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ABSTRACT 

Centrifugal tensioned metastable fluid detectors (CTMFDs) promise a compact, 

easy to use, highly sensitive, robust, discriminatory, mobile sensor platform that could 

detect the presence of special nuclear materials in real time. CTMFDs could help in the 

detection of fast neutrons or alpha particles that are telltale signs of nuclear material, 

while remaining blind to gamma radiation that could otherwise interfere with the desired 

measurement. CTMFDs have a simple, easy-to-use equipment string that costs on the 

order of hundreds of dollars compared with traditional detectors with similar capabilities, 

which cost on the order of thousands of dollars.  

This study involved laboratory testing comparing the CTMFD’s capabilities of 

actinide spectroscopy and neutron detection against other detection systems with similar 

capabilities. The CTMFD was found to have a comparable neutron detection efficiency, 

and was found to be much more effective at discriminating between highly diluted 

actinide solutions using alpha particle spectroscopy. Employment of the proper CTMFD 

setup could involve use at military checkpoints, or aiding in determining origins of a 

nuclear weapon in a post-detonation analysis scenario. 



 vi

THIS PAGE INTENTIONALLY LEFT BLANK 

 

 

 

 

 

 



 vii

TABLE OF CONTENTS 

I.  INTRODUCTION..................................................................................................1 
A.  MOTIVATION ..........................................................................................1 
B.  APPROACH ...............................................................................................2 
C.  RESEARCH OBJECTIVES AND GOALS ............................................2 

II.  STATE OF THE ART DETECTOR TECHNOLOGY .....................................5 
A.  THEORY ....................................................................................................5 

1.  Alpha Radiation .............................................................................5 
2.  Beta Radiation ................................................................................6 
3.  Gamma Radiation ..........................................................................7 
4.  Neutron Radiation .........................................................................7 

B.  CURRENT STATE OF THE ART DETECTORS.................................8 
1.  Scintillation Detectors ....................................................................8 
2.  Boron Trifluoride Neutron Detector ..........................................45 

III.  CENTRIFUGAL TENSIONED METASTABLE FLUID DETECTOR ........53 
A.  THEORY ..................................................................................................53 

1.  Working Scientific Principles .....................................................54 
B.  EXPERIMENTATION AND RESULTS ..............................................58 

1.  Detection of Fast Neutrons ..........................................................58 
2.  Alpha Particle Spectroscopy of Actinides ..................................61 
3.  Conclusions ...................................................................................68 

IV.  CONCLUSIONS ..................................................................................................71 
A.  SUMMARY OF SCIENTIFIC FINDINGS ...........................................71 
B.  RECOMMENDATIONS FOR CTMFD USE .......................................73 
C.  RECOMMENDATIONS FOR FUTURE RESEARCH .......................74 

APPENDIX.  ADDITIONAL DATA .............................................................................77 

LIST OF REFERENCES ................................................................................................79 

INITIAL DISTRIBUTION LIST ...................................................................................81 

 

  



 viii

THIS PAGE INTENTIONALLY LEFT BLANK 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 ix

LIST OF FIGURES 

Figure 1.  The Beckman LS 6500 Scintillation System used at Sagamore 
Adams Laboratories in Lafayette, Indiana. ..................................................9 

Figure 2.  Printout from Beckman LS 6500 Scintillation System containing 
data used in Tables 4 and 5. .......................................................................23 

Figure 3.  Graph of single spectrum of pulse-shape discrimination for NE-213 
liquid scintillator as measured by Lee and Lee. Adapted from [10]. .........34 

Figure 4.  Visual layout of equipment string used for NE-213 liquid scintillator 
during the conduct of this research. ...........................................................34 

Figure 5.  UCS30 software output of number of counts vs. channel number for 
a Co-60 source (y-axis is logarithmic scale). .............................................36 

Figure 6.  UCS30 software output of number of counts vs. channel number for 
a Co-60 source (y-axis is linear scale). ......................................................36 

Figure 7.  Plot of the relationship between electron recoil energy and proton 
recoil energy for a NE-213 liquid scintillator as compared by Lee 
and Lee. Adapted from [10]. ......................................................................37 

Figure 8.  Photo of experimental setup of NE-213 liquid scintillator using a Cf-
252 neutron source from a distance of 50 cm. ...........................................40 

Figure 9.  Expected pulse shape discrimination for a BF3 detector interacting 
with a neutron source. Adapted from [13]. ................................................45 

Figure 10.  Photo of polyethylene sphere and aluminum tube filled with BF3 
which were used in this study to acquire experimental data. .....................46 

Figure 11.  Visual layout of equipment string used for BF3 detector during the 
conduct of this research. ............................................................................47 

Figure 12.  Expected pulse height spectra from BF3 tubes, with noted continuum 
due to wall effect. Adapted from [5]. .........................................................48 

Figure 13.  Pulse height spectra achieved while calibrating BF3 detector using a 
Pu-Be source. .............................................................................................48 

Figure 14.  Visual layout of equipment string used for CTMFD during the 
conduct of this research. ............................................................................53 

Figure 15.  Photograph of CTMFD and associated equipment used during the 
conduct of this research. ............................................................................54 

Figure 16.  Schematic representation of CTMFD detector bulb and working 
principles. Adapted from [3]. .....................................................................56 



 x

Figure 17.  Plot of normalized average wait time vs. negative pressure for Pu-
238 and Pu-239 solutions which proves the alpha spectroscopy 
capabilities of the CTMFD. .......................................................................65 

Figure 18.  Plot of normalized average wait time vs. negative pressure for Pu-
238, Pu-239, and UN solutions which proves the alpha spectroscopy 
capabilities of the CTMFD. .......................................................................68 

Figure 19.  Plot of neutron detection efficiency of selected detector types using 
Cf-252 source at various distances. ...........................................................72 

Figure 20.  Plot of neutron detection efficiency of selected detector types using 
Pu-Be source at various distances. .............................................................73 

 

 

  



 xi

LIST OF TABLES 

Table 1.  Masses and measured activity data of Pu-238, Pu-239, background 
acetone, and background water samples placed in Beckman LS 6500 
Scintillation System for 60-minute individual measurements. ..................12 

Table 2.  Calculations for volume of Pu-238 and Pu-239 stock solutions to be 
added to new, diluted solutions to be analyzed by Beckman LS 6500 
Scintillation System. ..................................................................................14 

Table 3.  Masses and activity calculations for new, diluted Pu solutions to be 
used in both CTMFD and Beckman LS 6500 Scintillation System. .........18 

Table 4.  Masses and measured activity data of diluted Pu-238, diluted Pu-
239, and background acetone samples placed in Beckman LS 6500 
Scintillation System for 60-minute individual measurements. ..................20 

Table 5.  Error calculations of diluted Pu-238, diluted Pu-239, and background 
acetone samples placed in Beckman LS 6500 Scintillation System 
for 60-minute individual measurements. ...................................................22 

Table 6.  Masses of bottle, cap, 50 mL of acetone, and UN nugget used to 
create UN stock solution for Beckman LS 6500 Scintillation  System 
analysis. ......................................................................................................24 

Table 7.  Masses and measured activity data of Uranyl Nitrate and background 
acetone samples placed in Beckman LS 6500 Scintillation System 
for 60-minute individual measurements. ...................................................25 

Table 8.  Calculations for volume of UN stock solution to be added to new, 
diluted solution to be analyzed by Beckman LS 6500 Scintillation 
System. .......................................................................................................27 

Table 9.  Masses and activity calculations for new, diluted UN solution to be 
used in both CTMFD and Beckman LS 6500 Scintillation System. .........30 

Table 10.  Masses and measured activity data of diluted UN and background 
acetone samples placed in Beckman LS 6500 Scintillation System 
for 60-minute individual measurements. ...................................................30 

Table 11.  Error calculations of diluted UN and background acetone samples 
placed in Beckman LS 6500 Scintillation System for 60-minute 
individual measurements. ..........................................................................32 

Table 12.  Equipment listing for experiments carried out  with NE-213 liquid 
scintillator. .................................................................................................35 

Table 13.  Channel number/energy calibration for NE-213  using cobalt-60 
source. ........................................................................................................38 



 xii

Table 14.  Channel number/energy calibration for NE-213  using cesium-137 
source. ........................................................................................................38 

Table 15.  Calibration of NE-213 detector to 99.0% and 99.9% rejection of 
gamma rays using Co-60 over a range of T values. ...................................39 

Table 16.  Experimental data and intrinsic neutron detection efficiency results 
for NE-213 liquid scintillator using Cf-252 and Pu-Be sources. ...............43 

Table 17.  Equipment listing for experiments carried out with BF3 detector. ............47 

Table 18.  Experimental data and intrinsic neutron detection efficiency results 
for BF3 detector using Cf-252 and Pu-Be sources. ....................................50 

Table 19.  Experimental data and intrinsic neutron detection efficiency results 
for CTMFD using Cf-252 and Pu-Be sources. ..........................................60 

Table 20.  Experimental data of average detection wait time at various negative 
pressures using CTMFD and original Pu-238 and Pu-239 solutions. ........62 

Table 21.  Experimental data of average detection wait time at various negative 
pressures using CTMFD and new Pu-238, original diluted Pu-239 
solutions, with improved temperature settings. .........................................63 

Table 22.  Normalized values of average detection wait time at various negative 
pressures using CTMFD and new Pu-238, original diluted Pu-239 
solutions, with improved temperature settings. .........................................64 

Table 23.  Experimental data of average detection wait time at various negative 
pressures using CTMFD and new UN solution. ........................................66 

Table 24.  Normalized values of average detection wait time at various negative 
pressures using CTMFD and new UN solution. ........................................67 

Table 25.  Mass values measured while adding 0.750 mL Pu-238 stock solution 
to CTMFD solution in order to adjust expected wait time from ~40 
seconds to ~10 seconds. .............................................................................77 

Table 26.  Mass values measured while adding 0.5 mL UN stock solution to 
CTMFD solution in order to adjust expected wait time from ~60 
seconds to ~10 seconds. .............................................................................77 

 

 

 

 

 

 

 

 



 xiii

LIST OF ACRONYMS AND ABBREVIATIONS 

Bq becquerel  

BF3 boron trifluoride 

Co cobalt 

cpm counts per minute 

cps counts per second 

Cs cesium 

CTMFD  centrifugal tensioned metastable fluid detector 

DOD Department of Defense 

DTRA Defense Threat Reduction Agency 

KAERI Korea Atomic Energy Research Institute 

LS liquid scintillation 

NPS  Naval Postgraduate School 

PMT photomultiplier tube 

PSD pulse shape discrimination 

Pu plutonium 

SF spontaneous fission 

SNM special nuclear material 

STP standard temperature and pressure 

U uranium 

UN uranyl nitrate 

  



 xiv

THIS PAGE INTENTIONALLY LEFT BLANK 

  



xv

ACKNOWLEDGMENTS 

I would first like to thank Dr. Craig Smith, whose passion for nuclear engineering 

and keen ability to push his students has had a profound impact on me and my time here 

at the Naval Postgraduate School. I will forever be grateful for the time he took to 

develop my education and my thesis, and I aspire to be more like him in all that I do.  

Dr. Tony Pollman, a fellow Marine who also shared many of my passions and 

research interests, stimulated my excitement in this project and has continued to be a 

great friend and mentor. If it were not for his mentorship and guidance, this project would 

never have gotten off the ground.  

The Nuclear Science and Engineering Research Center at West Point, and 

specifically Major Andrew Decker and Lieutenant Colonel Robert Prins, was supportive 

of my efforts every step of the way. Their willingness to provide assistance financially as 

well as academically to a member of a different service branch, 3,000 miles away, taught 

me more than any academic instruction could have. I am forever indebted to their 

graciousness. 

Dr. Brian Archambault of Sagamore Adams Laboratories, LLC, was of great 

assistance during the long hours of laboratory research, and was always quick to respond 

to my seemingly never-ending emails and questions. Dr. Rusi Taleyarkhan of Purdue 

University was also extremely hospitable on all of my trips to visit with him, and he 

provided overarching leadership that helped me to see this project through to the end.  

The professors, staff, and students at NPS served as an inspiration to me, and 

taught and motivated me in ways that no other graduate institution could have. I 

would especially like to thank Professors Richard Harkins and Dr. Pete Crooker, who 

put up with me and my questions and kept me on the right track over the last two years. 

Last, but certainly not least, my family has provided tremendous support to me 

and my academic and work-related achievements as far back as I can remember. I have 

been blessed with amazing parents and grandparents, and I am truly fortunate to have 

them as my cheerleaders in every endeavor. My sister, Francesca, however, is a punk. 



 xvi

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 1

I. INTRODUCTION 

A. MOTIVATION 

After the development of nuclear weapons helped the United States and its allies 

to win World War II in 1945, it soon became clear that these weapons had the potential to 

play a pivotal role in future global conflict. Although massive destruction on a global 

scale during the Cold War was successfully avoided, the threat of a weapon of mass 

destruction to be used by a state or non-state actor continues to present a significant threat 

to the security and interests of the United States. According to a report by the Stockholm 

International Peace Research Institute, as June of 2014 there are nine countries known or 

believed to possess nuclear weapons [1]. Although a threat from Russia or China should 

not be discounted, the greater threat may well be from the likes of North Korea, Iran, or 

an independent terrorist organization that is able to purchase a nuclear weapon on the 

black market and smuggle it into the United States. The prevention or mitigation of such 

an attack is an important objective of the Defense Threat Reduction Agency of the DOD, 

which is entrusted to “Prevent, deter, detect, locate, characterize, track, defeat, and 

mitigate existing or future CBRNE threats or devices” [2]. 

Although the state of the art in detection of special nuclear material (SNM) 

involves detectors of various types and capabilities, a relatively new approach involves 

the use of the centrifugal tensioned metastable fluid detector (CTMFD). CTMFDs 

promise a compact, easy to use, highly sensitive, robust, discriminatory sensor platform 

that could detect the presence of special nuclear materials in real time [3]. Unlike other 

detectors, CTMFDs are mobile, cheap to construct (under $1000), and are blind to the 

gamma radiation that plagues other detectors and prevents them from discriminating 

between kitty litter and a nuclear weapon. While there has been much research done on 

the likes of more common technology such as liquid scintillators, there has been very 

little research done on CTMFDs, especially with relevance to the mission of U.S. national 

defense. If proven to be effective, CTMFDs could provide DTRA with a cheaper, mobile 

platform that will allow it to conduct its mission of protecting the United States from the 

threat of a nuclear weapon. 
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B. APPROACH 

In order to fully grasp the capabilities as well as the advantages and disadvantages 

of the centrifugal tensioned metastable fluid detector, it is crucial to get hands-on time 

with the detector itself in a laboratory setting that allows analysis with relevant isotopes. 

It is also important to compare the capabilities of other current state of the art detectors in 

the same laboratory environment and with the same isotopes, to determine if the CTMFD 

does indeed provide a distinct advantage. Through funding from the Defense Threat 

Reduction Agency and in partnership with Sagamore Adams Laboratories, LLC 

(affiliated with Purdue University), laboratory time as well as oversight with relevant 

isotopes was provided that allowed for such an analysis. 

Since the CTMFD promises to provide the capabilities of detection of fast 

neutrons from an external source, as well as actinide spectroscopy of a source inside the 

detector, it was important to set up a lab environment that allowed for analysis of both of 

these capabilities. First, a neutron source was analyzed from various distances with both 

the CTMFD as well as two other detector types, which were compared for efficiency. 

Second, multiple actinide solutions with similar concentrations were created, and then 

analyzed through both the CTMFD as well as another detector to determine efficiency. In 

addition to efficiency, other factors were analyzed during the experiments to evaluate 

ease of use, detector cost, and feasibility in the use of conducting DTRA’s mission.  

C. RESEARCH OBJECTIVES AND GOALS 

The precise goal of this study is to evaluate the effectiveness of the centrifugal 

tensioned metastable fluid detector and analyze its potential for use in a military 

environment. In order to be successful in that endeavor, this study aimed to answer the 

following specific research questions: 

 What types of detectors are currently used for detection/identification of a 
radioactive source, and what are their strengths and weaknesses? 

This question was answered through research of current state of the art detectors 

and, more importantly, through hands-on experimentation and data analysis with these 

detectors in the same laboratory environment used to analyze the CTMFD. The detectors 
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were selected to provide a similar capability to the CTMFD in that they must be able to 

either detect fast neutrons (or alpha particles) or determine which actinide source is 

present (if any). This portion of the study also involved a detailed analysis of the theory 

behind radiation detection, to include detection of fast neutrons, gamma rays, and alpha 

and beta particles. 

 What are the theoretical underpinnings of the CTMFD? 

Before any experimentation took place at Sagamore Adams Laboratories, it was 

important to analyze the working scientific principles of the CTMFD, and to understand 

the potential benefits that these principles could provide. This involved both a review of 

current literature on the topic as well as an in-depth dialogue with researchers and 

scientists who are responsible for the creation and development of this technology.  

 How do experimental results of fast neutron detection and actinide 
spectroscopy compare to applicable theory for the CTMFD? 

This involved conducting specific laboratory experimentation to analyze both the 

neutron detection and actinide spectroscopy capabilities of the CTMFD with various 

isotopes. 

 Does the CTMFD provide a distinct advantage over current state of the art 
detectors and if so, what techniques, tactics, or procedures are required to 
properly and effectively employ the detector for any related SNM source 
that could be of interest to DTRA? 

Once the experimental data was taken to analyze both the capabilities of current 

state of the art detectors as well as the CTMFD, the overall goal was to compare the 

efficiencies of the selected systems and analyze their effectiveness, cost, and overall 

capability to assist DTRA in conducting its mission of securing the United States against 

a nuclear threat. Further, this study outlined specific methodologies to employ the 

CTMFD based on its experimental successes (or failures) in both fast neutron detection 

and alpha particle spectroscopy.  

This study will be broken down into three chapters following this introduction. 

Chapter II presents a background on various types of ionizing radiation, and introduces 

three other detector types that have similar capabilities to that of the CTMFD. This 

includes experimental data from tests done with the Beckman LS 6500 Scintillation 
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System (for alpha spectroscopy comparison), as well as the NE-213 liquid scintillator and 

boron trifluoride detector (for neutron detection efficiency comparison). Chapter III 

provides an outline of the CTMFD theory and capabilities, as well as the experimentation 

results of its neutron detection efficiency and alpha spectroscopy capabilities. Chapter IV 

presents the conclusions of this study, to include a summary of scientific findings as well 

as recommendations for CTMFD employment and future research.  
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II. STATE OF THE ART DETECTOR TECHNOLOGY 

A. THEORY 

Within the nucleus of an atom of a given element, only certain combinations of 

protons and neutrons will allow the atom itself to be stable. Although there may be 

several isotopes of an element that involve different numbers of neutrons, having too 

many or too few neutrons in relation to the number of protons within the atom results in 

an unstable nucleus, which then undergoes radioactive decay [4]. Although there are 

many different types of radiation, the ones that are applicable to this thesis include alpha, 

beta, gamma, and neutron radiation. All of these types of radiation differ not only in their 

rudimentary makeup, but also in energy, mass, and their ability to penetrate different 

thicknesses of material. Neutron radiation will get a special emphasis considering that it 

generally originates in nuclear processes that may signal the presence of nuclear materials 

either separately or as part of a nuclear weapon. However, the other three types are also 

relevant in that they can also sometimes signal nuclear processes, and further aid in 

forensically determining the true makeup of a particular material.  

1. Alpha Radiation 

Alpha radiation occurs when an atom from a radioisotope source such as 238U or 
239Pu decays and emits the equivalent of a helium-4 nucleus, reducing the radioisotope 

atom’s mass number by four and the atomic number by 2. A common example of this is 

238 234 4
92 90 2U Th He  . 

More generally, the spontaneous emission of an alpha particle from a nucleus can be 

written as  

4 4
2 2

A A
Z ZX Y 

  . 

Compared to other particles emitted from a radioactive process, alpha particles have a 

higher mass and electric charge, but a slower speed, and therefore a lower penetration 

depth [5]. Alpha particles generally do not travel more than a few centimeters in air, 
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cannot deeply penetrate human skin, and can be effectively shielded by thin materials 

such as a sheet of paper. Alpha decay typically occurs in nuclei with a mass greater than 

that of a nickel atom, and can deposit a large amount of energy into a shallow surface due 

to its relatively large mass and electric charge.  

2. Beta Radiation 

Beta decay involves the emission of a much lighter particle from an atom, namely 

a single electron or positron, as opposed to a helium nucleus that is emitted during alpha 

decay. Schematically, the β- decay process is written as 

1
A A
Z ZX Y  

  , 

where X is the beginning nuclear specimen and Y is the recoil nucleus. The recoil 

nucleus shows a relatively small amount of recoil energy in this decay process, but 

generally not enough to be detected by conventional means. The beta particle, therefore, 

is the most significant reaction product from the beta decay process.  

The β- decay process generally occurs when the ratio between neutrons and 

protons in an atom is too high (neutron-rich), and the atom changes a neutron into a 

proton while emitting an electron, which results in nuclear transmutation and the 

formation of a new element. A common example of the β- decay process occurs in 

strontium-90 as follows: 

90 90
38 39Sr Y    . 

The similar process of positron decay (β+ decay) occurs in proton-rich nuclei with a 

positron (β+) particle being emitted instead of an electron (the β- particle). Due to its 

relatively low mass, the beta particle can travel up to a few feet in air at STP [6]. Beta 

particles, as with other forms of ionizing radiation, can also cause damage to certain 

living cells by breaking chemical bonds and turning certain atoms into ions. Beta 

radiation can be stopped by relatively thin, solid materials such as aluminum foil.  Beta 

radiation is most commonly used in some cancer treatments, in chemical and biological 

tracing, and can be used in the manufacturing industry to determine the thicknesses of 

various materials [5]. 
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3. Gamma Radiation 

Gamma radiation typically occurs after an atom has undergone alpha or beta 

decay, and the daughter nucleus has reached an unstable energy level. In order to release 

some of this energy and become stable, the nucleus will emit pure energy in the form  

of a photon, called a gamma photon. Gamma photons are different than alpha and beta 

particles in that they have no charge or mass but instead consist of pure energy.  

Since these photons travel at the speed of light and have no electric charge, they can 

travel quite far through air before losing energy, and can only be stopped by very dense 

materials such as lead [6]. Gamma photons are often emitted from nuclear processes, but 

there is a significant amount of background gamma radiation from naturally occurring 

radioisotopes and interactions of cosmic rays with the atmosphere. Gamma rays are also 

emitted from everyday household items such as kitty litter and bananas, which both 

contain amounts of radioactive potassium. Gamma detectors can therefore sometimes 

mistake a shipment of household goods for enriched uranium, which therefore indicates 

that alternate methods of detection, such as fast neutron detection, are in some cases more 

effective at identifying potential special nuclear material [5].  

4. Neutron Radiation 

In processes such as radioactive decay and nuclear fission and fusion, free 

neutrons may be released that then interact with other atoms to create new isotopes and 

trigger further nuclear interactions. The process can begin when an atom spontaneously 

fissions or is struck by a high energy gamma photon, an alpha particle, or another 

neutron, and when the ejected neutrons strike another atom, they can trigger additional 

nuclear reactions that result in the emission of gammas or further neutron radiation. Once 

a neutron is ejected from the nucleus, it can be categorized as a fast neutron or a slow 

(thermal) neutron depending on its energy. In order for the process to be efficient enough 

to sustain the fission process for a thermal nuclear reactor, fast neutrons need to be 

slowed down through a medium such as water or graphite so that they have a higher 

chance of being absorbed or otherwise interacting with another nucleus. In nuclear 

weapons applications where higher, immediate energy output is required, no moderator is 
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used to slow down the neutrons during the fission process. Fast neutrons can be emitted 

from radioactive waste, as well as from materials containing U-238 or Pu-240. Although 

U-235 and Pu-239 are the isotopes largely associated with nuclear weapons material, the 

higher spontaneous fission rates of U-238 and Pu-240, which are also present in nuclear 

weapons material, are what make these materials detectable using passive detection 

methods [7]. While fast neutrons can also be found in synthetic spontaneous fission 

sources such as Cf-252, the fact that fast neutrons largely are produced only by 

radioactive sources makes them good candidates for detection of special nuclear material 

and more specifically, nuclear weapons [4], [5].  

B. CURRENT STATE OF THE ART DETECTORS 

In order to provide comparison with the capabilities of the centrifugal tensioned 

metastable fluid detector, three current state of the art detectors with similar capabilities 

were chosen to conduct experimentation with. The Beckman LS 6500 Scintillation 

System can be used to measure activity and discriminate between radioactive sources, 

and therefore provides an applicable comparison to the alpha particle spectroscopy 

capabilities of the CTMFD. Two separate state of the art detectors were chosen to 

experiment with and provide comparison to the neutron detection capabilities of the 

CTMFD: the NE-213 liquid scintillator and the boron trifluoride (BF3) detector. 

1. Scintillation Detectors 

One of the methods of effective detection and spectroscopy of ionizing radiation 

is the scintillation process. The working principle behind the scintillation method is to 

convert the energy and associated ionization from radioactive decay into pulses of light. 

These pulses of light are then detected by a photodiode or a photomultiplier tube and 

converted into electrical pulses which allow a computer to count the number of pulses in 

a specified amount of time. Based on the number of counts that are detected, the 

radioactivity of the source can be calculated and compared to background levels [5], [8].  
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a. Beckman LS 6500 Scintillation System 

The Beckman LS 6500 Scintillation System is a widely used and highly versatile 

detector that has been in service since the 1990s to measure the decay processes of 

various materials. Although it is large in size and requires a laboratory environment for 

its use, it can be programmed to automatically measure and print the results of over 640 

samples with minimal user input [8].  

In order to use the Beckman LS 6500 Scintillation System, a radioactive sample is 

measured out and mixed into a vial along with a “fluor,” which is a solution that helps to 

create light based on the radioactive decay process. The fluor that was used during the 

research for this project was Ultima Gold, a product by PerkinElmer, Inc. Once the 

radioactive sample and the fluor are measured and poured into a vial, they are then placed 

into the Beckman Scintillation System as can be seen in Figure 1.  

 

Figure 1.  The Beckman LS 6500 Scintillation System used at Sagamore 
Adams Laboratories in Lafayette, Indiana. 
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The decay of the radioactive sample inside of the vial leads to the emission of 

ionizing radiation inside the vial, which, through the fluor, produces a number of photons 

that is related to the energy of the ionizing radiation itself. The ionization process 

produces photons that, over a nanosecond time scale, are emitted isotropically [8]. Once 

the photons are emitted from the vial, they are collected by specialized optics inside of 

the LS system, and directed into one of two photomultiplier tubes (PMTs). The PMTs are 

then activated by a photon burst, and convert the photons into electrical signals while 

simultaneously registering an individual nuclear decay event. Since it is likely that the 

PMTs are being hit by more than one photon simultaneously, the total number of photons 

produced can be found based on the proportional voltage pulse produced by the PMT. 

According to the operating manual, “The pulses from the PMTs are analyzed, converted 

to digital form, and stored in the appropriate channel of a multichannel analyzer, 

corresponding to the particle energy” [8]. It should be noted that the Beckman LS 6500 

Scintillation System can discriminate between 32,768 energy levels based on its 32,768 

channel multichannel analyzer. Based on the counting time of the sample, the rate (counts 

per minute, or cpm) of radioactive decay as well as the energy of the particles in the 

sample can be determined using the data from the multichannel analyzer. Specifically, the 

cpm count rate is calculated by dividing the total number of pulses in the multichannel 

analyzer by the total number of minutes that the LS system was counting that exact 

sample.  

(1) Plutonium Experimentation and Analysis 

Although the Beckman LS 6500 Scintillation system is quite accurate at 

discriminating between thousands of potential energy levels, in many cases it lacks a low 

enough detection threshold to detect radioactivity in diluted samples. To test the lower 

threshold of the Beckman LS 6500 Scintillation System, radioactive solutions of various 

dilutions were placed in the Beckman LS System for 60 minutes. They were then counted 

along with samples that contained no radioactivity whatsoever, for comparison. It should 

be noted that the radioactive solutions used by Sagamore Adams Laboratories, LLC, 

throughout the conduct of this research involved a “stock” solution of Pu-238 dissolved 

in acetone and a “stock” solution of Pu-239 dissolved in water. 
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In order to carry out this task, the mass of a bottle and a cap were measured 

individually and then filled with 15 mL of Ultima Gold fluor. Then, 0.5 mL of a Pu-238 

solution (dissolved in acetone) was added to the bottle, which was sealed with the cap 

and its mass was again recorded. This process was then repeated with the same 

ingredients in order to have a second bottle of Pu-238 solution to verify the results of the 

first solution. Next, the process was repeated with a third and fourth bottle, this time 

containing a Pu-239 solution (dissolved in water) instead of the Pu-238 solution. Finally, 

two bottles were filled with 15 ml Ultima Gold and 0.5 mL water, and two more were 

filled with 15 mL Ultima Gold and 0.5 mL acetone, to provide a reference point for 

background measurements of water and acetone. All 8 bottles were then placed in the 

Beckman LS 6500 Scintillation System, and their radioactivity was measured over the 

course of 60 minutes each. The overall masses and individual contents of each bottle can 

be seen in Table 1, along with the cpm radioactivity measurement for each bottle as 

measured by the Beckman LS System. 
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Table 1.   Masses and measured activity data of Pu-238, Pu-239, background acetone, and background water samples 
placed in Beckman LS 6500 Scintillation System for 60-minute individual measurements. 

Sample 
ID  Contents 

Mass of 
Bottle 
(g) 

Mass 
of Cap 
(g) 

Mass of 
Bottle, Cap, 
and 15mL 
Ultima Gold 

(g) 

Mass of Bottle, 
Cap, 15mL Ultima 
Gold, and 0.5 mL 
Water/Acetone/Pu 

(g) 

Mass of 
Solution 

(g) 

Mass of 
Sample 
Added 
(g) 

Measured 
Activity 
(cpm) 

1  Ultima Gold and Acetone  13.0223  1.7310  29.3486  29.7345  14.9812  0.3859  64.72 

3 
Pu‐238, Ultima Gold, 
Acetone  12.9707  1.6994  29.7266  30.1394  15.4693  0.4128  237.17 

4 
Pu‐238, Ultima Gold, 
Acetone  12.9460  1.7525  29.7459  30.1646  15.4661  0.4187  245.48 

5  Pu‐239, Ultima Gold, Water  12.9335  1.7050  29.6817  30.1765  15.5380  0.4948  136.77 

6  Pu‐239, Ultima Gold, Water  13.0033  1.7364  29.7823  30.2840  15.5443  0.5017  137.37 

7  Ultima Gold and Acetone  12.9026  1.7441  29.6810  30.0698  15.4231  0.3888  63.25 

8  Ultima Gold and Water  12.9452  1.7754  29.7468  30.2331  15.5125  0.4863  65.48 

9  Ultima Gold and Water  12.9585  1.7394  29.7252  30.2188  15.5209  0.4936  64.48 
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It should be noted that the sample ID skips the number 2 since there were issues 

with obtaining the mass of the number 2 sample bottle. A new sample bottle was then 

filled with acetone and Ultima Gold, and its mass was measured in a new sample bottle 

which can be seen as sample ID number 7. Further, as can be seen in Table 1, the 

Beckman was able to effectively discriminate between the activity levels of Pu-238 and 

Pu-239 solutions as compared to background levels. It should also be noted that this was 

with over 0.4 g of Pu-238 “stock” solution and nearly 0.5 g of Pu-239 “stock” solution 

placed in their respective bottles and then into the Beckman system. 

The next task was to determine if the Beckman was able to discriminate between 

background levels and the radioactive isotopes when the isotopes were present in much 

more diluted solutions. In order to accomplish this, the “stock” Pu-238 and Pu-239 

solutions were diluted in such a way that would produce an activity level of 0.1 Bq, or 1 

disintegration every ten seconds. Carrying this dilution out, it was expected that an 

efficient detector (such as the CTMFD, which can be shown in chapter III) would register 

detection of a radioactive particle every ten seconds. At a minimum, an efficient detector 

should be able to discriminate between this new diluted solution and a control group 

solution of solely acetone or water. In order for a solution with an activity of 0.1 Bq to be 

created, the target specific activity of the new, diluted solutions needed to be calculated, 

which can be seen in Table 2.  
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Table 2.   Calculations for volume of Pu-238 and Pu-239 stock solutions to be added to new, diluted solutions to be 
analyzed by Beckman LS 6500 Scintillation System. 

Sample 
ID 

Specific 
Activity 

(cpm/gram) 

Average 
Specific 
Activity 

(cpm/gram) 

Background 
Subtracted 
Specific 
Activity 

(cpm/gram) 

Background 
Subtracted 
Specific 
Activity 

(Bq/gram) 

Target 
Specific 
Activity 

(Bq/gram) 

Volume 
of 

Solution 
(mL) 

Mass of 
Solution 

(g) 

Target 
Activity 
Added 
(Bq) 

Target 
Mass 
Added 
(g) 

Target 
Volume 
Added 
(mL) 

1  167.712  165.20                         

3  574.540 

580.42  415.22  6.92  0.0316  50.0000  39.5500  1.2498  0.1933  0.2444 4  586.291 

5  276.415 

275.11  142.47  2.37  0.0316  50.0000  39.5500  1.2498  0.5263  0.5263 6  273.809 

7  162.680  165.20                         

8  134.649 

132.64 

                       

9  130.632                         
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The specific activity was calculated by taking the measured activity (cpm) and 

dividing it by the mass of the sample added (g). The average specific activity was then 

calculated by adding the specific activities of the two samples of each solution and 

dividing them by two to find the average. Next, the background specific activity was 

calculated by subtracting the acetone background specific activity from Pu-238, and the 

water background specific activity from Pu-239, since the stock solutions of Pu-238 and 

Pu-239 were dissolved in acetone and water, respectively. Next, the background specific 

activity was converted from cpm/gram to Bq/gram by dividing by 60, since 1Bq=1 

disintegration per second or 60 disintegrations per minute.  

In order to create the second solution with a target activity of about 0.1 Bq, the 

target specific activity first needed to be calculated. Since the density of the new 

solutions of Pu-238 and Pu-239 can be approximated by the density of acetone (since 

they are made up of only small amounts of the radioactive samples), and the sensitive 

bulb volume of the CTMFD is 4cc (to be detailed further in chapter III), the mass of the 

solution that could be kept in the sensitive portion of the CTMFD is calculated as 

follows: 

0.791 *4 3.164   
g

cc g of solution
cc

 . 

Since the target activity of the solution to be created is 0.1 Bq, or 1 disintegration every 

10 seconds, then the target specific activity of the solution that could fit in the bulb is  

0.1 
0.0316 

3.164 

Bq Bq

g g
 . 

The total volume of the new solution will be approximately 50 mL, which should allow 

enough to be used in both the Beckman LS System as well as for later use with the 

CTMFD to see if either can determine the difference between this new, diluted solution 

and background levels. Since the volume of the new, diluted solution will be 50 mL and 

the density is approximated to that of acetone, then the target mass of the new solution 

can be calculated as 
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0.791 *50 39.55   
g

cc g of solution
cc

 . 

The target activity for these solutions should then be  

0.0316 *39.55 1.2498 
Bq

g Bq
g

 . 

To calculate the stock masses of both Pu-238 and Pu-239 to be added to the new 

solutions, the target activity calculated was divided by the background subtracted specific 

activity of both Pu-238 and Pu-239. The target masses of both solutions are: 

Mass of Pu-238 solution:               
1 .2498 

0.1806 
6.92 

Bq
g

Bq
g

 , 

and 

Mass of Pu-239 solution:               
1 .2498 

0.5273 
2.37 

Bq
g

Bq
g

 . 

Finally, since the density of the stock solution of Pu-238 can be approximated as acetone 

and Pu-239 can be approximated as water (as both solutions consist of mostly the acetone 

or water), the volume of each stock solution to be added to the new, diluted solutions can 

be calculated as: 

Volume of Pu-238 solution:               
0.1806 

0.228 228 
0.791 

g
mL L

g
cc

  , 

and 

Volume of Pu-239 solution:               
0.5273 

0.527 527 
1.00 

g
mL L

g
cc

  . 

From this information, the new, diluted solutions of both Pu-238 and Pu-239 were 

created, as can be seen in Table 3. Also note that 250 µL of Pu-238 was added instead of 
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228 µL, and 550 µL of Pu-239 was added instead of 527 µL, since the pipet used only 

allowed increments of 50 µL.  
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Table 3.   Masses and activity calculations for new, diluted Pu solutions to be used in both CTMFD and Beckman LS 
6500 Scintillation System. 

Actinide 
Mass of 
Nalgene 

(g) 

Mass of 
Cap (g) 

Mass of 
Nalgene, 
Cap, 50 mL 
Acetone 

(g) 

Mass of 
Nalgene, 
Cap, 50 mL 
Acetone, 
Pu (g) 

Mass of 
Pu Stock 
Solution 
Added (g) 

Total 
Activity of 
Diluted 
Solution 
(Bq) 

Mass of 
Solution 

(g) 

Specific 
Activity of 
Diluted 
Solution 
(Bq/g) 

Total 
Activity in 
Sensitive 
Volume 
(Bq) 

Pu‐238  14.4605  2.6030  56.6231  56.8116  0.1885  1.3044  39.7481  0.0328  0.1038 

Pu‐239  14.4811  2.5237  56.5720  57.1091  0.5371  1.2754  40.1043  0.0318  0.1006 
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As can be seen in Table 3, the total masses of the stock Pu solutions as well as the 

total activity of the diluted solutions are extremely close to the required values in Table 2. 

In the far right column of the Table 3, the expected time for emission/detection of a 

single radioactive particle is approximately 10 seconds (0.1 Bq). Now that the new, 

diluted solution had been created, it was necessary to put some of it into the Beckman LS 

System to determine if it could discriminate between this new, diluted solution and 

background levels of acetone. This was done by initially measuring the mass of an empty 

bottle and cap, and then adding 15 mL Ultima Gold and 1 mL of Pu-238, Pu-239, or 

acetone. Two bottles were created of each, for a total of 6 bottles, to ensure that each 

sample had a consistent reading. The data for the new solutions placed in the Beckman 

system can be seen in Table 4. 
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Table 4.   Masses and measured activity data of diluted Pu-238, diluted Pu-239, and background acetone samples placed 
in Beckman LS 6500 Scintillation System for 60-minute individual measurements. 

Sample 
ID  Contents  Mass of 

Bottle (g) 
Mass of 
Cap (g) 

Mass of 
Bottle, Cap, 
and 15mL 
Ultima Gold 

(g) 

Mass of Bottle, 
Cap, 15mL 
Ultima Gold, 
and 1 mL 

Acetone or Pu 
(g) 

Mass of 
Solution 

(g) 

Mass of 
Sample 
Added 
(g) 

Measured 
Activity 
(cpm) 

1 σ 
Error 
(cpm) 

1 
Acetone and Ultima 
Gold  12.9365  1.7386  29.6842  30.4575  15.7824  0.7733  62.80  2.05 

2 
Acetone and Ultima 
Gold  12.9327  1.7149  29.6649  30.4378  15.7902  0.7729  64.03  2.07 

3 
Diluted Pu‐238, Ultima 
Gold  12.9454  1.7629  29.7239  30.5014  15.7931  0.7775  62.70  2.04 

4 
Diluted Pu‐238, Ultima 
Gold  12.9366  1.7564  29.7070  30.4857  15.7927  0.7787  61.47  2.02 

5 
Diluted Pu‐239, Ultima 
Gold  12.9906  1.7147  29.7163  30.4990  15.7937  0.7827  63.28  2.06 

6 
Diluted Pu‐239, Ultima 
Gold  12.9796  1.7224  29.7181  30.4960  15.7940  0.7779  61.97  2.03 
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As can be seen in Table 4, the Beckman LS 6500 Scintillation System was unable 

to discriminate between solutions containing diluted Pu-238, diluted Pu-239, and acetone 

alone.  In Table 5, the error calculations show that even with reasonable error factored 

into the Beckman LS measurements, it still cannot discriminate between the various 

radioactive solutions and background levels.  

The percent error calculations are determined by the Beckman machine (using 

standard Poisson counting statistics and accounting for any electrical noise) and are 

shown on the printout that is collected from the printer (see Figure 2). The 1σ error in 

cpm was then calculated by multiplying the percent error by the measured activity in the 

same row of Table 4. The specific activity in cpm/gram was calculated by dividing the 

measured activity by the mass of the sample added (both from Table 4). The 1σ error in 

cpm/gram was calculated by dividing the 1σ error in cpm by the mass of the sample 

added in grams. The next column shows the average specific activity of the two samples 

of each solution, which is used to minimize the discrepancies in any one bottle of 

solution. The average for the 1σ error is calculated differently than a traditional average, 

and is calculated using the formula 

 2 21 2

2

value value


 
  

instead of 
 

 1 2

2

value value



 , 

 

as discussed in the Knoll reference [5]. The background subtracted specific activity is 

calculated by taking the average specific activity of the solutions for Pu-238 and Pu-239, 

and subtracting the value of the average specific activity for the background solutions of 

acetone. The 1σ error average of the Pu-238 and acetone and Pu-239 and acetone are 

calculated by using the Poisson formula again, 

 2 21 2

2

value value


 
 . 
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Table 5.   Error calculations of diluted Pu-238, diluted Pu-239, and background acetone samples placed in Beckman LS 
6500 Scintillation System for 60-minute individual measurements. 

Sample ID 
Specific 
Activity 

(cpm/gram) 

1 σ Error 
(cpm/gram) 

Average 
Specific 
Activity 

(cpm/gram) 

1 σ Error 
(cpm/gram) 

Background 
Subtracted 
Specific 
Activity 

(cpm/gram) 

1 σ Error 
(cpm/gram) 

Background 
Subtracted 
Specific 
Activity 

(Bq/gram) 

1 σ Error 
(Bq/gram) 

1  81.210  2.647 

82.027  1.882 

           

2  82.844  2.676             

3  80.643  2.629 

79.791  1.848  ‐2.24  2.64  ‐0.04  0.04 4  78.939  2.597 

5  80.848  2.628 

80.256  1.853  ‐1.77  2.64  ‐0.03  0.04 6  79.663  2.613 
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As can be seen in Table 5, the background subtracted specific activity of the 

diluted Pu-238 solution that was placed in the Beckman had a value of -2.24. Given that 

the 1σ error was larger than this value (2.64), this shows that the Beckman LS 6500 

Scintillation System is unable to discriminate between the diluted Pu-238 solution and 

background solutions. Similarly, for the diluted Pu-239 solution, the value of the 

background subtracted specific activity in cpm/gram (-1.77) was less than the 1σ error 

(2.64). This only further demonstrates the fact that the Beckman Scintillation System is 

unable to discriminate between highly diluted radioactive solutions and background 

levels. The last two columns in Table 5 also show that the Beckman is unable to 

discriminate between diluted radioactive solutions and background levels, but use units of 

Bq/gram as opposed to cpm/gram.  

 

Figure 2.  Printout from Beckman LS 6500 Scintillation System containing 
data used in Tables 4 and 5. 
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(2) Uranyl Nitrate Experimentation and Analysis 

Although the previous section demonstrates that the Beckman LS 6500 

Scintillation System is unable to discriminate between diluted plutonium solutions and 

background levels, it is necessary to test and measure diluted solutions of other 

radioactive isotopes as well to ensure that plutonium is not an outlier. This was done in a 

manner similar to that of the Pu-238 and Pu-239 solutions as described previously. 

Unlike the Pu-238 and Pu-239 solutions, however, the Uranyl Nitrate samples come in a 

solid form, and therefore a solution needed to be created with a measured amount of the 

UN crystals and 50 mL of acetone. The mass of a small bottle and cap was measured and 

then filled with 50 mL of acetone, and its mass was measured again. Next, a small UN 

nugget was added and allowed to dissolve. The total mass of the bottle, cap, and new 

solution were then measured again for a final time. The mass of the solution created can 

be seen in Table 6. 

Table 6.   Masses of bottle, cap, 50 mL of acetone, and UN nugget used to 
create UN stock solution for Beckman LS 6500 Scintillation  

System analysis. 

Mass of 
Bottle and 
Cap (g) 

Mass of Bottle, Cap, and 
50mL Acetone (g) 

Mass of Bottle, Cap, 
50mL Acetone, and UN 

(g) 

Mass of UN 
added (g) 

20.4430  58.9854  58.9989  0.0135 

 

Now that a Uranyl Nitrate solution had been created, it was then necessary to 

ensure the Beckman could discriminate between this highly concentrated solution and 

background levels of acetone. In order to do this, 0.5 mL of the concentrated solution of 

Uranyl Nitrate was placed into each of two separate bottles whose mass had already been 

measured. 15 mL of Ultima Gold was also placed into each bottle, which was then moved 

into the Beckman LS Scintillation System for 60-minute readings (along with two bottles 

of only acetone to measure the background). The results of the mass measurements and 

measured activity readings from the Beckman LS Scintillation System can be seen in 

Table 7. 
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Table 7.   Masses and measured activity data of Uranyl Nitrate and background acetone samples placed in Beckman LS 
6500 Scintillation System for 60-minute individual measurements. 

Sample 
ID  Contents  Mass of 

Bottle (g) 
Mass of 
Cap (g) 

Mass of 
Bottle, 
Cap, and 
15mL 
Ultima 
Gold (g) 

Mass of Bottle, 
Cap, 15mL 

Ultima Gold, and 
0.5 mL 

Acetone/UN (g) 

Mass of 
Solution 

(g) 

Mass of 
Sample 
Added (g) 

Measured 
Activity 
(cpm) 

1  Acetone and Ultima Gold  12.9814  1.4271  29.7014  30.0901  15.6816  0.3887  62.68 

2  Acetone and Ultima Gold  12.8372  1.4908  29.5644  29.9598  15.6318  0.3954  61.32 

3 
UN, Ultima Gold, 
Acetone  12.9220  1.7316  29.6616  30.0515  15.3979  0.3899  410.68 

4 
UN, Ultima Gold, 
Acetone  12.9348  1.7678  29.7183  30.1064  15.4038  0.3881  408.30 
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As can be seen in the last column of Table 7, the Beckman Scintillation System 

was able to easily discriminate between the activity of the “stock” Uranyl Nitrate solution 

and the activity of a background acetone solution. Since the Beckman was able to 

discriminate between the activity of Pu-238 and Pu-239 and background acetone, it was 

entirely expected that the same result would occur for this Uranyl Nitrate solution. The 

next step was to dilute the UN solution to an activity that is roughly 2% of that of the 

stock solution, and determine whether or not it could be detected by the Beckman system. 

Table 8 is a continuation of Table 7, but the last six columns provide the means for 

calculating the total volume of stock solution to be added to create the new, diluted 

solution. 
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Table 8.   Calculations for volume of UN stock solution to be added to new, diluted solution to be analyzed by Beckman 
LS 6500 Scintillation System. 

Specific 
Activity 

(cpm/gram) 

Average 
Specific 
Activity 

(cpm/gram) 

Background 
Subtracted 
Specific 
Activity 

(cpm/gram) 

Background 
Subtracted 

Specific Activity 
(Bq/gram) 

Target 
Specific 
Activity 

(Bq/gram) 

Volume 
of 

Solution 
(mL) 

Mass of 
Solution 

(g) 

Target 
Activity 
Added 
(Bq) 

Target 
Mass 

Added (g) 

Target 
Volume 
Added 
(mL) 

161.255 

158.17                         155.083 

1053.296 

1052.67  894.50  14.91  0.0316  50.0000  39.5500  1.2498  0.0838  0.1060 1052.048 
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The first four columns of Table 8 are merely calculations for the background 

subtracted specific activity of the stock UN solution that was analyzed by the Beckman 

system. The manner in which the values for these columns were calculated are exactly 

the same as was done for the stock Pu-238 and Pu-239 solutions that were calculated in 

Table 2. The target specific activity of the new, diluted solution was calculated in the 

same way as was used for the diluted Pu-238 and Pu-239 solutions, where the density of 

acetone is assumed and multiplied by the volume of the solution to be created:  

0.791 *50 39.55   
g

cc g of solution
cc

 . 

Then, this mass calculated above is multiplied by the target specific activity of 0.0316 

Bq/g, which is based on the volume of the bulb of the CTMFD (to be discussed further in 

chapter III). The target activity added is then 

0.0316 *39.55 1.2498 
Bq

g Bq
g

 . 

The target mass added is then found by dividing the target activity added by the 

background subtracted specific activity that was found from the stock solution, and is 

calculated as 

1.2498 
0.0838 

14.91 /

Bq
g

Bq g
 . 

The volume of the stock solution to be added to create this new solution, then, can be 

seen in the far right of Table 8 and is calculated by dividing the mass above by the 

density of acetone: 

0.0838 
0.106 

0.791 /

g
mL

g cc
 . 

In order to create this new solution, the mass of a small bottle and cap was measured, 

filled with 50 mL of acetone, and then its mass was measured again. Next, 0.106 mL of 

the stock UN solution was placed into the bottle and the mass of the bottle and cap was 
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measured again for a third and final time. The measurements for this new bottle of the 

diluted solution can be seen in Table 9. 
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Table 9.   Masses and activity calculations for new, diluted UN solution to be used in both CTMFD and Beckman LS 
6500 Scintillation System. 

Actinide 

Mass of 
Nalgene 
and Cap 

(g) 

Mass of 
Nalgene, Cap, 
50 mL Acetone 

(g) 

Mass of Nalgene, 
Cap, 50mL 

Acetone, 0.106 
mL UN solution 

(g) 

Mass of 
UN Stock 
Solution 
Added 
(g) 

Total 
Activity of 
Diluted 
Solution 
(Bq) 

Mass of 
Solution 

(g) 

Specific 
Activity 

of 
Diluted 
Solution 
(Bq/g) 

UN  20.3539  57.9326  58.0164  0.0838  1.2500  37.6625  0.0332 

 

Table 10.   Masses and measured activity data of diluted UN and background acetone samples placed in Beckman LS 6500 
Scintillation System for 60-minute individual measurements. 

Sample 
ID  Contents 

Mass of 
Bottle 
(g) 

Mass 
of Cap 
(g) 

Mass of 
Bottle, Cap, 
and 15mL 
Ultima Gold 

(g) 

Mass of Bottle, 
Cap, 15mL 
Ultima Gold, 
and 1 mL 

Acetone or UN 
(g) 

Mass of 
Solution 

(g) 

Mass of 
Sample 
Added 
(g) 

Measured 
Activity 
(cpm) 

% 
Error 

1 
Acetone and Ultima 
Gold  12.9365  1.7386  29.6842  30.4575  15.7824  0.7733  62.80  3.26 

2 
Acetone and Ultima 
Gold  12.9327  1.7149  29.6649  30.4378  15.7902  0.7729  64.03  3.23 

3 
Diluted UN, Ultima 
Gold  12.9602  1.7250  29.7112  30.4850  15.7998  0.7738  64.78  3.21 

4 
Diluted UN, Ultima 
Gold  12.9121  1.7801  29.6936  30.4803  15.7881  0.7867  62.08  3.28 
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As can be seen in Table 9, the specific activity of the diluted solution was found 

to be extremely close to the target specific activity of 0.0316 Bq/g. Now, having created 

this new diluted solution, it was time to place 1 mL of the new solution into each of two 

bottles, along with 15 mL of Ultima Gold. Two other bottles were also filled with 15 mL 

of Ultima Gold and acetone, acting as a background reference point. The masses of all 

four bottles and their contents were measured, and then placed into the Beckman LS 6500 

Scintillation System for 60-minute individual measurements to measure the activity of 

each sample. The results of these measurements can be seen in Table 10. 

Clearly, the Beckman LS 6500 Scintillation System was not able to discriminate 

between this new, diluted UN solution and background solutions of acetone alone. Table 

11 shows that even with error calculations (calculated in the same manner as those of Pu-

238 and Pu-239 in Table 5), the Beckman system still cannot discriminate between the 

two solutions. 
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Table 11.   Error calculations of diluted UN and background acetone samples placed in Beckman LS 6500 Scintillation 
System for 60-minute individual measurements. 

Sample 
ID 

1 σ 
Error 
(cpm) 

Specific 
Activity 

(cpm/gram) 

1 σ Error 
(cpm/gram) 

Average 
Specific 
Activity 

(cpm/gram) 

1 σ Error 
(cpm/gram) 

Background 
Subtracted 
Specific 
Activity 

(cpm/gram) 

1 σ Error 
(cpm/gram) 

Background 
Subtracted 
Specific 
Activity 

(Bq/gram) 

1 σ Error 
(Bq/gram) 

1  2.05  81.21  2.65 

82.03  1.88 

           

2  2.07  82.84  2.68             

3  2.08  83.72  2.69 

81.31  1.87  ‐0.71  2.65  ‐0.01  0.04 4  2.04  78.91  2.59 



 33

(3) Conclusions 

Although the Beckman LS 6500 Scintillation System is quite effective at 

discriminating between thousands of potential energy levels, in many cases it lacks a low 

enough detection threshold to detect radioactivity in diluted samples. As can be seen in 

Table 1, the Beckman LS System was clearly able to discriminate between highly 

concentrated samples of Pu-238, Pu-239, and background samples of acetone and water. 

Table 7 also shows that the Beckman LS System could discriminate between the highly 

concentrated solution of UN and a solution of acetone alone. However, once the solutions 

were diluted to levels that were about 1–2% of the concentration of the original solution, 

the Beckman could not discriminate between Pu-238, Pu-239, UN, and/or background 

samples of acetone. This goes to show that while the Beckman is very effective at 

detection and discrimination of stronger samples, it does not have a low enough threshold 

to detect radioactive solutions that are highly diluted. It is also extremely large, immobile, 

and contains highly sensitive equipment worth thousands of dollars. The Beckman LS 

6500 is not likely to be used by DTRA or the military services in an austere environment 

or in any environment outside that of a secure laboratory.  

b. NE-213 Liquid Scintillator 

While often not as efficient as organic scintillator crystals, liquid scintillators are 

generally cheaper and easier to manufacture. Unlike more traditional organic scintillators, 

the NE-213 uses a toxic solvent such as xylene as the scintillation material, which then 

produces amounts of light that are proportional to the energy deposited by neutrons or 

gamma rays [9]. Different particles interacting with the scintillator will produce different 

“pulse shapes” on a plot of light intensity versus time, or a plot of number of counts 

versus pulse shape discrimination (PSD). For instance, a neutron interacting with the 

liquid scintillator will produce a dissimilar light intensity and time dependence than a 

gamma particle interacting with the scintillator. Previous work on NE-213 scintillators 

(Figure 3) shows how the pulse shape is different for neutrons and gamma rays: 
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Figure 3.  Graph of single spectrum of pulse-shape discrimination for NE-
213 liquid scintillator as measured by Lee and Lee. Adapted from [10]. 

The sensitivity of the detector can be adjusted based on the initial readings, and 

gamma rays can be nearly entirely discriminated out, leaving only readings for fast 

neutrons. It should also be noted that Lee and Lee also determined that the Compton edge 

for 60Co is approximately equivalent in light output to 2.7 MeV neutrons. As will be 

discussed in the next section, lowering the discriminator level to the Compton edge of 
60Co will allow for rejection of roughly 99.9% of gamma rays [10]. 

It should also be noted that the goal of this study is to evaluate and compare 

various detectors for their practical use in military and specifically battlefield 

applications. The NE-213 has an extensive and cumbersome equipment setup, and also 

requires an outside radioactive source for calibration. The equipment chain that was used 

for the NE-213 liquid scintillator throughout the course of this research can be seen in 

Figure 4 and Table 12. 

 

Figure 4.  Visual layout of equipment string used for NE-213 liquid 
scintillator during the conduct of this research. 
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Table 12.   Equipment listing for experiments carried out  
with NE-213 liquid scintillator. 

Equipment  Manufacturer/Model
NE‐213 LS Detector  ORTEC 265 

Pre‐Amplifier  ORTEC 113 

Amplifier  ORTEC 460 

Single Channel 
Analyzer  ORTEC 552 

High Voltage  Stanford PS350 

Time to Amplitude 
Converter (TAC)  Canberra 2145 

Gate Delay 
Generator (GDG)  ORTEC 416A 

Delay Amplifier (DA)  SpecTech 427A 

Multichannel 
Analyzer  Agilent UCS‐20 

 

Although it can be seen that the equipment string is complex and the calibration 

time can be tedious and difficult, it is still appropriate to evaluate the overall performance 

of the NE-213 detector itself with regard to neutron detection efficiency. 

(1) Experimentation and Analysis 

Once the equipment was set up and powered on in the laboratory environment, it 

was time to calibrate the detector with two separate gamma sources, cobalt-60 and 

cesium-137. To do this, the NE-213 detector was first assembled using the equipment 

described in Table 12, and then a Co-60 source was placed in close proximity to the LS 

portion of the detector. Next, UCS30 software was used to determine the number of 

counts that were received in each energy-related channel over the course of 300 seconds. 

The results of the Co-60 readings can be seen in Figures 5 and 6, with the y-axis in both 

logarithmic and linear scales. 
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Figure 5.  UCS30 software output of number of counts vs. channel number 
for a Co-60 source (y-axis is logarithmic scale). 

 

Figure 6.  UCS30 software output of number of counts vs. channel number 
for a Co-60 source (y-axis is linear scale). 

Using the data in Figure 6, it was then necessary to determine which channel 

number is related to the maximum energy of Compton-recoiled electrons associated with 

a Cobalt-60 source. It would then be possible to calibrate the x-axis of the software 

output with a specific energy reading. According to Lee and Lee, “the maximum energy 

of Compton-recoiled electrons corresponds to the position 80% down the height of the 

Compton edge” [10]. Based on Figures 5 and 6 (and more specifically using the UCS30 

software itself), it can be determined that the peak of the output occurs at channel 164. 

The endpoint is slightly more arbitrary, as pulse pile-up makes it difficult to determine a 
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sharp endpoint. Pulse pile-up occurs when two readings are registered simultaneously, 

and appear as an event much higher than what a single gamma could create. However, 

using the linear y-axis scale in Figure 6, it can be seen that the sharpest drop (and most 

likely to be associated with the beginning of pulse pile-up) occurs at channel 256. Now 

that the peak and endpoint of the Compton edge have been determined, simple 

mathematics can be used to find the point 80% down the edge, which is related to the 

maximum energy of Compton-recoiled electrons. Since the detector is being calibrated 

for fast neutrons, the neutron energy (proton recoil energy) can be found using Figure 7 

to correlate the electron energy (found as described previously) with the proton recoil 

energy. 

 

Figure 7.  Plot of the relationship between electron recoil energy and proton 
recoil energy for a NE-213 liquid scintillator as compared by Lee and Lee. 

Adapted from [10]. 

This process was repeated with cesium-137, and the associated peaks and 

endpoints were evaluated along with determining the related electron, proton, and 

neutron energies. Tables 13 and 14 show the channel numbers as well as the associated 

particle energies for both the cobalt-60 and cesium-137 sources. 



 38

Table 13.   Channel number/energy calibration for NE-213  
using cobalt-60 source. 

Position  Channel 
No. 

Peak  164 

Endpoint  256 

Midpoint  210 

80% point*  238 

Note that midpoint position here corresponds to 1.33 MeV electron energy resulting from 
gamma ray interaction, and the 80% point corresponds to 3.5 MeV proton energy 
resulting from neutron interaction.  

Table 14.   Channel number/energy calibration for NE-213  
using cesium-137 source. 

Position  Channel 
No. 

Peak  72 

Endpoint  118 

Midpoint  95 

80% point*  109 

Note that midpoint position here corresponds to 0.661 MeV electron energy resulting 
from gamma ray interaction, and the 80% point corresponds to 2 MeV proton energy 
resulting from neutron interaction.  

Using the channel numbers associated with the electron and proton energies as 

seen in Tables 14 and 15, the UCS30 software could then be used to calibrate the x-axis 

of the plots to sort the incoming particles by associated neutron energies instead of by 

channel number. The second and final stage of calibration involved adjusting the 

sensitivity of the NE-213 to discriminate against any incoming gamma radiation using 

pulse shape discrimination (PSD). To do this, a Cobalt-60 source was placed 50 cm from 

the NE-213 detector, and initial readings were taken without pulse shape discrimination 

rejecting any readings (T value of 0.10). The T value was then adjusted to discriminate 

against various parts of the pulse shape. Two readings were then taken at a time of 60 

seconds apiece: one with the Co-60 source present, and the second without any 

radioactive source present to determine the background readings that were measured at 

each T value. By repeating this reading over a range of T values (as can be seen in Table 
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15), eventually the T values associated with 99.0% and 99.9% rejection were able to be 

determined. 

Table 15.   Calibration of NE-213 detector to 99.0% and 99.9% rejection of 
gamma rays using Co-60 over a range of T values. 

Source  Time (s)  T Value  Background 
Counts 

Gross 
Counts 

Background 
Subtracted 
Gross Counts 

PSD           
(% Rejection) 

Co‐60  60  0.10  603  18925  18322  N/A 

Co‐60  60  2.00  0  4  4  99.98 

Co‐60  60  1.50  67  922  855  95.33 

Co‐60  60  1.70  4  46  42  99.77 

Co‐60  60  1.65  0  70  70  99.62 

Co‐60  60  1.60  14  130  116  99.37 

Co‐60  60  1.55  20  334  314  98.29 

Co‐60  60  1.58  12  203  191  98.96 

Co‐60  120  1.8  2  38  36  99.90 

Note that the last two rows of the table correspond to roughly 99.0% and 99.9% rejection 
of gamma rays due to pulse shape discrimination.  

Now that the UCS30 software as well as the NE-213 detector had been calibrated 

to discriminate out up to 99.0 percent and 99.9 percent of incoming gamma rays, the 

detector itself could be used to detect neutrons emitted from a point source. The overall 

goal was to determine the efficiency of the NE-213 system at detecting neutrons from a 

Cf-252 source as well as from a Pu-Be source, at distances of 50 cm and 100 cm. This 

was to be done with the detector adjusted to discriminate out 0%, 99.0%, and 99.9% of 

gamma rays, to compare the efficiencies of fast neutron detection.  
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Figure 8.  Photo of experimental setup of NE-213 liquid scintillator using a 
Cf-252 neutron source from a distance of 50 cm.  

The experimentation phase itself began by placing a Cf-252 source 50 cm from 

the detector (see Figure 8). The software was adjusted to initially reject 0% of the gamma 

rays, and measure the data recorded over the course of two minutes. The gross counts 

were measured to be 2,872, and the background counts were previously measured to be 

1,206. This left the background counts at 1,666 over two minutes, or 13.833 counts per 

second. Based on the averaging of gamma data from previous research, the neutron to 

gamma emission ratio for Cf-252 is found to be roughly 3.8:8 [5], [11]. Therefore, the 

fluence of neutrons passing through an area of 1 cm2 at a distance of 50 cm can be 

calculated using the formula 

 

, 

where Φ is the fluence in neutrons/cm2/sec, N is the number of neutrons emitted by the 

source, and d is the distance from the source [5]. In order to calculate the N value, the last 

known activity measurement of the source was used to calculate the current activity of 

the source using the formula 

2
 
4

N

d
 
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0
te    , 

where α is the current activity, α0 is the previous activity, λ is the decay constant, and t is 

the time since the previous activity measurement. Since the last activity measurement 

(18.5 MBq) was on 1 June 2002, the time value between that date and 20 September 2015 

is 419.904x106 seconds. The decay constant λ, using a half-life of 2.645 years, is found to 

be 8.30985x10–9 seconds-1.  

Therefore, using the formula above and plugging in the above values, the current 

activity is 

    9 1 68.30985 10 419.904 10
18.5 564.639 

x s x s
MBq e kBq

 
  . 

Based on the table of nuclides from the Korea Atomic Energy Research Institute 

(KAERI), the spontaneous fission (SF) branch ratio is 3.09%, which can be multiplied by 

the current activity above to find the number of fissions per second [12]: 

  564639 0.0309 17447.3   Bq fissions per second . 

Now, the only remaining step is to multiply this value for fissions per second by the 

neutrons and gammas being produced per fission. For the case of 0% PSD, this would be 

  17447.3   3 8 .fissions per second   

For cases where 99.0% and 99.9% of the gammas were rejected, the value of 8 in the 

above equation was multiplied by 0.01 and 0.001, respectively. Now that the N value has 

been obtained, the only remaining variable in the fluence equation is d, for the distance of 

the detector from the source. This will be either 50 cm or 100 cm, as both distances were 

used for both a Pu-Be source and a Cf-252 source. This fluence value is then multiplied 

by the cross sectional area of the detector, which is 25 cm2, to obtain the total number of 

neutrons per second through the sensitive volume of the NE-213 scintillator. Using the 

value for background subtracted gross counts per second as described above, and 

dividing that value by the total number of neutrons per second through the sensitive 

volume of the detector, the intrinsic detection efficiency can be obtained. These 

calculations were done for both a Cf-252 source as well as a Pu-Be source, at distances of 
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50 cm and 100 cm, at 0%, 99.0%, and 99.9% gamma rejection. The only differences in 

the calculations for the Pu-Be source is that the neutron to gamma emission ratio is 1:1, 

and the activity is 2.2x106 fissions per second. The results for the experimental data as 

well as the calculated values for intrinsic detection efficiency for both sources at the 

distances and PSD settings described previously can be seen in Table 16. 
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Table 16.   Experimental data and intrinsic neutron detection efficiency results for NE-213 liquid scintillator using Cf-252 
and Pu-Be sources. 

Source 
PSD         
(% 

Rejection) 

Distance 
(cm) 

Time 
(s) 

Gross 
Counts 

Background 
Counts 

Background 
Subtracted 

Gross 
Counts 

Background 
Subtracted 

Gross 
Counts per 
Second 

Neutron: 
Gamma 
Emission 
Ratio 

Fluence 
(neutrons/cm2/sec) 

Total 
Neutrons 
Through 
Sensitive 
Volume 

(neutrons/s) 

Intrinsic 
Detection 
Efficiency 

Cf‐252  0.0%  50  120  2,872  1,206  1,666  13.883 

3.8:8 

6.553305  163.832618  8.47% 

Cf‐252  99.0%  50  120  472  24  448  3.733  2.154815  53.870386  6.93% 

Cf‐252  99.9%  50  120  305  4  301  2.508  2.114829  52.870730  4.74% 

Cf‐252  0.0%  100  120  1,691  1,206  485  4.042  1.638326  40.958155  9.87% 

Cf‐252  99.0%  100  120  137  24  113  0.942  0.538704  13.467597  6.99% 

Cf‐252  99.9%  100  120  78  4  74  0.617  0.528707  13.217682  4.67% 

Pu‐Be  0.0%  50  120  57,258  1,206  56,052  467.100 

1:1 

140.056350  3501.408748  13.34% 

Pu‐Be  99.0%  50  120  33,923  24  33,899  282.492  70.728457  1768.211418  15.98% 

Pu‐Be  99.9%  50  120  26,812  4  26,808  223.400  70.098203  1752.455078  12.75% 

Pu‐Be  0.0%  100  120  16,575  1,206  15,369  128.075  35.014087  875.352187  14.63% 

Pu‐Be  99.0%  100  120  9,027  24  9,003  75.025  17.682114  442.052854  16.97% 

Pu‐Be  99.9%  100  120  7,209  4  7,205  60.042  17.524551  438.113770  13.70% 
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As can be seen by the data in Table 16, the NE-213 liquid scintillator was capable 

of detecting up to 8.47% of neutrons from a Cf-252 source at a distance of 50 cm, and up 

to 9.87% of incident neutrons from a Cf-252 source at a distance of 100 cm. For the Pu-

Be source, the NE-213 liquid scintillator detected 15.98% of incident neutrons from a 

distance of 50 cm, and up to 16.97% of incident neutrons from a distance of 100 cm. It 

should be noted that the highest intrinsic detection efficiencies for the Cf-252 source 

were found when 0% of gamma rays were rejected by the detector. Notably, this was 

different for the Pu-Be source, which found that the highest detection efficiency was 

achieved when 99.0% of gamma rays were rejected for both distances of 50 cm and 100 

cm. This is a bit different than what was expected, considering that none of the highest 

neutron detection efficiencies were achieved when the highest amount of gamma rays 

were rejected (99.9%), and the highest detection efficiencies were not achieved at the 

same percentage of gamma rejection for both Cf-252 and Pu-Be sources. 

(2) Conclusions 

First and foremost, it should be noted that the NE-213 liquid scintillator is much 

more suitable for a laboratory environment than a military environment. Utilizing an 

equipment string of more than nine pieces, it is cumbersome to set up and calibrate, and 

is not mobile by any means. Once set up, a gamma source is needed to calibrate the 

detector for discrimination against gamma rays, which is a tedious and somewhat 

subjective process. Once calibration is complete, the detector must take several different 

readings at different levels of gamma discrimination to determine the highest possible 

detection rate. Further, the highest amount of discrimination against gamma rays does not 

necessarily coincide with the highest intrinsic detection efficiency of fast neutrons, which 

is counterintuitive. The highest detection efficiency will be achieved at different gamma 

discrimination levels for different neutron sources. Nevertheless, the NE-213 did prove to 

have relatively high neutron detection efficiencies at various distances from both neutron 

sources, at all levels of gamma discrimination. The lowest intrinsic detection efficiency 

was found to be 4.67%, which is still higher than the detection efficiency of any other 

detector used during the course of this study.  
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2. Boron Trifluoride Neutron Detector 

Unlike the scintillation principle used by the Beckman LS 6500 Scintillation 

System and NE-213 liquid scintillator, the boron trifluoride detector uses an aluminum 

tube filled with BF3 gas to interact with incoming neutrons. The boron gas is often 

enriched with boron-10 atoms, which results in an efficiency up to five times greater than 

if only naturally occurring boron is used [5]. When a boron-10 atom absorbs an incoming 

neutron, a recoil lithium-7 nucleus and an alpha particle are produced, and travel in 

opposite directions towards the detector wall. The detector will measure a pulse that is 

dependent upon whether or not the lithium-7 nucleus was left in the ground state or in the 

excited state. If left in the ground state, the lithium-7 nucleus and the alpha particle are 

left with more energy to create ion pairs, and thus have a higher kinetic energy. This 

occurs roughly 6% of the time, and results in a total kinetic energy of about 2.792 MeV 

between the two particles. The other 94% of the time, the lithium nucleus is left in the 

excited state, and the resulting total kinetic energy of the two particles is only about 2.310 

MeV [13]. Figure 9 shows the expected pulse shape of a BF3 detector from a neutron 

source, including annotation for the discrimination of gamma rays and noise. 

 

Figure 9.  Expected pulse shape discrimination for a BF3 detector interacting 
with a neutron source. Adapted from [13]. 
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It can be seen from Figure 9 that the gamma rays can be discriminated out by 

simply setting the detector threshold above this pulse size. It is also important to note that 

BF3 detectors are not effective at detecting fast neutrons unless the metal detector tube is 

surrounded by a moderator. For the boron trifluoride neutron detector used in this 

experiment, the detector tube was surrounded by a high-density polyethylene sphere, 

which slowed down the fast neutrons and converted them to thermal neutrons. Figure 10 

shows a photo of the aluminum tube of the detector next to the polyethylene sphere used 

to convert the fast neutrons. 

 

Figure 10.  Photo of polyethylene sphere and aluminum tube filled with BF3 
which were used in this study to acquire experimental data.  

It should again be noted that the goal of this study is to evaluate and compare 

various detectors for their practical use in military and specifically battlefield 

applications. Like the NE-213 liquid scintillator, the boron trifluoride detector has an 

extensive and cumbersome equipment setup, and also requires an outside radioactive 

source to calibrate. The equipment chain that was used for the boron trifluoride detector 

throughout the course of this research can be seen in Figure 11 and Table 17.  
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Figure 11.  Visual layout of equipment string used for BF3 detector during the 
conduct of this research. 

Table 17.   Equipment listing for experiments carried out with BF3 detector. 

Equipment  Manufacturer/Model
BF3 Detector  Ludlum Model 42–30 

High Voltage Power 
Supply 

Stanford PS325 

Pre‐Amplifier  ORTEC 142 

Delay Amplifier (DA)  ORTEC 460 

Multichannel 
Analyzer 

UCS‐20 SpecTech 
Universal  

 

Although it can be seen that the equipment string is relatively complex and the calibration 

can be tedious and difficult, it is still necessary to evaluate the overall performance of the 

boron trifluoride detector itself.  

a. Experimentation and Analysis 

Once the equipment was set up and powered on in the laboratory environment, it 

was first necessary to calibrate the detector and find the background levels of radiation 

before readings with individual neutron sources could take place. In order to calibrate the 

detector, a Pu-Be neutron source was placed under the aluminum tube, and the reading on 

the UCS30 software was compared to the expected pulse height spectra from BF3 tubes. 

The expected pulse height spectra can be seen in Figure 12. 
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Figure 12.  Expected pulse height spectra from BF3 tubes, with noted 
continuum due to wall effect. Adapted from [5]. 

Therefore, an initial calibration reading was taken using the UCS30 software, and 

the gain was appropriately adjusted to ensure that the expected pulse height spectra 

showed discernible steps, most notably at the expected peaks of roughly 2.31 MeV and 

2.79 MeV. Figure 13 shows the result of the properly configured gain settings that were 

achieved to allow for actual measurements of neutron source detection. 

 

Figure 13.  Pulse height spectra achieved while calibrating BF3 detector using 
a Pu-Be source. 
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Once the calibration was complete, it was time to find the background readings 

for the detector over the course of 30 minutes. Since the Pu-Be source has a much higher 

activity than that of Cf-252, it was determined that the Pu-Be source would take readings 

for only 5 minutes, and the Cf-252 source would take readings for 30 minutes. The 

background readings were taken without any source present over the course of 30 

minutes, and the number of counts was determined to be 24. Therefore, the background 

counts for the Cf-252 readings would be 24, and the background counts for the Pu-Be 

readings would be 24*(5/30), or 4 counts.  

After calibration and background measurements were complete, it was time to 

take neutron detection readings with the boron trifluoride detector using the Pu-Be and 

Cf-252 sources. This was done using similar methodology to what was used to analyze 

the NE-213 liquid scintillator. Initially, a Cf-252 source was placed at a distance of 50 cm 

from the detector, and the detector registered neutron counts over the course of 30 

minutes. This was process was then repeated at a distance of 100 cm. After the data for 

these two readings was logged, the next step was to repeat the process using Pu-Be at the 

same distances, for a time of 5 minutes at each distance. Once the data was taken, the 

next step was to calculate the detector efficiency for each of the readings, which can be 

seen in Table 18.  
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Table 18.   Experimental data and intrinsic neutron detection efficiency results for BF3 detector using Cf-252 
and Pu-Be sources. 

Source  Distance 
(cm) 

Time 
(s) 

Gross 
Counts 

Background 
Counts 

Background 
Subtracted 

Gross 
Counts 

Neutrons 
Counted 

Per 
Second 

Fluence 
(neutrons/cm2/sec) 

Cross‐
sectional 
Detector 
Area 
(cm2) 

Total 
Neutrons 
Through 
Sensitive 
Volume 

(neutrons/s) 

Intrinsic 
Detection 
Efficiency 

Cf‐252  50  1800  912  24  888  0.49  2.054856 
29.0322 

59.66  0.83% 

Cf‐252  100  1800  415  24  391  0.22  0.513714  14.91  1.46% 

Pu‐Be  50  300  6,991  4  6,987  23.29  70.028175 
29.0322 

2033.07  1.15% 

Pu‐Be  100  300  1,774  4  1,770  5.90  17.507044  508.27  1.16% 
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As can be seen in Table 18, the first step in this process was to subtract the 

background counts from the gross counts registered by the UCS30 software for each 

experiment. The result of this was the background subtracted gross counts, and dividing 

this by the time duration of each experiment (1800 seconds or 300 seconds) resulted in 

the value for neutrons counted per second. By comparison, the fluence was calculated 

using the same process as was described in the NE-213 liquid scintillator analysis, 

utilizing the formula 

2
 
4

N

d
  . 

This time, however, the N value for the Cf-252 source was not 17447.3 fissions per 

second. Since the BF3 detector is only measuring neutrons, this value was multiplied by 

3.7 fissions per second (the accepted value for Cf-252), which results in a total N value of 

64555.2 neutrons per second [14]. The d value was again varied between 50 cm and 

100 cm, depending on which distance the neutron source was from the detector for that 

particular measurement. The fluence was then multiplied by the cross-sectional area of 

the aluminum tube of the detector to obtain the value for neutrons per second through the 

sensitive volume of the detector. The length of the aluminum tube is 6 inches, and the 

diameter is 0.75 inches, which results in a cross-sectional area of 4.75 in2. Converted into 

cm2, the resulting cross-sectional area is 29.0322 cm2. Once the value for neutrons per 

second through the sensitive volume of the detector was calculated, dividing the neutrons 

per second registered by the detector by this value resulted in the intrinsic detection 

efficiency for each experiment.  

For the californium-252 source, the detection efficiency of the BF3 detector was 

found to be 0.83% of incident neutrons at a distance of 50 cm, and 1.46% of incident 

neutrons at a distance of 100 cm. For the plutonium-beryllium source, the detection 

efficiency of the BF3 detector was found to be 1.15% of incident neutrons at a distance of 

50 cm, and 1.16% of incident neutrons at a distance of 100 cm. At best, the BF3 detector 

is then only capturing 31.3% of the amount of neutrons that the NE-213 liquid scintillator 

was able to detect from the Cf-252 source, making the NE-213 approximately 3.2 times 
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more efficient. For the Pu-Be source, the BF3 detector was only able to detect about 9% 

of the neutrons that the NE-213 was able to register, making the NE-213 detector 11.1 

times more efficient.  

b. Conclusions 

Compared to the Beckman LS 6500 Scintillation System and the NE-213 liquid 

scintillator, the boron trifluoride detector has a slightly simpler equipment string, and is 

easier to calibrate than a NE-213 detector. Although its equipment string is slightly less 

complex than a NE-213 liquid scintillator, the BF3 detector was found to be much less 

efficient at fast neutron detection. For a Cf-252 source, the NE-213 was able to detect up 

to 8.47% of incident neutrons at 50 cm, and up to 9.87% of incident neutrons at a 

distance of 100 cm. Comparatively, the BF3 detector was only able to detect 0.83% of 

incident neutrons at 50 cm and 1.46% of incident neutrons at 100 cm. For a Pu-Be 

source, the NE-213 was able to detect up to 15.98% of incident neutrons at 50 cm, and up 

to 16.97% at a distance of 100 cm. Comparatively, the BF3 detector was only able to 

detect 1.15% of incident neutrons at 50 cm and 1.16% at a distance of 100 cm. Overall, 

the NE-213 liquid scintillator had a more complex equipment string, was more difficult to 

calibrate, and required sweeping through various PSD settings to find a peak detection 

efficiency. Conversely, the BF3 detector had a simpler equipment string, easier 

calibration, and did not require PSD adjustments, but was much less efficient at detecting 

incident neutrons.  
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III. CENTRIFUGAL TENSIONED METASTABLE FLUID 
DETECTOR 

A. THEORY 

The following research investigates the centrifugal tensioned metastable fluid 

detector (CTMFD), a technology that promises a compact, easy to use, highly sensitive, 

robust, discriminatory, mobile sensor platform for detection of the presence of special 

nuclear materials in real time. Unlike the detectors previously discussed in this work, the 

CTMFD operates using only a computer connected to three pieces of equipment. 

CTMFDs are also blind to beta and gamma radiation, and can be procured at a fraction of 

the price of other current, more expensive, immobile detectors. If proven effective, 

CTMFDs could provide significant assistance to governmental agencies throughout the 

world, and specifically the U.S. Department of Defense, in detecting trace amounts of 

special nuclear material or other source materials in transit or on the battlefield. The 

CTMFD provides two unique capabilities: real-time, low-cost thermal and fast neutron 

detection, and alpha spectroscopy (specifically of actinides).  

 

Figure 14.  Visual layout of equipment string used for CTMFD during the 
conduct of this research. 
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Figure 15.  Photograph of CTMFD and associated equipment used during the 
conduct of this research. 

Contrasting other detectors used in the conduct of this research up to this point, 

the CTMFD has a simpler equipment string that makes it much more mobile, hardy, and 

cheaper to produce. As can be seen in Figures 14 and 15, a laptop is simply connected to 

a control box, which in turn is connected to a motor and sensor box that are bolted 

together. This lack of a complex equipment string makes the detector much more mobile, 

and arguably simpler to operate and maintain than other detectors with similar 

capabilities.  

1. Working Scientific Principles 

The principle behind the CTMFD is to utilize various amplitudes of centrifugal 

force to obtain tensioned metastable states in a working liquid, and then use this liquid as 

the detector medium. The working liquid (acetone or decafluoropentane) is placed within 

the glass bulb of the detector, which is then rotated by a drill motor at a speed controlled 

by the computer software. The faster the bulb rotates, the higher the amplitude of the 
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negative pressure inside the bulb, and thus the higher tension of the fluid. As the tension 

of the fluid increases and moves away from stability limits, additional energy added to 

the system by an ionizing particle triggers a phase change. When an ionizing particle 

such as a (fast or thermal) neutron or alpha particle is absorbed by the liquid, energy 

stored within the liquid is freed through vaporization growth of fast nucleating vapor 

bubbles. If the initial energy deposited into the liquid is high enough, a critical size vapor 

nucleus will be created (in the nanometer range). Higher tension of the fluid inside the 

detector bulb means less energy is needed from the ionizing particle to create a critical- 

size vapor nucleus. In other words, when measuring for ionizing particles of lower 

energy, a higher tension is needed and therefore the drill motor needs to rotate the bulb 

more quickly than if trying to detect higher energy particles. Once the newly created 

vapor nucleus grows into a macroscopic bubble, there is a distortion in light transmission 

in the detector bulb that is distinguished by a sensor in the bottom of the detector. Within 

a matter of seconds, the bubble will also burst and create an audible “pop” sound that can 

be detected by the human ear. These two events signal a registered detection of an alpha 

particle or neutron. Figure 16 shows a visual representation of the detector bulb within 

the CTMFD. 
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Figure 16.  Schematic representation of CTMFD detector bulb and working 
principles. Adapted from [3]. 

In order to calculate the value of negative pressure within the sensitive volume of 

the bulb, the well-known Bernoulli equation is used: 

 22 22   neg ambP r r f P    , 

where ௡ܲ௘௚	is the value for negative pressure, ߩ is the density of the working liquid, ݎ is 

the radius from the centerline of the bulb to the meniscus, ݎᇱis 0 (since the point of 

interest is at the centerline of the detector), ݂ is the rotational speed of the bulb (in 

rotations per second), and ௔ܲ௠௕ is the ambient pressure. The calculations for the negative 

pressure are all done by the computer software, given the user inputs of the ambient 

temperature, type of working fluid, and the diameter of the fluid meniscus. Based on 

previous studies, the CTMFD was able to detect 1–5 MeV neutrons and alpha particles at 

modest negative pressures (-7 to -9 bar) [3].  

a. Detection of Fast Neutrons 

During the process of neutron detection, the bulb is filled with a working fluid 

(acetone or decafluoropentane) and screwed into the base of a drill motor, which is 
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controlled by a laptop running the detector software. Based on the desired sensitivity 

range, the user controls the speed of the drill motor using the computer software. The 

higher the rotational speed of the bulb attached to the drill, the higher the amplitude of 

negative pressure inside of the bulb, and the more sensitive the detector becomes to 

neutrons of lower energy. Once the detector is set up, the neutron source is placed within 

the desired distance of the detector bulb. When a neutron of the appropriate energy 

strikes the pretensioned fluid, explosive vaporization occurs which creates a bubble 

inside of the bottom of the bulb, which quickly produces an audible “pop.” A light-

sensitive sensor inside of the detector notices the adjustment in light reflecting off the 

bubble inside of the bulb, and stops the detector. Based on the computer software’s 

instructions, the detector will wait 1–2 minutes for the system to cool down, and will then 

spin the drill up to the desired speed again in order to provide the desired pressure inside 

the bulb. All of the recorded time, pressure, and error limit data is kept within the 

computer software and can be exported to an Excel spreadsheet. Based on the average 

time it takes for a bubble to be created at a given pressure (sensitivity), it is possible to 

differentiate between fission sources and a random neutron source. 

b. Alpha Particle Spectroscopy of Actinides 

The second capability of the CTMFD is alpha spectroscopy, which involves a 

slightly different setup, specifically within the detector bulb. Since alpha particles are 

relatively massive, they generally do not travel very far in air and therefore often cannot 

be detected even within close range of the source. To combat this issue, the source is 

placed in a measured solution with acetone or decafluoropentane inside of the detector 

bulb itself. This is different than the execution of neutron detection, where the source is 

outside of the detector as was seen in the NE-213 and BF3 detector experiments. Again, 

the bulb is spun by the drill motor from the computer software to a designated speed, 

according to the desired pressure and therefore sensitivity inside of the detector. As 

before, the higher the rotational speed of the bulb, the higher the sensitivity to lower 

energy alpha particles. Once spun up to a proper speed and pressure, an alpha particle 

that is emitted from the source inside the bulb will strike the molecules of the pre-

tensioned fluid, creating explosive vaporization and a bubble that is noticed by the sensor 
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inside of the detector. Based on the average time it takes for a bubble to be created at a 

given pressure (sensitivity), the source can be differentiated between isotopes such as Pu-

238, Pu-239, and UN. 

B. EXPERIMENTATION AND RESULTS 

1. Detection of Fast Neutrons 

In order to test the efficiency of the centrifugal tensioned metastable fluid detector 

for detecting neutrons, the detector and associated equipment were set up, and testing was 

done with two separate neutron sources at various distances. Before the testing could 

begin, the detector bulb was filled with decafluoropentane and the distance between the 

meniscuses at the ends of the bulb were measured. This measurement was entered into 

the detector software, and decafluoropentane was selected within the software as the 

working fluid. Once the detector bulb was screwed back into the drill motor and all 

CTMFD equipment was secured, the first neutron source was brought out. Cf-252 was 

placed 50 cm away from the center of the bulb, and at a level even with the height of the 

bulb itself.  

Once the experimental setup was ready, the next step was to run the detector and 

begin taking measurements of the wait time for a bubble to form at various negative 

pressures. Based on previous studies done at Purdue University, it was determined that a 

good starting point for neutron detection is in the -4 bar range [15]. The detector software 

was set up to run automatically: spinning the motor and maintaining a -4 bar pressure 

level, recording and averaging the time it took for a detection to be registered, and 

allowing the drill motor to cool for 60 seconds in between detections. If a detection was 

not registered within 60 seconds, the computer software stopped the drill motor for 60 

seconds to prevent the system from overheating.  

The first experimental data taken involved a Cf-252 source at a distance of 50 cm 

from the CTMFD bulb. At -4 bar, 62 detections were registered over a detector run time 

of 424.57 seconds, which translates to an average wait time of 6.85 seconds. The pressure 

was then brought down to -3 bar using the computer software, to determine if the detector 

system would become less sensitive as expected. After 50 detections over a time of 
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1551.78 seconds, the average wait time at a pressure of -3 bar was found to be 

31.04 seconds. This is consistent with the detection theory of the CTMFD. Next, the Cf-

252 sources were removed from the experimental area, and a Pu-Be source was placed at 

a distance of 500 cm from the detector (the distance was increased since Pu-Be has a 

higher activity than Cf-252). For this source and distance from the detector, the negative 

pressures used by the CTMFD were the same to allow for comparison to the Cf-252 

source measurements. The first negative pressure used for this portion of the test was -4 

bar, at which the CTMFD registered 50 detections over a total run time of 317.3 seconds. 

This translates to an average wait time of 6.35 seconds. At -3 bar, the detector registered 

49 detections over a total run time of 772.72 seconds, averaging a wait time of 

15.77 seconds between detections. Table 19 shows the intrinsic detection efficiency 

values based on calculations from the average wait time as discussed previously. 
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Table 19.   Experimental data and intrinsic neutron detection efficiency results for CTMFD using Cf-252 
and Pu-Be sources. 

Source  Distance 
(cm) 

Fluence 
(neutrons/c
m2/sec) 

Cross‐
sectional 
Detector 
Area 
(cm2) 

Total 
Neutrons 
Through 
Sensitive 
Volume 

(neutrons/s) 

Pneg 
(bar) 

Average 
Waiting 
Time (s) 

Detection 
Rate (cps) 

Intrinsic 
Detection 
Efficiency 

Cf‐252  50  2.054856  7.0  14.38399086  4.0  6.85  0.145985  1.01% 

Cf‐252  50  2.054856  7.0  14.38399086  3.0  31.04  0.032216  0.22% 

Pu‐Be  500  0.700282  7.0  4.901972247  4.0  6.35  0.15748  3.21% 

Pu‐Be  500  0.700282  7.0  4.901972247  3.0  15.77  0.063412  1.29% 
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The fluence was again calculated using the formula 

2
 
4

N

d
  , 

using the same N values as were determined in the calculation for the BF3 detector (since 

the CTMFD is gamma-blind). The cross-sectional area of the bulb used during this 

research is 7.0 cm2. The total neutrons through the sensitive volume is then found by 

multiplying the fluence by the cross-sectional area, and the detection rate (in counts per 

second) is found by taking the inverse of the average waiting time that was acquired in 

the experimental data. Dividing the detection rate by the total neutrons per second 

through the sensitive volume of the detector results in the value for intrinsic neutron 

detection efficiency. For the Cf-252 source, the CTMFD was found to have a 1.01% 

detection efficiency at -4 bar and a 0.22% efficiency at -3 bar. The experimentation  

with the Pu-Be source at 500 cm found that the CTMFD had a 3.21% detection efficiency 

at -4 bar, and a 1.29% efficiency at -3 bar.   

2. Alpha Particle Spectroscopy of Actinides 

The second capability of the centrifugal tensioned metastable fluid detector is the 

ability to discriminate between different isotopes of uranium and plutonium using alpha 

particle spectroscopy. This study has previously determined that the Beckman LS 6500 

Scintillation System was able to discriminate between stock (highly concentrated) 

solutions of Pu-238, Pu-239, UN, and background levels. However, the Beckman LS 

6500 failed at discriminating between the solutions and background levels when the stock 

solutions were diluted to ~1% of original concentration. In order to test the CTMFD 

against the capabilities of the Beckman system, similarly diluted solutions were utilized 

in the CTMFD experimentation.  

a. Plutonium Experimentation and Analysis 

The first step in the process was to utilize the solutions that were created for use 

with the CTMFD and the Beckman LS 6500 Scintillation System, as listed in Table 3. 

These solutions were created with an appropriate activity as to expect a 10-second 
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waiting time for detection by the CTMFD. First, the Pu-238 solution was placed into the 

bulb of the detector, and then a series of tests was completed from 7.75 bar to 8.75 bar, in 

increments of 0.25 bar. Next, the bulb was thoroughly rinsed with acetone filled with the 

Pu-239 solution that was created with an expectation of a 10-second wait time for 

detection by the CTMFD. Using the automated computer software, testing was done from 

7.25 bar to 8.5 bar, in increments of 0.25 bar. The results of these initial tests, and the 

expected wait time that emerged for each pressure level, can be seen in Table 20. Table 

20 also shows the error limits as calculated by the CTMFD software. 

Table 20.   Experimental data of average detection wait time at various 
negative pressures using CTMFD and original Pu-238 and 

Pu-239 solutions. 

Isotope  Pneg (bar) Wait time 
(s)  Error 

Pu‐238 (0.03 Bq/g) 

7.75  107.21  32.33 

8.00  55.94  16.87 

8.25  41.13  10.62 

8.50  47.10  10.53 

8.75  39.81  6.29 

Pu‐239  (0.03 Bq/g) 

7.25  67.76  14.45 

7.50  30.00  5.67 

7.75  18.08  3.69 

8.00  14.49  2.96 

8.25  15.65  3.34 

8.50  10.31  2.37 

 

Unexpectedly, the average wait time for Pu-238 was much higher than the  

10-second wait time that was anticipated based on the initial calculations for the solution. 

This was likely due to the fact that the detector only had 60 seconds to cool down in 

between detections, or possibly because the solution was not as radioactive as was 

originally measured. In order to combat this, a new solution was created that would 

roughly achieve the 10-second wait time to allow for comparisons between the isotopes. 

Since the expected wait time initially determined was roughly four times higher than 

expected (specifically at least 39.81 seconds as seen in Table 20), a new Pu-238 solution 
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was created using approximately four times more stock solution than the original diluted 

solution (see Table 25 in the Appendix for specific masses). Also, the wait time in 

between detections was increased to 120 seconds in order to allow more time for the drill 

motor to cool, and the temperature compensation setting was enabled on the detector 

software. This would allow the detector to calculate the temperature of the fluid, and 

adjust the density of the fluid as entered into Bernoulli’s equation. Utilizing this new 

solution for Pu-238, and the new delay and temperature settings for the CTMFD itself, a 

new set of tests was run utilizing the same pressure increments from the previous test. For 

the sake of thoroughness, the detector bulb was then rinsed, and the original Pu-239 

solution was used in the bulb so that new data could also be obtained for this solution 

using the new temperature and delay settings. The new experimental data can be seen in 

Table 21.  

Table 21.   Experimental data of average detection wait time at various 
negative pressures using CTMFD and new Pu-238, original diluted 

Pu-239 solutions, with improved temperature settings. 

Isotope  Pneg (bar) Wait time 
(s)  Error 

Pu‐238  (0.12 Bq/g)  7.25  123.09  35.53 

120s  Restart Time  7.50  33.84  7.57 

Temp. Comp at Run Start  7.75  35.38  7.91 

  8.00  15.04  2.70 

   8.50  11.41  2.55 

Pu‐239   (0.03 Bq/g)  7.25  121.56  60.78 

120s  Restart Time  7.50  42.47  9.27 

Temp. Comp at Run Start  7.75  21.04  4.71 

   8.00  13.92  3.11 

   8.50  6.60  1.48 

 

As can be seen in the data in Table 21, this updated solution along with adjusted 

temperature settings made the expected wait time much closer to the expected value of 10 

seconds. However, neither the Pu-238 nor the Pu-239 solution had a value for an 

expected wait time that was exactly 10 seconds, so the data was normalized around an 

exact 10-second wait time for the sake of effective comparison. This was done by 
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multiplying the Pu-238 solution wait times by (10/11.41), and the Pu-239 solution wait 

times by (10/6.60). The resulting wait times normalized around a 10-second detection 

time can be seen in Table 22, and will serve as the final data points for the Pu solutions.  

Table 22.   Normalized values of average detection wait time at various 
negative pressures using CTMFD and new Pu-238, original diluted Pu-239 

solutions, with improved temperature settings. 

Isotope  Pneg (bar)  Wait time (s)  Error 

Pu‐238 

7.25  107.88  31.14 

7.50  29.66  6.63 

8.00  13.18  2.37 

8.50  10.00  2.23 

7.75  31.01  6.93 

Pu‐239 

7.25  184.18  92.09 

7.50  64.35  14.05 

7.75  31.88  7.14 

8.00  21.09  4.71 

8.50  10.00  2.24 

 

In order to determine whether or not the CTMFD was able to discriminate 

between the Pu-238 and Pu-239 solutions, the values of wait time vs. negative pressure 

were plotted graphically. As can be seen in Figure 17, the average wait time for Pu-238 is 

consistently below that of Pu-239, even with error bars taken into consideration. It should 

be noted that with similarly diluted solutions, the Beckman LS 6500 Scintillation System 

was unable to discriminate between these two plutonium solutions and background 

levels. Figure 17 shows that the CTMFD is indeed able to discriminate between the two 

highly diluted solutions.  
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Figure 17.  Plot of normalized average wait time vs. negative pressure for Pu-
238 and Pu-239 solutions which proves the alpha spectroscopy capabilities 

of the CTMFD. 

b. Uranyl Nitrate Experimentation and Analysis 

The final step for verifying the actinide spectroscopy capabilities of the 

centrifugal tensioned metastable fluid detector was to perform experimentation with UN 

solution in a similar manner as was conducted for the Beckman LS 6500 Scintillation 

System. Similar to how the original Pu-238 and Pu-239 solutions were created, a UN 

solution was created with an activity that would be expected to create a 10-second wait 

time for the CTMFD. This study previously proved that this diluted solution could not be 

detected by the Beckman LS System, and the specifics for the solution can be found in 

Table 9 of this work.  

In order to ensure that this diluted solution could be detected in a time of 

approximately 10 seconds, the solution was placed in the bulb of the CTMFD, and the 

software set for a negative pressure of 10.5 bar. After 7 detections, the wait time was 

found to be higher than expected, at 55.67 seconds. In order to compensate for this and 
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facilitate a 10-second wait time that would allow for comparison with the Pu isotopes, a 

new solution was created with an estimated six times higher calculated specific activity 

(roughly 0.18 Bq/g, see appendix for specific masses). After the bulb was thoroughly 

rinsed with acetone, this new solution of higher activity was placed in the bulb with a 

syringe. Utilizing the CTMFD software, pressure readings were taken and logged at 

negative pressures of 7.5, 7.75, 8.0, 8.5, and 9.0 bar. The average detection times of the 

readings at each individual pressure can be seen in Table 23.  

Table 23.   Experimental data of average detection wait time at various 
negative pressures using CTMFD and new UN solution.  

Isotope  Pneg (bar) Wait time 
(s)  Error 

UN  (0.18 Bq/g)  7.50  141.44  44.73 

120s Restart Time  7.75  76.93  15.7 

Temp Comp at Run Start  8.00  7.13  2.52 

   8.50  7.91  1.82 

   9.00  5.76  1.54 

 

As can be seen in Table 23, this updated solution provided for an average wait 

time much closer to the expected wait time of 10 seconds. Since Pu-238 and Pu-239 have 

similar alpha decay energies, they were normalized at the same negative pressure 

(8.5 bar), but UN has a lower energy alpha decay, and therefore required a higher 

negative pressure to plateau (9.0 bar). In order to allow for a more exact comparison of 

the expected wait times between isotopes, the UN wait times seen in Table 23 were 

normalized around a 10-second wait time for a negative pressure of 9.0 bar. This was 

done by multiplying the UN solution wait times by (10/5.76). The resulting wait times 

normalized around a 10-second detection time at -9.0 bar can be seen in Table 24, and 

will serve as the final data points for the UN solution.  

 

 



 67

Table 24.   Normalized values of average detection wait time at various 
negative pressures using CTMFD and new UN solution. 

Isotope  Pneg (bar) Wait time 
(s)  Error 

UN (0.18 Bq/g)  7.50  245.56  77.66 

120s Restart Time  7.75  106.85  27.26 

Temp Comp at Run Start  8.00  12.38  4.38 

   8.50  13.73  3.16 

   9.00  10.00  2.67 

 

Now that normalized wait times have been established for the Pu-238, Pu-239, 

and UN solutions, it is time to analyze and compare the three graphically. As can be seen 

from Figure 18, there is a visible difference in the drop off of the slope of the wait time 

versus negative pressure curve between each of the three isotopes. The Pu-238 solution 

initially has the lowest average wait time, and plateaus around -7.5 bar. The Pu-239 has 

the next highest average wait time at the lower negative pressures, and begins a gentle 

sloped plateau around -7.75 bar. Finally, the UN solution has the highest initial average 

wait time, and does not begin to plateau until -8.0 bar, at which point it remains almost 

completely flat. This confirms previous work by Taleyarkhan et al., and proves that the 

CTMFD can indeed discriminate between diluted Pu-238, Pu-239, and UN sources, 

unlike the Beckman LS 6500 Scintillation System which could not even discriminate 

between the diluted solutions and background levels [3].  
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Figure 18.  Plot of normalized average wait time vs. negative pressure for Pu-
238, Pu-239, and UN solutions which proves the alpha spectroscopy 

capabilities of the CTMFD. 

3. Conclusions 

The centrifugal tensioned metastable fluid detector uses a simple equipment string 

and a pressurized working fluid to provide both detection of fast neutrons as well as alpha 

particle spectroscopy. In order to test its neutron detection capabilities, neutron sources 

were placed a measured distance from the detector bulb, which was filled with acetone 

and spun up to various negative pressures. Using a Cf-252 source at a distance of 50 cm, 

the CTMFD was found to detect 1.01% of neutrons passing through the sensitive volume 

of the detector. For a Pu-Be source at a distance of 500 cm from the detector, the 

CTMFD was found to detect up to 3.21% of neutrons passing through the sensitive 

volume of the detector. The second capability of the CTMFD is discrimination of actinide 

sources using alpha particle spectroscopy. Testing was done utilizing similarly diluted 

solutions of Pu-238, Pu-239, and UN that were unable to be detected by the Beckman LS 
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6500 Scintillation System. The original diluted solutions of Pu-238 and UN were not as 

close to their projected average wait time of 10 seconds as expected, so their activities 

were slightly increased proportionally based on the actual wait times. Once all three 

solutions had been tested over multiple negative pressures, a negative pressure value that 

was proportional to the decay energy was used to normalize the remaining wait times 

around an average of a 10-second wait time. This data was then plotted graphically, and 

there was a noted difference in the plateaus of average wait time versus negative pressure 

for all three solutions. In other words, the CTMFD was not only able to detect the alpha 

particles in all three of the solutions, but it was also able to discriminate between the 

three solutions individually. This is a marked advantage over the Beckman LS 6500 

Scintillation System, which was unable to even detect the presence of any radioactivity in 

these solutions as compared to background levels.  
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IV. CONCLUSIONS 

A. SUMMARY OF SCIENTIFIC FINDINGS 

In addition to the centrifugal tensioned metastable fluid detector, three other 

detectors were utilized in this study which had comparable capabilities to those of the 

CTMFD. The first was the Beckman LS 6500 Scintillation System, which was used to 

compare to the alpha spectroscopy capabilities of the CTMFD. The Beckman LS System 

was easily able to discriminate between highly concentrated solutions of Pu-238, Pu-239, 

and UN. However, once the stock solutions were diluted to roughly 1% of the original 

activity level, the Beckman LS System was unable to detect the presence of any of these 

three solutions against background levels. The CTMFD, on the other hand, was not only 

able to detect the presence of highly diluted solutions of Pu-238, Pu-239, and UN, but 

was also able to discriminate between the three separate solutions based on the position 

of the plateau on the average wait time versus negative pressure curve. 

Further, the NE-213 liquid scintillator and the boron trifluoride detector were also 

analyzed in order to compare neutron detection capabilities with that of the CTMFD. 

Although the NE-213 had a complex equipment string and was difficult to calibrate, it 

was able to detect up to 8.47% and 9.87 % of incident neutrons from a Cf-252 source at a 

distance of 50 cm and 100 cm, respectively. For a Pu-Be source, the NE-213 detected up 

to 15.98% of incident neutrons at a distance of 50 cm from the source, and 16.97% of 

incident neutrons at a distance of 100 cm from the source. Next, a boron trifluoride 

detector was set up and used to detect neutrons from a Cf-252 and Pu-Be source at 50 cm 

and 100 cm. Although the equipment string of the BF3 detector was simpler than that of 

the NE-213, it was found to be much less efficient at detection of incident neutrons. The 

BF3 was able to detect only 0.83% of incident neutrons at a distance of 50 cm from a Cf-

252 source, and 1.46% at a distance of 100 cm from the Cf-252 source. Using a Pu-Be 

source, the BF3 detector was found to detect only 1.15% of incident neutrons at a distance 

of 50 cm from the source, and 1.16% at a distance of 100 cm from the source. Finally, 

neutron detection was done using these same neutron sources and a centrifugal tensioned 

metastable fluid detector, which has a much simpler equipment string than any of the 
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other detectors used in this research. At a distance of 50 cm from a Cf-252 source, the 

CTMFD was found to have up to a 1.01% detection efficiency of incident neutrons at the 

negative pressures that were tested. For a Pu-Be source at a distance of 500 cm, the 

CTMFD was found to have a detection efficiency of up to 3.21%. In other words, at a 

distance of 50 cm from a Cf-252 source, the CTMFD was found to be more efficient than 

a boron trifluoride detector, but much less efficient than a NE-213 liquid scintillator at 

fast neutron detection. Figures 19 and 20 show plots of the detection efficiency of the 

CTMFD as compared with the NE-213 and BF3 detectors at various distances, utilizing 

Cf-252 and Pu-Be sources. 

 

Figure 19.  Plot of neutron detection efficiency of selected detector types using 
Cf-252 source at various distances. 
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Figure 20.  Plot of neutron detection efficiency of selected detector types using 
Pu-Be source at various distances. 

B. RECOMMENDATIONS FOR CTMFD USE 

The primary advantage of the CTMFD as compared with the Beckman LS 6500 

Scintillation System, NE-213 liquid scintillator, and boron trifluoride detector is the fact 

that the CTMFD’s equipment string is much more minimalistic. Utilizing just three main 

components, the CTMFD can be moved, setup, and powered on in a quick and efficient 

manner. Although it was proven to be less efficient than a NE-213 detector at neutron 

detection, the CTMFD was still able to detect up to 3.21% of incident neutrons from a 

Pu-Be source at a distance of 5 meters. With more research on various (likely increased) 

negative pressures, the CTMFD could become an effective tool at interrogating potential 

sources of fast neutrons (nuclear weapons) at military checkpoints. However, due to its 

need to cool off every 60 seconds, multiple detectors would have to be used in 

overlapping time sequences. Also, since the detector is generally only sensitive to certain 

ranges of particle energies depending on the negative pressure of its working fluid, 

multiple detectors would also need to be used to sweep at various sensitivities. 

Considering the fact that each detector can be produced on the order of hundreds of 

dollars, fielding multiple detector units in one location is still likely cheaper than using 
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any of the other detector options utilized in this research. Also, scanning across multiple 

energy levels may provide a spectroscopy capability for fast neutron sources in real time. 

The CTMFD was also found to be extremely effective at actinide spectroscopy, 

detecting and discriminating amongst actinide solutions of low concentration that could 

not even be detected by a Beckman LS 6500 Scintillation System. Therefore, the 

CTMFD could be an effective tool in DOD’s mission to aid in domestic or foreign 

consequence management situations in the wake of a nuclear attack. A single detector 

could be flown out to the disaster area quickly and easily, and utilizing some material 

from a collected radioactive source, the isotopes could be determined after sweeping 

through several negative pressures and determining the plateau of the wait time versus 

negative pressure plot. The detector could also be used in situations that do not involve 

post-detonation analysis, including interrogating parts of a source from a nuclear weapon 

before it is detonated to aid in determining its origin.  

C. RECOMMENDATIONS FOR FUTURE RESEARCH 

Although the CTMFD has already proven to be a useful and cost-effective tool in 

the areas of neutron detection and actinide spectroscopy, further research could help to 

understand how to make it more beneficial in a military environment. Experimenting 

with various bulb sizes and pressure ranges, and building data tables that specify 

expected wait times for various isotopes could provide CTMFD users with quick access 

to predict which sources they might be interrogating. This would also prevent the user 

from having to conduct time-consuming sweeps at a large amount of negative pressures. 

Further, constructing a CTMFD that uses multiple bulbs as part of one detector, or 

creating software that can run multiple CTMFDs at once, could make the CTMFD design 

easier to use, more cost-effective than multiple individual detectors, and more effective at 

interrogating radioactive sources in a military environment.  

Another promising potential capability of the CTMFD is the potential to provide 

specific neutron spectroscopy capabilities. Since the principle detection mechanism of the 

CTMFD allows it to detect a single neutron, the detector could theoretically be used to 

detect neutrons of relatively low energies, or provide the capability to effectively read the 



 75

energy of an incident neutron. Future work could involve conducting research to detect 

the minimum energy threshold for neutron detection, and finding the specific ranges of 

neutron energies that could be detected for specific negative pressures.  
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APPENDIX.  ADDITIONAL DATA 

Table 25.   Mass values measured while adding 0.750 mL Pu-238 stock 
solution to CTMFD solution in order to adjust expected wait time from 

~40 seconds to ~10 seconds. 

 

 

 

 

Table 26.   Mass values measured while adding 0.5 mL UN stock solution to 
CTMFD solution in order to adjust expected wait time from ~60 seconds 

to ~10 seconds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mass of diluted 
sample with 

nalgene and cap 
(g) 

Mass of diluted sample 
with 0.750 mL stock Pu‐
238 solution added, 
nalgene and cap (g) 

55.1545  55.7445 

Mass of diluted 
sample with 

nalgene and cap 
(g) 

Mass of diluted sample 
with 0.5 mL stock UN 

solution added, nalgene 
and cap (g) 

56.1933  56.5888 
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