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ABSTRACT 1 

An alternative to liver transplantation for patients with liver failure remains an unmet need.  In 2 

acute liver failure, the ideal extracorporeal liver support device would replace the functions of 3 

the failing liver in order to permit spontaneous recovery, given the incredible regenerative 4 

potential of the liver, negating the need for transplantation. In acute-on-chronic liver failure, 5 

an extracorporeal liver support device would ideally support hepatic function until recovery to 6 

liver function prior to acute decompensation or until liver transplantation.  In decompensated 7 

cirrhosis, an extracorporeal liver support device could again be used to support hepatic 8 

function until transplant. In addition, extracorporeal liver support devices may have potential 9 

to treat the multi-organ failure that accompanies liver failure including hepatic 10 

encephalopathy, renal failure and immune dysfunction or indeed potential to promote liver 11 

regeneration. Creation of an extracorporeal bioartificial liver able to completely replace liver 12 

function remains an unmet need. This review will describe a number of technologies suitable 13 

for clinical trials in man, which have resulted from decades of engineering and biological 14 

research to develop a bioreactor able to adequately sustain functional hepatocytes. In 15 

addition, this review will describe artificial liver support devices, primarily designed to replace 16 

the detoxifying functions of the liver and consider the current data available or studies 17 

required to support their use in liver failure patients on the transplant waiting list. 18 

 19 

INTRODUCTION 20 

Mortality in patients with liver failure who cannot be rescued with liver transplantation 21 

remains high despite improvements in supportive care (1). The fundamental thinking behind 22 

the use of extracorporeal liver support devices (ELSD) is the idea that if the patient’s liver 23 

and extrahepatic organs can be supported long enough, recovery should be possible, 24 

because of the regeneration potential of the liver (2). Alternative aims of ELSD may be to 25 

‘bridge’ liver failure patients to liver transplantation or to support patients with end-stage liver 26 

disease while on the waiting list for transplantation. Additional therapeutic goals may be to 27 

treat end organ dysfunction such as hepatic encephalopathy (HE), renal failure or immune 28 
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dysfunction (3). Finally, as one understands the pathophysiological basis of regeneration or 1 

its inhibition better, ELSD may be used to target particular molecules to enhance this 2 

regenerative process. Depending upon whether the liver failure occurs on the background of 3 

a previously healthy liver or in patients with underlying chronic liver disease, the conditions 4 

are referred to as acute liver failure (ALF) or acute-on-chronic liver failure (ACLF) 5 

respectively (Table 1).  6 

 7 

ALF is a rare disease and is defined as the occurrence of HE in patients with severe acute 8 

liver injury within 6-months of the onset of symptoms (4). From a pathophysiological 9 

perspective, patients with ALF are the perfect group of patients likely to benefit from ELSD 10 

because recovery is likely to return the patient to their pre-liver failure state, in which there is 11 

no pre-existing liver pathology. It is becoming clear that in addition to providing support for 12 

hepatic function, modulation of hepatic and systemic inflammation will be important to 13 

prevent deaths either from an exaggerated inflammatory response or infection (3). 14 

 15 

ACLF is much more common than ALF and typically occurs in patients with cirrhosis (5). The 16 

condition is characterized by acute deterioration of a cirrhotic patient with or without a 17 

recognized precipitating event, associated with organ failures and high mortality rates (6). 18 

Data from prospective studies are now available that allow accurate, sequential 19 

assessments of patients, which provide prognostic information. The CLIF Consortium organ 20 

failure score is used for diagnosis of the syndrome (Table 2) and the CLIF Consortium ACLF 21 

score for defining the prognosis (7). A pre-ACLF group has now been identified, which will 22 

allow studies of ELSD to prevent the occurrence of ACLF in susceptible patients (8). 23 

Systemic inflammation is the key pathophysiological factor that drives the syndrome making 24 

this a particular target of ELSDs (9). The aim of ELSDs in patients with ACLF is to support 25 

hepatic function during acute decompensation until recovery to baseline liver function and/or 26 

liver transplantation.  27 

 28 
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Decompensated cirrhosis is pathophysiologically different and typically represents patients 1 

that have end-stage cirrhosis with varying degrees of end-organ dysfunction. In this group of 2 

patients, ELSD is aimed at supporting them until liver transplantation. 3 

 4 

This review describes the state of the art about the types of ELSDs that are available, the 5 

results of the large and important clinical trials and the new ELSDs that are in or about to 6 

enter clinical trials. The reported human, randomised, controlled, clinical trials of ELSDs, for 7 

which survival was the primary outcome, are given in Table 3 with selected survival data 8 

shown in Figures 1 to 3. 9 

 10 

CURRENTLY AVAILABLE EXTRACORPOREAL LIVER SUPPORT DEVICES 11 

The currently available artificial ELSDs are based on the principal of removal of protein 12 

bound and water soluble substances (blood purification) by albumin dialysis, by plasma 13 

separation and filtration or by therapeutic plasma exchange. Devices based solely on the 14 

removal of water soluble substances (blood detoxification) have not shown any benefit in 15 

survival, possibly because of the limited, non-specific absorptive capacity of chemical 16 

adsorbents (10). 17 

 18 

The following artificial ELSDs are currently available:  19 

(i) The Molecular Adsorbents Recirculating System (MARS®, Gambro, Sweden) was 20 

first described in 1993 (Supplementary Material Figure S1) (11). In MARS®, blood 21 

is dialyzed across an albumin-impermeable, approximately 50-60 kDa cut-off, 22 

membrane against 20% human serum albumin (HSA).  HSA solution is 23 

continuously stripped of protein bound and water soluble toxins by passage 24 

through a secondary circuit containing a charcoal column, an anion exchange 25 

resin column and a low-flux dialyzer (12-14).  26 

(ii) The Fractionated Plasma Separation, Adsorption and Dialysis device 27 

(Prometheus®, Fresenius Medical Care, Germany) separates the patient’s 28 
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albumin/plasma from blood by passage across an approximately 300 kDa cut-off 1 

membrane (Supplementary Material Figure S2).  Patient albumin/plasma is then 2 

passed directly over two columns containing different adsorbents. A high-flux 3 

dialyzer inserted into the blood circuit clears water-soluble substances (15, 16).  4 

(iii) Single pass albumin dialysis® (SPAD®) can be carried out with a standard dialysis 5 

setup, by use of hollow fibres made of a high-flux albumin-impermeable 6 

membrane and the addition of HSA to the dialysis solution to enable solute 7 

transfer from the patient's blood to the dialysis solution (Supplementary Material 8 

Figure S3)  (17, 18). 9 

(iv) Therapeutic plasma exchange (TPE) involves extracorporeal separation and 10 

removal of patient plasma from blood and return of blood cells with a replacement 11 

fluid to the patient. Fresh frozen plasma is the typical replacement fluid, but HSA 12 

has also been reported (19). 13 

 14 

MARS®, Prometheus® and SPAD® are all able to reduce serum bilirubin and bile acids. 15 

Studies comparing MARS® and Prometheus® in ACLF show higher efficiency of 16 

Prometheus® for removal of bilirubin and urea and equal efficiency for removal of bile acids 17 

(20, 21). However, an actual improvement of synthetic liver function has neither been 18 

expected nor observed. For patients awaiting liver transplantation improvement of systemic 19 

haemodynamics, renal function or HE might be able to “buy” valuable time until an organ 20 

becomes available, serve as a bridge to recovery and it can be hypothesized that this would 21 

also impact on prognosis after transplantation.  22 

 23 

Molecular Adsorbents Recirculating System®  24 

A meta-analysis (22) of 4 randomized (14, 23-25) and 2 selected non-randomized trials (26, 25 

27) did not show any overall effect of MARS® on mortality. However, explorative analysis of 26 

the 2 non-randomized trials revealed a significant reduction in mortality in the MARS® group 27 

as compared to the standard medical treatment (SMT) group (22). Another randomized 28 
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controlled trial showed that MARS® therapy in patients with ACLF has a beneficial effect on 1 

circulating neurohormones, nitric oxide and free radical production, and reduces markers of 2 

oxidative stress (28). The clinical effects of these changes are reflected in individual organ 3 

function with temporal improvement in cholestasis, liver function, renal function, 4 

encephalopathy, and in some patients, mean arterial pressure (28). Indeed, one of the most 5 

consistent findings in studies of MARS® in ACLF is an improvement in portal and systemic 6 

haemodynamics (29-31).  Furthermore a large randomized controlled trial revealed a 7 

significant effect of MARS® on the severity of HE (32). The largest study so far – the RELIEF 8 

trial – however could not show a benefit of MARS® on mortality in ACLF, but demonstrated 9 

safety, a dialysis effect and a modest effect on HE (33) (Figure 1, Table 3). Failure to show a 10 

survival benefit may have been due to the heterogeneous patient population.  However, 11 

another large, randomized study in ALF – the FULMAR trial – also failed to show a survival 12 

benefit of MARS® (Table 3). In this study most patients were transplanted within a median of 13 

16.2 hours, leaving little time for a liver support system to demonstrate its effect (34). A 14 

retrospective study of continuous MARS® treatment in critically ill patients listed for liver 15 

transplantation with ALF, ACLF or graft dysfunction, showed that MARS® may be of value as 16 

a bridge to transplant but also revealed severe side effects with respect to coagulation and 17 

electrolytes (35). Therefore, the use of MARS® in patients with liver failure waiting for an 18 

organ should be performed under close observation with treatment of coagulopathy and 19 

electrolyte disturbances (35). In another single centre observation from the Netherlands that 20 

included 20 children with ALF or graft dysfunction, MARS® could be successfully applied, but 21 

with similar coagulation side effects and the need for liver transplantation was not reduced 22 

(36). Another single centre experience from Mexico suggested that MARS® reduced the 23 

need for liver transplantation by contributing to native liver recovery (37). However, a 24 

retrospective cohort study is not the optimal study design to answer this question.  25 

 26 

From the available data, it is not possible to conclude whether or not MARS® is beneficial for 27 

patients on the transplant waiting list. It is possible that efficiency of the device is not optimal. 28 
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Therefore, the development of a device with higher efficiency might be of value. Recently, 1 

the use of a double absorption unit in parallel has been tested (38). 2 

 3 

Prometheus® 4 

Initial and subsequent uncontrolled data for Prometheus® show high elimination of albumin 5 

bound toxins and good safety data (16, 39). Comparable to MARS®, Prometheus® can be 6 

used safely in patients awaiting an urgent liver transplantation (40), but severe coagulation 7 

disturbances have been reported (41). The largest cohort study of Prometheus® in ALF 8 

patients was performed in Turkey and demonstrated safety and efficacy: one third of patients 9 

survived without transplantation, leading the authors to suggest that Prometheus® may be 10 

effective as a bridge to recovery (42). However, as for MARS®, Prometheus® failed to 11 

improve survival of patients with ACLF in a large prospective randomized study (Figure 2, 12 

Table 3) (43). Therefore the current data does not allow us to conclude whether or not 13 

Prometheus® is of benefit to patients on the waiting list.  14 

 15 

Single pass albumin dialysis® 16 

SPAD® can be used with any dialysis setup, therefore there is no need to invest in an extra 17 

machine.  However, the amount of HSA required is high. SPAD® has been mainly tested in 18 

vitro and reported in case reports. In vitro there is evidence that the detoxification capacity of 19 

SPAD® is greater than MARS®(18). In a retrospective study, MARS® and SPAD® showed 20 

equal efficacy (44). In ALF, SPAD® was well tolerated but failed to improve survival and did 21 

not change referral to liver transplantation (45). In a single-center experience from Germany, 22 

SPAD® did not have any impact on survival or transplantation rate in patients with ACLF 23 

listed for transplantation (46). However, patient numbers were small. Again, it is not possible 24 

to conclude whether or not SPAD® is beneficial for patients on the waiting list. 25 

 26 

Therapeutic plasma exchange 27 
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Therapeutic plasma exchange has been reported in isolated ALF and ACLF patients since 1 

the 1960s. Rationale has been removal of all toxins, as well as harmful inflammatory 2 

mediators and replacement of beneficial plasma proteins normally synthesised by the liver. 3 

In liver failure, TPE has been shown to reduce serum bilirubin and ammonia and to increase 4 

coagulation factors improving coagulopathy. Hypocalcaemia and alkalosis occur due to 5 

anticoagulant use, but are easily corrected (19). A recent multi-centre open randomised 6 

controlled trial of high-volume TPE (HVP, exchange of approximately 8-12 litres or 15% body 7 

weight of plasma), on three consecutive days, in 182 ALF patients demonstrated increased 8 

survival to hospital discharge  (Figure 3, Table 3) (47). In patients who fulfilled poor 9 

prognostic criteria, but were not listed for transplant, HVP (n=28) increased survival 10 

compared to SMT (n=36). This survival advantage was associated with immune modulation 11 

and improvement in renal function, cardiovascular status, SOFA score and CLIF-SOFA 12 

score (47). 13 

 14 

EMERGING TECHNOLOGIES IN EXTRACORPOREAL LIVER SUPPORT DEVICES  15 

Bioartificial ELSDs include a bioreactor that contains hepatocytes, which in the most ideal 16 

scenario, would replace the functions of the failing liver including: ammonia detoxification via 17 

the urea cycle; drug metabolism; protein synthesis; and carbohydrate and lipid metabolism 18 

(48). Bioartificial ELSD development has been limited by their requirement for primary 19 

hepatocytes, which demonstrate better hepatocyte functionality compared to immortalised 20 

cell lines, but with the accompanying disadvantage of reduced cell viability and limited 21 

availability (48). Moreover, bioreactor design has been challenged with maintaining large 22 

hepatocyte cultures for effective patient treatment, whilst simultaneously acting as an 23 

effective interface between bioreactor hepatocyte function and patient plasma (48). 24 

Nevertheless progressive evolution of bioreactor design and hepatocyte biology has resulted 25 

in bioreactors with considerable hope for ALF and ACLF treatment. These include: 26 

Extracorporeal Liver Assist Device™ (ELAD™); Academic Medical Centre Bioartificial Liver 27 

(AMC-BAL); and Spheroid Reservoir Bioartificial Liver (SRBAL). ELAD has entered human 28 
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clinical trials. SRBAL and the latest version of AMC-BAL  have shown efficacy in animal 1 

experiments, but data from human clinical trials are currently unavailable. 2 

 3 

A number of artificial ELSDs are in development that may either improve detoxification 4 

compared to current ELSDs or combine detoxification with techniques to attenuate liver 5 

injury. These include: Hepa Wash®; Li-Artificial Liver Support (49) and University College 6 

London-Liver Dialysis Device (UCL-LDD).  All three of these devices have shown efficacy in 7 

animal experiments, but data from human clinical trials are currently unavailable. 8 

 9 

Extracorporeal Liver Assist Device 10 

ELAD™ has been trialled in animal models of ALF and human liver failure patients since the 11 

1990s (50-52). Its key component is a quartet of hollow fibre dialysis cartridges containing 12 

HepG2/C3A cells, a human hepatoblastoma cell line, within the extra-fibre spaces 13 

(Supplementary Material Figure S4) . HepG2/C3A cells remain viable throughout the 14 

recommended 3-10 day treatment (53). HepG2/C3A cells demonstrate albumin synthesis 15 

and cytochrome P450 activity, but functionality is significantly less than primary hepatocytes 16 

with failure to detoxify ammonia via the urea cycle (48, 54). Early phase I pilot studies in 17 

limited numbers of human ALF patients have demonstrated safety, but no improvement in 18 

survival and biochemical and clinical parameters (51, 52). Preliminary results of a trial in 19 

patients with acute decompensation of chronic hepatitis B or C reported significant extension 20 

of 30 day transplant free survival and biochemical improvement (Table 3) (55). Clinical trials 21 

of ELAD™ in ACLF, ALF, severe acute alcoholic hepatitis and alcoholic-induced liver failure 22 

are currently ongoing (56). In a recent press release, the results of the large randomised trial 23 

of ELAD™ in alcohol-related ACLF patients were reported to be negative (57). The full report 24 

is awaited. 25 

 26 

Academic Medical Centre Bioartificial Liver 27 
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The AMC-BAL has been in development since the 1990s (58). Key bioreactor features are: a 1 

non-woven matrix for 3-D hepatocyte cultures; spiralling of this 3-D matrix around oxygen 2 

carrying capillaries; and direct exposure of hepatocytes to patient plasma (Supplementary 3 

Material Figure S5). Primary hepatocyte viability has been reported to be 90% on day three. 4 

The first phase I clinical trial of AMC-BAL in man used a device containing primary porcine 5 

hepatocytes.  In this trial 12 ALF patients were treated for 4 to 35h: eleven were successfully 6 

bridged to liver transplantation and one recovered spontaneously. AMC-BAL treatment was 7 

associated with improvement in neurological and haemodynamic status in all patients; 8 

improvement in renal function in those with renal insufficiency and reduction in 9 

hyperbilirubinaemia and lactic acidosis (58). Porcine endogenous retrovirus DNA was found 10 

in patient plasma directly after treatment, but was undetectable thereafter.  Nevertheless 11 

clinical use of this device was restricted due to ethical, immunological and zoonotic 12 

concerns. 13 

 14 

Recently the HepaRG human hepatoma cell line has been cultured in the AMC-BAL instead 15 

of primary porcine hepatocytes. HepaRG cells approximate primary hepatocyte cultures 16 

more than any other human hepatocyte cell line (48). Culture within the AMC-BAL: 1) 17 

increased hepatic functionality with respect to ammonia elimination, the urea cycle and 18 

cytochrome P450 activity and 2) revealed lactate consumption, amino acid metabolism, drug 19 

metabolism and bile acid production similar to that of primary hepatocytes (59). In a rat ALF 20 

model, the HepaRG-AMC-BAL resulted in a 50% increase in survival and delay in 21 

progression of HE, kidney failure and hyperammonaemia (60). 22 

 23 

Spheroid Reservoir Bioartificial Liver (SRBAL) 24 

SRBAL has been in development since the early 2000s. Its key component is a bioreactor 25 

containing primary porcine hepatocytes in suspension, which when exposed to an oscillation 26 

frequency of 0.25Hz cluster into spheroids with stable cell viability (Supplementary Material 27 

Figure S6) (61, 62). Hepatocyte spheroids demonstrate good hepatocyte function in terms 28 
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of: phase I and phase II drug metabolism; ammonia conversion to urea via the urea cycle; 1 

and albumin synthesis (61). A trial using a pig ALF model has been reported (63).  Pigs were 2 

treated either with two 6-hour treatments (intermittent) or one 24 hour treatment 3 

(continuous). Both SRBAL treatments improved survival and reduced hyperammonaemia 4 

and continuous SRBAL reduced intracranial hypertension and brain water. 5 

 6 

Hepa Wash® 7 

Hepa Wash® is an artificial ELSD that detoxifies blood by albumin dialysis against a 2% 8 

albumin dialysate (64). The albumin dialysate is recirculated via a ‘Hepa Wash’ circuit, which 9 

contains two parallel conventional haemofilters, in which albumin bound toxins are released 10 

through exposure to an alkaline or acid environment and subsequently removed by filtration.  11 

This design aims to maintain clearances of protein bound toxins through the treatment 12 

period (64). This is contrary to MARS®, where a decline in clearance of protein bound toxins 13 

is seen throughout the recommended 7hr treatment (65).  14 

 15 

In a pig liver ischaemia ALF model, Hepa Wash® resulted in improvement in survival, 16 

cerebral perfusion pressure, haemodynamic status and kidney function. Moreover, Hepa 17 

Wash® resulted in reduction in azotaemia, hyperammonaemia, and blood nitrate/nitrite 18 

levels (64). Clinical trials in humans with ALF and ACLF were initiated in 2010, but have 19 

since been terminated for unknown reasons (NCT01079104, NCT01079091). 20 

 21 

Li-Artificial Liver Support (Li-ALS) 22 

Li-ALS is an artificial ELSD that combines a low-volume TPE (exchange of approximately 23 

2.5% body weight of plasma) circuit with a modified MARS secondary circuit, in which high-24 

flux hemofiltration replaces low-flux haemodialysis (49).  This approach seeks to benefit from 25 

the more comprehensive detoxification achieved by TPE compared to MARS, without need 26 

for a supply of exogenous fresh frozen plasma, as patient plasma is returned post-27 

detoxification to the patient. In a D-galactosamine pig model of ALF, Li-ALS resulted in an 28 
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improvement in survival compared to treatment with low-volume TPE alone and to treatment 1 

with the modified MARS circuit alone (49). 2 

 3 

University College London-Liver Dialysis Device (UCL-LDD) 4 

UCL-LDD is an artificial ELSD, in which blood is filtered across a high-cut off membrane 5 

(nominal cut-off of 60kDa) and then passed over a selective endotoxin adsorption 6 

membrane. Filtration across a high-cut off membrane results in albumin loss, which is 7 

replaced by HSA infusion (66). The resultant albumin exchange is proposed to correct 8 

irreversible loss of detoxifying function of albumin reported in liver failure. Reduction in 9 

endotoxaemia aims to reduce innate immune response, which worsens liver injury. Moreover 10 

high-cut off filters reduce circulating pro- and anti-inflammatory cytokines and correct 11 

immune dysfunction in septic patients with acute renal failure (67), so the same may apply to 12 

ALF. In a pig model of paracetamol-induced ALF, UCL-LDD improved survival and 13 

cardiovascular and respiratory function and reduced circulating dysfunctional albumin, 14 

endotoxaemia and immune system activation (66). 15 

 16 

CONCLUSION 17 

An ELSD that is able to bridge patients with liver failure either to recovery or to the state they 18 

were in, prior to the present deterioration, remains an unmet medical need. The main 19 

impediments to the development of an effective device can be thought of as being either 20 

patient related or device related. It is clear that once multiorgan failure is established, it is 21 

probably too late for an ELSD to be effective: in this situation the sole aim of ELSD treatment 22 

should be a bridge to transplant. Therefore, clinical trials need to include patients at risk of 23 

progression to multiorgan failure. The number of patients that will be required to attain 24 

adequate power will be high. It is also clear that the currently available devices show 25 

improvements in pathophysiological variables known to be associated with liver failure, but 26 

only one, TPE, has demonstrated survival benefit. The deficiencies of the currently available 27 

devices have inspired the newer devices, which are currently in clinical trials or due to enter 28 
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trials shortly. As ACLF has now been defined and the pathophysiology of both ALF and 1 

ACLF becomes clearer, it is very likely that an effective ELSD will emerge. Moreover further 2 

indications for ELSD may become evident. Indeed, new opportunity has arisen following the 3 

discovery of the new directly acting anti-viral drugs for Hepatitis C virus infection, which have 4 

been shown to reverse the severity of cirrhosis in many patients (68). One can envisage a 5 

situation whereby, Hepatitis C patients with decompensated cirrhosis are treated with ELSDs 6 

as out-patients for weeks and months, while the new directly acting anti-viral drugs take 7 

effect, negating the need for liver transplantation. 8 

 9 
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Table 1: Types of Liver Failure 1 

 Hyperacute/ 

Acute 

Sub acute ACLF 

underlying 

cirrhosis 

Decompensated 

cirrhosis 

Time from 

symptoms to 

failure 

Weeks Months Weeks Years 

Common 

aetiology 

Toxic ?Viral Variable Variable 

Precipitating 

event  

Liver injury Liver Injury Infection 

Alcohol 

Unknown 

Unknown 

Infection (others) 

Prognostic 

score 

Kings Kings CLIF C score MELD 

Potential for 

regeneration 

High Poor Unknown Poor 

 2 

Adapted from Jalan et al. Gastroenterology 2014 (1). 3 

  4 
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Table 2: The CLIF Consortium organ failure score for the diagnosis of acute on 1 

chronic liver failure 2 

Organ System Score = 1 Score = 2 Score = 3 

Liver (mg/dl) Bilirubin < 6 6 ≤ Bilirubin ≤ 12 Bilirubin >12 

Kidney (mg/dl) Creatinine  <2.0 Creatinine ≥2.0 or 

<3.5 

Creatinine ≥3.5 or 

renal replacement 

Brain  

(West-Haven) 

Grade 0 Grade 1-2 Grade 3-4 

Coagulation INR < 2.0 2.0 ≤ INR < 2.5 INR ≥ 2.5 

Circulation MAP ≥70 mm/Hg MAP <70 mm/Hg Vasopressors 

Respiratory: 

PaO2/FiO2 

 or SpO2/FiO2  

>300 

>357  

≤300 - > 200 

>214- ≤357  

≤200 

≤214  

No ACLF: Patients with no organ failure; patients with single hepatic, coagulation, circulation 3 

or respiratory failure, serum creatinine <1.5 mg/dl and no HE; or patient with cerebral failure 4 

and serum creatinine <1.5 mg/dl. 5 

ACLF 1: Patients with renal failure or patients with other single organ failure with either 6 

serum creatinine ≥ 1.5 and < 2 mg/dl and/or HE grade 1-2.   7 

ACLF 2: Patients with 2 organ failures. 8 

ACLF 3: Patients with 3 or more organ failures. 9 

Adapted from Jalan et al. Journal of Hepatology 2014 (7) 10 

 11 

 12 
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Table 3: Reported human randomised controlled clinical trials for ELSDs with survival as the primary outcome measure. 1 

Data from intention to treat (ITT) and per protocol (PP) analyses are included where reported separately. (ALF, acute liver failure; ACLF, acute-2 

on-chronic liver failure; n.s., no significant difference between groups; SMT, standard medical therapy; HVP, high-volume therapeutic plasma 3 

exchange) 4 

Liver support 

device 

Study name 

or identifier 

Type of trial Patient 

type 

Number of patients 

randomised 

(patients excluded 

after randomisation 

given in brackets) 

Primary outcome Secondary outcomes  

(only significant 

outcomes described) 

Safety profile 

MARS® The RELIEF 

Trial (33) 

Multi-centre 

open 

randomised 

controlled 

trial 

ACLF Total=189 

MARS® =95 

SMT=94 

(-ITT analysis: 5 

exclusions per group 

-PP analysis: 24 

MARS® and 9 SMT 

exclusions) 

28-day ITT survival: MARS®, 61%; SMT, 

59% (n.s.). 

28-day PP survival: MARS®, 60%; SMT, 

59% (n.s.). 

  

At day 4, MARS® 

resulted in a significant 

reduction in serum 

creatinine, bilirubin and 

hepatic encephalopathy 

scores compared to 

SMT. 

Incidence of 

severe adverse 

events was 

similar in MARS® 

and SMT groups 
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MARS® The 

FULMAR 

Trial (34) 

Multi-centre 

open 

randomised 

controlled 

trial 

ALF Total=110 

MARS® =57 

SMT=53 

(-ITT analysis: 4 

exclusions per group 

-PP analysis: 18 

MARS® and 4 SMT 

exclusions) 

6-month ITT survival: MARS®, 85%; 

SMT, 76% (n.s.). 

6-month PP survival: MARS®, 82%; SMT, 

76% (n.s.). 

 Incidence of 

severe adverse 

events was 

similar in MARS® 

and SMT groups 

Prometheus® The HELIOS 

trial (43) 

 

Multi-centre 

open 

randomised 

controlled 

trial 

ACLF Total=145 

Prometheus®=77 

SMT=68 

(-ITT analysis: 0 

exclusions 

-PP analysis: 22 

Prometheus® and 14 

SMT exclusions) 

28-day ITT survival: Prometheus®, 66%; 

SMT, 63% (n.s.). 

28-day PP survival: Prometheus®, 71%; 

SMT, 67% (n.s.). 

90-day ITT survival: Prometheus®, 47%; 

SMT, 38% (n.s.). 

90-day PP survival: Prometheus®, 41%; 

SMT, 39% (n.s.). 

(Figure 2) 

At day 28, 

Prometheus® resulted 

in a significant 

reduction in serum 

bilirubin compared to 

SMT. 

Incidence of 

severe adverse 

events was 

similar in 

Prometheus® 

and SMT groups 
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High-volume 

therapeutic 

plasma 

exchange 

(HVP) 

ClinicalTrials

.gov number 

NCT002247

05 (47) 

Multi-centre 

open 

randomised 

controlled 

trial 

ALF Total=183 

HVP=92 

SMT=91 

(1 SMT excluded 

after randomisation) 

Survival to hospital discharge: HVP, 59%; 

SMT, 48% (P=0.008). 

(Figure 3) 

On day 1 to day 7, HVP 

resulted in significant 

reduction in 

international 

normalised ratio, 

bilirubin, ALT, SOFA-

score and CLIF-score. 

Incidence of 

severe adverse 

events was 

similar in HVP 

and SMT groups 

ELAD™ (55) 

 

Multi-centre 

open 

randomised 

controlled 

trial 

Chronic 

hepatitis 

B or C 

with 

acute 

decomp-

ensation 

Total=60  

ELAD™=40  

SMT=20 

(-ITT analysis: 0 

exclusions 

-PP analysis: 5 

ELAD™ and 1 SMT 

exclusions) 

30-day ITT transplant-free survival: 

ELAD™, 80%; SMT, 50% (P=0.03). 

30-day PP transplant-free survival: 

ELAD™, 86%; SMT, 47% (P=0.004). 

 ELAD™ was 

associated with 

significant 

thrombocytopeni

a, whilst SMT 

was not. 

 1 

 2 
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FIGURE LEGENDS 1 

Figure 1: Survival data from the RELIEF trial.  2 

28-day survival for MARS® (light grey line) compared to standard medical therapy, SMT 3 

(dark grey line) with intention to treat analysis on the left and per protocol analysis on the 4 

right. Number of survivors at each time point is inserted into the graphs. See Table 3 for 5 

study details. (Reproduced with permission from Hepatology by John Wiley and Sons (33)) 6 

 7 

Figure 2: Survival data from the HELIOS trial. 8 

90-day intention to treat survival for Prometheus®, FPSA+SMT, compared to standard 9 

medical therapy, SMT. See Table 3 for study details. (Reproduced with permission from 10 

Gastroenterology by Elsevier (43)) 11 

 12 

Figure 3: Survival data from the high-volume plasma exchange trial. 13 

90-day intention to treat survival for high-volume plasma exchange, HVP, compared to 14 

standard medical therapy, SMT. See Table 3 for study details. (Reproduced with permission 15 

from Journal of Hepatology by Elsevier (47)) 16 
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