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SUMMARY  1 

1. Evaluating landscape connectivity and identifying/protecting corridors for animal 2 

movement have become central challenges in applied ecology and conservation. 3 

Currently, resource selection analyses are widely used to focus corridor planning where 4 

animal movement is predicted to occur. An animal’s behavioural state (e.g., foraging, 5 

dispersing) is a significant determinant of resource selection patterns, yet has largely been 6 

ignored in connectivity assessments.  7 

2. We review sixteen years of connectivity studies employing resource selection analysis to 8 

evaluate how researchers have incorporated animal behaviour into corridor planning, and 9 

highlight promising new approaches for identifying wildlife corridors. To illustrate the 10 

importance of behavioural information in such analyses, we present an empirical case 11 

study to test behaviour-specific predictions of connectivity with long-distance dispersal 12 

movements of African wild dogs (Lycaon pictus). We conclude by recommending 13 

strategies for developing more realistic connectivity models for future conservation 14 

efforts.  15 

3. Our review indicates that most connectivity studies conflate resource selection with 16 

connectivity requirements, which may result in misleading estimates of landscape 17 

resistance, and lack validation of proposed connectivity models with movement data.  18 

4. Our case study shows that including only directed-movement behaviour when measuring 19 

resource selection reveals markedly different, and more accurate, connectivity estimates 20 

than a model measuring resource selection independent of behavioural state.  21 

5. Synthesis and applications. Our results suggest that resource selection analyses that fail 22 

to consider behaviour may be insufficient in targeting movement pathways for corridor 23 
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protection. This failure may result in misidentification of wildlife corridors and 24 

misallocation of limited conservation resources. Our findings underscore the need for 25 

considering patterns of animal movement in appropriate behavioural contexts to ensure 26 

the effective application of resource selection analyses for corridor planning.  27 

 28 

KEYWORDS: behavioural state, conservation planning, corridor ecology, dispersal, landscape 29 

connectivity, landscape resistance, movement ecology, resource selection, step selection 30 

 31 

INTRODUCTION 32 

Connectivity, i.e., the degree to which a landscape facilitates or impedes movement between 33 

resources or habitats (Taylor et al. 1993), is a key aspect of land management for the 34 

conservation of species and communities. Connectivity influences demography (Clobert et al. 35 

2001), promotes dispersal and colonization (Hanski 1998), maintains genetic diversity (Hendrick 36 

2005), increases a species’ ability to respond to perturbations and changing climates (Heller & 37 

Zavaleta 2009), and supports long term persistence in heterogeneous landscapes (Vasudev et al. 38 

2015). Consequently, increasing landscape connectivity has been identified as a fundamental 39 

strategy for mitigating impacts of climate change on biodiversity (Heller & Zavaleta 2009).  40 

 41 

The identification and protection of wildlife corridors, i.e., land allowing movement of focal 42 

species between two or more habitat areas (Beier et al. 2008), has become a critical tool for the 43 

maintenance of landscape connectivity (Gilbert-Norton et al. 2010). As a response to global 44 

concerns about habitat fragmentation, climate change, and loss of landscape connectivity, 45 

establishment of wildlife corridors has accelerated in the last decade and half. Today, studies 46 
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aimed at evaluating connectivity and determining where to establish corridors have become 47 

central to conservation science and practice (Beier, Majka & Spencer 2008; Beier et al. 2011; 48 

Rudnick et al. 2012). 49 

 50 

Here, we systematically review sixteen years of studies using wildlife resource selection to 51 

estimate landscape connectivity and highlight promising new approaches for identifying wildlife 52 

corridors. We argue that failure to assess resource selection in appropriate behavioural contexts 53 

may lead to misidentification of wildlife corridors and misallocation of limited conservation 54 

resources.  55 

 56 

Methods for identifying wildlife corridors 57 

Accurate identification of functional corridors depends on knowledge of a species’ dispersal 58 

requirements (Vasudev et al. 2015). Currently, estimating landscape resistance to movement is 59 

the most widely used technique to focus corridor planning on areas where dispersal is considered 60 

most likely to occur (Sawyer, Epps & Brashares 2011). Landscape resistance models – or 61 

‘resistance surfaces’ – assign a value in a landscape grid cell to each environmental variable of 62 

interest (e.g. elevation, land cover) that represents the energetic or survival cost to the study 63 

species of moving through that spatial position (Adriaensen et al. 2003), or the willingness of the 64 

individual to cross the cell (Zeller, McGarigal & Whiteley 2012). Earlier efforts to estimate 65 

landscape resistance based on expert opinion (e.g., LaRue & Nielsen 2008; Shen et al. 2008) 66 

have been greatly advanced by technological and analytical tools that now allow researchers to 67 

evaluate resistance directly from empirical data (Zeller, McGarigal & Whiteley 2012). Methods 68 
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for estimating resistance based on empirical data fall into the following two main approaches, 69 

landscape genetics and resource selection functions.  70 

 71 

Landscape genetics approaches measure the correlation of observed genetic distance between 72 

individuals or subpopulations separated by hypothesized values of landscape resistance 73 

(Cushman et al. 2006; Epps et al. 2007). Thus, landscape genetics infers the influence of 74 

landscape variables on gene flow. These methods are a gold standard in connectivity modelling 75 

when the process of interest is genetic connectivity. However, the few studies that have 76 

attempted to validate genetic results with movement data indicate that while resistance models 77 

derived from landscape genetics are useful in understanding large-scale effects on the process of 78 

gene flow, they may not be as useful for predicting pathways of wildlife movement at finer, 79 

management-relevant scales (Reding et al. 2013; Graves, Beier & Royle 2013). Additionally, 80 

genetically-derived connectivity estimates can reflect past landscape permeability, due to the 81 

time-lag to detect barriers (15-100 generations depending on methods and species traits; 82 

Langduth et al. 2010), and thus may not capture current movement in rapidly evolving 83 

landscapes, changing climates or for species dispersing short distances. 84 

 85 

Given the uncertainties associated with applying landscape genetics to landscape planning at 86 

finer spatial and temporal scales, we focused our review on the use of resource selection 87 

functions (RSFs). In contrast to landscape genetic analyses, estimates of landscape resistance 88 

derived from RSFs are thought to be effective at predicting areas for wildlife movement at more 89 

immediate and fine scales; as a consequence, this approach is highly applicable to management 90 

decisions (Chetkiewicz & Boyce 2009). Resource selection functions calculate the probability of 91 
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use of a given landscape variable (e.g., habitat type, elevation, slope) by statistically comparing 92 

the characteristics of locations used by the study species with those in a control set of random 93 

locations deemed available to, but presumably unused by, that species (Manly et al. 2002). These 94 

analyses have recently been improved by the introduction of step selection (Fortin et al. 2005; 95 

Thurfjell, Ciuti & Boyce 2014) and path selection (Cushman & Lewis 2010) functions, which 96 

characterize movement as a series of linked steps or paths rather than a distribution of 97 

independent points. Thus, while traditional RSFs, also known as point selection functions, are 98 

well-suited for detection data, step and path selection analyses tend to be more useful for 99 

relocation data because they account for changes in resource availability as an animal moves 100 

through its landscape (Zeller, McGarigal & Whiteley 2012). 101 

 102 

The role of behaviour 103 

Use of RSFs in connectivity planning is largely based on the assumption that a habitat 104 

occupied/selected by a species is predictive of the landscape conditions or features necessary for 105 

successful dispersal (Vasudev et al. 2015). This critical assumption has been the subject of 106 

debate, specifically regarding the degree to which resource selection models provide an accurate 107 

proxy for movement preference as an animal navigates through a landscape (Beier, Majka & 108 

Spencer 2008; Zeller, McGarigal & Whiteley 2012; Fatterbert et al. 2015). Resource selection 109 

during dispersal may differ significantly from selection exhibited during daily residential 110 

activities (Elliot et al. 2014; Vasudev et al. 2015; Gastón & Cabrera 2016). In particular, there is 111 

increasing recognition that an animal’s behavioural state (e.g. resource use vs. searching, 112 

territory maintenance vs. dispersing) can strongly mediate patterns of resource selection (Wilson, 113 

Gilbert-Norton & Gese 2012; Roever et al. 2013; Abrahms et al. 2015).  114 
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 115 

Behaviourally-mediated differences in resource selection can have important effects on estimates 116 

of landscape resistance and resulting conservation actions. For example, a recent study by Zeller 117 

and colleagues (2014) found opposite patterns of resistance to some landscape variables for 118 

pumas (Puma concolor) in a ‘resource use’ behavioural state versus a directed ‘movement’ state. 119 

Similarly, Elliot and colleagues (2014) found that landscape resistance differed between 120 

dispersing and resident male lions (Panthera leo). Thus, failure to assess resource selection in 121 

appropriate behavioural contexts may lead to misidentification of corridors for animal movement 122 

and ineffective use of limited conservation funding (LaPoint et al. 2013; Elliot et al. 2014). 123 

Because dispersal events are often difficult to detect in the field, resource selection measured 124 

during directed movement states may provide an important proxy that can be used to infer 125 

functional connectivity in addition to or in lieu of direct dispersal data. Yet, little work has 126 

validated RSF-derived predictions of landscape connectivity with long-distance movement data 127 

to assess this possibility.  128 

 129 

We surveyed recent RSF-derived connectivity studies to 1) evaluate the extent to which these 130 

efforts have incorporated movement behaviour and 2) identify best practices for considering 131 

movement behaviour for future connectivity studies. While the range of definitions for animal 132 

movement is vast (Nathan et al. 2008), we define ‘movement behaviour’ in the context of 133 

connectivity science as directed movement toward a new location (i.e., taxis), typical of 134 

movement between rest sites or resource patches (Schick et al. 2008). Using this definition, we 135 

evaluated published studies with regard to how movement behaviour was considered in 136 

estimating landscape resistance and predicting connectivity. Using data drawn from our studies 137 
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of African wild dogs, we demonstrate the sensitivity of corridor models to behavioural state and 138 

test the validity of model predictions against empirical movement data. Specifically, we use 139 

high-resolution GPS data from African wild dogs in northern Botswana to create least-cost path 140 

predictions from two RSF-derived resistance models, one that ignores behavioural state and one 141 

that isolates movement behaviour. We then test these predictions against observed long-distance 142 

dispersal paths. We conclude by providing a framework and recommending strategies for 143 

researchers and managers to develop more realistic connectivity models for future corridor 144 

planning efforts.  145 

 146 

MATERIALS AND METHODS 147 

Literature review 148 

To capture current trends in the literature, we searched ISI Web of Science for papers published 149 

between January 2000 and February 2016 that contained the following key words: Topic = 150 

(landscape resistance OR cost-distance OR effective distance) AND (corridor OR connectivity 151 

OR linkage). We filtered the resulting 157 papers by restricting our search to the subject areas 152 

Ecology, Environmental Sciences, Environmental Studies, Zoology, Biology, Biodiversity 153 

Conservation, or Remote Sensing; this resulted in a subset of 137 papers. We further restricted 154 

our review by excluding studies that did not use resource selection to estimate landscape 155 

resistance and/or did not explicitly aim to model connectivity for the purpose of predicting 156 

wildlife movement, resulting in a final set of 28 papers (Table 1). For each of the selected papers, 157 

we evaluated: (1) the source of biological data (study species and data collection method), (2) 158 

type of RSF employed (e.g., point selection, step selection), (3) whether movement behaviour 159 
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was explicitly considered in developing connectivity models, and (4) whether modelled corridors 160 

were validated with independent movement data. 161 

 162 

African wild dog case study 163 

To determine whether isolation of directed movement behaviour improves predictions regarding 164 

long-distance movement paths, we collected high-resolution GPS data from 15 free-ranging 165 

African wild dogs in northern Botswana (Abrahms et al. 2015). African wild dogs are both the 166 

widest ranging and most endangered of Africa’s large carnivores; the International Union for 167 

Conservation of Nature (IUCN) has linked the decline of wild dog populations to the species’ 168 

high sensitivity to habitat fragmentation (Woodroffe & Sillero-Zubiri 2013). Consequently, these 169 

animals are a highly relevant focal species for assessing functional landscape connectivity.  170 

 171 

Using collar-mounted accelerometers, we classified GPS locations into three discrete 172 

behavioural states: traveling, chasing, and resting (Hubel et al. 2016). We used step selection 173 

functions to quantify resource selection for a ‘combined model’ that included all available data, 174 

ignoring behavioural state, and for a ‘movement model’ that included only the traveling dataset 175 

(Thurfjell, Ciuti & Boyce 2014). Three of the 15 collared wild dogs exhibited long-distance 176 

dispersal movements during the study period; these animals were excluded from the step 177 

selection analysis to serve as test data against corridor model outputs. The data from the 178 

remaining 12 individuals used to parameterize our models were collected from 12 different packs 179 

to minimize risk of pseudoreplication. Habitat cover, land use type, proximity to road, and 180 

proximity to human settlements were included as initial covariates after testing for collinearity 181 

based on known influences on African wild dog space use (Woodroffe 2010; Whittington-Jones 182 
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et al. 2014; Abrahms et al. 2015). We used AIC forward model selection to determine which to 183 

retain in our final models (Burnham & Anderson 2002). We used significant selection 184 

coefficients from each model to create two corresponding resistance surfaces (Squires et al. 185 

2013). For each resistance surface we used least-cost path (LCP) analysis to predict the dispersal 186 

paths of the three dispersers, as this represents the most commonly used method for designing 187 

wildlife corridors (Sawyer, Epps & Brashares 2011). Finally, to address the uncertainty inherent 188 

in least-cost modelling we estimated least-cost corridors that overcome the single-pixel width 189 

limitation of LCPs (Beier, Majka & Newell 2009). Following published recommendations 190 

(Harrison 1992; Beier, Majka & Spencer 2008), we buffered our LCPs by a conservative 191 

estimate of half the average home range width for African wild dogs (8km; Woodroffe 2010) to 192 

determine biologically-informed corridor widths of 16 km. 193 

 194 

To evaluate our models, we used two metrics as suggested by a recent study comparing the 195 

utility of connectivity modelling validation methods (McClure, Hansen & Inman 2016) . Firstly, 196 

we calculated the percentage of observed dispersal relocations overlapping with predicted least-197 

cost corridors, a metric relevant to conservation practitioners in assessing the proportion of 198 

movement that would be protected by a potential corridor (Poor et al. 2012; McClure, Hansen & 199 

Inman 2016). Secondly, we measured the path deviation of each model’s LCP from the observed 200 

dispersal paths, a straightforward statistic of how well the model agrees with the data (Pullinger 201 

& Johnson 2010). All statistical analyses were performed using R 3.1.0 (R Core Team 2014). We 202 

used ESRI ArcMap 10.2 to create resistance surfaces and Linkage Mapper software (McRae & 203 

Kavanagh 2011) to generate least-cost paths. See Appendix S1 for full methods details. 204 

 205 

RESULTS  206 
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Literature review  207 

The majority of studies (82%) used animal relocation data from either GPS or VHF collars to 208 

assess resource selection, while five (18%) relied on measures of indirect detection such as 209 

animal sign or camera trap data. None of the detection-based studies made efforts to focus on 210 

movement-related habitat use. In total, 11 of the 28 studies evaluated included efforts to 211 

explicitly incorporate movement behaviour into their connectivity analyses. The remaining 212 

studies conflated resource selection with connectivity requirements.  213 

 214 

Only five studies (18%) validated connectivity predictions with movement data. LaPoint et al. 215 

(2013) found poor agreement between corridor predictions for fishers (Martes pennanti) based 216 

on GPS locations versus ‘animal-defined’ corridors delineated by quick, repeated, and linear 217 

fisher movements. Deployment of camera traps demonstrated greater use by fishers of animal-218 

defined corridors than cost-based corridors. In contrast, Harju and colleagues (2013) found that 219 

connectivity estimates based on resource selection during traveling and relocating movement 220 

states for sage-grouse (Centrocercus urophasianus) were strong predictors of an independent test 221 

set of locations for these movement states. Finally, Trainor et al. (2013) found a strong 222 

correlation between connectivity predictions for red-cockaded woodpeckers (Leuconotopicus 223 

borealis) based on resource selection during exploratory forays and an independent dataset of 224 

short-distance dispersals.  225 

 226 

African wild dog case study 227 

The highest ranked movement model based on AIC model selection retained habitat cover, land 228 

use type, and distance to roads as predictor variables; the highest ranked combined model 229 
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retained habitat cover and land use type (Table S2). Step selection results showed different, and 230 

in some cases opposing, responses to landscape variables between the movement model and the 231 

combined model (Fig.1, Table S3); these differences were reflected in the divergent patterns of 232 

landscape resistance between the two models and resulting LCPs (Fig. 2). Least-cost corridors 233 

from the movement model overlapped with the large majority of GPS locations from the three 234 

dispersal paths (range 62 -100%, mean 87%; Table 3) while those from the combined model 235 

included a lower percentage of GPS locations (range 0-100%, mean 33%). Path deviations 236 

between the movement model LCPs and observed paths were significantly lower than those 237 

between the combined model LCPs and observed paths.  238 

 239 

DISCUSSION 240 

Literature review: inclusion of movement behaviour in corridor planning 241 

Collectively, the studies in our review that validated connectivity predictions with independent 242 

movement data point to the importance of incorporating behavioural data in connectivity models 243 

as a key step toward generating management strategies. As showcased by several such studies, 244 

multiple data collection, technological and analytical approaches exist to aid conservation 245 

scientists and practitioners in including movement behaviour in corridor planning. The ten 246 

studies that considered animal movement behaviour in their connectivity predictions provide 247 

informative examples for working with relocation data (Table 4). From these studies, we 248 

identified two principal scales at which movement behaviour has been addressed: a behavioural 249 

level and a demographic level. At the behavioural level, several studies identified the subset of 250 

locations at which animals displayed behavioural states categorized broadly as movement 251 

behaviour. These categorizations included a) ‘traveling’, ‘relocating’, or ‘moving’ based on step-252 
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length distributions (Harju et al. 2013; Zeller et al. 2014); b) ‘large-scale movements’ delimited 253 

by a threshold for movement rate (Pullinger & Johnson 2010); and c) ‘active’ versus ‘resting’ 254 

behaviour based on both step-length and turn angle distributions (Squires et al. 2013). At the 255 

demographic level, three studies employed a demographic approach by collaring and collecting 256 

relocation data from juvenile dispersers (Richard & Armstrong 2010; Trainor et al. 2013; Elliot 257 

et al. 2014). While behavioural and demographic approaches may be used in concert, we 258 

distinguish a demographic approach from a behavioural one in that it may include all behavioural 259 

states of a disperser. This approach may be ideal for determining how dispersers navigate their 260 

landscape, but it is logistically challenging because it requires predicting which individuals in the 261 

population will disperse. Perhaps not coincidentally, two of these three studies focused on birds, 262 

where identification and tagging of juvenile dispersers is easier than it is for many other 263 

vertebrates (Zeller, McGarigal & Whiteley 2012). To focus on dispersal movements, three other 264 

studies collected location data during known dispersal seasons for their study species (Cushman 265 

& Lewis 2010; Walpole et al. 2012; Roever, van Aarde & Leggett 2013).  266 

 267 

Advances in GPS collar technology over the last decade can contribute to connectivity science 268 

by coupling discrete behavioural states with patterns of space use and movement preference. In 269 

particular, activity sensors such as collar-mounted accelerometers, magnetometers, and 270 

physiological loggers are becoming increasingly popular for classifying behavioural states 271 

remotely (Brown, Kays & Wikelski 2013; Wilson et al. 2013; Nams 2014). However, the 272 

literature also provides many methods for inferring behavioural state without the expense of 273 

activity sensors, even for collars that operate at coarse spatiotemporal scales. For instance, 274 

Pullinger & Johnson (2010) classified two behavioural states of resource use versus long-275 
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distance movement for caribou (Rangifer tarandus) by examining movement rate between 3-276 

hour GPS fix intervals. Similarly, pairing movement rate with turn angle distributions revealed a 277 

clear distinction between sedentary and exploratory behavioural states in elephants (Roever et al. 278 

2013). Patterns of GPS clustering have been used to further partition relocation data, including 279 

identifying kill sites, dens, and scent marking areas for pumas (Wilmers et al. 2013) and feeding 280 

and bedding behaviours in grizzly bears (Cristescu, Stenhouse & Boyce 2015). The wide variety 281 

of existing methods for inferring behavioural states necessitate the development of best practices 282 

for their application and interpretation in the context of connectivity modelling. 283 

 284 

As mentioned previously, advances have also been made in the analytical procedures associated 285 

with resource selection analyses, such as the addition of step selection (Fortin et al. 2005; 286 

Thurfjell, Ciuti & Boyce 2014) and path selection functions (Cushman & Lewis 2010). Both of 287 

these analytical approaches can help to quantify selection specifically for movement paths, 288 

though for the purposes of connectivity modelling care must still be taken to ensure resource 289 

selection is measured for the appropriate behavioural state(s). In addition, the rapidly growing 290 

field of movement ecology (Schick et al. 2008; Nathan et al. 2008) offers many analytical 291 

approaches for remote identification of behavioural states such as hidden Markov (Patterson et 292 

al. 2009) and state-space models (Jonsen, Flemming & Myers 2005; Patterson et al. 2008) that 293 

have been developed for effectively analysing noisy or imperfect animal movement data.  294 

 295 

Our result that none of the detection-based studies focused on movement-related habitat use 296 

highlights a ripe opportunity for advancement. Indirect detection methods are often less costly 297 

than obtaining direct relocation data and are sometimes the only feasible option for rare or 298 
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elusive species. For those using indirect detection based on sign to identify movement corridors 299 

(e.g., Walpole et al. 2012; Mateo-Sànchez, Cushman & Saura 2014), locations with sign of 300 

resource-use behaviour (e.g. gorilla nesting/feeding sign; McNeilage et al. 2006) grizzly bear 301 

bedding sites, (Munro et al. 2006) can be excluded from resource selection analyses in favour of 302 

travel-related sign (e.g., gorilla trampled vegetation, dung, footprints; Sawyer & Brashares 2013) 303 

to limit inferences to more movement-focused habitat use. For studies relying on camera trap 304 

data to identify corridors (e.g., Brodie et al. 2014; Wang et al. 2014), there are several 305 

improvements that can be made beyond using standard abundance estimates to infer areas with 306 

high connectivity. If individual identification from photos is possible, spatially-explicit 307 

movement rates can be measured and related to landscape variables through spatial capture-308 

recapture methods (Royle et al. 2013a; b). If individual identification is not possible, camera trap 309 

data can be used to associate habitat use with activity patterns of the study species (Rowcliffe et 310 

al. 2014). Given that nearly 20% of the connectivity studies we evaluated relied on indirect 311 

detection for their resource selection analyses, development and application of methods to better 312 

assess movement behaviour in these data sets is greatly needed. 313 

 314 

We propose a series of steps that can be taken through the data collection and analysis stages of 315 

resource selection estimation to better emphasize movement behaviour in connectivity modelling 316 

(Fig. 3). As is the case with all ecological fieldwork, the processes we suggest depend first on 317 

what data can be feasibly collected for the target species. However, since location data are often 318 

used for a variety of purposes and thus may not have been collected specifically for connectivity 319 

analyses, we suggest that researchers working with such data sets apply the analytical approaches 320 
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outlined above to focus inferences on movement behaviour regardless of the methods employed 321 

during the data collection stage.  322 

 323 

African wild dog case study  324 

Results from our African wild dog case study mirror a small set of recent publications (e.g., 325 

Harju et al. 2013; Trainor et al. 2013) indicating that including only movement behaviour in 326 

resistance surfaces analyses reveals markedly different patterns of connectivity than models 327 

measuring resource selection without consideration of behavioural state. For the goal of 328 

predicting and protecting dispersal, the movement model (i.e., only GPS positions when the dogs 329 

were in a ‘traveling’ behavioural state) outperformed the combined model (i.e., all available GPS 330 

positions independent of behavioural state) according to both validation metrics used in our 331 

analysis (Table 3). The movement model least-cost corridor (LCC) fully incorporated two of the 332 

three observed dispersal paths, overlapping with a total of 87% of movement locations compared 333 

with only 33% for the combined model LCC. In addition, the path deviation statistic indicated 334 

greater agreement between the least-cost paths derived from the movement model and the 335 

observed wild dog dispersal paths than those from the combined model. These results suggest 336 

that a general resource selection analysis may be insufficient in predicting and protecting 337 

movement pathways for African wild dogs.  338 

 339 

The divergent patterns of resource selection by African wild dogs revealed by our models have 340 

significance for the conservation and management of this species. African wild dogs displayed 341 

large differences in habitat preference when traveling compared to when behavioural state was 342 

not considered. Our behaviourally informed model also revealed that African wild dogs showed 343 
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a higher tolerance for human-modified landscapes and features (pastoral areas, roads) when 344 

dispersing, an outcome that has been reported for other dispersing carnivores including lions 345 

(Elliot et al. 2014) and Iberian lynx (Gastón & Cabrera 2016). While the ability of dispersing 346 

carnivores to navigate potentially hostile landscapes may allow populations to maintain greater 347 

levels of connectivity than previously thought (Mateo-Sánchez et al. 2015), this also places them 348 

at higher risk of human-wildlife conflict. Because of increased tolerance for human disturbance 349 

and proclivity to range beyond protected areas, African wild dogs in a dispersing or exploratory 350 

state are more prone to human-caused mortality (Woodroffe et al. 2007; Davies-Mostert et al. 351 

2012) and thus it is essential that creation of corridors for large carnivore movement be paired 352 

with efforts to mitigate human-carnivore conflict (Elliot et al. 2014).  353 

 354 

Caveats 355 

A number of caveats and assumptions to this work are important to note. First, this work is 356 

focused on corridor design for terrestrial vertebrates, and not for entire community assemblages. 357 

The latter would rely less upon single-species dispersal requirements than broader estimates of 358 

structural connectivity, such as landscape ‘naturalness’ (Theobald et al. 2012). We also focus on 359 

connectivity as viewed through movement corridors, rather than the more spatially-expansive 360 

lens of habitat contiguity. The first emphasizes the maintenance of pathways for effective 361 

dispersal between populations while the second seeks to preserve viable habitat to ensure 362 

occupancy of a focal species across fragmented landscapes. This distinction is important in the 363 

context of our review because resource selection functions or other general assessments of 364 

habitat use may be effective on their own where the conservation goal is simply to preserve a 365 

connected system of occupied habitats. 366 
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 367 

We chose to employ least-cost path (LCP) analysis for our case study because it is the most 368 

popular method for managers to delineate corridors (Sawyer, Epps & Brashares 2011), however 369 

it requires a number of assumptions that may not be upheld in all cases. First, it assumes a 370 

defined start and end point, which is appropriate when determining a connection between two 371 

protected areas, or in our case a natal and dispersal range, but this assumption is often violated 372 

when clear habitat patches cannot be demarcated. Similarly, LCP analysis cannot evaluate 373 

multiple potential pathways between more than two patches. In addition, by weighting the 374 

cumulative cost of a pathway by its total Euclidean distance, LCP analysis implicitly assumes 375 

that animals have total knowledge of their landscape, which is especially likely to be violated 376 

when animals are dispersing into new territory. Ultimately, when evaluating whether to use a 377 

least-cost or alternative approach such as circuit-theory modelling, the movement ecology of the 378 

focal species and the landscape context are key determinants that should be considered 379 

(McClure, Hansen & Inman 2016). 380 

 381 

A final and important limitation to our case study is the small number of known dispersal paths 382 

for our study animals, despite data collection over a four-year period, highlighting the challenge 383 

of collecting long-distance movement data for evaluating functional landscape connectivity. 384 

Efforts such as ours to directly compare behaviour-informed predictions of connectivity with 385 

known long-distance dispersal movements are accordingly rare. Nevertheless, the strong effect 386 

sizes of our model validation metrics lend confidence to our inference that consideration of 387 

behavioural state is critical, and that by focusing connectivity analyses on movement behaviour, 388 

researchers can eliminate much of the noise that comes from analysing all data points. 389 
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 390 

Conclusions and future directions 391 

While the protection of corridors for animal movement involves sociopolitical, economic and 392 

other considerations that were not addressed in this assessment, our review and case study 393 

suggest that the success of corridor efforts relies on an accurate understanding of how animals 394 

move through their environment. Resource selection within an animal’s home range may be a 395 

suitable proxy for movement preference during dispersal for some species (Fatterbert et al. 396 

2015), though researchers and conservation practitioners should be aware this is not always the 397 

case and failure to recognize this distinction may have important consequences for preserving 398 

landscape connectivity. Our findings underscore the need for examining animal movement in 399 

appropriate behavioural contexts to ensure effective application of resource selection analyses 400 

for corridor planning. Advances in monitoring technology are fostering new opportunities to 401 

study wildlife movements that promise to enhance corridor conservation. At the same time, 402 

current analytical tools that rely on indirect location data can be improved to more accurately 403 

inform connectivity models. Given limited conservation resources and rapidly changing 404 

environments, efficient and accurate corridor identification, establishment and management is a 405 

critical need in conservation planning. Unifying the fields of movement ecology and connectivity 406 

science promises to advance our knowledge of – and thus our ability to preserve – the 407 

fundamental process of wildlife movement. 408 
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Table 1. Summary of studies evaluated that used resource selection analyses to model connectivity for wildlife movement. 660 
Study Species Data Collected RSF Type1 Consideration of Movement 

Behavior  
Validation of Connectivity Predictions 
with Independent Movement Data 

Braaker et al. 
2014 

E. europaeus Relocation – GPS  PSF None None 

Brodie et al. 
2014 

H. derbyanus; H. 
malayanus; N. diardi; 
R. unicolor; M. 
nemestrina 

Detection – 
Camera trap 

PSF None None 

Carvalho et al. 
2015 
Chetkiewicz & 
Boyce 2009 

G. genetta 
 
U. arctos; P.concolor 

Relocation – 
VHF  
Relocation – GPS 

PathSF 
 

PSF 

None 
 
None 

None 
 
None 

Clark et al. 2015 
Cushman & 
Lewis 2010 

U. americanus 
luteolus 
U. americanus 

Relocation – GPS  
 
Relocation – GPS 

SSF 
 

PathSF 

Removed relocations <100 m 
      apart 
None 

None 
 
None 

Elliot et al. 2014 P. leo Relocation – GPS PathSF 
     

Resource selection of dispersing 
     individuals 

None 
 

Harju et al. 2013 C. urophasianus Relocation – GPS SSF Resource selection during 
     traveling and relocating states 

Validated with independent GPS data in 
     traveling and relocating states 

Kautz et al. 2006 P. concolor coryi Relocation – 
VHF 

PSF None None 

Kindall & 
Manen 2007 

U. americanus Relocation – 
VHF 

PSF None None 

LaPoint et al. 
2013 

M. pennanti Relocation – GPS PSF None Validated with ‘animal-defined’ 
     corridors based on rate of fast, linear 
     movement 

Mateo-Sánchez, 
Cushman & 
Saura 2014 

U. arctos Detection - Sign PSF None None 

McClure, 
Hansen & Inman 
2016 
O’Brien et al. 
2006 

C. elephas; G. gulo 
 
 
R. tarandus caribou 

Relocation – 
GPS, VHF 
 
Relocation – GPS 

       PSF 
 
 

PSF 

Resource selection for migratory 
     or dispersal-related movements 
 
None 

Validated with independent GPS data 
      for long-distance movements 
 
None 
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Proctor et al. 
2015 

U. arctos Relocation – GPS PSF None None 

Pullinger & 
Johnson 2010 

R. tarandus caribou Relocation – GPS SSF Resource selection during large- 
     scale movements 

Validated with independent GPS data  
      identified as long-distance movement 

Reding et al. 
2013 

L. rufus Relocation – 
VHF 

PathSF None None 

Richard & 
Armstrong 2010 

P. longipes Relocation – 
VHF 

SSF Resource selection of dispersing 
     individuals 

None 

Roever, van 
Aarde & Leggett 
2013 

L. africana Relocation – GPS PSF None None 

Squires et al. 
2013 

L. canadensis Relocation – GPS SSF Resource selection during 
     movement state 

None 

Sutcliffe et al. 
2003 

A. hyperantus; H. 
virgaureae 

Relocation – 
Mark-recapture 

MSF Resource selection for matrix 
     with highest passage rates  

None 

Thatcher, van 
Manen & Clark 
2009 

P. concolor coryi Relocation – 
VHF 

HSF None None 

Trainor et al. 
2013 

P. borealis Relocation – 
VHF 

PSF Resource selection of dispersing 
     individuals 

Validated with frequency of dispersal 
     events within predicted corridors 

Verbeylen et al. 
2003 

S. vulgaris Detection - Sign MSF None None 

Walpole et al. 
2012 

L. canadensis Detection - Sign PSF None None 

Wang et al. 2014 A. melanoleuca Detection – 
Camera Trap 

PSF None None 

Zeller et al. 2014 
 
Zeller et al. 2015 

P. concolor 
 
P. concolor 

Relocation – GPS 
 
Relocation – GPS 

PSF 
 

SSF, 
PathSF 

Resource selection during 
     movement state 
Removed relocations <200 m 
      apart 

None 
 
None 

1PSF = point selection function, SSF = step selection function, PathSF = path selection function, MSF = matrix selection function, HSF = home 661 
range selection function (categories as defined by Zeller et al. 2012).662 
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Table 2. Landscape variables used to quantify resource selection of African wild dogs. 

Category Variable Name Description Source 
 

Habitat Cover  
 
 
 
 
 
 
Land Use Type 
 
 
 
 
 
Anthropogenic 
Features 

 

Swamp 
Grassland 
 
Woodland 
Mopane 
 
 
Game Reserve 
National Park 
Wildlife Management 
Area (WMA) 
Pastoral 
 
Road 
Settlement 

 

Moist and seasonally flooded floodplains 
Former floodplains characterized by 
shrubbed grassland 
Mixed woodland dominated by Acacia spp. 
Woodland composed primarily of 
Colophosphermum mopane shrubs and trees 
 
IUCN Category IV Protected Area 
IUCN Category II Protected Area 
Community-managed land gazetted for 
photographic and hunting tourism 
Non-wildlife area dominated by pastoralism 
 
Distance to nearest road 
Distance to nearest human settlement 

 

Broekhuis et al. 
2013 
 
 
 
 
 
Botswana 
Department of 
Lands 
 
 
 
Okavango Delta 
Information System 
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Table 3. Percentage overlap between least-cost corridors (LCC) and GPS points 
along observed dispersal paths, and path deviation between modelled and observed 
paths with p-values indicating significant differences between model performance. 
 LCC Overlap Path Deviation 

Model % Mean (km) SD p 

Path 1- Movement 62 7.16 

 

2.28 <0.001 

Path 1- Combined 0 25.5 3.18  

Path 2- Movement 100 2.65 1.92 <0.001 

Path 2- Combined 0 29.8 6.08  

Path 3- Movement 100 .34 .75 0.07 

Path 3- Combined 100 1.93 1.55  
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Table 4. Approaches for using movement behaviour to inform connectivity conservation. 

Approach Description # Studies Example studies 
 

Behavioral  
 

 

Use localities when the individual is 
in a traveling/exploratory state 
versus a resource use state 

 

7 
 

Pullinger & Johnson 2010; Squires 
et al. 2013; Zeller et al. 2014 

Demographic 
 

Use localities from dispersing vs. 
resident individuals in the population 

3 Elliot et al. 2014; Richard & 
Armstrong 2010; Trainor et al. 2013  

Seasonal Collect location data during the 
known dispersal season 

3 Cushman and Lewis 2010; Roever 
et al. 2013; Walpole et al. 2012 
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FIGURES 

 
Figure 1. (a) Comparison of step selection parameter estimates and standard errors for the combined 

model, measuring resource selection for all location data independent of behavioural state, and the 

movement model, measuring resource selection only when wild dogs were in a ‘traveling’ behavioural 

state (see Table S3 for listed values). Negative selection coefficients indicate avoidance of corresponding 

landscape variables; positive values indicate selection for corresponding variables. P-values were 

calculated from Wald tests. (b) Resistance surface derived from significant selection coefficients (p<0.05) 

in the combined model. Resistance values were calculated as the inverse of scaled ‘probability of use’ 

values w(x) = exp(ß1x1 + ß2x2 +....) where ßi is the selection coefficient for landscape variable xi. Blue 

cells and orange cells indicate low and high resistance to movement, respectively. (c) Resistance surface 

derived from significant selection coefficients in the movement model.  
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Figure 2. Comparison between least-cost corridors derived from combined model (solid black lines), 

movement model (dashed black lines), and GPS-captured paths (orange dots) from three distinct dispersal 

events in (a) October 2014, (b) August 2013 and (c) January 2012 (Table S1). Okavango Delta 

floodwaters (light blue) are included for spatial reference.  
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Figure 3. A decision tree for focusing resource selection analyses on animal movement for connectivity 

planning. At the data collection stage, decisions are made as to the type of data that can be collected and 

whether collection can be targeted toward dispersal seasonally or demographically. At the data analysis 

stage, the collected data can be analysed and cleaned to isolate locations for movement before inputting 

the dataset into a resource selection analysis. 
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