
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications Collection

2007

Providing a Foundation for Analysis of Volatile

Data Stores

Vidas, Timothy

Vidas, Timothy. "Providing a Foundation for Analysis of Volatile Data Stores." The

Journal of Digital Forensics, Security and Law: JDFSL 2.3 (2007): 45-56.

http://hdl.handle.net/10945/49297

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/45464646?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Journal of Digital Forensics, Security and Law, Vol. 2(3)

45

Providing a Foundation for Analysis of Volatile
Data Stores

Timothy Vidas
Naval Postgraduate School

Monterey, CA
tvidas@nps.edu

ABSTRACT

Current threats against typical computer systems demonstrate a need for
forensic analysis of memory-resident data in addition to the conventional static
analysis common today. Certain attacks and types of malware exist solely in
memory and leave little or no evidentiary information on nonvolatile stores
such as a hard disk drive. The desire to preserve system state at the time of
response may even warrant memory acquisition independent of perceived
threats and the ability to analyze the acquired duplicate.
Tools capable of duplicating various types of volatile data stores are becoming
widely available. Once the data store has been duplicated, current forensic
procedures have no method for extrapolating further useful information from
the duplicate. This paper is focused on providing the groundwork for
performing forensic investigations on the data that is typically stored in a
volatile data store, such as system RAM.
It is intended that, when combined with good acquisition techniques, it will be
shown that it is possible to obtain more post incident response information
along with less impact to potential evidence when compared to typical incident
response procedures.
Keywords: Digital Forensics, Volatility, RAM, Windows Forensics, Computer
Memory, Acquisition

1. INTRODUCTION
A common incident response step taken early in the process is to ‘pull the
plug’ from a powered on machine (Secret Service, 2002). Practitioners
recognized that performing a ‘clean’ shutdown could further change the state
of the system. However ‘pulling the plug’ also has its own drawbacks on later
analysis. One such drawback is the lack of ability to identify and examine the
execution state of the machine at the time of seizure.
Some tools allow the acquisition of the contents of ‘raw’ RAM from a running
system (Shipley & Reeve, 2006). Thus far, the analysis of a RAM image using
commercial tools has been limited to small special-use devices such as PDA’s
or various cellular phones. For most forensic cases seen today, traditional

Journal of Digital Forensics, Security and Law, Vol. 2(3)

46

post-mortem techniques may be sufficient for the United States court process,
but for cases involving an active adversary or completely memory resident
threat (such as some viruses and worms), analysis of volatile data stores will
not only be recommended, but will be required.
Regardless of the effectiveness and completeness of the methods and
mechanisms used for the acquisition of volatile data stores, procedures need to
be created to perform media analysis akin to those in use today for traditional
media.
This paper focuses on the analysis of the different portions of RAM used by
mainstream operating systems in order to adapt current response
methodologies to promote further preservation of the state of a suspect system.
It is intended that, given a complete RAM capture, the amount of information
available after the initial response be equal to or greater than the information
that could have been obtained using current incident response procedures.
Furthermore, the acquisition of RAM would have imposed less negative impact
to the preservation of evidence.

2. BACKGROUND
Currently, after an incident, captured memory (if available) is analyzed using
techniques that would be considered crude if used for traditional file system
level forensics. A simple hex view or strings (Fedora Core 4, 2006) analysis
may be used by an investigator to simply glance at a subset of data looking for
something that might provide some direction (Stover & Dickerson, 2005).
Experiments run in conjunction with this project showed that, on average, a
cleanly install and booted contemporary Windows based workstation with 512
MB of RAM would produce largely unusable strings output. Unusable does
not suggest that a string such as "dollar" was found, but it was not pertinent
because this was not a counterfeiting suspect. Unusable indicates that, while
technically printable, most of the strings extracted have no inherent meaning,
such as "EWCcedh". The ratio of the amount of information obtained from the
data is very low. The situation is only worsened if only a hex view analysis is
performed without the aid of a tool such as strings.
Recently the research community has made some forward progress in RAM
forensics. The 2005 Digital Forensic Research Workshop (DFRWS) challenge
served as a launch pad for academic research (DFRWS, 2007). Unfortunately,
the challenge produced no open tools and little insight into the methodologies.
A few topically related projects have become openly available, among them are
Procloc (Vidas, 2007), IR/CF Tools (Carvey, 2007), WMFT (Burdach, 2007),
and Ptfinder (Schuster, 2007).

3. COMPARISON TO TRADITIONAL METHODS
The analysis of volatile stores and traditional postmortem forensics vary

Journal of Digital Forensics, Security and Law, Vol. 2(3)

47

greatly. Regardless of the medium, traditional forensics typically involves the
postmortem media analysis of a file system.

3.1 Lack of Structure
Though it is common to speak of analyzing a particular workstation or personal
computer, the analysis is very often focused on a file system. Even ‘advanced
techniques’ focus on clarifying or adding to the file system that is being
examined.
Popular industry products can perform automated actions such as recovering
folders, finding partitions, undeleting items, etc. All of these actions work
toward the goal of having an "evidence container" in which to perform
analysis. All further analysis is done within this container.
Consider a word processor document that contains an embedded digital picture.
Contemporary tools allow an analyst to quickly view all digital pictures on the
media, including the embedded picture. This picture does not in itself exist as
a file, but as a portion of a file; however the picture by itself may be considered
as evidence. Even the "bit-for-bit" duplicates of hard disks are parsed and data
that was not contained within the suspect file system on the original disk is
added to the evidence container in the analysis software (such as certain
‘deleted’ files). These types of files are added to the container as additional
‘items.’ Thus traditional analysis depends very heavily on the understanding
of the file system that was used on the suspect system, and the file system is
the primary focus of analysis.
Volatile data stores typically have no file system abstraction layer and the data
within is managed directly by the operating system. For this reason, tools that
focus on the analysis of file systems are not able to cope with volatile stores
well. When considering a volatile data store such as Random Access Memory
(RAM), factors other than the file system become main focuses: the operating
system type and version in use, the configuration of that operating system and
possibly other information such as specific hardware in use.

3.2 Acquisition
When acquiring a hard disk drive, it is preferred that the drive is not in use at
the time of acquisition. Acquisition procedures may even dictate disconnecting
the drive and using special hardware such as a write-blocking device. These
procedures are in place to ensure that the input to the duplication function is
unvarying and thus establish reproducible duplication results. When
considering memory, current acquisition techniques actually involve the use of
the host system. Creating the duplicate changes the contents of memory.
Particular instances of volatile stores will typically vary much more than
instances of non-volatile stores. This variance is partly due to the changing
nature of volatile stores like RAM, which is perceived as a faster, more

Journal of Digital Forensics, Security and Law, Vol. 2(3)

48

valuable resource than a non-volatile store to the system and is thus always in
contention. This resource contention results in a further inability to acquire a
complete point in time duplicate of RAM as is possible with nonvolatile stores
such as a Hard Disk Drive. While work is being done on developing special
hardware to facilitate a more pristine copy, this work is not yet readily
available and when such hardware does exist it will still require pre-incident
installation (Carrier & Grand, 2004).

Contrary to popular belief, data may still exist in a volatile data store from a
time prior to the last reboot of the system (Chow et all, 2005) (which actually
challenges the term ‘volatile’). While most hardware is capable of "zero-ing"
or otherwise clearing the contents of RAM at boot, many systems ship with the
default setting to "quick" mode where no memory testing or clearing is
performed at all. It should be pointed out that this capability is usually
presented at a level much lower than the operating system, typically as a BIOS
feature.

4. ANALYSIS
In order to demonstrate the value of capturing volatile data, it must be shown
that given a duplicate of a volatile store, that at least as much information must
be attainable as would have been attainable via typical incident response
procedures, with as little impact to the state of the volatile store as possible.
It is prudent to point out that all current methods of volatile data acquisition
actually alter the state of the volatile data. For example when duplicating
RAM, a new process must be created to perform the act of duplication. The
creation of this process will alter the state of the RAM.
While it is ultimately desirable to capture and analyze all portions/types of
volatile data (i.e. processes, threads, current network connections, open files,
etc), for demonstrative purposes, it must be shown that it is viable to perform
post incident analysis of at least one portion. The analysis must produces at
least as much information as a comparable live response tool. Simulation of
the Windows Task Manager was selected to demonstrate proof of concept. Or
for those familiar, PSList.exe as part of the Sysinterals toolkit provides a closer
approximation.
As with most Digital Forensics cases, the procured information will be
interpreted with respect to the unique case (i.e. counterfeiting vs malware
creation vs identity theft, etc). It may very well be the case that analysis of all
the above mentioned portions/types of memory are not worthy of noting in all
cases. If the volatile store was acquired in its entirety, running multiple tests or
performing repeated analysis will not further taint evidence.

Journal of Digital Forensics, Security and Law, Vol. 2(3)

49

4.1 Implementation Goals
Several criteria easily stand out as being desirable when implementing such a
tool. In an attempt to gain acceptance the main focus of the initial tool was to
not only make it functional, but to encourage use by end-users. Primary
criteria included:

1. Must work on dd-style dumps (preferred) and on Microsoft
DMP ‘Complete’ style dumps.

2. Must be simple to use.

3. Must accurately produce results that would have normally been
obtained by running commands during incident response. (for
tool development it must accurately re-produce a pre-response
observed set of processes)

4. Must work on multiple versions of Windows (and be adaptable
to Linux).

4.2 Brute Force Searching
When parsing a memory image, the most complete way to search for process
structures will be to start assuming each byte is the first byte of a process
structure and validating (or not) the assumption with tests, then to shift one
byte and repeat the process. Such a search would be considered a linear brute
force search.
Even though each EPROCESS structure contains pointers to other EPROCESS
structures (Windows maintains a doubly linked list), it is preferable to
manually locate EPROCESS structures so that the results can include both
latent processes and potentially, processes attempting concealment from tools
that enumerate processes (such as the Task Manager utility).
When considering the increasingly large amounts of RAM available in today’s
OSs, a linear byte-by-byte search may very well be considered computationally
impractical. A search assuming the initial byte must be page aligned would be
much faster. While it is not generically safe to assume that all process
structures will be allocated on a page boundary, it may be safe to assume
certain other boundaries greater than one (such as an eight byte boundary for
Windows)(MSDN, 2007). If a particular OS implements certain boundaries, it
may be possible to search based on these offsets in order to greatly reduce the
amount of testing and thus processing.

4.3 Structures of Interest
Processes and threads are vital concepts required to be explored in light of the
objectives. Even though internal structures are by definition not known in
closed source products such as Windows, methods such as debugging and

Journal of Digital Forensics, Security and Law, Vol. 2(3)

50

reverse engineering can be used to gain insight about these structures. Some of
these structures are explored in the following few sections.
4.3.1 EProcess Structure
The Windows process structure, EPROCESS, can be enumerated using a
kernel debugger. (e.g. using the Windows debugger to enumerate fields by
issuing a !proccessfields, dt _eprocess or dt nt!_eprocess
command.) (Microsoft Corp., 2006) Substructures can also be enumerated in
this way. From the information gleamed from the debugger a signature for the
EPROCESS and subsequent structures can be created. Other substructures
such as the Kernel Process KPROCESS (Process Control Block - PCB) can be
modeled similarly, and some EPROCESS elements, such as the Process
Environment Block (PEB), are pointers to data that exists elsewhere. A listing
and description of EPROCESS members can be found in Microsoft Windows
Internals (Russinovich & Solomon, 2006).
Certain parts of the EPROCESS structure stand out as being easily identifiable.
Similar to how file remnants and certain deleted files are found in unused
portions of a file system or disk device, it is possible to find EPROCESS
structures by locating individual portions of the structure and then testing other
sections (by offset, since offsets can be discerned from the structure dump) of
the EPROCESS candidate for validity.
4.3.2 EProcess substructure Timestamp
One part of the EPROCESS structure that may be easy for the reader to relate
with is the timestamp information. While most readers will be familiar with
the concept of a timestamp, many may not be familiar with this particular
implementation. FILETIME is a Windows defined structure that has existed
since Windows 3.1 but is also defined in the current .NET framework 2.0. It is
a 64 bit value that consists of two data members: the high order 32 bits are
dwHighDateTime and the low order 32 bits are dwLowDateTime. The 64
bits typically represent a number of 100 nanosecond intervals since January 1,
1601. Once the FILETIME portion of an EPROCESS is known, some
conversion must take place to make this a usable timestamp for investigative
purposes. A benefit of decoding a timestamp allows for comparison of disk
times to process times for rough estimating and correlation (MSDN, 2006).
Below are two offsets from a Windows XP SP2 EPROCESS structure. It is
easy to see the Low and High order sections and in fact the 64 bit math
required to decode this into a human readable timestamp is fairly
straightforward. Depending on the debugger options, the offsets will be
reported as:

 +0x070 CreateTime : _LARGE_INTEGER
 +0x078 ExitTime : _LARGE_INTEGER

Journal of Digital Forensics, Security and Law, Vol. 2(3)

51

or in a more detail with the same tool as:
 +0x070 CreateTime : union
 _LARGE_INTEGER, 4 elements, 0x8 bytes
 +0x000 LowPart : Uint4B
 +0x004 HighPart : Int4B
 +0x000 u : struct
 __unnamed, 2 elements, 0x8 bytes
 +0x000 LowPart : Uint4B
 +0x004 HighPart : Int4B
 +0x000 QuadPart : Int8B
 +0x078 ExitTime : union
 _LARGE_INTEGER, 4 elements, 0x8 bytes
 +0x000 LowPart : Uint4B
 +0x004 HighPart : Int4B
 +0x000 u : struct
 __unnamed, 2 elements, 0x8 bytes
 +0x000 LowPart : Uint4B
 +0x004 HighPart : Int4B
 +0x000 QuadPart : Int8B

4.3.3 EProcess substructure Process Control Block
The very first portion of the EPROCESS structure is the PCB and at the first
offset a header can be found.

 +0x000 Pcb : struct _KPROCESS, 29 elements, 0x6c bytes
 +0x000 Header : struct
 _DISPATCHER_HEADER, 6 elements, 0x10 bytes
 +0x000 Type : UChar
 +0x001 Absolute : UChar
 +0x002 Size : UChar
 +0x003 Inserted : UChar
 +0x004 SignalState : Int4B
 +0x008 WaitListHead : struct
 _LIST_ENTRY, 2 elements, 0x8 bytes
 +0x000 Flink : Ptr32 to
 +0x004 Blink : Ptr32 to
 +0x010 ProfileListHead : struct
 _LIST_ENTRY, 2 elements, 0x8 bytes
 +0x000 Flink : Ptr32 to
 +0x004 Blink : Ptr32 to

The 16 header bytes specify the type of structure that follows. (The same
header is used not only by processes and threads but also events, semaphores,
queues, etc.). (Russinovich & Solomon, 2005)

Journal of Digital Forensics, Security and Law, Vol. 2(3)

52

Some processes may seem to share the same or very similar values for
locations (such as the Process Environment Block). These addresses are
typically virtual addresses and the distinction between processes can be shown
by converting the virtual address to the physical address.

4.3.4 The Dispatch Header
For each candidate structure a Dispatch Header is assumed, then data members
of the Header can be checked, offsets to other sections of the EPROCESS or
ETHREAD can be checked, and values of certain fields can be checked
because ranges of values for these fields are known (such as date, process
priority range, existence of a Page Directory Index, or kernel memory address
which must be mapped above 0x80000000).
EPROCESS structures can be found in different versions of Windows by
utilizing different offsets for equivalent portions of the EPROCESS structure.
For example, a Windows XP SP2 EPROCESS structure contains the Process
ID (PID) at offset 0x09c, while Windows 2000 SP4 EPROCESS structure
contains the PID at offset 0x084.

Windows XP SP2 EPROCESS field:
 +0x09c UniqueProcessId : Ptr32 to

Windows 2000 SP4 EPROCESS field:
 +0x084 UniqueProcessId : Ptr32 Void

Different types of structures, such as a thread, can be located using techniques
similar to those used for locating processes. Known offsets can be used to
validate fields of potential structures.

4.4 Duplicate Type Compatibility
Several methods could be used to provide compatibility between the complete
and dd style memory dumps. Since the complete style memory dump contains
a header in addition to the RAW memory data, the complete memory dump
could be ‘converted’ to a dd style dump by removing the header. Similarly,
during processing the header could simply be ignored by skipping to the offset
pertaining to the first memory location. This skip will only introduce minimal
overhead (such as having to subtract out the amount of the skip when reporting
structure location in RAM).
Finally, a complete memory dump may actually be processed identically to that
of a dd style dump as long as the DMP header size is a multiple of the page
size (or in the case of this particular research, the first location of to the
contents of the RAM dump falls on the aforementioned 8 byte scan boundary.)

Journal of Digital Forensics, Security and Law, Vol. 2(3)

53

It is prudent to point out that the DMP file format is proprietary and the above
discussion is based on both observation and assumption.

4.5 Non-Volatile Store Correlation
Much information either required for or beneficial to the analysis of volatile
stores will likely only be attainable from the non-volatile stores. Size and
format of data structures, method of segmentation and management, even page
size may depend upon OS version and/or hardware in use. Even the owner of a
process is tracked in a process structure as a portion of an access token, which
would have to be compared with registry entries in order to obtain the
associated username. Therefore obtaining information from a non-volatile
store from the suspect system version (i.e. the version of OS from the hard
disk) can be quite beneficial for the analysis of the volatile store.
Even if it is not a technical requirement, having some information typically
acquired using traditional non-volatile techniques, or in some cases live
response steps, may serve as an enabler for analysis on acquired volatile data.
OS type and patch level are among the foremost important factors.
Other types of information from non-volatile stores may prove to be very
valuable. Correlation a RAM duplicate with the pagefile on disk would yield a
more holistic view of virtual memory.

5. CONCLUSIONS
Fully commented implementation program written in PERL employing five
tests for both process and thread structures for Windows 2000 through
Windows 2003 Server is less than 1000 lines of code. The script can fully
parse a 512 MB RAM image in about 7 minutes when executing on a Pentium
3m with 1 GB of RAM.
Potentially every member of the EPROCESS structure could be checked for
validity using one or more tests per member, and each test could be ranked in
order to create a heuristic for determining accuracy. History typically shows
that more tests should produce more accurate results. However experiments on
controlled, baseline RAM duplicates demonstrate high accuracy with as few as
five implemented tests.
The implementation confirms that information about the state of a system can
be found postmortem. At the very least, Task Manager functionality can be
simulated by locating EPROCESS structures in a RAM image, and in some
cases more information is available than Task Manager is capable of reporting
(such as an "old" process). Furthermore, good acquisition techniques can
provide this information with less impact than using similar tools on a live
system. Unfortunately, this does not give a responder the ability to alter the
response based on the state in which the system is found, but does allow the

Journal of Digital Forensics, Security and Law, Vol. 2(3)

54

state of the system to be preserved along with the preservation of the non-
volatile stores, and inspected at a later time. Further preserving system state
and the capability to re-inspect RAM contents at a later time are both desirable
abilities, and should warrant the consideration of RAM acquisition as part of
incidence response.

6. FUTURE WORK
The current state of the tool should definitely be considered beta and should
not be construed as production level. It could easily be improved or redesigned
to be more likely to be adopted by mainstream responders. Desirable features
may include: automatic detection of the OS from which the RAM was
acquired, detection of popular dump formats (DMP) versus dd-style RAM
capture, automated extraction of selected/certain processes memory space,
pagefile unification, automated store correlation (i.e. registry hives), supporting
boot switches such as /3G and /PAE, and supporting architectures other that
i386.
Similar to how hash lists are used today for known good or known bad files,
lists or heuristics could be added in order to bring attention to objects that are
likely to require further research. In order to find outliers, the set of processes
found via brute-force could be compared with those found in the linked list that
is maintained by the OS. Processes and threads that "don't play by the rules"
could be flagged as well (i.e. no window title, path, etc)
The current version of the analysis tool is limited to process related
information. The creation of similar tools to obtain other popular incident
response information (like current network information, open files, etc) should
be explored.

7. ACKNOWLEDGEMENTS
Some related preliminary work was previously presented at the Third Annual
IFIP WG 11.9 International Conference on Digital Forensics in Orlando, FL on
January 28-31, 2007.

8. REFERENCES
Burdach, M. (2007), Forensic Analysis, http://strony.aster.pl/forensics/,
Accessed Jan 10, 2007.
Carrier, B., Grand, J. (2004) “A Hardware-based Memory Acquisition
Procedure for Digital Investigations,” Digital Investigation. Vol1 (Issue
1):50-60
Carvey, H. (2007), Windows IR/CF Tools,
http://sourceforge.net/projects/windowsir, Accessed Jan 10, 2007.

Journal of Digital Forensics, Security and Law, Vol. 2(3)

55

Chow J., Pfaff B., Garfinkel T.,and Rosenblum M. (2005) ‘Shredding Your
Garbage: Reducing Data Lifetime Through Secure Deallocation’. 14th
USENIX Security Symposium. July/August 2005. Baltimore, MD.
DFRWS (2007), DFRWS 2005 Forensics Challenge,
http://dfrws.org/2005/challenge/, Accessed Jan 10, 2007.
Fedora Core 4 (2006). ‘Strings man page,’ Fedora Core 4.
KB 555223 (2007),‘RAM, Virtual Memory, Pagefile and all that stuff,’
http://support.microsoft.com/default.aspx?scid=kb;en-us;555223, Accessed Jan
10, 2007.
Microsoft Corp. (2006), Debugging Tools for Windows help file. Microsoft
Corp.
MSDN (2007), ‘.NET Framework FILETIME specification,’
http://msdn2.microsoft.com/en-s/library/system.runtime.interopservices.comty
pes.filetime.aspx, Accessed Jan 10, 2007.
MSDN (2007), ‘Six tips for efficient memory usage,’
http://www.microsoft.com/whdc/driver/perform/mem-alloc.mspx, Accessed
Jan 10, 2007.
MSDN (2007), ‘Why you cant tread a FILETIME as an int64,’
blogs.msdn.com/oldnewthing/archive/2004/08/25/220195.aspx, Accessed Jan
10, 2007.
Russinovich, M. and Solomon, D (2005). Microsoft Windows Internals.
Fourth Edition. Microsoft Press. Redmond, Washington.
Schuster, A. (2007), PTFinder Version 0.3.00,
http://computer.forensikblog.de/en/2006/09/ptfinder_0_3_00.html,
Accessed Jan 10, 2007.
Shipley, T. and Reeve, H. (2006), Collecting Evidence from a Running
Computer: A Technical and Legal Primer for the Justice Community. The
National Consortium for Justice Information and Statistics.
Stover, S. and Dickerson, M. (2005), ‘Using Memory Dumps in Digital
Forensics,’ ;Login: The USENIX Magazine. Volume 30, Issue 6.
United States Secret Service (2002), Best Practices for Seizing Electronic
Evidence. Second Edition.
Vidas, T. (2007), NUCIA, http://nucia.unomaha.edu/tvidas/,
Accessed Jan 10, 2007.

Journal of Digital Forensics, Security and Law, Vol. 2(3)

56

