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Abstract 

African swine fever (ASF) is a viral disease of swine that has been present in the Russian 

Federation since 2007. Counts of ASF outbreaks reported in the Southern regions of the 

country (2007-2014) were aggregated to a grid of hexagons, and a zero-inflated Poisson 

model accounting for spatial dependence between hexagons was used to identify factors 

associated with the presence of ASF outbreaks and factors associated with the number of 

ASF reports in affected hexagons. Increasing density of pigs raised on low biosecurity 

farms was found to be positively associated with the probability of occurrence of at least 

one ASF outbreak in a hexagon and with the average number of reported ASF outbreaks 

amongst affected hexagons. Increasing human population density and increasing distance 

from the closest diagnostic laboratory were additional variables associated with number 

of reported ASF outbreaks amongst affected hexagons. The model was shown to have 

good predictive ability.  
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INTRODUCTION 

African swine fever (ASF) is a highly contagious viral disease that affects all classes of 

domestic and non-domestic swine including domestic pigs, wild boar, warthogs and bush 

pigs (Costard et al., 2012). In domestic pigs and wild boar, some ASF virus (ASFv) strains 

result in mortality rates of almost 100% (Blome et al., 2012; Sanchez-Vizcaino et al., 2012; 

Guinat et al., 2014). There is currently no vaccine available. Because of its large economic 

impact in affected countries, ASF is listed as a notifiable disease by the World 

Organization for Animal Health (OIE).  

In 2007, ASFv was introduced into Georgia from Africa, probably through the transport of 

infected swill fed to pigs in the region of the sea port Poti. In just a few months, ASFv 

spread across the country and entered the Russian Federation (RF) in late 2007, probably 

as a result of the movement of infected wild boar (FAO, 2013; Sanchez-Vizcaino et al., 

2013). Initially restricted to the southern regions of the RF, ASFv expanded its 

geographical distribution in 2011 when it was introduced into central and northern 

regions where it started to spread locally (Sanchez-Vizcaino et al., 2013). In 2014, ASFv 

was identified in both domestic pigs and wild boars in several countries of the eastern 

European Union, including Estonia, Latvia, Lithuania and Poland. Due to a relatively high 

transmission rate combined with a case fatality rate of almost 100% in naïve pigs and 

wild boar (Blome et al., 2012; Guinat et al., 2015), the fact that the virus is able to survive 

for lengthy periods in both the environment and pork products (EFSA, 2014; Davies et al., 

2015) and the absence of both vaccine and treatment, understanding the epidemiology of 

ASF and identifying risk factors for disease occurrence is paramount to allow for the 

timely prevention and control of ASFv. 

On the African continent, ASF was shown to be associated with many different risk 

factors, including density of free-ranging pigs, movement of pigs and pig products, low 

biosecurity measures, the practice of swill-feeding, purchase of pigs, proximity of 

slaughter houses and human behaviour (Randriamparany et al., 2005; Penrith and Vosloo, 

2009; Fasina et al., 2012; Chenais et al., 2015; Nantima et al., 2015). In the RF, two studies 

have used national surveillance data to investigate risk factors for ASF occurrence in the 

RF. In their early paper, Gulenkin et al. (2011) used linear regression to model the density 

of outbreaks reported in domestic pigs in the Southern regions between 2007 and 2010, 

and showed that risk of ASF outbreaks increased with increasing density of domestic pigs, 
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rivers, main highways and secondary roads. Korennoy et al. (2014) used the maximum 

entropy method to model the distribution of ASF outbreaks reported between 2007 and 

2012 and found that increasing disease risk was associated mostly with increasing rural 

population density and increasing density of pigs raised on low-biosecurity farms.  

While these two studies provide important insights into the risk of ASF, their main 

limitation is that they do not account for a potential spatially heterogeneous reporting 

rate of ASF outbreaks, which has been suggested to be one of the most important 

challenges of ASF control in the Russian Federation as a consequence of inefficient control 

measures and inadequate compensation strategies (FAO, 2013). As in ecological studies 

focused on the modelling of site occupancy by cryptic wildlife populations (MacKenzie et 

al., 2002), the observed spatial distribution of a disease is a combination of its true 

distribution and of a reporting bias. The methods used in these two studies cannot 

explicitly differentiate between variables associated with the true ASF distribution and 

variables that potentially influence the reporting rate or local abundance of outbreaks. As 

a result, some of the retained explanatory variables could be associated with an increased 

reporting rate rather than an increased ASF risk, and the measure of the identified 

associations with the ASF risk could be confounded by variables influencing the reporting 

rate.  

Extensively used in ecology to model the distribution of wildlife species that cannot be 

observed with certainty (Martin et al., 2005), zero-inflated count models could be a useful 

approach in epidemiology to model the distribution of an infectious disease observed 

through the lens of an imperfect surveillance system, i.e. when the probability of 

reporting outbreaks is less than one (Vergne et al., 2015b). These models allow one to 

distinguish between variables influencing the likelihood of occurrence of at least one 

outbreak and those influencing the number of reported outbreaks in affected areas. In 

animal health, this approach has been used to model bovine abortions in France (Bronner 

et al., 2013) and highly pathogenic avian influenza in Vietnam (Lockhart, 2008) and 

Thailand (Vergne et al., 2014). 

In this study, we used a conditional autoregressive zero-inflated Poisson regression 

approach to model the distribution of ASF outbreaks reported in the Southern regions of 

the RF between 2007 and 2014, in order to identify variables associated with the 

distribution of reported outbreaks. 
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MATERIALS AND METHODS 

The analysis was restricted to the territories of the North Caucasus and of the South of the 

European region of the RF as this zone has one of the highest pig densities in the country 

and was most affected since the start of the epidemic. The surveillance system is based on 

the reporting of suspicions by farmers to regional veterinary services. These suspicions 

are subsequently confirmed using laboratory diagnostic techniques by the State Research 

Institute of Veterinary Virology and Microbiology which maintains the national dataset of 

ASF outbreaks. This dataset includes several characteristics of the infected farms as well 

as the location of the outbreaks recorded as the longitude and latitude of the centroid of 

the town to which the infected farms belong (Korennoy et al., 2014). All outbreaks 

reported to the veterinary authorities between 2007 and 2014, involving domestic pigs 

from this region, were included in this study. The data were sourced from the official 

website of the Russian federal service for veterinary and phytosanitary surveillance 

(http://fsvps.ru/fsvps/asf; last update: August 2014). Overall, 104 outbreaks in domestic 

pigs were reported during the period of interest. The study area was partitioned into a 

regular grid of 389 hexagons of 60-kilometer diameter (hexagons are more similar to 

circles than squares which allows for a more efficient aggregation of data around their 

centroids), and counts of ASF outbreaks were aggregated to the hexagon level. The 

outcome variable was therefore the number of outbreaks reported in the domestic pig 

population in each hexagon during the study period. Figure 1A presents the spatial 

distribution of the outcome variable. 

The putative explanatory variables used in this analysis focused on anthropogenic, swine-

related and environmental variables. The anthropogenic variables included human 

population density, distance to the nearest regional capital, distance to the nearest 

diagnostic laboratory, and road density. Human population data were obtained for the 

year 2013 from the Federal State Statistics Services. The location of regional capitals and 

information about the road network were extracted from the database distributed by 

ESRI-CIS (http://www.esri-cis.ru/). The location of regional veterinary diagnostic 

laboratories was obtained from the Federal Service for Veterinary and Phytosanitary 

Surveillance. Similar to Korennoy et al. (2014), distribution of pigs kept in high and low 
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biosecurity farms was based on estimates generated by the Federal State Statistics 

Service in 2011. High biosecurity farms were defined as large holdings, often comprising 

of more than a thousand pigs, typically owned by the State or private companies, 

regularly visited by a veterinarian (they often have their own) and associated with several 

biosecurity measures, including access restrictions and disinfection procedures; low 

biosecurity farms were defined as backyard or small-scale holdings characterised by a 

small number of pigs, very low veterinary support and low level or absence of biosecurity 

measures (Oganesyan et al., 2013). As data on wild boar density was not readily available, 

forest coverage (also extracted from the database distributed by ESRI-CIS) was used as a 

proxy variable (Boitani et al., 1994; Fernandez et al., 2006). All these variables had either 

been identified as risk factors in previous studies (Gulenkin et al., 2011; Korennoy et al., 

2014) or were suspected to be associated with the reporting rate. All variables were 

summarised at hexagon level either by calculating the Euclidian distance between the 

centroid of the hexagons and any location of interest (i.e. nearest regional capital and 

nearest diagnostic laboratory) or by averaging the value of the continuous variables for 

each hexagon using the ArcGIS 10.2 software (ESRI, 2011). To be able to accommodate 

non-linear associations, all variables were categorised into three categories based on 

their 33rd and the 66th percentiles, except for the density of high biosecurity farms which 

was included as a binary variable due to the small number of hexagons with more than 

one high biosecurity farm. 

A conditional autoregressive zero-inflated Poisson (CAR-ZIP) regression model was 

developed to quantify the association between the putative explanatory variables and the 

spatial distribution of the number of outbreaks reported in domestic pigs. Zero-inflated 

Poisson models (ZIP) assume that the outcome variable Y (here, the number of outbreaks 

reported in a hexagon) follows a mixture of a zero-point mass distribution and a Poisson 

distribution, and can be expressed using the following probability function: 

 (    )  {
(    )       (   )         

  
  
    (   )

  
         

      (1) 

with Φi being the parameter of the mass distribution and λi the parameter of the Poisson 

distribution (Lambert, 1992; Cameron and Trivedi, 1998). In the context of this study, Φi 

and λi can be seen as the probability that hexagon i experienced at least one ASF outbreak 

in the domestic pig population (i.e. the probability that ASF virus circulated in domestic 
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pigs in the hexagon i) and as the average number of reported outbreaks in hexagon i had 

it been affected, respectively. Both Φi and λi can be expressed as a function of explanatory 

variables using a logit and a log transformation, respectively:  

     (  )     ∑             (2) 

and 

    (  )     ∑             (3) 

with α0 and β0 being two intercepts, x1i and x2i being vectors of explanatory variables 

(they can be two different sets of covariates) and α and β being the vectors of their 

associated coefficients.  

As ASFv is highly contagious, it is likely that the probability Φi that hexagon i experienced 

at least one outbreak of ASF was dependent on the probability that its neighbouring 

hexagons experienced at least one outbreak. This spatial autocorrelation was 

incorporated in the models by extending the logistic expression of Φi as follows:  

     (  )     ∑               (4) 

with ui being the spatially structured random effect. This was assumed to have a 

conditional autoregressive structure using the first-order spatial interaction 

neighbourhood based on contiguity between the hexagons (Besag et al., 1991). This type 

of CAR-ZIP regression has been used in various applications in ecology (Agarwal et al., 

2002; Rathbun and Fei, 2006; Flores et al., 2009) and epidemiology (Musal and Aktekin, 

2013; Vergne et al., 2014).  

First, the collinearity between each pair of variables was assessed using the Kendall rank 

correlation coefficient (Abdi, 2006). Pair-wise collinearity was considered significant if 

the absolute value of the coefficient exceeded 0.7. In case of collinearity, the set of 

variables to be removed from the analysis was the smallest set of variables leading to the 

elimination of all significant pair-wise collinearity. Univariable analyses were then 

conducted and variables associated with at least one coefficient for which zero was not 

included in the 80% credible interval of its posterior distribution were retained for 

multivariable analyses. Next, all selected variables were added one by one following a 

stepwise forward selection procedure using the Deviance Information Criterion (DIC) as 

the selection criterion (Ntzoufras, 2009). The DIC is based on a trade-off between the fit of 
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the data to the model and the complexity of the model. It is generally accepted that 

models with smaller DIC are better supported by the data. The best model was considered 

to be the most parsimonious model whose DIC was less than two points greater than that 

of the model associated with the smallest DIC (Spiegelhalter et al., 2002). Retained 

variables associated with the parameter Φ were considered as risk factors for the 

occurrence of at least one outbreak in hexagons. Retained variables associated with the 

average number of reported outbreaks in an affected hexagon (λ) may either be 

associated with the true number of ASF outbreaks in an affected hexagon (and therefore 

with the local spread of the virus) or with the probability that an ASF outbreak is reported 

(and therefore with the sensitivity of the reporting). Note that such a model does not 

allow for differentiating explicitly between the two. 

All analyses were performed in a Bayesian framework using the WinBUGS software (Lunn 

et al., 2000) embedded in the R software (R-Development-Core-Team, 2008) using the 

R2WinBUGS package (Sturtz et al., 2005). As we did not have any information regarding 

the value of the variable coefficients, we assumed normal prior distributions of mean 0 

and variance 10 for each of the fixed effects included in the model. For the variance of the 

spatially structured random effect, we used a gamma prior distribution (which has 

density only for positive real numbers) of mean 5 and variance 5. In the exploratory 

phase, gamma priors of mean 5 and variance 10 and 20 were also tested for this latter 

parameter but they led to unstable models unable to converge properly. Two simulation 

chains of 100,000 iterations were run, with the first 5,000 iterations discarded to allow 

for burn-in of the chain. The chains were then thinned, taking every hundredth sample to 

reduce autocorrelation amongst the samples. Convergence was assessed by checking the 

trace plots for all monitored parameters (Gelman et al., 2004). The posterior distribution 

of each parameter was summarised using the median and the 95% credible interval 

(95%CI). 

Choropleth maps were produced to show the spatial distributions of the median 

predicted probability of occurrence of at least one outbreak (  ), of the median sensitivity 

of detection at the hexagon level (i.e. the median predicted probability that at least one 

outbreak would have been reported had the hexagons been affected:      (   )), and 

of the median probability that at least one outbreak was reported (  [     (   )]).  
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The ability of the model to correctly predict presence or absence of at least one reported 

outbreak at the hexagon level was assessed by using the posterior distribution of the 

probability that at least one outbreak was reported in each hexagon (  [     (   )]) to 

estimate the area under the curve (AUC) of the receiver operating characteristic (ROC) 

plots.  

 

RESULTS 

No correlation was detected between any pair of investigated variables. The best-fit 

model and the estimated effects of the associated variables are presented in Table 1.  

The density of pigs kept in low biosecurity farms was found to be the only explanatory 

variable associated with the risk of occurrence of at least one ASF outbreak in a hexagon. 

Compared with hexagons with a low density of pigs kept on low biosecurity farms, the 

odds of ASF outbreak occurrence was increased by a factor of 7.37 (95%CI: 1.93; 30.05) 

and 5.53 (95%CI: 1.15; 26.92) for hexagons with medium (between 0.44 and 2.37 

head/km2) and high (greater than 2.37 head/km2) densities of pigs kept on low 

biosecurity farms, respectively. The variance of the spatially structured random effect, 

which can be seen as the amount of variation in logit(Φ) due to spatial proximity between 

neighbouring hexagons, was estimated to be 2.56 (95%CI: 0.78; 9.14).  

The average number of reported outbreaks in ASF-affected hexagons was positively 

associated with medium and high human population densities (incidence rate ratios (IRR) 

= 3.57 (95%CI: 2.03; 6.45) and 4.83 (95%CI: 2.78; 8.60), respectively), with a medium 

density of pigs kept on low biosecurity farms (IRR = 2.45 (95%CI: 1.41; 4.59)) and with 

medium and long distances to the closest diagnostic laboratory (IRR = 1.90 (95%CI: 1.30; 

2.75) and 2.73 (95%CI: 1.87; 3.97), respectively). Density of pigs kept on high-biosecurity 

farms, forest coverage, road density and distance to the closest regional capital were 

neither found to be associated with the risk of occurrence of at least one ASF outbreak in 

a hexagon nor with the average number of reported outbreaks amongst ASF affected 

hexagons. As shown in Figure 2, the discriminatory power of the model to predict 

whether at least one outbreak was reported was relatively good with an AUC value of 0.86 

(95%CI: 0.84; 0.91).  
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Using the spatial distribution of the variables retained in the model, the predicted 

probability of occurrence of ASF in domestic pigs, the sensitivity of ASF detection at 

hexagon level and the probability that at least one outbreak was reported were mapped 

(Figure 1B, 1C and 1D, respectively). 
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 Table 1: Results of the conditional autoregressive zero-inflated Poisson regression  

 Variable Category 
Number of 
hexagons 

Posterior mean 
(standard deviation) 

of the regression 
coefficients 

Monte Carlo error 

Odds ratio (95% 
credible interval) 

related to the 
probability of 

occurrence of at 
least one outbreak 

Incidence rate ratio 
(95% credible 

interval) related to 
the average number 

of outbreaks 
reported in affected 

hexagons 

Probability of occurrence of at least one ASF outbreak in hexagons 

 Density of pigs 
kept on low 
biosecurity farms 

[0; 0.44[ 129 Ref Ref Ref - 

 [0.44; 2.37[ 128 2.01 (0.70) 0.010 7.37 (1.93; 30.05) - 

 ≥ 2.37 132 1.71 (0.80) 0.011 5.53 (1.15; 26.92) - 

Average number of reported outbreaks amongst ASF affected hexagons 

 
Human population 
density 

[0; 18.2[ 129 Ref Ref - Ref 

 [18.2; 40.8[ 128 1.28 (0.30) 0.006 - 3.57 (2.03; 6.45) 

 ≥ 40.8 132 1.58 (0.29) 0.006 - 4.83 (2.78; 8.60) 

 Density of pigs 
kept on low 
biosecurity farms 

[0; 0.44[ 129 Ref Ref - Ref 

 [0.44; 2.37[ 128 0.91 (0.30) 0.007 - 2.45 (1.41; 4.59) 

 ≥ 2.37 132 0.51 (0.31) 0.006 - 1.65 (0.94; 3.14) 

 Distance to the 
nearest diagnostic 
laboratory 

[0; 177[ 129 Ref Ref - Ref 

 [177; 302[ 128 0.64 (0.19) 0.002 - 1.90 (1.30; 2.75) 

 ≥ 302 132 1.00 (0.19) 0.002 - 2.73 (1.87; 3.97) 
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Figure 1: Spatial distribution of the number of African swine fever (ASF) outbreaks 

reported in the southern regions of the Russian Federation between 2007 and 2014 

(A), of the median predicted probability of occurrence of at least one ASF outbreak 

(B), of the median predicted probability that at least one outbreak would have been 
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reported had the hexagons been affected (sensitivity of the detection at hexagon 

level), (C) and of the probability of reporting at least one ASF outbreak (D) at hexagon 

level between 2007 and 2014. Note the cut-points are different between panels. 

 

 

Figure 2: Discriminatory power of the zero-inflated Poisson model: violin plots 

showing the predicted probability that at least one ASF outbreak was reported for 

hexagons with (red) and without (blue) actually reported outbreaks (A); receiver 

operating characteristic curves quantifying the discriminatory power of the model to 

predict whether at least one outbreak of ASF was reported (B). 

 

DISCUSSION 

At the time this research was conducted, i.e. eight years after ASFv had started circulating 

in the Russian Federation causing significant economic losses to the national pig industry, 

very few studies have tried to identify factors associated with the spatial pattern of the 

epidemic (Gulenkin et al., 2011; Korennoy et al., 2014). The present paper contributes to 

filling this gap by analysing the distribution of the outbreaks reported from 2007 to 2014 

in South Russia using spatial zero-inflated Poisson (ZIP) regression. The main findings of 

this study are threefold: 1) the risk of presence of ASF outbreaks was strongly associated 

with the density of pigs kept on low biosecurity farms (Table 1); 2) the human population 

density and, to a lesser extent, the density of pigs kept on low biosecurity farms and the 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

distance to the nearest laboratory, were shown to increase the average number of ASF 

reports in ASF affected hexagons (Table 1); 3) the ability of the car-ZIP model to predict 

whether at least one ASF outbreak was reported was found to be good with an AUC larger 

than 0.8 (Figure 2). 

Consistent with Korennoy et al. (2014), the density of pigs kept on low biosecurity farms 

was found to be strongly associated with the distribution of ASF outbreak reports in the 

Russian Federation. Backyard and free-range pigs played a critical role in the 

transmission of ASFv in the RF as they were associated with an increase in both the 

probability of occurrence of at least one outbreak in hexagons and the average number of 

reported outbreaks in affected hexagons. Indeed, at the time of the epidemic, extensive 

outdoor breeding was very common in the South of the Russian Federation (Gogin et al., 

2013), and complicated the control of the epidemic as this practice was poorly regulated 

and the location of the farms unknown. In addition, initially delayed intervention 

strategies and inappropriate financial compensation schemes encouraged some affected 

small-scale farmers to dispose of dead or affected pigs inappropriately or slaughter and 

sell illegally their apparently healthy pigs (FAO, 2013). This contributed significantly to 

the release of the virus (Costard et al., 2015) and consequently to the observed spatial 

pattern of the epidemic. 

The results of the CAR-ZIP regression show that human population density was positively 

associated with the average number of reported outbreaks in ASF affected hexagons 

(meaning that if at least one outbreak was to occur in a highly populated area, there 

would be more reported outbreaks than in an area of low human density). This suggests 

that highly populated areas either increased the risk of local spread of ASFv, potentially 

through movement of pigs or people entering farms, therefore increasing the actual 

number of outbreaks, or resulted in pig farmers being more likely to report ASF outbreaks 

because of enhanced awareness, better compliance with the rules or better trust in the 

state veterinary services. These results provide useful complimentary information to that 

produced by Korennoy et al. (2014) who showed that the density of rural human 

population was associated with an increase in the general risk of ASF occurrence. Indeed, 

the structure of the zero-inflated model allows more detailed inference by indicating that 

human population density is associated with an increase in the average number of ASF 

reports if ASFv was circulating in the area (i.e. with an increase in the probability that at 
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least one outbreak would be reported in affected areas), but not with an increase in the 

risk that ASFv circulates in the area. 

We hypothesized that the average number of reported outbreaks in affected hexagons 

would decrease with increasing distance to the diagnostic laboratory because submitting 

a biological sample in remote areas was expected to be more difficult, making the 

probability of reporting suspicions in affected hexagons less likely. In fact, model outputs 

showed that this variable had an effect in the opposite direction: the further the affected 

hexagons from diagnostic laboratories, the larger the average number of reported ASF 

outbreaks. This result may not be as counterintuitive as it might seem: one possible 

explanation for these findings is that intervention measures may be implemented in a 

more effective and timely manner close to laboratories compared with those in remote 

areas, thereby curbing the epidemic at an earlier stage and therefore limiting the total 

number of outbreaks in affected hexagons.  

From 2007 to 2014, disease awareness amongst farmers and veterinarians, as well as 

surveillance and intervention effectiveness, varied markedly. At the beginning of the 

epidemic, most efforts were focused on intervention due to the overwhelming need for an 

emergency response, with a focus on culling and depopulation. In the early stages of the 

epidemic, efforts for improving the early reporting of suspected cases were neglected, 

leading to substantial periods during which ASFv was able to spread without veterinary 

services being notified (FAO, 2013; Gogin et al., 2013). Over the following years, 

timeliness of reporting improved and interventions became more effective as veterinary 

services became more experienced with handling the situation, farmers became more 

aware of the disease and its consequences, and cooperation between local and federal 

authorities improved (Gogin et al., 2013). As a consequence, the drivers of the spatial 

distribution of the reported ASF outbreaks were likely to vary both temporally and 

spatially. Because the current analysis used aggregated data collected over almost eight 

years in a relatively large region (corresponding to almost twice the size of France), the 

approach was only able to identify general trends and may not have been able to detect 

more local (in time or in space) associations. Despite this limitation, it is worth noting that 

the model generates good predictions for whether at least one outbreak was reported in a 

hexagon (Figure 2).  
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Potential non-linear relationships between explanatory variables and the outcome were 

accounted for by categorising each of the explanatory variables included in the model. It is 

acknowledged that other modelling methods such as the boosted-regression tree 

approach would have allowed a more explicit investigation of non-linear effects (Martin 

et al., 2011; Fang et al., 2013; Dhingra et al., 2014) but it would not have allowed 

characterising the role of the risk factors in the same way as the zero-inflated approach 

did. The usefulness of the zero-inflated Poisson approach for gaining more detailed 

epidemiological insights from the distribution of reported outbreaks could be further 

enhanced by replacing the Poisson process with a hierarchical process combining a zero-

truncated count distribution and a binomial distribution to model the true number of 

outbreaks in affected hexagons and the number of reported outbreaks given the true 

number of outbreaks, respectively. This development would allow estimating the 

prevalence of outbreaks in affected hexagons and the probability of reporting an 

outbreak. However, because of the complex distribution of the latent state (true number 

of outbreaks in affected hexagons), it is expected that such models will be challenging to 

fit and will need to be parameterized using input data that truly reflects the field 

situation.  

Although the statistical model for the probability that at least one outbreak was reported 

in a hexagon had a good fit to the data (Figure 2), its performance and interpretation 

would have benefited from being able to use direct measurements of risk factors rather 

than proxy variables. For example, although wild boar are considered not to have played a 

major role in the transmission of ASFv to domestic pigs (Iglesias et al., 2015; Vergne et al., 

2015a), the use of wild boar density instead of the forest coverage would have allowed a 

more precise examination of wild boar’s role in the epidemiology of ASF.  

 

CONCLUSION 

This study assessed the spatial risk of ASF while accounting for a potential heterogeneous 

reporting rate of ASF outbreaks. The observed pattern of the most important epidemic of 

ASF that occurred in the RF seems to have been influenced by several risk factors, such as 

the density of pigs kept in low biosecurity farms, human population density and the 

distance to the nearest diagnostic laboratory. Importantly, these results could assist the 
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Russian veterinary services in defining high risk areas to be targeted for improved early 

detection and early reporting in order to minimise the impact of ASF on pig farmers’ 

livelihoods. 
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