunctional protein clusterin (CLU) was first described in 1983 as a secreted 

glycoprotein present in ram rete testis fluid that enhanced aggregation (‘clustering’) of a variety 

of cells in vitro. It was also independently discovered in a number of other systems. By the early 

1990s, CLU was known under many names and its expression had been demonstrated 

throughout the body, including in the eye. Its homeostatic activities in proteostasis, 

cytoprotection, and anti-inflammation have been well documented, however its roles in health 

and disease are still not well understood. CLU is prominent at fluid-tissue interfaces, and in 

1996 it was demonstrated to be the most highly expressed transcript in the human cornea, the 

protein product being localized to the apical layers of the mucosal epithelia of the cornea and 

conjunctiva. CLU protein is also present in human tears. Using a preclinical mouse model for 

desiccating stress that mimics human dry eye disease, the authors recently demonstrated that 

CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing 

mechanism dependent on attainment of a critical all-or-none concentration in the tears. When 

the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to 

desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in 

vivo, and in vitro to LGALS3 (galectin-3), a key barrier component. Positioned in this way, CLU 

not only physically seals the ocular surface barrier, but it also protects the barrier cells and 

prevents further damage to barrier structure. CLU depletion from the ocular surface epithelia is 

seen in a variety of inflammatory conditions in humans and mice that lead to squamous 

metaplasia and a keratinized epithelium. This suggests that CLU might have a specific role in 

maintaining mucosal epithelial differentiation, an idea that can now be tested using the mouse 

model for desiccating stress. Most excitingly, the new findings suggest that CLU could serve as 

a novel biotherapeutic for dry eye disease.  
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Highlights 

 The multifunctional protein clusterin, first described in 1983, is expressed throughout the 

body, including in the eye. Its homeostatic activities in proteostasis, cytoprotection, and 

anti-inflammation have been well documented, however its roles in health and disease 

are still not well understood. 

 CLU is especially prominent at fluid-tissue interfaces. CLU was demonstrated to be the 

most highly expressed transcript in the human cornea, the protein being localized to the 

apical layers of the mucosal epithelium. CLU protein is also present in human tears. 

 Using a preclinical mouse model for desiccating stress that mimics human dry eye 

disease, the authors recently demonstrated that CLU prevents and ameliorates ocular 

surface barrier disruption by a remarkable sealing mechanism dependent on attainment 

of a critical all-or-none concentration in the tears. 

 CLU depletion from the ocular surface epithelia is seen in inflammatory diseases that 

lead to squamous metaplasia, suggesting that CLU might have a specific role in 

maintaining mucosal epithelial differentiation. Because new mouse models have been 

developed, this idea can now be tested.  

 The new findings suggest that CLU could serve as a novel biotherapeutic for dry eye.  
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Clusterin, Chaperone, Ocular Surface, Cornea, Proteostasis, Cytoprotection, Inflammation, Dry 

Eye, Epithelial Barrier, Mucosal Epithelium, Squamous Metaplasia, Biotherapeutic 
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Dystrophy; HDL: high-density lipoprotein; PXG: pseudoexfoliation glaucoma; RT-PCR: Reverse 

Transcriptase-Polymerase Chain Reaction  
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1. Introduction  

The multi-functional protein clusterin was first described in 1983 as a secreted glycoprotein 

present in ram rete testis fluid that enhanced aggregation (‘clustering’) of a variety of cells in 

vitro [1, 2]. The protein was subsequently re-identified in a number of other studies and was 

given different names based on the activity investigated. Clusterin is identical to serum protein 

40,40 (SP-40,40) found in the SC5b-complex of complement and in immune deposits in 

glomerulonephritis [3, 4]. It is also the same as Apolipoprotein J (ApoJ), a protein associated 

with high-density lipoprotein and very high-density lipoprotein in human serum [5, 6], as well as 

sulfated glycoprotein-2 (SGP-2), the major secreted product of rat Sertoli cells [4], and the 

protein translated from testosterone-repressed prostate message-2 (TRPM-2), which is 

upregulated in the regressing rat ventral prostate [7]. Participants in the inaugural International 

Workshop on Clusterin held in Cambridge, England in 1992 agreed to the name clusterin, 

acknowledging the original reports of its identification [8]. The HUGO nomenclature committee 

has given clusterin the designation “CLU”.  

 

CLU is nearly ubiquitously expressed in tissues, and is constitutively present in most biological 

fluids [9]. The first publication on CLU in the eye was in 1992, describing elevated CLU 

expression in the degenerative disorder, retinitis pigmentosa [10]. CLU expression in various 

parts of the eye was subsequently documented in developmental studies in rats [11] and mice 

[12], including in the lens, cornea and ciliary body, and CLU protein was demonstrated in the 

aqueous and vitreous of the mature human eye [12]. A number of studies at that time 

investigated a role for CLU in retinal degenerative disease. In 1996, a DNA sequencing study 

was published highlighting CLU as the most highly expressed gene in the adult human corneal 

epithelium [13], sparking interest in examining the role of CLU at the ocular surface, as 

discussed below. The most recent study of expression demonstrated CLU mRNA in adult 
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human and monkey eyes localized to the lens, cornea, limbus, sclera, orbital muscle, ciliary 

body, retina, and retinal pigment epithelium /choroid, as well as to retinal pigment epithelial cells 

in culture [14].  

 

When we began to write this article, we performed a search of PubMed using the term 

“clusterin”, and turned up more than 2,000 articles. Despite all this research, new knowledge 

continues to emerge. We refer the reader to the numerous excellent review and perspective 

articles on CLU, a selection of which are listed here [8, 15-22]. The current article provides a 

brief overview of the history and current knowledge on CLU. It then offers an updated review 

and perspective on the physiologic role of CLU in the eye, including some new insight from our 

group on its role at the ocular surface [23, 24]. 

 

2. Gene and Protein Structure  

In humans, a single CLU gene of nine exons is located on chromosome 8. The sequence is 

highly conserved across species, showing 70–80% identity at the amino acid level amongst 

mammals [20]. Transcription results in an mRNA of ~2-kb, from which is produced a primary 

polypeptide chain of 449 amino acids. Figure 1 is a schematic of the CLU molecule based on 

information deduced from sequence analysis and biochemical studies. An N-terminal signal 

peptide of 22 amino acids is removed in the endoplasmic reticulum to produce a protein with a 

predicted mass of ~50 kDa. Subsequently, CLU is proteolytically cleaved to form two anti-

parallel polypeptide chains of similar size connected at a central core by 5 disulfide bonds. Six 

predicted N-linked glycosylation sites clustered around the disulfide-bonded core were 

confirmed by mass spectroscopy [25]. This results in a secreted glycoprotein with an apparent 

mass of 75–80 kDa by SDS-PAGE, although the actual mass is approximately 58–63 kDa, 

which is 17–27% carbohydrate by weight. Other N-terminally truncated clusterin isoforms have 
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been proposed, including one thought to localize to the nucleus (e.g., [26, 27]), however 

unequivocal identification of any of these in cells has yet to be achieved. 

 

Sequence analysis of the CLU mRNA predicts that the glycosylated, disulfide-bonded core of 

the encoded protein is flanked by five amphipathic -helices [28]. The result is a four armed 

molecule with regions of native disorder, resulting in a dynamic, molten globule-like structure 

with the capacity to bind a variety of different molecules [28]. This includes hydrophobic regions 

exposed on denatured proteins, important for CLU function as a chaperone [28, 29]. CLU also 

binds a number of specific proteins, including the SC5b-9 complex of complement and 

immunoglobulins [8]. There have been no crystal structure determinations for CLU, and only 

limited analyses by mass spectrometry [25, 30] and nuclear magnetic resonance [31]. 

 

3. Biochemical Activities and Roles in Health and Disease 

3.1. Complement Inhibition 

Characterized as SP-40,40, CLU was identified in glomerular immune deposits as part of the 

membrane attack complex of complement [3]. Purified CLU was shown to inhibit C5b-6-initiated 

hemolysis in a dose-dependent manner [32] by binding to complement component SC5b-9 [33]. 

The idea that CLU is a physiological inhibitor of complement-mediated cytolysis was tested 

using erythrocytes and cells stably transfected with a membrane-anchored form of CLU as 

targets for complement-mediated cytolysis [34]. CLU gave dose-dependent protection of 

antibody-coated sheep erythrocytes against complement-mediated lysis by diluted normal 

human serum, however extrapolation to undiluted serum showed that a CLU concentration at 

least two orders of magnitude greater than its physiological concentration would be needed to 

confer protection in the circulation [34]. Once deposited in tissues however, the effective 
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concentration of CLU may be much higher. The physiologic significance of complement 

inhibition by CLU remains to be established.  

 

3.2. Lipid Transport 

Characterized as apolipoprotein J [35, 36], CLU was found to exist in human plasma, 

associated with high-density lipoproteins (HDL), and specifically with subclasses of HDL that 

also contain APOA1 (apolipoprotein A1) and CETP (cholesteryl ester transfer protein) activity. 

CLU is also associated with HDL in cerebrospinal fluid [37]. The major physiological role 

postulated for HDL is to mediate reverse cholesterol transport, a process in which excess 

cholesterol is removed from peripheral cells and returned to the liver for eventual excretion as 

bile acids [38, 39]. Like APOA1, CLU was found to promote cholesterol efflux from cells in vitro 

[40], although it remains to be shown whether this is an important role for CLU in vivo. More 

recent studies suggest that CLU is important for stabilizing APOA1, PON1 (paroxonase 1) and 

other proteins in the HDL (see discussion of chaperone function below), thus maintaining their 

anti-atherogenic properties [41, 42]. CLU is also a component of low density lipoproteins [43].  

 

CLU protein is not found in the normal aorta, but it is distributed in the intima and media of 

aortas with diffuse, intimal thickening or atherosclerotic lesions [44]. CLU expression is 

upregulated after vascular injury and appears to prevent endothelial cell activation and limit the 

proinflammatory response in atherosclerosis [45]. Apolipoprotein mimetic peptides, designed 

around the sequence of the amphipathic helices, dramatically reduce atherosclerosis in animal 

models and may provide therapeutic value in a variety of human vascular inflammatory 

conditions [46]. An orally-delivered amphipathic helix peptide based on CLU reduced 

atherosclerosis in APOE-null mice [47]. 
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3.3. Anti-Apoptosis and Cell Survival 

A notable property of CLU is its induction during programmed cell death in a variety of different 

tissues. Testosterone-repressed prostate message-2 [7] and sulfated glycoprotein-2 mRNA [48] 

were independently cloned from the prostate undergoing involution following castration by two 

different groups. Sequence analysis showed they were identical to one another and to CLU. 

Later studies identified CLU induction in many other organ systems undergoing massive 

apoptosis (e.g., [49]), leading to the general idea that CLU might play a causative role in 

programmed cell death. However, this concept was ultimately reversed by the finding that 

overexpression of CLU conferred resistance to TNFA-induced apoptosis in human prostate 

cancer cell cultures [50]. Conversely, CLU knockdown resulted in a significant reduction of 

cellular growth and higher rates of spontaneous apoptosis [51]. These experiments mimic 

natural changes in CLU levels; expression is low in most unstressed cells, but is stimulated by 

different stressful conditions and agents [52, 53]. 

 

Secreted CLU may protect cells from undergoing apoptosis in several ways. First, extracellular 

CLU is cytoprotective in its role as a molecular chaperone, as discussed above. CLU can also 

protect directly against apoptosis. In one mechanism described, this begins by binding to cell 

surface receptors of the low-density lipoprotein family such as LRP2 (megalin) [54], LPR8, or 

VLDLR [55]. Binding of CLU to LRP2 induces activation of AKT, promoting cell survival [55]. It 

should be noted that, while a large number of studies have reported that CLU confers protection 

against apoptosis, some studies report the opposite [56]. The molecular basis of this apparent 

conflict remains to be resolved.  

 

The anti-apoptotic activity of CLU has been well studied in connection with resistance to 

chemotherapeutics in cancer [17, 57-59]. Custirsen (OGX-011/TV-1011; OncoGeneX 

Pharmaceuticals, Inc., Bothell, WA, USA) is a second-generation antisense oligonucleotide that 
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reduces the production of secreted CLU [60]. Custirsen was developed to bind CLU mRNA and 

reduce CLU protein expression as a strategy for treatment resistance in various cancer types. A 

2'-O-methoxyethyl (2'-MOE) modification enhances binding to the target mRNA and resistance 

to nucleolytic degradation, thus prolonging tissue half-life and reducing dose frequency when 

compared with the first-generation antisense oligonucleotide. The drug is currently under 

investigation in patients with solid tumors treated by chemotherapy [60, 61]. 

 

3.4. Chaperone Activity and Proteinase Inhibition 

Proteostasis describes the maintenance of the individual proteins of the proteome in the 

conformation, concentration, and location required for their correct function. Chaperones are 

involved in controlling the movement of intractably misfolded proteins toward the intracellular 

degradation machinery and some are also involved in refolding misfolded proteins. Most of the 

current information on the function of chaperones relates to those found inside cells, with the 

superfamily of heat shock and related proteins being a well-known example. CLU was the first 

of the extracellular chaperones to be identified [9]. It was characterized as a potent small heat 

shock protein-like chaperone that inhibits stress-induced amorphous protein aggregation and 

the fibrillar aggregation of many amyloidogenic proteins and peptides. CLU forms high-

molecular-weight ‘solubilized’ complexes with heat- or reduction-stressed proteins, inhibiting 

their precipitation [62]. CLU can stabilize stressed proteins but, like small heat shock proteins, 

cannot catalyze protein refolding. However, on a molar basis, CLU is considerably more potent 

than small heat shock proteins at inhibiting stress-induced protein precipitation [63]. The 

structural elements responsible for the chaperone activity of CLU are not yet known, but the 

ability to bind to misfolded proteins is thought to relate to surface hydrophobicity, which is 

enhanced by acidic pH (49). The chaperone activity of CLU is ATP independent and, in the case 

of amorphously aggregating clients, results in the formation of soluble, high molecular mass 

complexes ≥40,000 kDa (57).  
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The physiologic significance of CLU’s chaperone function is demonstrated by the observation 

that immunodepletion from human blood plasma renders plasma proteins susceptible to stress-

induced precipitation [64]. CLU knockout mice have increased tissue damage after heat shock 

[65], myosin-induced autoimmune myocarditis [66], or post-ischemic brain injury [67]. Aging 

CLU knockout mice develop protein deposits in the kidney and glomerular neuropathy, which 

directly implicates CLU in the clearance of misfolded proteins [68].  

 

Many age-related, inherited, systemic and neurological disorders are characterized by the 

deposition of highly structured protein aggregates known as amyloid or amyloid-like fibrils. This 

includes Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, Creutzfeldt-

Jakob disease, Down’s syndrome and atherosclerosis [69]. Aggregates can be located intra- or 

extracellularly, exerting pathogenic effects by organ disruption or cytotoxicity. Intracellular 

amyloid aggregates are found co-localized with components of the intracellular protein quality 

control system [70]. In a striking parallel, all disease-associated insoluble extracellular protein 

deposits tested, including those characterized as amyloid, co-localize with CLU [71]. Evidence 

has been presented that, when present at low concentrations, CLU incorporates into amyloid 

deposits, perhaps in an aborted attempt to fulfill its role as an extracellular chaperone. However, 

if CLU attains a critical concentration threshold, it potently inhibits amyloid formation and 

provides substantial cytoprotection [71].  

 

Based on these and other findings, it has been proposed that CLU forms part of an extracellular 

protein quality control system that helps to maintain proteostasis [72]. The CLU gene has been 

identified as an important risk locus for Alzheimer's disease. Functional analyses suggest 

reduced secretion of the CLU protein as the mode of action for three CLU coding mutations [73]. 

CLU concentration in cerebrospinal fluid is low compared to other bodily fluids, suggesting 
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protective activity could be easily overwhelmed and that supplementation might be of 

therapeutic value in Alzheimer’s disease [73]. 

 

Chaperoning is one way to maintain proteostasis; another way is by inhibition of proteolysis. 

Two recently published studies made the unexpected new finding that CLU is a potent inhibitor 

of Matrix Metalloproteinase (MMP) activity.  

 

In the first study [74], a Madin-Darby canine kidney (MDCK) cell line was created, stably 

expressing a soluble form of MMP25, a neutrophil-specific enzyme that normally is tethered to 

the cell surface via a covalent glycosylphosphatidylinositol link. When the resulting soluble 

MMP25 was isolated, it was found to be in complex with CLU. Soluble MMP25 was 

enzymatically inactive in the complex. Moreover, the activity of purified soluble MMP25 was 

inhibited by addition of CLU. This activity was specific, as CLU had no effect on MMP2 or 

soluble MMP14.   

 

In the second study [23], a yeast-two hybrid screen, using MMP9 as bait, identified CLU. CLU 

was found to bind very strongly to the truncated form of MMP-9 lacking the pro-domain, with an 

affinity constant of 2.63 nmol/L. CLU had an even higher affinity for pro-MMP9 than this 

activated form of MMP9. CLU inhibited the enzymatic activity of MMP9, comparing quite 

favorably to inhibition by the synthetic small molecule inhibitor SB-3CT. In this study, CLU also 

was found to inhibit enzymatic activity of MMP2, as well as MMP3, and to a lesser extent, 

MMP7. Physiologic relevance was demonstrated by showing that CLU inhibited MMP9-

mediated dissolution of tight junctions in human epithelial cell cultures. 

 

The mechanism of CLU inhibition of MMP activity remains to be investigated. Intriguingly, 

another extracellular chaperone, A2M (-2-macroglobulin)[75], is also a broad-spectrum 



Page 14 of 65 

proteinase inhibitor, with well-known action against MMPs [76]. It might be speculated that 

proteinase inhibition is part of an anti-inflammatory suite of activities shared by at least some of 

the extracellular chaperones.  

 

4. CLU in the Eye 

4.1. Retinal Degeneration 

The neurodegenerative disease retinitis pigmentosa (RP) served as a model for investigating 

CLU’s role in apoptosis [10]. CLU mRNA was localized to the retinal pigment epithelium cells, 

photoreceptor inner segments, inner nuclear layer, and ganglion cell layer of normal retina. 

Differential hybridization screening of a retinal cDNA library revealed an increase in CLU 

expression in diseased retina. A subsequent study localized CLU expression to apoptotic 

photoreceptors in RP [77]. An increase in CLU expression was also seen in light-induced retinal 

damage in rats [78]. Improper photoreceptor development in the vitiligo mutant mouse was 

accompanied by increased expression of CLU mRNA in the retinal pigment epithelium [79]. In 

the retinal degeneration slow mutant mouse, over-expression of CLU co-localized with apoptotic 

nuclei [80, 81]. The pattern of apoptotic nuclear labeling was examined in a rat model of light-

induced retinal degeneration. In control retinal sections, CLU expression decreased in 

photoreceptors and retinal pigment epithelium cells, which progressively degenerated, and 

increased in the preserved inner nuclear layer, in proportion to the duration of light exposure in 

both cyclic light- and dark-reared animals [82]. These studies linked CLU to apoptosis, but did 

not establish whether its role was causal or protective.  

 

To address the question of CLU’s role in apoptosis directly, transgenic mice were generated in 

which a rat CLU transgene was expressed in photoreceptor cells under the transcriptional 

control of the human IRBP (interphotoreceptor binding protein) promoter. A reduction in 
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apoptotic staining in the transgenic retinas was observed from birth to postnatal day 15. These 

results suggested that CLU is not causally involved in photoreceptor cell death, but appeared 

instead to be cytoprotective [83], as discussed above for other tissues and cancers. CLU 

expressed by retinal Muller cells was shown to be assembled into lipoprotein particles [84]. A 

recent study provided evidence that CLU protein protects retinal pigment epithelial cells against 

oxidative stress [85]. 

 

4.2. Eye Diseases of Protein and Lipid Deposition 

4.2.1. Age-related macular degeneration – This disease is characterized in its early stages by 

the presence of “drusen”, i.e., extracellular deposits that accumulate between the basal surface 

of the retinal pigment epithelium and Bruch's membrane, an extracellular matrix complex that 

separates the neural retina from the capillary network in the choroid. Drusen are regarded as 

hallmarks of underlying degeneration. They are comprised of carbohydrates, zinc, and proteins 

common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and 

dense deposit disease, and include CLU and other apolipoproteins, as well as complement 

components [86-93]. DNA sequence variants in several complement proteins found in drusen 

are associated with increased disease risk [94-97], but no variants in CLU have yet been 

associated with disease.   

 

4.2.2. Pseudoexfoliation glaucoma – Pseudoexfoliation syndrome is a systemic condition with 

eye manifestations. Pseudoexfoliation material, when deposited on various structures of the 

anterior segment, causes pseudoexfoliation glaucoma (PXG), the most common cause of 

secondary open-angle glaucoma worldwide [98]. CLU is a component of pseudoexfoliation 

deposits [99-101], and a deficiency of CLU has been suggested as a factor in accumulation of 

deposits [102], which appears to lead to complement activation [103]. Variants of LOXL1, an 

enzyme involved in cross-linking elastin fibers, are highly associated with PXG in most 
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populations. Two SNPs in LOXL1 confer a higher than 99% population attributable risk for PXG 

in the Nordic population, however, they carry different risks in other populations. Common CLU 

variants may contribute to modest PXG risk but larger datasets are required to confirm these 

findings [104]. 

 

4.2.3. Corneal dystrophies – This is a group of inherited disorders characterized by deposition of 

insoluble protein material in the form of extracellular deposits or intracellular cysts. The deposits 

are localized to various layers of the cornea depending on the gene involved and its specific 

mutation, and they affect corneal transparency and visual acuity.  CLU has been found co-

localized in deposits of two types of superficial and stromal corneal dystrophies: the TGFBI-

linked corneal dystrophies [105, 106] and the lattice type I corneal dystrophy linked to mutations 

in the gene for TACSTD2 (Tumor-Associated Calcium Signal Transducer 2) [107]. In addition, 

CLU is markedly elevated in Fuchs’ Endothelial Corneal Dystrophy (FECD), the most common 

cause of corneal endothelial dysfunction [108-110]. The disease is characterized by 

accumulation of extracellular collagenous deposits called “guttae” posterior to Descemet’s 

membrane, the specialized extracellular matrix that backs the corneal endothelium [111]. Early-

onset FECD has been linked genetically to a mutation in the COL8A2 (2 chain of collagen VIII) 

gene encoding a component of Descemet’s membrane [112]. Polymorphisms in the CLU gene 

have been associated with late-onset FECD [113, 114]. CLU expression was demonstrated in 

human corneal endothelium by both PCR and immunohistochemistry [115] and CLU has a 

protective effect against oxidative stress-induced cell death in these cells [116]. 

 

4.3. Proliferative Disorders 

Two studies suggest that CLU promotes proliferative disorders in the eye. Pterygium, also 

known as “surfer's eye” or “farmer’s eye”, is a benign growth of the conjunctiva associated with 

exposure to sunlight. CLU is one of the more highly expressed genes in pterygium [117]. CLU is 
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also highly expressed in retinoblastoma, a childhood cancer that begins in the retina [118]. As 

with other cancers, apoptosis of retinoblastoma cell death due to treatment with cisplatin was 

prevented by co-treatment with, or over-expression of CLU. Targeting CLU in both of these 

lesions using antisense agents could provide therapeutic value.  

 

4.4. Stem Cell Expansion and Transplantation 

For many years, corneal epithelial stem cells isolated from the limbal niche located between 

cornea and sclera have been used for ocular surface reconstruction. Originally these cells were 

isolated and expanded on feeder layers of mouse 3T3 fibroblasts [119]. In a recent study, CLU 

was overexpressed in 3T3 cells by transfection of a vector encoding full-length CLU. The colony 

forming efficiency of corneal limbal epithelial stem cells was significantly enhanced by growth on 

the CLU transfected cell feeder layer. Expression of transfected CLU stimulated production of 

the growth-promoting cytokine, hepatocyte growth factor, by the feeder cells [120].   

 

Another way to isolate stem cells is by identifying those that exclude the DNA-binding dye 

Hoechst 33342 by fluorescence-activated cell sorting, i.e., the “side population”. Side population 

cells isolated from mouse lacrimal and salivary glands were transplanted into the glands of mice 

made hypo-functional by irradiation. The secretions from both glands in the recipient mice were 

restored within 2 months of transplantation, although the transplanted cells did not appear to 

expand. Side population cells isolated from salivary glands of CLU knockout mice had no 

therapeutic potential, whereas lentiviral transduction of CLU restored function. CLU directly 

inhibited oxidative stress and oxidative stress-induced cell damage in these cells [121].  
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4.5. Retinal Vascular Barrier Function  

Breakdown of the blood-retinal barrier occurs following retinal ischemia. CLU expression 

increased when human retinal endothelial cells were exposed to oxygen-glucose deprivation, 

whereas tight junction proteins OCLN and ZO1 markedly decreased. Tight junction proteins 

were restored by CLU treatment [122]. CLU also effectively inhibited vascular endothelial growth 

factor-induced hyperpermeability in advanced glycation end product-treated human retinal 

microvascular endothelial cells and in the retinas of mice with streptozotocin-induced diabetes 

[123]. Again, the antipermeability activity of CLU was related to the restoration of tight junction 

proteins. Thus CLU may have therapeutic potential in the treatment of diabetic blood retinal 

barrier breakdown. 

 

5. CLU at the Ocular Surface 

5.1. Ocular Surface Barrier Function in Dry Eye Disease 

In an early study to characterize CLU, In situ hybridization analysis was performed in mouse 

embryos and adult tissues. This revealed a striking level of expression in epithelial and 

secretory cells from a broad range of tissues that form the cellular interface with fluid 

compartments, as well as several non-epithelial secretory cell types that line fluid compartments, 

including synovial lining cells and ovarian granulosa cells [124]. The results suggested that 

localized CLU synthesis serves a general role in protection of secretory, mucosal, and other 

barrier cells from the extracellular environment.  

 

The ocular surface barrier is comprised of such mucosal epithelia. The molecular structure has 

been described in several publications (e.g., [125]). Membrane-associated mucins emanating 

from the microplicae (finger-like membrane folds) on the apical layer of epithelial cells, project 

into the tear film [126]. Their glycan groups bind multiple oligomers of the network-forming 
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galectin, LGALS3 (galectin-3), creating the transcellular barrier; tight junctions composed of 

OCLN (occludin), ZO1 (zonula occludens-1), and other molecules, seal the space between 

adjacent cells, creating the paracellular barrier. The barriers are functionally linked via the 

cytoskeleton [127]. Barrier disruption is assessed clinically by measuring intracellular uptake of 

water-soluble dyes such as rose-bengal, lissamine green or fluorescein [128, 129]. The normal 

ocular surface exhibits low, variable levels of dye uptake, which occurs in a distinctive punctate 

pattern, possibly reflecting cellular desquamation and shedding of mucin ectodomains [129-131]. 

Higher levels of dye uptake in the same punctate pattern are associated with dry eye syndrome 

[129, 132, 133].  

 

Dry eye syndrome is a common affliction that affects 5% to 34% of all people globally, and 

prevalence increases with age [134]. The disease is caused by inadequate hydration and 

lubrication of the ocular surface, which can be brought on by a variety of factors. Symptoms 

include pain, burning, itching, redness, sensitivity to light and other discomfort. If left untreated, 

severe cases may result in vision loss due to corneal scarring. In all forms of dry eye, reduced 

tear flow and/or increased evaporation leads to tear hyperosmolarity. This initiates the vicious 

circle of dry eye pathology in a final common pathway. Hyperosmolarity induces inflammatory 

cascade activation [135-137], increases apoptosis [138-140], and stimulates expression and 

activity of MMPs [141, 142], causing ocular surface barrier disruption [143, 144]. In severe 

cases, dry eye also leads to squamous metaplasia involving ocular surface epithelial cell 

transdifferentiation from a wet mucosal phenotype to a keratinized skin-like phenotype [145].    

 

As noted above, a DNA sequencing study published in 1996 identified CLU as the most highly 

expressed gene in the human corneal epithelium [13]. Reverse Transcriptase-Polymerase 

Chain Reaction (RT-PCR) demonstrated CLU mRNA in both corneal and conjunctival epithelial 

cells of the ocular surface [13, 146, 147].  In situ hybridization revealed CLU mRNA in all layers 
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of the corneal epithelium, but most prominently in the basal cells. In contrast, 

immunohistochemical analysis revealed positive immunostaining for CLU protein only in the 

apical cell layers of the ocular surface epithelia, suggesting translational regulation [13, 146, 

147]. CLU mRNA is also abundant in the human lacrimal glands [148, 149], meibomian glands 

[149] and accessory lacrimal glands of Wolfring [150] and mass spectrometric analyses have 

demonstrated CLU protein in human tears [151-164]. This localization pattern is consistent with 

the notion of a protective role for CLU at the fluid-tissue interface of the ocular surface epithelia. 

 

Use of mice for experimental disease models affords the opportunity to take a genetic approach 

to identify causal factors through gene knockout technology. One of the first mouse models for 

dry eye applied an air-draft plus scopolamine protocol to create desiccating conditions at the 

ocular surface [165]. In this procedure, desiccating stress is created through the use of blowers 

to cause tear film evaporation. Pharmacologic inhibition of tear secretion with the anti-

cholinergic agent scopolamine is used to further decrease tear production and clearance. A 

simple fluorometric assay was developed to quantify fluorescein dye uptake, representing an 

advantage over grading scales used to evaluate fluorescein uptake as a measure of ocular 

surface barrier disruption in humans.  

 

A search for possible causal mediators of barrier disruption identified an increase in MMP9 

protein in the tears and at the ocular surface subjected to desiccating stress [166]. Elevated 

gelatinolytic activity was detected within the ocular surface epithelia by in situ zymography [132]. 

MMP9 levels in human tears correlated with dry eye signs [167].  As noted above, MMP9 is a 

marker of inflammatory cascade activation. To test for MMP9 causality, we took a genetic 

approach using the then new MMP9 knockout mouse. It was found that loss of MMP9 activity 

completely protects ocular surface barrier function against desiccating stress [144]. Importantly, 

topical addition of MMP9 protein to the ocular surface of MMP9 knockout mice “rescued” the dry 
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eye phenotype. In other words, barrier disruption due to desiccating stress returned when 

MMP9 was added, meaning that MMP9 activity is necessary for barrier disruption. 

 

How does MMP9 compromise barrier function? Various proteinases, including MMP9, catalyze 

cleavage of transcellular barrier components, including LGALS3 [168-170] and MUC16 (a 

membrane-associated mucin) [171], as well as paracellular barrier components, including ZO1 

[172] and OCLN [173]. We found that barrier disruption under conditions of desiccating stress 

was associated with an increase in the cleaved form of OCLN, as well as a loss of OCLN at cell-

cell borders [144]. Loss of MMP9 activity in MMP9 knockout mice protected against this [144]. 

MMP9 proteolysis also controls activity of cytokines, thus modulating leukocyte migration and 

inflammation [174]. Knockout mouse studies performed in our lab demonstrated that MMP9 

modulates ocular surface activity of inflammatory signaling pathways by its effects on 

interleukin-1 isoforms and transforming growth factor- isoforms [175]. MMP9 might also cause 

any of the barrier protein cleavages indirectly, for example by cleaving and activating other 

proteinases [176]. Thus, MMP9 is likely to have a cascading action in disruption of the ocular 

surface barrier subjected to desiccating stress.  

 

An early study using in situ hybridization [12] demonstrated CLU mRNA in the ocular surface 

epithelia of mouse embryos, but the adult conjunctival epithelium appeared negative. However, 

RT-PCR demonstrated CLU mRNA in mouse epithelial cells cultured from adult corneas [147]. 

Moreover, in a gene expression microarray analysis of normal and healing mouse corneal 

epithelium, CLU was identified as one of the more highly expressed genes, upregulated 1.8-fold 

in the repairing epithelium [177]. Most recently, analysis of corneal sections from mice revealed 

immunoreactive CLU protein within the apical layers of the ocular surface epithelia in the same 

location as seen in humans, and RT-PCR demonstrated the presence of CLU mRNA [23]. A 

more recent study demonstrated immunoreactive CLU protein in cells of the mouse lacrimal 
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gland [121]. CLU was most recently identified and quantified in mouse tears by enzyme-linked 

immunosorbent assay [24]. These studies support the mouse as a valid model for study of 

CLU’s role at the ocular surface.  

 

We hypothesized that the desiccating stress of dry eye might overwhelm the protective capacity 

of CLU at the ocular surface. If this was the case, treatment with CLU topically might restore 

protection. In a recently published study, we used the mouse air-draft-plus-scopolamine model 

described above to test this idea [24]. In a series of experiments, we applied the desiccating 

stress protocol treated topically with CLU, and quantified the effects on the ocular surface 

barrier by measuring fluorescein dye uptake. CLU formulated in PBS, topically applied to the 

ocular surface, 4 times/day, at the same time as the desiccating stress protocol was applied 

completely protected the ocular surface against desiccating stress. This effect occurs via a 

striking all-or-none response over a very precise threshold range of 0.6-1 ug/mL. Strikingly, the 

same dose of CLU also ameliorated pre-existing ocular surface barrier disruption due to 

desiccating stress.  

 

Since CLU was so effective at ameliorating pre-existing barrier disruption, we wondered 

whether it might have a direct sealing effect. Figure 2, taken from our recent paper [24], shows 

representative results of these experiments. When CLU was applied only a single time, and 

when fluorescein uptake was assayed within 15 minutes before repair could occur, pre-existing 

barrier disruption was completely ameliorated. The effect lasted for at least 2 hours, but was 

gone within 16 hours. These results indicate that CLU acts to seal the ocular surface barrier 

against fluorescein uptake. The all-or-none threshold range was higher in this case – 3-6 ug/mL 

– for reasons not yet understood.  
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We next tested the capacity of CLU to protect the barrier against physical damage. We showed 

for the first time that LGALS3 is cleaved at the mouse ocular surface subjected to desiccating 

stress. LGALS3 cleavage products are found at the ocular surface and in tears of dry eye 

patients [178], providing evidence that similar mechanisms are operative in human dry eye. We 

also found that topical CLU treatment protects OCLN in the tight junctions of the paracellular 

barrier in vivo, as previously shown in a cell culture model in vitro [23]. These results 

demonstrate that CLU maintains protein structure at the ocular surface subjected to desiccating 

stress.  

 

We also demonstrated that topical CLU is cytoprotective, preventing the increase in apoptosis 

that occurs at the ocular surface subjected to desiccating stress [24]. As discussed above, 

cytoprotection by CLU has been well studied in connection with resistance to 

chemotherapeutics in cancer, but this the first time CLU has been demonstrated to be anti-

apoptotic at the ocular surface subjected to desiccating stress, and the first time CLU delivered 

topically has been shown to provide this beneficial effect.  

 

The observation that CLU seals the ocular surface against fluorescein uptake immediately after 

being applied, and that sealing is maintained for at least two hours, strongly suggested that CLU 

must bind at the ocular surface and we showed that this is indeed the case [24]. Importantly, 

CLU binding was found to be selective for the ocular surface subjected to desiccating stress (as 

compared to the unstressed ocular surface). This suggested that CLU binds specifically to 

disrupted areas of the barrier. CLU was identified as an interacting candidate in a recent 

proteomics screen for potential LGALS3 interacting proteins from human prostasomes [179]. 

We validated this finding for the first time, showing that CLU applied to an LGALS3-Sepharose 

affinity column bound to the beads, but was eluted with the counter-receptor -lactose. This 
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suggests that CLU interacts with the carbohydrate-binding domain of LGALS3. Further studies 

will be important to understand the selectivity mechanisms.  

 

Since LGALS3 is present at the normal ocular surface, how could it provide for selectivity? We 

suggest this could involve proteolysis. All galectins have a C-terminal carbohydrate recognition 

domain, but LGALS3 is unique in also possessing an N-terminal extension with a repeating 

motif that enables multimer formation [180]. This gives it the capacity to forms networks that 

bridge membrane-associated mucin ectodomains to organize the ocular surface barrier.  

Bridging of membrane-associated mucins by LGALS3 has been shown as essential for 

exclusion of the clinical dye rose-bengal [181]. MMPs and other proteinases can cleave the 

multimerization domain from the body of LGALS3, reducing self-association [168-170]; 

truncated LGALS3 interferes with network formation and rose-bengal exclusion [182]. As 

reported above, LGALS3 cleavage increases at the mouse ocular surface subjected to 

desiccating stress, and that CLU protects against cleavage. Cleavage of LGALS3 at the ocular 

surface subjected to desiccating stress would disrupt interactions with other LGALS3 molecules 

as well as membrane-associated mucins, freeing it for interaction with CLU. Proteolysis of other 

molecules might similarly provide for selectivity of CLU binding. These ideas remain to be tested.  

 

CLU binding at the ocular surface must also relate to the observed all-or-none sealing effect. 

All-or-none responses are seen in many biological processes [183-185] and often involve the 

assembly of multimeric complexes at a critical concentration [186]. Significantly, LGALS3 

binding to counter-receptors is of higher affinity after removal of the multimerization domain 

[170]. Thus when the critical threshold is attained at the ocular surface that has been subjected 

to desiccating stress and subsequent proteolysis, CLU might intercalate into the LGALS3-

membrane-associated mucin network [24].  
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The available data suggest that CLU might act as a “spot weld” to bind to and seal the ocular 

surface. An artist’s conception of sealing is depicted in Figure 3. CLU binding to the ocular 

surface and sealing might involve the amphipathic helices, which could mediate interaction with 

proteins at the ocular surface denatured by proteolysis, as well as with the plasma membrane 

[24]. All exchangeable apolipoproteins, including APOA1 and APOE, bind lipids via their 

amphipathic helix domains, and can insert into lipid bilayers [187].  

 

As shown in Table 1, the concentration of CLU varies greatly among human bodily fluids. CLU 

has been identified in basal and reflex tear proteomics profiles of normal human subjects [156-

164], dry eye subjects [151, 152, 155], and subjects with pterygium, Sjögren’s syndrome, 

diabetes, diabetic retinopathy, and multiple sclerosis [151-154, 164], however the actual 

concentration of CLU in tears has never been measured. In our recently published paper, we 

report the first ever measurement of tear CLU concentration [24]. We determined that the basal 

CLU tear concentration in 6 week old female C57BL/6 mice is ~5-6 ug/mL. Significantly, this fits 

within the range of the all-or-none CLU threshold that we observed for sealing (3-6 ug/mL).  

 

In vitro, CLU potently inhibits amyloid formation characteristic of many genetic diseases of 

protein deposition. This provides substantial cytoprotection, but depends on achieving a critical 

molar ratio of CLU to substrate [71]. As noted above, CLU concentration in cerebrospinal fluid is 

low, suggesting the levels could be easily overwhelmed in disease and that CLU 

supplementation might be of therapeutic value in Alzheimer’s [73]. Considering the low level of 

CLU in mouse tears, the same argument might be made for dry eye. Perhaps of significance, 

increased CLU in the saliva has been suggested as a biomarker for Sjögren’s syndrome [188]. 

This increase likely represents a protective stress response. It remains to be learned whether 

the increase extends to the tears.  
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This vulnerability idea might be tested using CLU knockout mice, but first we had to 

demonstrate that their ocular surface was anatomically normal. We performed extensive 

characterization and found no differences from wild type mice [24]. Next we had to demonstrate 

that reduction in genetic dosage resulted in a corresponding reduction in the tear concentration 

of CLU. Heterozygous CLU knockout mice had half the CLU tear concentration – 2.5 ug/mL – 

as expected for half the gene dosage [24]. Importantly, this half dose is beneath the critical 

threshold for sealing (3-6 ug/mL). Having established these criteria, we tested the vulnerability 

hypothesis. We found that the ocular surface barrier of heterozygous CLU knockout mice was 

~3-fold more sensitive to desiccating stress than wild type mice [24]. This supported the 

hypothesis that the level of CLU in tears is limiting, and that a reduction can create vulnerability 

for barrier disruption.  

 

In summary, topical application of CLU prevents and ameliorates ocular surface barrier 

disruption due to desiccating stress by a remarkable sealing mechanism dependent on a critical 

all-or-none concentration. When the endogenous CLU level drops below the critical all-or-none 

threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the 

ocular surface subjected to desiccating stress in vivo, and in vitro to the network-forming 

galectin, LGALS3, a key barrier component. Positioned in this way, CLU not only seals the 

disrupted barrier, but it also prevents further structural damage due to proteolysis.  These are 

fundamentally new observations about CLU functionality. Further studies to investigate the 

mechanisms of binding and selectivity for the disrupted ocular surface barrier, as well as the 

factors leading to ocular surface vulnerability will be very important.   

 

5.2. Is CLU a Regulator of Mucosal Differentiation?  

Depletion of intracellular CLU from the ocular surface epithelial is seen in a variety of 

inflammatory conditions in humans (e.g., [189, 190]), including such ocular surface disorders as 
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Stevens-Johnson syndrome and cicatricial pemphigoid [191, 192]. These latter diseases result 

in a deficiency of mucins in the tears, leading to evaporation of the aqueous layer of the tears 

resulting in a severe form of dry eye. Immunohistochemical analysis of tissues obtained from 

such eyes revealed that CLU depletion from the apical epithelial cells correlated strikingly with 

expression of markers of squamous metaplasia [193]. At the time it was suggested that CLU 

might be essential for protecting against inflammatory and desiccating stress, maintaining ocular 

surface barrier function and mucosal differentiation [194, 195]. However the experimental 

mouse models needed to test this idea had not yet been developed.  

 

Squamous metaplasia occurs in experimental mouse dry eye models [196], including the model 

used in our lab [197].  Analysis of corneal sections from mice maintained under ambient 

conditions revealed immunoreactive CLU protein within the sub-apical epithelial cells, in a 

pattern very similar to that seen in human corneas. When eyes were subjected to the 

desiccating stress protocol, CLU immunostaining was diminished while MMP9 immunostaining 

was enhanced. CLU expression in the ocular surface epithelia, quantified by both RT-PCR and 

western blotting, showed a ~30% reduction at the mouse ocular surface under desiccating 

stress, a reduction similar in size to what we observed in tears [23]. Like the previous study, this 

is consistent with a possible regulatory role for CLU in squamous metaplasia. It was further 

found that treatment of cultured human corneal epithelial cells with inflammatory mediators 

resulted in a strikingly down regulation of CLU, while expression of MMP9 was enhanced [23]. 

This suggests that inflammation could make the ocular surface vulnerable to squamous 

metaplasia by depleting CLU in the ocular surface epithelia.  

 

Several studies have suggested that CLU may have direct effects on inflammation through 

inhibition of NF-B activity, suggesting a possible mechanism for squamous metaplasia (e.g., 

[198, 199]). However, loss of intracellular CLU also might simply serve as a marker of squamous 
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metaplasia. With the new dry eye model, the availability of CLU knockout mice, and the ability to 

“replace” CLU in tears by topical treatment, this idea can now be investigated.  

 

5.3. CLU as a Possible Biotherapeutic for Dry Eye 

There is a major unmet need for new therapeutics to prevent or treat dry eye. Restasis 

(cyclosporine A), an immunosuppressant drug widely used in organ transplantation to prevent 

rejection, is currently the only prescription medicine available, however health care providers 

report a high failure rate [200]. The U.S. Food & Drug Administration (FDA) approved Restasis 

in 2002. Since then, criteria for approval have become more stringent, and 15 companies have 

unsuccessfully attempted to secure FDA approval for a dry eye drug [201]. The most recent was 

Shire with rejection of Lifitegrast, a small molecule integrin 4 antagonist with anti-inflammatory 

activity, in October 2015. Likely there are numerous factors contributing to this failure, but one 

may be the existence of multiple types of dry eye. Each form not only exhibits variable severity, 

but also responds differently to upstream interventions. At present it is not usually possible to 

accurately distinguish one form from another, making it impossible to design clinical trials 

towards a single type. Most efforts for drug development in the dry eye arena have been 

devoted to targeting of inflammation (like Restasis), tear production, tear film movement and 

tear chemistry, i.e., factors located upstream in the cascade of events leading to dry eye and 

ocular surface barrier disruption. Therapeutics targeting common downstream effects in the 

vicious circle of dry eye may provide an advantage towards meeting FDA approval.  

 

Currently there is a new focus on biologics in the pharmaceutical industry, the goal to address 

the high attrition rate in preclinical and clinical trials ascribed to toxicity, insufficient efficacy, or 

inadequate selectivity of small molecules [202]. In this regard, the natural proteins of the tears 

may offer much opportunity [160]. Proteins that have been considered include LCN1 (lipocalin), 

a multifunctional protein that serves as the predominant lipid carrier in human tears and which is 
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critical to functions involving lipids in protection of the ocular surface [203-205]. Another 

example is LACRT (lacritin), a glycoprotein discovered in an unbiased screen for novel factors 

that stimulate tear secretion [206, 207]. LACRT has prosecretory activity in the lacrimal gland 

and mitogenic activity at the corneal epithelium. In the Aire knockout mouse model of dry eye 

(considered similar to human Sjögren’s syndrome), topical LACRT restores pilocarpine-induced 

tearing and largely eliminates lissamine green staining [208]. A third example is PRG4, a mucin-

like secreted glycoprotein localized to the ocular surface, where it functions as a boundary 

lubricant [209]. PRG4, also called lubricin, may have clinical utility as a topical treatment for dry 

eye, or as a contact lens biomaterial coating to promote more comfortable wear [210].  

 

The natural tear protein CLU could be an ideal therapeutic to treat dry eye. As discussed in this 

article, CLU exhibits a variety of homeostatic activities that enable it to protect cells and tissues 

under conditions of stress and we now know that topical CLU delivers several of these benefits 

to the ocular surface subjected to desiccating stress in the preclinical mouse model [211]. Most 

novel and exciting, CLU directly seals the disrupted ocular surface barrier [211]. This means 

that CLU can target both upstream effects leading to dry eye, as well as dry eye’s final common 

pathway. 

 

FDA approval of pharmacotherapies for dry eye has typically required a statistically significant 

superiority of the drug to its vehicle in both a sign (usually fluorescein uptake) and a symptom. 

Consistent amelioration of fluorescein uptake has been a difficult endpoint for many 

investigational new drugs to meet [212, 213]. If the all-or-none response seen in mice holds in 

humans, the “all” part would be an important advantage. CLU’s proven ability to seal the ocular 

surface barriers and inhibit apoptosis, accompanied by reduced inflammation and proteostasis, 

may not only improve the signs of dry eye (dye uptake), but could also quiet symptoms, e.g., 

irritation, dryness, gritty feeling and burning. Human studies are the best way to determine 
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whether CLU can improve such symptoms, making patients “feel better”.  
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Tables 

Table 1. Concentration of CLU in Bodily Fluids 

Human seminal plasma 

 250-500 ug/mL [214] 

 438+235 ug/ml [215] 

Human serum 

 35-105 ug/ml [3] 

 111+50 ug/ml [215] 

 340 ug/mL [216] 

 325±100.3 ug/ml [115] 

 101±42 ug/ml [217] 

 52.8±0.8 ug/ml (Japanese men) 
49.3±0.5 ug/ml (Japanese women) 

[218] 

Human plasma 

 72 ug/ml [3] 

 50-100 ug/ml [214] 

Human cerebrospinal fluid 

 1.6-3.6 ug/ml [219, 220] 

Human aqueous humor 

 0.8 ± 0.5 ug/ml [115] 

C57BL/6J mouse basal tears 

 5.2 ug/mL [24] 

C57BL/6J mouse dry eye tears 

 3.6 ug/mL [24] 
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Figure 2. Topical CLU directly seals the ocular surface barrier disrupted by desiccating 

stress.  

 

The standard desiccating stress protocol was applied for 5-days to create ocular surface 
disruption. Non-stressed (NS mice) housed under normal ambient conditions served as the 
baseline control. Eyes with desiccating stress were then treated topically, a single time, with 1 
µL of CLU formulated in PBS, 1 µL of BSA formulated in PBS for comparison, or 1 µL of PBS 
control. Barrier disruption was assayed by measuring corneal epithelial uptake of fluorescein 
(FU = Fluorescence Units at 521 nm). Values are expressed as the mean ± SD. (A) Eyes were 
treated a single time with recombinant human CLU (rhCLU) at 1, 3, 6 or 10 µg/mL, BSA at 10 
ug/mL, or PBS. Fifteen minutes later, the fluorescein uptake test was performed, before there 
was time for barrier repair to occur. *P<0.0001 (n = 4). (B) Images of central cornea from the 
experiment shown in (A), obtained using laser scanning confocal microscopy at 10X 
magnification. One representative image out of two independent experiments is shown. Scale 
bar = 100 µm. (C) Eyes were treated a single time with rhCLU at 10 µg/mL (right eyes) or PBS 
(left eyes). Then the mice were kept further for 2 h or 16 h while continuing with the same 
desiccating stress protocol. The fluorescein uptake test was performed following the indicated 
time period to assess the time length of treatment effect. *p<0.0001 (n = 4). 
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chains (blue and coral) emanating from six attachment sites. The three legs of the stool 
represent the C-terminal and N-terminal portions of the molecule containing the amphipathic 
helices. The “arm” of the stool is the C-terminal portion lacking an amphipathic helix.  
Galactose moieties on both the mucin and CLU carbohydrate chains are depicted as small 
“marbles” (yellow). The carbohydrate-binding domains (“mouths”) of LGALS3 molecules are 
shown binding to (“eating”) the yellow globes. CLU molecules are shown in various interactions 
1) self-associating, 2) binding to the lipid bilayer, and 3) associating with proteolyzed mucin 
“stubs”. In the foreground, the proteolytically cleaved carbohydrate-binding domain of an 
LGALS3 molecule is shown binding to a marble on a carbohydrate chain of a CLU molecule. 
This drawing aims to illustrate the idea that all-or-none sealing of the ocular surface barrier 
disrupted by desiccating stress occurs when the concentration of CLU molecules is high enough 
to compete effectively with mucins for binding to LGALS3 molecules.  
	
From: doctoral thesis of Aditi Bauskar, used with permission of the University of Southern 
California. Image: graphic artist, Ella Maruschenko 
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