
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications Collection

1993

Positive definite Toeplitz matrices, the Arnoldi

process for isometric operators, and Gaussian

quadrature on the unit circle

Gragg, William B.

Elsevier Science Publishers B.V.

Gragg, William B. "Positive definite Toeplitz matrices, the Arnoldi process for

isometric operators, and Gaussian quadrature on the unit circle." Journal of

Computational and Applied Mathematics 46.1 (1993): 183-198.

http://hdl.handle.net/10945/49289



Journal of Computational and Applied Mathematics 46 (1993) 183-198 
North-Holland 

CAM 1335 

183 

Positive definite Toeplitz matrices, the 
Arnoldi process for isometric operators, and 
Gaussian quadrature on the unit circle * 

William B. Gragg * * 
Department of Mathematics, Naval Postgraduate School, Monterey, CA, United States 

Received 1 November 1991 
Revised 16 April 1992 

Abstract 

Gragg, W.B., Positive definite Toeplitz matrices, the Arnoldi process for isometric operators, and Gaussian 
quadrature on the unit circle, Journal of Computational and Applied Mathematics 46 (1993) 183-198. 

We show that the well-known Levinson algorithm for computing the inverse Cholesky factorization of positive 
definite Toeplitz matrices can be viewed as a special case of a more general process. The latter process 
provides a very efficient implementation of the Arnoldi process when the underlying operator is isometric. 
This is analogous with the case of Hermitian operators where the Hessenberg matrix becomes tridiagonal and 
results in the Hermitian Lanczos process. We investigate the structure of the Hessenberg matrices in the 
isometric case and show that simple modifications of them move all their eigenvalues to the unit circle. These 
eigenvalues are then interpreted as abscissas for analogs of Gaussian quadrature, now on the unit circle 
instead of the real line. The trapezoidal rule appears as the analog of the Gauss-Legendre formula. 

Keywords: Toeplitz matrices; unitary Hessenberg matrices; Szego polynomials. 

1. Generalities 

The linear spaces Pc, of complex polynomials a, and C~, of simply infinite (column) vectors 
a with finitely many nonnull elements, are isomorphic under the correspondence 

T 
v(O:=(1,{,{2, ... ) . 
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Let 
00 H 

M = (/-Li,j)i,j=O = M 

be positive definite in the sense that its nth sections 

M := ( . . )n-1 
n /-L,,] i,j=O' n = 1, 2, 3, ... , 

are all positive definite. Then M determines inner products (', .),.. and (', ')M for IRc and C~, 
respectively, by 

(a, (3),..:= (a, b)M:=aHMb. 

The superscripts T and H denote transposition and conjugate transposition, respectively. We 
have 

where 

ej := (Oi,J~=l' j = 1, 2, 3, ... , 

is the jth axis vector in C~. Hence, M is the moment matrix of (', .),.. with respect to the 
standard basis {(k}~ for !Pc' When the context dictates, ej will also denote the jth column of the 
n X n identity matrix 

The inverse Cholesky decomposition 

RHMR =D = diag(oo, 0 1 , oz,"')' 

with R an upper right triangular unit matrix, can be computed recursively. Equivalently, 

R~MnRn = Dn, n = 1, 2, 3, .... 

Setting 

we require 

or equivalently 

Mnrn+mn=O, 
Since 

we see that rn and then on are easily computed. This uses O(n 3
) arithmetic operations to 

decompose Mn and is (presumably) a numerically stable process. We also have 

det Mn+1 
on = = /-L n n - m~M;;lmm > O. 

det Mn 
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The columns of R are orthogonal vectors in C~; the columns of RD - 1/2 are orthonormal. 
The monic polynomials {"'n(n}~ defined by 

("'0(0, "'1(0, "'2(0,···) := V(OT R, 

or equivalently by 

satisfy 

"'nU):= Vn(OTrn + C, Vn(O:= (1, ~, ... ,C-1)T, 

m =1= n, 
m=n. 

The scaled polynomials "'n(n/o!/2 are orthonormal with respect to (', . )/L' Thus, each positive 
definite M determines an inner product for IP c and a set of monic orthogonal polynomials for 
which II "'n II; = on > O. Conversely, any sequence {"'n(n}~ with "'n(~) = C + ... is orthogonal 
with respect to such an inner product (', . )/L' where the norms II "'n II/L = sqrt On can be 
arbitrary positive numbers. 

Denote by IPc the subspace of IPc of polynomials of degree ~ n. The Fourier expansion of 
a E IPc is 

k=O 

Moreover, we have 

It follows that 

min{(a, aL: a(O = ~n + '" } = ("'n' "'n)/L = on' 

and that this extremal property uniquely determines the monic polynomial "'n' 
The kernel polynomial Kn(~' w), of degree ~ n in ~ and w H

, may be 
generating function of M;:;'l: 

T -1 H -1 (Mn+1 
KnU, w):= Vn+1(0 Mn+1Vn+1(W ) = d det T 

et Mn+1 Vn+1(0 

= t "'k(O"'k(W)H, 
k=O Ok 

the determinant representation following from Sylvester's determinant identity 

det(~::~ ~:::) = det Al,1 det(A 2,2 -A2,lAl,;A1,2)' 

defined as the 

and the third from M;:;'l =Rn+1Dn-l1R~+1' By means of elementary operations we also have 

det Mn( CT, T) 1 
Kn(CT, T) = , with Mn(CT, T):= (UiU-T), ~j('-CT))/Lr~o' 

det Mn+1 
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For a E JP>~ we have 

(Kn(" w), a)" =a(w), 

the reproducing property of KnU;, w), and it is not difficult to show, by Cauchy's inequality, that 

max{ 1 a(w) 12: a E JP>~, (a, a)" = I} = Kn(W, w), 

with the extremal polynomials the unimodular multiples of 

KnU;, w) 
a(O = 1/2' 

Kn(W,W) 

Let E: C~ ~ C~ be the downshift operator; specifically, 

E := (e 2' e 3' e 4 , •.. ) = ( (\,j + 1 (j ~ 0-

The corresponding operator on JP> <c is multiplication by ~: 

~a(O = V(OT Ea . 

We have 

M':= (!-Li,j+l(j~O =ME. 

The finite analog of this is 

M~ = NnFn, Fn:= En - rn e!. 
Fn is the Frobenius matrix, or companion matrix, associated with «fin(C)' Now, as is easily 
verified using the above results, 

en«finU) + F} vn(O = vn(O~ and el«fin(O + FnYn(O = Yn(O~, 
where 

and 

is the n x n reversal matrix. It follows that 

det(~Mn - M~) 1 (Mn 
«fin(O = det(an - Fn) = d = d det T 

et Mn et Mn vn(O 
mn) 
C 

is the characteristic polynomial of Fn , and that if 

A E A (FJ := {A n, I' An,2'"'' An,J , 

the spectrum of Fn, then Yn(A) and Vn(A) are associated eigenvectors of Fn and FnT
, respec­

tively. Moreover, we have 

F}v" = v"An' Fn' UnVn = Unv,,· An' 

where 

An := diag( A n I' An 2' ... , Ann) " , 
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and 

Vn:= v,,(An,l' An,2,···,An,n):= (Vn(An,l)' Vn(A n,2),···,vn(A n,n)) 

is the Vandermonde matrix. If the eigenvalues are all distinct, then v" and UnVn are nonsingular 
and An is the Jordan canonical form of Fn' If some of the eigenvalues are repeated, then v" 
must be replaced by the corresponding confluent Vandermonde matrix, in which the corre­
sponding columns are replaced by successive (Taylor) derivatives, In such cases Fn is not 
diagonalizable and has only one normalized eigenvector associated with each distinct eigen­
value. 

We have 

U =: (v .. )n 
n l,j i,j= l' 

with 

i+j<,n, 

i+j=n+1, 
i+j>n+1. 

That is, Un is a unit upper triangular Hankel matrix. It follows that 

FnUn = UnFnT
, 

that is, Fn is symmetrically similar with FnT
• This can be used to show that any matrix A E cnxn 

is symmetrically similar with AT, and equivalently, that every A E cnxn is the product of two 
symmetric matrices, either one of which can be taken nonsingular. The elements of 

are Horner polynomials. They satisfy the recursion 

'TJ n n(O = 1, 
for k ~ n - 1, n - 2, ... ,0, 1 

'TJk)?) = ?'TJk+l)?) + Pk,n' 
"'n(O = 'TJo n(?), 

where 

Define the matrices Hn by 

RnHn:= FnRn' 

Then Fn and Hn are similar matrices and 

DnHn = R~M~Rn' 

Moreover 
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is unit right Hessenberg (nearly triangular) and 

Equivalently, 

o/n+l({) = ({ - 7Jn)o/n({) - (%({), o/1({)"'" o/n-l({))hn· 

If we put 

then by the orthogonality, 

(o/i' {o/n)JL 
7Ji,n = 

This is the (generalized) Arnoldi reduction of the operator {: IP c ~ IP c to Hessenberg form, 
with respect to the inner product ( " .) JL' If we define 

Qn :=RJv" = (o/i-l(An,j))~,j=l' 
then we have 

HnTQn = QnAn, Hn' SnQn = SnQn' An' 
with 

S :=R-1UR-T=ST 
n n n n n 

(R;; 1 is upper right triangular, Un is upper left triangular, R;;T is lower left triangular). 
The rational matrix function 

9fnC{):= C{In -HJ- 1 

will be called the nth resolvent. The sequence {cPn({)}7 of scaled 0, I)-elements 

cPn({) := f.Lo,oei9fnC{)e 1 

is a generalized continued fraction associated with the moment matrix M. We have 

1Tn({) (7JO 
cPnC{) = o/n({) , with 1Tn({) =f.Loo det(On-l -H~_l)' Hn =: *. 

It follows that if we put cPo({) := 0, then also 

1Tn + 1C{) = ({ -7Jn ) 1Tn({) - (1ToCn, 1T 1cn,···, 1Tn- 1Cn)h n, 

with initial conditions 

1To({) := 0, 

We can give an explicit formula for cPn<{), solely in terms of the moments f.Li,j' This is 
analogous with what is known as Nuttall's compact formula in the theory of the Pade table. 
First of all, it is easy to get 

9fn(n =R;;l({Mn _M~)-lR;;HDn' 
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Then from 

Me 
R - H M R D- 1 n 1 n e1 = n n n e1 = --

/-Lo,O 

we conclude that 

cf>nCO =eiMnC~Mn _M~)-lMne1' 
From this we find, by means of Sylvester's identity, elementary operations and the determinant 
formula for I/ln(~)' that 

1 (Mne 1 
1TnCO = d M det et n 0 

Further elementary operations now reduce this to 

Letting 
00 

cf>CO:= L /-Lo,k 
k=O k + 1 

be the formal Laurent series determined by the first row of M, we now arrive at 

/-Lo,o /-LO,1 /-Lo,n 

00 
/-L 1,0 /-L 1,1 /-L l,n 

det Mn[ cf>COl/lnCO - 1TnCO] = L det 
k=1 

/-Ln-1,0 /-Ln-l,1 /-L n -I,n 
/-LO,k /-Lo,k + 1 /-LO,k +n 

Since 

= det 1 ( Mn 
det Mn eiM~ 

mn ) 
/-LO,n+1 ' 

we conclude that, in general, 

770 n (1) cf>CO - cf>nCO = /-Lo,o ~n~2 + 0 (n+3 ' 

1 
~k+l 

Let A be a linear transformation on the inner product space %, with inner product (', .). If 
0=1= ko E %, we could, in theory, form the Krylov sequence k n =Akn_1 =Anko, the moments 

/-Li,j = (ki' kJ = (AikO' Ajko) 
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and, as long as Mn remains positive definite, we could form the polynomial l{1n+I' Transplanta­
tion of the Arnoldi process from IP c to 7i" allows us to avoid construction of all these entities, and 
this is very important for numerical stability. We put 

Xn:= l{1n(A)ko and Xn:= (xa, XI"'" xn- I), 

an n-tuple of vectors in 7i". Then 

AXn =XnHn +xne~ and ((Xi' XJ);;~lo =Dn' 

Moreover, setting 

X :=X D- I / 2 
n n n , 

we see that 

and that the vectors of Xn are orthonormal. If on = II Xn 112 = 0, that is, if Mn+1 is singular, then 
these vectors form an orthonormal basis for an invariant subspace of A. However, this event is 
more unlikely in practice than it is in theory, and the study of how the spectra of 7i"n and A are 
related is of great interest. We have 

KnRn=Xn, Kn:=(ko, kl,···,kn_I), 

and this represents an (inverse) Gram-Schmidt orthogonalization of the Krylov vectors {k)3- 1
• 

The Arnoldi process for A, in the modified Gram-Schmidt formulation, is as follows: 

Xo = ko, 0o = (x o, x a), 
for n ~ 1, 2, ... until on = ° 

xn ~Axn-I' 
for k ~ 0, 1, ... , n - 1 

'Y"Jk,n-1 = (X k, Xn)/Ok' 
xn ~xn -Xk'Y"Jk,n-P 

on = (Xn, x n)· 

In practice, the use of reorthogonalization may be required. If 7i" = eN, A E C NXN, (y, x) = 
yHx, and the process goes to stage n, the cost is n applications of A and about n2N arithmetic 
operations when no reorthogonalizations are used. 

2. Toeplitz matrices M 

Suppose now that A: 7i" ~ 7i" is isometric with respect to ( " .), that is, (Ay, Ax) == (y, x) 
for x, y E 7i". Then 

. . (( x o, Aj-iXO ) =: J.Lj-i' 
J.L. =(A'x AJx ) = ',j 0' a (i- j ) _ ( i-j)H _ H _. .. A x o, Xo - x o, A Xo - J.Li-j -. J.Lj-i' I ~J, 
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so M = (J.Lj-,.) is a positive definite Toeplitz matrix. We also have (~a, ~f3)1-' = (a, f3)1-' and 
(Ea, Eb)M= (a, b)M' that is, ETME =M. Mis persymmetric in the sense that 

JnM;Jn =Mn' 

or equivalently, since Mn = MnH
, 

JnMnJn =Mn' 

This means that if we define 

a*(O:= Ca(~-l), for a E Pc, 
then we have 

(a, f3)1-' = (f3*, a*)I-" a, f3 E Pc. 
In particular, we put 

and have 

("'n*, "'n*)1-' = ("'n' "'n)1-' = on' 

Let us put 

Yn := "'n(O). 

Since "'n*(O) = 1, we can write 

1 - "'n*(O n-l_ 

~ := L ak"'k(O, ak := an.k' 
k~O 

that is, 
n-l 

"'n*(O = 1 - L ak~"'k(O· 
k~O 

Now the polynomials {~"'k(O}~ are also orthogonal, so 

(~"'k' "'n*)I-'(~"'k' 1)1-' - akok = ("'n' a"'k) *)1-' = ("'n' ~n-k-l"'k*)1-' = 0, for k < n. 

Hence the numbers 

Ok 

are indeed independent of n. One sees also that Yn = -an - 1• Hence, 

"'n\l(O = "'n*(O + Yn+l~"'n(O, 
and equivalently 

"'n+l(O = ~"'n(O + Yn+l"'n*(O· 
Finally, from 

("'n*, ~"'n)1-' = ("'n*, "'n+l - Yn+l"'n*)1-' = -Yn+lon' 
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we see that 

Hence we have the Levinson algorithm: 

ifro(O = 1, 00 = f.Lo, 
for n = 0, 1, 2, ... 

'Yn+l = -(1, ~ifrn)JL/on' 
ifrn+i~) = ~ifrn(~) + 'Y'2+1ifrn*(0, 
0n+l = 0n(1- I 'Yn+ll ). 

This computes the inverse Cholesky factorization of Mn in O(nZ
) operations. It follows that 

n 

on=f.Lon(l-I'YkI
Z

), f.LO=00>01>02> ... >on~o*~O, l'Ynl <l,for n~1. 
k=l 

If f.L n = ()n2, -1 < () < 1, then we have 'Yn = ()n, 

n 00 

On = n (1- ()Zk) ~ n (1- ()2k) = 0* > 0 and 
k=l k=l 

where 

n (1- ()n)(l- ()n-I) ... (1- ()n-k+I) 

[k 10 := (1 - ())(1 - ()Z) ... (1 _ ()k) 

are the Gauss binomial coefficients. This can be shown by noting that M = 

diag«()e)«()-Zij)diag«()k
2

) is diagonally equivalent with a symmetric Vandermonde matrix whose 
Cholesky and inverse Cholesky factors are known from polynomial interpolation theory. Of 
course the simplest example is f.L n = on 0' for which ifrn(~) = ~n, ifrn*(O == l. 

The analogs of the Cristoffel-Darbo~ formula (which occurs in the case of Hermitian A and 
Hankel M) are 

ifrn*+ I( Oifrn*+ I( W ) - ifrn+ 1 (Oifrn + 1( W ) ifrn* (Oifrn* (w ) - ~wifrn(OIF,;(Wj 

on+l(l - ~w) On(1- ~w) 

These follow from the recursion formulas for the polynomials ifrn and ifrn*. The matrix 
interpretation is that M; I can be expressed in two ways as the difference of products of left 
and right triangular Toeplitz factors (so-called Gohberg-Semenecul formulas). These formulas 
form the basis of recent work on superfast, O(n log~n), methods for solving (Hankel and) 
Toeplitz systems Mnx = b. The numerical stability of such methods seems not to have been 
determined. Examples like the one above may aid in assessing the effect of numerical 
cancellation when forming x = M; 1 b using such formulas. 

The transliteration of the Levinson algorithm from [pl c to Jf" gives an isometric analog of the 
Hermitian Lanczos process. The latter is the specialization of the Arnoldi process to Hermitian 
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A; in that case the matrix H is tridiagonal, making the simplification apparent. Setting 

x n := I/In(A)ko, 

and noting that 

(I/In*, (I/In)jJ. = (x:, Axn), 

we get the algorithm 

Xo = x(j = ko, 00 = (x o, x o), 
for n = 0, 1,2, ... until 0n+l = 0 

Yn+l = -(x:, Axn)/on, 
xn+l =Axn + Yn+lX:, 
X:+l =x: + Yn+lAxn' 

0n+l = 0n(1- 1 Yn+11 2
). 

193 

If Ji" = eN, A E e NXN and (y, x) = yHx, then A is unitary. If the process goes to stage n, the 
cost is n applications of A and about 2nN arithmetic operations. 

Let us look at the structure of the Hessenberg matrices Hn and Ji"n' First of all we note that 
the finite analogs of ETME = Mare 

that is, 

Ji"nHJi"n = diag(1, 1, ... ,1,1 Yn 12). 

Hence, Ji"n has orthogonal columns and singular values 

£T(Ji"n) = {1, 1, ... ,1,1 Yn I}. 
Putting w = 0 in the Christoffel-Darboux formula, we get 

K n((, 0) = t Ykl/lk(n = ~I/In*(n. 
k=O Ok On 

Hence, 

It follows that 

Dn+l(~:) = -gnYn+lOn' 

where 

gJ:= (Yo, YP"" Yn-l):= eIRn, YO:= 1. 
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We conclude that the unit right Hessenberg matrix 

H .- ( )n-l - 0 
n'- 1Ji,j i,j -

has its nontrivial elements 

-YiYj+18j 
'YI. . = ------'---'-, i,,:;; J' . 
'/l,j 8

i 

From the recurrence relations, 

t{lnC?) (t{ln-lC?) ) ~'n + W 

t{ln*(O = tn ~ t{ln*-l(O ' tn(w):= 1 + Ynw' 

Since IYn I < 1, the well-known mapping properties of tn(w) give 

Moreover, clearly, 

Hence 

is a Blaschke product and AC-z"'n) lies in the open unit disk. Now, for fixed n, replace Yn by a 
general parameter T, call the resulting matrix fin(T), and replace tn(w) by 

T+W 
t ( T; w) := _' 

1 + TW 

Then also I A( fine T)) I < 1 for I T I < 1. Now, the eigenvalues of fine T) are the zeros of 

that is, they are the zeros of 

Now we have 

t;l(W) = -tn ( -w). 

Hence, on replacing T by t n( T) we see that the eigenvalues of 

Jli" (T) := Dl/2H (T)D- 1/2 
n n n n , 
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with 

-YaYl -YaY2 -YaYn-l -Yatn(T) 

1 - I y l l 2 
-YIYn-l -yltn(T) 

-Y2Yn-l -Y2tn( T) 
Dn, 

-Yn-2Yn-l -Yn-2tn(T) 

l-IYn_ 1 1

2 
-Yn-Itn( T) 

are the zeros of 

ifJn( 7, 0 := ifJn( 7) + 7ifJn* (0 = (1 + 7Yn)C + ... , 
a polynomial of degree ~ n in (. But J1I'nC 7) is unitary for I 7 I = 1, so has its eigenvalues on 
I A I = 1. Since ifJnCOlifJn*Cb) has all its zeros in I b I < 1, and poles in I b I > 1, it has winding 
number n with respect to I b I = 1. Hence, for 171 = 1, the eigenvalues {An kC 7 )};:~ I of J1I'/ 7) 
are all distinct and lie on I A I = 1. ' 

The eigenvalues of J1I'n := J1I'nCO) can be of the highest possible multiplicity. For example, with 
J-L n = on,G' we have ifJnCO = C. ifJn*Cb) == 1, and the {An,k(7)}~~1 are the nth roots of -7. The 
motivation behind the Arnoldi process is that the spectrum of the matrices J1I'/O) should, in 
some sense, approximate that of A as n becomes (hopefully only moderately) large. For 
A: eN ~ eN unitary, with respect to yHx, we have I ACA) I = 1. At least in this simplest case it 
seems natural to force the approximating spectrum to also lie on I A I = 1. This can be done by 
working with J1I'nC 7): 171 = 1, which can be viewed as a rank-one modification of J1I'nCo), In fact, 
J1I'nC 7) is not even normal, with respect to yHx, for 171 < 1 and I 'Yk I < 1, 1 ~ k ~ n. 

We henceforth assume that 171 = 1. Let 

Vn(7):= (Vn(An,I(7)), Vn(A n,2(7)), ... ,vn(A n,n(7))). 

The Christoffel-Darboux formula shows that 

Vn(7)TM;IVn(7) = Wn(7)-1, 

with 

Hence 

Mn = v" ( 7 ) Wnv" ( 7) T. 

For 171 = 1 this is equivalent with 
n 

J-Lk= LWn,j(7)An,j(7)k, Ikl <n, 
j~l 

since then An./7)H = An./7)-1. For 171 = 1 we put 

2 1T V n ( 7; (J) = L {W n ,j ( 7 ): 0 ~ arg An) 7) < (J}, 
j 
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1 12
". 

I/. = - e ikO dv (7' e) r-k 2 n , , 1T a 
Ikl <no 

12
". dvn( 7; e) == 21TJ.La, n = 0, 1,2, ... , 

a 
we may apply the Helly theorems to conclude the existence of a bounded nondecreasing 
function vee), with infinitely many points of increase, for which 

1 2 
J.Lk = -1 e ikO dv(e), -00 < k < +00. 

21T a 
Then the "Gauss-Szego" quadrature formula 

n 1 2". 

L Wn,k(7)f(An,k(7») = -1 f(e) dv{e) 
k=l 21T a 

is exact for trigonometric polynomials of f(e iO
) of degree < n. Conversely, every such vee) 

determines, in this manner, a positive definite Toeplitz matrix M. If vee) = e, then J.L n = on,a' 
I/I/n = 1, and Wn k( 7) == lin, 1.,;; k .,;; n. Hence, the Gauss-Szego quadrature formulas for 
vee) = e, which are analogs of the classical Gauss-Legendre quadrature formulas for the 
interval (-1, 1), are the trapezoidal rule and its rotations. 

Let us now put 

and 

Then, 

Qn{ 7 )Wn{ 7 )Qn( 7 t = Dn 

and, because Hn( 7) is obtained from Hn(O) be replacing Yn by tn( 7), we have already shown 
that 

Hn(7)TQn{7) = Qn(7)An(7). 

It follows that the matrix 

Iffn( 7) := D; 1/2Qn( 7) Wn{ 7 )1/2 

is unitary, and that 

.Jf"n{ 7) T Iffn{ 7) = Iffn{ 7 )An{ 7). 

We now wish to show that 
n 

Pn := J.Ln - L Wn,k{ 7 )An,k( 7 ( =1= O. 
k=l 
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Pn = eJM~en - etv,,{ T )Wn{ T )An{ T )VnCr)T en 

= eJ[ MnFn{O) - v" { T )Wn{ T ) v" { T )Fn{ T)] en 

= eJMn[ Fn{O) - Fn{ T )]en, 

where Fn( T) is the companion matrix of I/ln( T, ?). If we put 

then we have 

as required. 
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