

Calhoun: The NPS Institutional Archive

Positive definite Toeplitz matrices, the Arnoldi process for isometric operators, and Gaussian quadrature on the unit circle

Gragg, William B.
Elsevier Science Publishers B.V.

DUDLEY KNOX LIBRARY

Calhoun is a project of the Dudley Knox Library at NPS, furthering the precepts and goals of open government and government transparency. All information contained herein has been approved for release by the NPS Public Affairs Officer.

Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

Positive definite Toeplitz matrices, the Arnoldi process for isometric operators, and Gaussian quadrature on the unit circle *

William B. Gragg **
Department of Mathematics, Naval Postgraduate School, Monterey, CA, United States

Received 1 November 1991
Revised 16 April 1992

Abstract

Gragg, W.B., Positive definite Toeplitz matrices, the Arnoldi process for isometric operators, and Gaussian quadrature on the unit circle, Journal of Computational and Applied Mathematics 46 (1993) 183-198. We show that the well-known Levinson algorithm for computing the inverse Cholesky factorization of positive definite Toeplitz matrices can be viewed as a special case of a more general process. The latter process provides a very efficient implementation of the Arnoldi process when the underlying operator is isometric. This is analogous with the case of Hermitian operators where the Hessenberg matrix becomes tridiagonal and results in the Hermitian Lanczos process. We investigate the structure of the Hessenberg matrices in the isometric case and show that simple modifications of them move all their eigenvalues to the unit circle. These eigenvalues are then interpreted as abscissas for analogs of Gaussian quadrature, now on the unit circle instead of the real line. The trapezoidal rule appears as the analog of the Gauss-Legendre formula.

Keywords: Toeplitz matrices; unitary Hessenberg matrices; Szegő polynomials.

1. Generalities

The linear spaces $\mathbb{P}_{\mathbb{C}}$, of complex polynomials α, and \mathbb{C}_{0}^{∞}, of simply infinite (column) vectors a with finitely many nonnull elements, are isomorphic under the correspondence

$$
\alpha(\zeta)=v(\zeta)^{\mathrm{T}} a, \quad v(\zeta):=\left(1, \zeta, \zeta^{2}, \ldots\right)^{\mathrm{T}}
$$

Correspondence to: Prof. W.B. Gragg, Department of Mathematics, Code MA/Gr, Naval Postgraduate School, Monterey, CA 93943, United States.

* This paper was presented during a visit to the Scientific Research Computing Center of Moscow State University on September 6-18, 1981. A Russian translation was published in: E.S. Nikolaev, Ed., Numerical Methods in Linear Algebra (Moscow Univ. Press, Moscow, 1982) 16-32. The original English version of the paper, of which only a few copies have been circulating, had great impact on some subsequent work by Greg Ammar, Bill Gragg, Lothar Reichel and others. It therefore seems appropriate to make it here available to a broader audience.
** The research of the author was supported by the National Science Foundation.

Let

$$
M=\left(\mu_{i, j}\right)_{i, j=0}^{\infty}=M^{\mathrm{H}}
$$

be positive definite in the sense that its nth sections

$$
M_{n}:=\left(\mu_{i, j}\right)_{i, j=0}^{n-1}, \quad n=1,2,3, \ldots,
$$

are all positive definite. Then M determines inner products $(\cdot, \cdot)_{\mu}$ and $(\cdot, \cdot)_{M}$ for $\mathbb{R}_{\mathbb{C}}$ and \mathbb{C}_{0}^{∞}, respectively, by

$$
(\alpha, \beta)_{\mu}:=(a, b)_{M}:=a^{\mathrm{H}} M b
$$

The superscripts T and H denote transposition and conjugate transposition, respectively. We have

$$
\mu_{i, j}=\left(\zeta^{i}, \zeta^{j}\right)_{\mu}=\left(e_{i+1}, e_{j+1}\right)_{M},
$$

where

$$
e_{j}:=\left(\delta_{i, j}\right)_{i-1}^{\infty}, \quad j=1,2,3, \ldots,
$$

is the j th axis vector in \mathbb{C}_{0}^{∞}. Hence, M is the moment matrix of $(\cdot, \cdot)_{\mu}$ with respect to the standard basis $\left\{\zeta^{k}\right\}_{0}^{\infty}$ for $\mathbb{P}_{\mathbb{C}}$. When the context dictates, e_{j} will also denote the j th column of the $n \times n$ identity matrix

$$
I_{n}=\left(e_{1}, e_{2}, \ldots, e_{n}\right)
$$

The inverse Cholesky decomposition

$$
R^{\mathrm{H}} M R=D=\operatorname{diag}\left(\delta_{0}, \delta_{1}, \delta_{2}, \ldots\right)
$$

with R an upper right triangular unit matrix, can be computed recursively. Equivalently,

$$
R_{n}^{\mathrm{H}} M_{n} R_{n}=D_{n}, \quad n=1,2,3, \ldots
$$

Setting

$$
M_{n+1}=:\left(\begin{array}{cc}
M_{n} & m_{n} \\
m_{n}^{\mathrm{H}} & \mu_{n, n}
\end{array}\right), \quad R_{n+1}=:\left(\begin{array}{cc}
R_{n} & r_{n} \\
0^{\mathrm{T}} & 1
\end{array}\right)
$$

we require

$$
\left(\begin{array}{cc}
M_{n} & m_{n} \\
m_{n}^{\mathrm{H}} & \mu_{n, n}
\end{array}\right)\left(\begin{array}{cc}
R_{n} & r_{n} \\
0^{\mathrm{T}} & 1
\end{array}\right)=\left(\begin{array}{cc}
* & 0 \\
* & 1
\end{array}\right)\left(\begin{array}{cc}
D_{n} & 0 \\
0^{\mathrm{T}} & \delta_{n}
\end{array}\right),
$$

or equivalently

$$
M_{n} r_{n}+m_{n}=0, \quad \delta_{n}=\mu_{n, n}+m_{n}^{\mathrm{H}} r_{n} .
$$

Since

$$
M_{n}^{-1}=R_{n} D_{n}^{-1} R_{n}^{\mathrm{H}},
$$

we see that r_{n} and then δ_{n} are easily computed. This uses $\mathrm{O}\left(n^{3}\right)$ arithmetic operations to decompose M_{n} and is (presumably) a numerically stable process. We also have

$$
\delta_{n}=\frac{\operatorname{det} M_{n+1}}{\operatorname{det} M_{n}}=\mu_{n, n}-m_{n}^{\mathrm{H}} M_{n}^{-1} m_{m}>0
$$

The columns of R are orthogonal vectors in \mathbb{C}_{0}^{∞}; the columns of $R D^{-1 / 2}$ are orthonormal. The monic polynomials $\left\{\psi_{n}(\zeta)\right\}_{0}^{\infty}$ defined by

$$
\left(\psi_{0}(\zeta), \psi_{1}(\zeta), \psi_{2}(\zeta), \ldots\right):=v(\zeta)^{\mathrm{T}} R
$$

or equivalently by

$$
\psi_{n}(\zeta):=v_{n}(\zeta)^{\mathrm{T}} r_{n}+\zeta^{n}, \quad v_{n}(\zeta):=\left(1, \zeta, \ldots, \zeta^{n-1}\right)^{\mathrm{T}}
$$

satisfy

$$
\left(\psi_{m}, \psi_{n}\right)_{\mu}= \begin{cases}0 & m \neq n \\ \delta_{n}, & m=n\end{cases}
$$

The scaled polynomials $\psi_{n}(\zeta) / \delta_{n}^{1 / 2}$ are orthonormal with respect to $(\cdot, \cdot)_{\mu}$. Thus, each positive definite M determines an inner product for $\mathbb{P}_{\mathbb{C}}$ and a set of monic orthogonal polynomials for which $\left\|\psi_{n}\right\|_{\mu}^{2}=\delta_{n}>0$. Conversely, any sequence $\left\{\psi_{n}(\zeta)\right\}_{0}^{\infty}$ with $\psi_{n}(\zeta)=\zeta^{n}+\cdots$ is orthogonal with respect to such an inner product $(\cdot, \cdot)_{\mu}$, where the norms $\left\|\psi_{n}\right\|_{\mu}=$ sqrt δ_{n} can be arbitrary positive numbers.

Denote by $\mathbb{P}_{\mathbb{C}}^{n}$ the subspace of $\mathbb{P}_{\mathbb{C}}$ of polynomials of degree $\leqslant n$. The Fourier expansion of $\alpha \in \mathbb{P}_{\mathrm{C}}$ is

$$
\alpha(\zeta) \sum_{k=0}^{n} \alpha_{k} \psi_{k}(\zeta), \quad \alpha_{k}=\frac{\left(\psi_{k}, \alpha\right)_{\mu}}{\delta_{k}}
$$

Moreover, we have

$$
(\alpha, \alpha)=\sum_{k=0}^{n}\left|\alpha_{k}\right|^{2} \delta_{k}=\sum_{k=0}^{n} \frac{\left|\left(\psi_{k}, \alpha\right)_{\mu}\right|^{2}}{\delta_{k}}
$$

It follows that

$$
\min \left\{(\alpha, \alpha)_{\mu}: \alpha(\zeta)=\zeta^{n}+\cdots\right\}=\left(\psi_{n}, \psi_{n}\right)_{\mu}=\delta_{n}
$$

and that this extremal property uniquely determines the monic polynomial ψ_{n}.
The kernel polynomial $\kappa_{n}(\zeta, \omega)$, of degree $\leqslant n$ in ζ and ω^{H}, may be defined as the generating function of M_{n+1}^{-1} :

$$
\begin{aligned}
\kappa_{n}(\zeta, \omega) & :=v_{n+1}(\zeta)^{\mathrm{T}} M_{n+1}^{-1} v_{n+1}\left(\omega^{\mathrm{H}}\right)=\frac{-1}{\operatorname{det} M_{n+1}} \operatorname{det}\left(\begin{array}{cc}
M_{n+1} & v_{n+1}\left(\omega^{\mathrm{H}}\right) \\
v_{n+1}(\zeta)^{\mathrm{T}} & 0
\end{array}\right) \\
& =\sum_{k=0}^{n} \frac{\psi_{k}(\zeta) \psi_{k}(\omega)^{\mathrm{H}}}{\delta_{k}}
\end{aligned}
$$

the determinant representation following from Sylvester's determinant identity

$$
\operatorname{det}\left(\begin{array}{ll}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{array}\right)=\operatorname{det} A_{1,1} \operatorname{det}\left(A_{2,2}-A_{2,1} A_{1,1}^{-1} A_{1,2}\right)
$$

and the third from $M_{n+1}^{-1}=R_{n+1} D_{n+1}^{-1} R_{n+1}^{\mathrm{H}}$. By means of elementary operations we also have

$$
\kappa_{n}(\sigma, \tau)=\frac{\operatorname{det} M_{n}(\sigma, \tau)}{\operatorname{det} M_{n+1}}, \quad \text { with } M_{n}(\sigma, \tau):=\left(\left(\zeta^{i}(\zeta-\tau), \zeta^{j}(\zeta-\sigma)\right)_{\mu}\right)_{i, j-0}^{n-1} .
$$

For $\alpha \in \mathbb{P}_{\mathbb{C}}^{n}$ we have

$$
\left(\kappa_{n}(\cdot, \omega), \alpha\right)_{\mu}=\alpha(\omega)
$$

the reproducing property of $\kappa_{n}(\zeta, \omega)$, and it is not difficult to show, by Cauchy's inequality, that

$$
\max \left\{|\alpha(\omega)|^{2}: \alpha \in \mathbb{P}_{\mathbb{C}}^{n},(\alpha, \alpha)_{\mu}=1\right\}=\kappa_{n}(\omega, \omega)
$$

with the extremal polynomials the unimodular multiples of

$$
\alpha(\zeta)=\frac{\kappa_{n}(\zeta, \omega)}{\kappa_{n}(\omega, \omega)^{1 / 2}}
$$

Let $E: \mathbb{C}_{0}^{\infty} \rightarrow \mathbb{C}_{0}^{\infty}$ be the downshift operator; specifically,

$$
E:=\left(e_{2}, e_{3}, e_{4}, \ldots\right)=\left(\delta_{i, j+1}\right)_{i, j=0}^{\infty} .
$$

The corresponding operator on $\mathbb{P}_{\mathbb{C}}$ is multiplication by ζ :

$$
\zeta \alpha(\zeta)=v(\zeta)^{\mathrm{T}} E a .
$$

We have

$$
M^{\prime}:=\left(\mu_{i, j+1}\right)_{i, j=0}^{\infty}=M E .
$$

The finite analog of this is

$$
M_{n}^{\prime}=N_{n} F_{n}, \quad F_{n}:=E_{n}-r_{n} e_{n}^{\mathrm{T}} .
$$

F_{n} is the Frobenius matrix, or companion matrix, associated with $\psi_{n}(\zeta)$. Now, as is easily verified using the above results,

$$
e_{n} \psi_{n}(\zeta)+F_{n}^{\mathrm{T}} v_{n}(\zeta)=v_{n}(\zeta) \zeta \quad \text { and } \quad e_{1} \psi_{n}(\zeta)+F_{n} y_{n}(\zeta)=y_{n}(\zeta) \zeta
$$

where

$$
y_{n}(\zeta):=U_{n} v_{n}(\zeta), \quad U_{n}:=\left(E_{n}^{\mathrm{T}} r_{n}, E_{n}^{2 \mathrm{~T}} r_{n}, \ldots, E_{n}^{n \mathrm{~T}} r_{n}\right)+J_{n}
$$

and

$$
J_{n}:=\left(e_{n}, e_{n-1}, \ldots, e_{1}\right)=J_{n}^{\mathrm{T}}=J_{n}^{-1}
$$

is the $n \times n$ reversal matrix. It follows that

$$
\psi_{n}(\zeta)=\operatorname{det}\left(\zeta I_{n}-F_{n}\right)=\frac{\operatorname{det}\left(\zeta M_{n}-M_{n}^{\prime}\right)}{\operatorname{det} M_{n}}=\frac{1}{\operatorname{det} M_{n}} \operatorname{det}\left(\begin{array}{cc}
M_{n} & m_{n} \\
v_{n}(\zeta)^{\mathrm{T}} & \zeta^{n}
\end{array}\right)
$$

is the characteristic polynomial of F_{n}, and that if

$$
\lambda \in \lambda\left(F_{n}\right):=\left\{\lambda_{n, 1}, \lambda_{n, 2}, \ldots, \lambda_{n, n}\right\}
$$

the spectrum of F_{n}, then $y_{n}(\lambda)$ and $v_{n}(\lambda)$ are associated eigenvectors of F_{n} and F_{n}^{T}, respectively. Moreover, we have

$$
F_{n}^{\mathrm{T}} V_{n}=V_{n} \Lambda_{n}, \quad F_{n} \cdot U_{n} V_{n}=U_{n} V_{n} \cdot \Lambda_{n},
$$

where

$$
\Lambda_{n}:=\operatorname{diag}\left(\lambda_{n, 1}, \lambda_{n, 2}, \ldots, \lambda_{n, n}\right)
$$

and

$$
V_{n}:=V_{n}\left(\lambda_{n, 1}, \lambda_{n, 2}, \ldots, \lambda_{n, n}\right):=\left(v_{n}\left(\lambda_{n, 1}\right), v_{n}\left(\lambda_{n, 2}\right), \ldots, v_{n}\left(\lambda_{n, n}\right)\right)
$$

is the Vandermonde matrix. If the eigenvalues are all distinct, then V_{n} and $U_{n} V_{n}$ are nonsingular and Λ_{n} is the Jordan canonical form of F_{n}. If some of the eigenvalues are repeated, then V_{n} must be replaced by the corresponding confluent Vandermonde matrix, in which the corresponding columns are replaced by successive (Taylor) derivatives. In such cases F_{n} is not diagonalizable and has only one normalized eigenvector associated with each distinct eigenvalue.

We have

$$
U_{n}=:\left(v_{i, j}\right)_{i, j=1}^{n},
$$

with

$$
v_{i, j}=e_{i}^{\mathrm{T}} U_{n} e_{j}= \begin{cases}e_{i+j}^{\mathrm{T}} r_{n}, & i+j \leqslant n \\ 1, & i+j=n+1, \\ 0, & i+j>n+1\end{cases}
$$

That is, U_{n} is a unit upper triangular Hankel matrix. It follows that

$$
F_{n} U_{n}=U_{n} F_{n}^{\mathbf{T}},
$$

that is, F_{n} is symmetrically similar with F_{n}^{T}. This can be used to show that any matrix $A \in \mathbb{C}^{n \times n}$ is symmetrically similar with A^{T}, and equivalently, that every $A \in \mathbb{C}^{n \times n}$ is the product of two symmetric matrices, either one of which can be taken nonsingular. The elements of

$$
y_{n}(\zeta)=:\left(\eta_{1, n}(\zeta), \eta_{2, n}(\zeta), \ldots, \eta_{n, n}(\zeta)\right)^{\mathrm{T}}
$$

are Horner polynomials. They satisfy the recursion

$$
\begin{aligned}
& \eta_{n, n}(\zeta)=1, \\
& \text { for } k \leftarrow n-1, n-2, \ldots, 0,1 \\
& \quad \eta_{k, n}(\zeta)=\zeta \eta_{k+1, n}(\zeta)+\rho_{k, n}, \\
& \psi_{n}(\zeta)=\eta_{0, n}(\zeta),
\end{aligned}
$$

where

$$
r_{n}=:\left(\rho_{0, n}, \rho_{1, n}, \ldots, \rho_{n-1, n}\right)^{\mathrm{T}}
$$

Define the matrices H_{n} by

$$
R_{n} H_{n}:=F_{n} R_{n} .
$$

Then F_{n} and H_{n} are similar matrices and

$$
D_{n} H_{n}=R_{n}^{\mathrm{H}} M_{n}^{\prime} R_{n} .
$$

Moreover

$$
H_{n+1}=:\left(\begin{array}{cc}
H_{n} & h_{n} \\
e_{n}^{\mathrm{T}} & \eta_{n}
\end{array}\right)
$$

is unit right Hessenberg (nearly triangular) and

$$
r_{n+1}=\binom{0}{r_{n}}-\left(\begin{array}{cc}
R_{n} & r_{n} \\
0^{\mathrm{T}} & 1
\end{array}\right)\binom{h_{n}}{\eta_{n}}
$$

Equivalently,

$$
\psi_{n+1}(\zeta)=\left(\zeta-\eta_{n}\right) \psi_{n}(\zeta)-\left(\psi_{0}(\zeta), \psi_{1}(\zeta), \ldots, \psi_{n-1}(\zeta)\right) h_{n}
$$

If we put

$$
h_{n}=:\left(\eta_{0, n}, \eta_{1, n}, \ldots, \eta_{n-1, n}\right)^{\mathrm{T}}, \quad \eta_{n, n}:=\eta_{n}
$$

then by the orthogonality,

$$
\eta_{i, n}=\frac{\left(\psi_{i}, \zeta \psi_{n}\right)_{\mu}}{\delta_{i}}
$$

This is the (generalized) Arnoldi reduction of the operator $\zeta: \mathbb{P}_{\mathbb{C}} \rightarrow \mathbb{P}_{\mathbb{C}}$ to Hessenberg form, with respect to the inner product $(\cdot, \cdot)_{\mu}$. If we define

$$
Q_{n}:=R_{n}^{\mathrm{T}} V_{n}=\left(\psi_{i-1}\left(\lambda_{n, j}\right)\right)_{i, j=1}^{n},
$$

then we have

$$
H_{n}^{\mathrm{T}} Q_{n}=Q_{n} \Lambda_{n}, \quad H_{n} \cdot S_{n} Q_{n}=S_{n} Q_{n} \cdot \Lambda_{n}
$$

with

$$
S_{n}:=R_{n}^{-1} U_{n} R_{n}^{-\mathrm{T}}=S_{n}^{\mathrm{T}}
$$

(R_{n}^{-1} is upper right triangular, U_{n} is upper left triangular, $R_{n}^{-\mathrm{T}}$ is lower left triangular).
The rational matrix function

$$
\mathscr{R}_{n}(\zeta):=\left(\zeta I_{n}-H_{n}\right)^{-1}
$$

will be called the nth resolvent. The sequence $\left\{\phi_{n}(\zeta)\right\}_{1}^{\infty}$ of scaled (1, 1)-elements

$$
\phi_{n}(\zeta):=\mu_{0,0} e_{1}^{\mathrm{T}} \mathscr{R}_{n}(\zeta) e_{1}
$$

is a generalized continued fraction associated with the moment matrix M. We have

$$
\phi_{n}(\zeta)=\frac{\pi_{n}(\zeta)}{\psi_{n}(\zeta)}, \quad \text { with } \pi_{n}(\zeta)=\mu_{0,0} \operatorname{det}\left(\zeta I_{n-1}-H_{n-1}^{\prime}\right), H_{n}=:\left(\begin{array}{cc}
\eta_{0} & * \\
* & H_{n-1}^{\prime}
\end{array}\right)
$$

It follows that if we put $\phi_{0}(\zeta):=0$, then also

$$
\pi_{n+1}(\zeta)=\left(\zeta-\eta_{n}\right) \pi_{n}(\zeta)-\left(\pi_{0}(\zeta), \pi_{1}(\zeta), \ldots, \pi_{n-1}(\zeta)\right) h_{n}
$$

with initial conditions

$$
\pi_{0}(\zeta):=0, \quad \pi_{1}(\zeta)=\mu_{0,0}
$$

We can give an explicit formula for $\phi_{n}(\zeta)$, solely in terms of the moments $\mu_{i, j}$. This is analogous with what is known as Nuttall's compact formula in the theory of the Padé table. First of all, it is easy to get

$$
\mathscr{R}_{n}(\zeta)=R_{n}^{-1}\left(\zeta M_{n}-M_{n}^{\prime}\right)^{-1} R_{n}^{-\mathrm{H}} D_{n}
$$

Then from

$$
R_{n}^{-\mathbf{H}} e_{1}=M_{n} R_{n} D_{n}^{-1} e_{1}=\frac{M_{n} e_{1}}{\mu_{0,0}}
$$

we conclude that

$$
\phi_{n}(\zeta)=e_{1}^{\mathrm{T}} M_{n}\left(\zeta M_{n}-M_{n}^{\prime}\right)^{-1} M_{n} e_{1}
$$

From this we find, by means of Sylvester's identity, elementary operations and the determinant formula for $\psi_{n}(\zeta)$, that

$$
\pi_{n}(\zeta)=\frac{1}{\operatorname{det} M_{n}} \operatorname{det}\left(\begin{array}{cc}
M_{n} e_{1} & M_{n}^{\prime}-\zeta M_{n} \\
0 & e_{1}^{\mathrm{T}} M_{n}
\end{array}\right)
$$

Further elementary operations now reduce this to

$$
\pi_{n}(\zeta)=\frac{1}{\operatorname{det} M_{n}} \operatorname{det}\left(\begin{array}{cc}
M_{n} e_{1} & M_{n}^{\prime} \\
0 & u_{n}(\zeta)^{\mathrm{T}}
\end{array}\right), \quad \text { with } u_{n}(\zeta)^{\mathrm{T}} e_{j}=\sum_{k=0}^{j-1} \mu_{0, j-k-1} \zeta^{k}
$$

Letting

$$
\phi(\zeta):=\sum_{k=0}^{\infty} \frac{\mu_{0, k}}{k+1}
$$

be the formal Laurent series determined by the first row of M, we now arrive at

$$
\begin{aligned}
\operatorname{det} M_{n}\left[\phi(\zeta) \psi_{n}(\zeta)-\pi_{n}(\zeta)\right] & =\sum_{k=1}^{\infty} \operatorname{det}\left(\begin{array}{cccc}
\mu_{0,0} & \mu_{0,1} & \cdots & \mu_{0, n} \\
\mu_{1,0} & \mu_{1,1} & \cdots & \mu_{1, n} \\
\vdots & \vdots & & \vdots \\
\mu_{n-1,0} & \mu_{n-1,1} & \cdots & \mu_{n-1, n} \\
\mu_{0, k} & \mu_{0, k+1} & \cdots & \mu_{0, k+n}
\end{array}\right) \frac{1}{\zeta^{k+1}} \\
& =\operatorname{det}\left(\begin{array}{cc}
M_{n} & m_{n} \\
e_{1}^{\mathrm{T}} M_{n}^{\prime} & \mu_{0, n+1}
\end{array}\right) \frac{1}{\zeta^{2}}+\mathrm{O}\left(\frac{1}{\zeta^{3}}\right), \quad \zeta \rightarrow \infty .
\end{aligned}
$$

Since

$$
\begin{aligned}
\mu_{0,0} \eta_{0, n} & =\left(\psi_{0}, \zeta \psi_{n}\right)_{\mu}=e_{1}^{\mathrm{T}} M_{n}^{\prime} r_{n}+\mu_{0, n+1}=\mu_{0, n+1}-e_{1}^{\mathrm{T}} M_{n}^{\prime} M_{n}^{-1} m_{n} \\
& =\frac{1}{\operatorname{det} M_{n}} \operatorname{det}\left(\begin{array}{cc}
M_{n} & m_{n} \\
e_{1}^{\mathrm{T}} M_{n}^{\prime} & \mu_{0, n+1}
\end{array}\right),
\end{aligned}
$$

we conclude that, in general,

$$
\phi(\zeta)-\phi_{n}(\zeta)=\mu_{0,0} \frac{\eta_{0, n}}{\zeta^{n+2}}+\mathrm{O}\left(\frac{1}{\zeta^{n+3}}\right), \quad \zeta \rightarrow \infty
$$

Let A be a linear transformation on the inner product space \mathscr{H}, with inner product (\cdot, \cdot). If $0 \neq k_{0} \in \mathscr{H}$, we could, in theory, form the Krylov sequence $k_{n}=A k_{n-1}=A^{n} k_{0}$, the moments

$$
\mu_{i, j}=\left(k_{i}, k_{j}\right)=\left(A^{i} k_{0}, A^{j} k_{0}\right)
$$

and, as long as M_{n} remains positive definite, we could form the polynomial ψ_{n+1}. Transplantation of the Arnoldi process from $\mathbb{P}_{\mathbb{C}}$ to \mathscr{H} allows us to avoid construction of all these entities, and this is very important for numerical stability. We put

$$
x_{n}:=\psi_{n}(A) k_{0} \quad \text { and } \quad X_{n}:=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)
$$

an n-tuple of vectors in \mathscr{H}. Then

$$
A X_{n}=X_{n} H_{n}+x_{n} e_{n}^{\mathrm{T}} \quad \text { and } \quad\left(\left(x_{i}, x_{j}\right)\right)_{i, j=0}^{n-1}=D_{n}
$$

Moreover, setting

$$
\chi_{n}:=X_{n} D_{n}^{-1 / 2}, \quad \mathscr{H}_{n}:=D_{n}^{1 / 2} H_{n} D_{n}^{-1 / 2}
$$

we see that

$$
A \chi_{n}=\chi_{n} \mathscr{H}_{n}+\frac{x_{n} e_{n}^{\mathrm{T}}}{\delta_{n-1}^{1 / 2}}
$$

and that the vectors of χ_{n} are orthonormal. If $\delta_{n}=\left\|x_{n}\right\|^{2}=0$, that is, if M_{n+1} is singular, then these vectors form an orthonormal basis for an invariant subspace of A. However, this event is more unlikely in practice than it is in theory, and the study of how the spectra of \mathscr{H}_{n} and A are related is of great interest. We have

$$
K_{n} R_{n}=X_{n}, \quad K_{n}:=\left(k_{0}, k_{1}, \ldots, k_{n-1}\right)
$$

and this represents an (inverse) Gram-Schmidt orthogonalization of the Krylov vectors $\left\{k_{j}\right\}_{0}^{n-1}$. The Arnoldi process for A, in the modified Gram-Schmidt formulation, is as follows:

$$
\begin{aligned}
& x_{0}=k_{0}, \delta_{0}=\left(x_{0}, x_{0}\right), \\
& \text { for } n \leftarrow 1,2, \ldots \text { until } \delta_{n}=0 \\
& x_{n} \leftarrow A x_{n-1}, \\
& \text { for } k \leftarrow 0,1, \ldots, n-1 \\
& \eta_{k, n-1}=\left(x_{k}, x_{n}\right) / \delta_{k}, \\
& x_{n} \leftarrow x_{n}-x_{k} \eta_{k, n-1}, \\
& \delta_{n}=\left(x_{n}, x_{n}\right) .
\end{aligned}
$$

In practice, the use of reorthogonalization may be required. If $\mathscr{H}=\mathbb{C}^{N}, A \in \mathbb{C}^{N \times N},(y, x)=$ $y^{\mathrm{H}} x$, and the process goes to stage n, the cost is n applications of A and about $n^{2} N$ arithmetic operations when no reorthogonalizations are used.

2. Toeplitz matrices M

Suppose now that $A: \mathscr{H} \rightarrow \mathscr{H}$ is isometric with respect to (\cdot, \cdot), that is, $(A y, A x) \equiv(y, x)$ for $x, y \in \mathscr{H}$. Then

$$
\mu_{i, j}=\left(A^{i} x_{0}, A^{j} x_{0}\right)= \begin{cases}\left(x_{0}, A^{j-i} x_{0}\right)=: \mu_{j-i}, & i \leqslant j \\ \left(A^{i-j} x_{0}, x_{0}\right)=\left(x_{0}, A^{i-j} x_{0}\right)^{\mathrm{H}}=\mu_{i-j}^{\mathrm{H}}=: \mu_{j-i}, & i \geqslant j,\end{cases}
$$

so $M=\left(\mu_{j-i}\right)$ is a positive definite Toeplitz matrix. We also have $(\zeta \alpha, \zeta \beta)_{\mu}=(\alpha, \beta)_{\mu}$ and $(E a, E b)_{M}=(a, b)_{M}$, that is, $E^{\mathrm{T}} M E=M . M$ is persymmetric in the sense that

$$
J_{n} M_{n}^{\mathrm{T}} J_{n}=M_{n},
$$

or equivalently, since $M_{n}=M_{n}^{\mathrm{H}}$,

$$
J_{n} M_{n} J_{n}=\bar{M}_{n} .
$$

This means that if we define

$$
\alpha^{*}(\zeta):=\zeta^{n} \bar{\alpha}\left(\zeta^{-1}\right), \quad \text { for } \alpha \in \mathbb{P}_{\mathbb{C}}^{n}
$$

then we have

$$
(\alpha, \beta)_{\mu}=\left(\beta^{*}, \alpha^{*}\right)_{\mu}, \quad \alpha, \beta \in \mathbb{P}_{\mathbb{C}}^{n} .
$$

In particular, we put

$$
\psi_{n}^{*}(\zeta):=\zeta^{n} \bar{\psi}_{n}\left(\zeta^{-1}\right)
$$

and have

$$
\left(\psi_{n}^{*}, \psi_{n}^{*}\right)_{\mu}=\left(\psi_{n}, \psi_{n}\right)_{\mu}=\delta_{n}
$$

Let us put

$$
\gamma_{n}:=\psi_{n}(0)
$$

Since $\psi_{n}^{*}(0)=1$, we can write

$$
\frac{1-\psi_{n}^{*}(\zeta)}{\zeta}:=\sum_{k=0}^{n-1} \bar{\alpha}_{k} \psi_{k}(\zeta), \quad \alpha_{k}:=\alpha_{n, k},
$$

that is,

$$
\psi_{n}^{*}(\zeta)=1-\sum_{k=0}^{n-1} \bar{\alpha}_{k} \zeta \psi_{k}(\zeta)
$$

Now the polynomials $\left\{\zeta \psi_{k}(\zeta)\right\}_{0}^{\infty}$ are also orthogonal, so

$$
\left(\zeta \psi_{k}, \psi_{n}^{*}\right)_{\mu}\left(\zeta \psi_{k}, 1\right)_{\mu}-\bar{\alpha}_{k} \delta_{k}=\left(\psi_{n},\left(\zeta \psi_{k}\right)^{*}\right)_{\mu}=\left(\psi_{n}, \zeta^{n-k-1} \psi_{k}^{*}\right)_{\mu}=0, \text { for } k<n .
$$

Hence the numbers

$$
\alpha_{k}=\frac{\left(1, \zeta \psi_{k}\right)_{\mu}}{\delta_{k}}
$$

are indeed independent of n. One sees also that $\gamma_{n}=-\alpha_{n-1}$. Hence,

$$
\psi_{n+1}^{*}(\zeta)=\psi_{n}^{*}(\zeta)+\bar{\gamma}_{n+1} \zeta \psi_{n}(\zeta)
$$

and equivalently

$$
\psi_{n+1}(\zeta)=\zeta \psi_{n}(\zeta)+\gamma_{n+1} \psi_{n}^{*}(\zeta)
$$

Finally, from

$$
\left(\psi_{n}^{*}, \zeta \psi_{n}\right)_{\mu}=\left(\psi_{n}^{*}, \psi_{n+1}-\gamma_{n+1} \psi_{n}^{*}\right)_{\mu}=-\gamma_{n+1} \delta_{n}
$$

we see that

$$
\delta_{n+1}=\left\|\psi_{n}^{*}+\bar{\gamma}_{n+1} \zeta \psi_{n}\right\|_{\mu}^{2}=\delta_{n}\left(1-\left|\gamma_{n+1}\right|^{2}\right)
$$

Hence we have the Levinson algorithm:

$$
\begin{aligned}
& \psi_{0}(\zeta)=1, \delta_{0}=\mu_{0} \\
& \text { for } n=0,1,2, \ldots \\
& \quad \gamma_{n+1}=-\left(1, \zeta \psi_{n}\right)_{\mu} / \delta_{n} \\
& \psi_{n+1}(\zeta)=\zeta \psi_{n}(\zeta)+\gamma_{n+1} \psi_{n}^{*}(\zeta) \\
& \delta_{n+1}=\delta_{n}\left(1-\left|\gamma_{n+1}\right|^{2}\right) .
\end{aligned}
$$

This computes the inverse Cholesky factorization of M_{n} in $\mathrm{O}\left(n^{2}\right)$ operations. It follows that

$$
\delta_{n}=\mu_{0} \prod_{k=1}^{n}\left(1-\left|\gamma_{k}\right|^{2}\right), \quad \mu_{0}=\delta_{0}>\delta_{1}>\delta_{2}>\cdots>\delta_{n} \rightarrow \delta^{*} \geqslant 0, \quad\left|\gamma_{n}\right|<1, \text { for } n \geqslant 1
$$

If $\mu_{n}=\theta^{n^{2}},-1<\theta<1$, then we have $\gamma_{n}=\theta^{n}$,

$$
\delta_{n}=\prod_{k=1}^{n}\left(1-\theta^{2 k}\right) \rightarrow \prod_{k=1}^{\infty}\left(1-\theta^{2 k}\right)=\delta^{*}>0 \quad \text { and } \quad \psi_{n}^{*}(\zeta)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{\theta^{2}}(-\theta \zeta)^{k},
$$

where

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{\theta}:=\frac{\left(1-\theta^{n}\right)\left(1-\theta^{n-1}\right) \cdots\left(1-\theta^{n-k+1}\right)}{(1-\theta)\left(1-\theta^{2}\right) \cdots\left(1-\theta^{k}\right)}
$$

are the Gauss binomial coefficients. This can be shown by noting that $M=$ $\operatorname{diag}\left(\theta^{k^{2}}\right)\left(\theta^{-2 i j}\right) \operatorname{diag}\left(\theta^{k^{2}}\right)$ is diagonally equivalent with a symmetric Vandermonde matrix whose Cholesky and inverse Cholesky factors are known from polynomial interpolation theory. Of course the simplest example is $\mu_{n}=\delta_{n, 0}$, for which $\psi_{n}(\zeta)=\zeta^{n}, \psi_{n}^{*}(\zeta) \equiv 1$.

The analogs of the Cristoffel-Darboux formula (which occurs in the case of Hermitian A and Hankel M) are

$$
\begin{aligned}
\kappa_{n}(\zeta, \omega) & =v_{n+1}(\zeta)^{\mathrm{T}} M_{n+1}^{-1} v_{n+1}(\bar{\omega})=\sum_{k=0}^{n} \frac{\psi_{k}(\zeta) \overline{\psi_{k}(\omega)}}{\delta_{k}} \\
& =\frac{\psi_{n+1}^{*}(\zeta) \overline{\psi_{n+1}^{*}(\omega)}-\psi_{n+1}(\zeta) \overline{\psi_{n+1}(\omega)}}{\delta_{n+1}(1-\zeta \bar{\omega})}=\frac{\psi_{n}^{*}(\zeta) \overline{\psi_{n}^{*}(\omega)}-\zeta \bar{\omega} \psi_{n}(\zeta) \overline{\psi_{n}(\omega)}}{\delta_{n}(1-\zeta \bar{\omega})}
\end{aligned}
$$

These follow from the recursion formulas for the polynomials ψ_{n} and ψ_{n}^{*}. The matrix interpretation is that M_{n}^{-1} can be expressed in two ways as the difference of products of left and right triangular Toeplitz factors (so-called Gohberg-Semenecul formulas). These formulas form the basis of recent work on superfast, $\mathrm{O}\left(n \log _{2}^{2} n\right)$, methods for solving (Hankel and) Toeplitz systems $M_{n} x=b$. The numerical stability of such methods seems not to have been determined. Examples like the one above may aid in assessing the effect of numerical cancellation when forming $x=M_{n}^{-1} b$ using such formulas.

The transliteration of the Levinson algorithm from $\mathbb{P}_{\mathbb{C}}$ to \mathscr{H} gives an isometric analog of the Hermitian Lanczos process. The latter is the specialization of the Arnoldi process to Hermitian
A; in that case the matrix H is tridiagonal, making the simplification apparent. Setting

$$
x_{n}:=\psi_{n}(A) k_{0}, \quad x_{n}^{*}:=\psi_{n}^{*}(A) k_{0}
$$

and noting that

$$
\left(\psi_{n}^{*}, \zeta \psi_{n}\right)_{\mu}=\left(x_{n}^{*}, A x_{n}\right)
$$

we get the algorithm

$$
\begin{aligned}
& x_{0}=x_{0}^{*}=k_{0}, \delta_{0}=\left(x_{0}, x_{0}\right), \\
& \text { for } n=0,1,2, \ldots \text { until } \delta_{n+1}=0 \\
& \gamma_{n+1}=-\left(x_{n}^{*}, A x_{n}\right) / \delta_{n}, \\
& x_{n+1}=A x_{n}+\gamma_{n+1} x_{n}^{*}, \\
& x_{n+1}^{*}=x_{n}^{*}+\bar{\gamma}_{n+1} A x_{n}, \\
& \quad \delta_{n+1}=\delta_{n}\left(1-\left|\gamma_{n+1}\right|^{2}\right) .
\end{aligned}
$$

If $\mathscr{H}=\mathbb{C}^{N}, A \in \mathbb{C}^{N \times N}$ and $(y, x)=y^{\mathrm{H}} x$, then A is unitary. If the process goes to stage n, the cost is n applications of A and about $2 n N$ arithmetic operations.

Let us look at the structure of the Hessenberg matrices H_{n} and \mathscr{H}_{n}. First of all we note that the finite analogs of $E^{\mathrm{T}} M E=M$ are

$$
M_{n}-F_{n}^{\mathrm{H}} M_{n} F_{n}=\delta_{n} e_{n} e_{n}^{\mathrm{T}}, \quad D_{n}-H_{n}^{\mathrm{H}} D_{n} H_{n}=\delta_{n} e_{n} e_{n}^{\mathrm{T}}, \quad \text { and } \quad I_{n}-\mathscr{H}_{n}^{\mathrm{H}} \mathscr{H}_{n}=\frac{\delta_{n}}{\delta_{n-1}} e_{n} e_{n}^{\mathrm{T}}
$$

that is,

$$
\mathscr{H}_{n}^{\mathrm{H}} \mathscr{H}_{n}=\operatorname{diag}\left(1,1, \ldots, 1,\left|\gamma_{n}\right|^{2}\right) .
$$

Hence, \mathscr{H}_{n} has orthogonal columns and singular values

$$
\sigma\left(\mathscr{H}_{n}\right)=\left\{1,1, \ldots, 1,\left|\gamma_{n}\right|\right\} .
$$

Putting $\omega=0$ in the Christoffel-Darboux formula, we get

$$
\kappa_{n}(\zeta, 0)=\sum_{k=0}^{n} \frac{\bar{\gamma}_{k} \psi_{k}(\zeta)}{\delta_{k}}=\frac{1}{\delta_{n}} \psi_{n}^{*}(\zeta) .
$$

Hence,

$$
\begin{aligned}
\gamma_{n+1} \delta_{n} \kappa_{n}(\zeta, 0) & =\sum_{k=0}^{n} \frac{\bar{\gamma}_{k} \gamma_{n+1} \delta_{n}}{\delta_{k}} \psi_{k}(\zeta) \\
& =\gamma_{n+1} \psi_{n}^{*}(\zeta)=-\left(\psi_{0}(\zeta), \psi_{1}(\zeta), \ldots, \psi_{n}(\zeta)\right)\binom{h_{n}}{\eta_{n}}
\end{aligned}
$$

It follows that

$$
D_{n+1}\binom{h_{n}}{\eta_{n}}=-\bar{g}_{n} \gamma_{n+1} \delta_{n}
$$

where

$$
g_{n}^{\mathrm{T}}:=\left(\gamma_{0}, \gamma_{1}, \ldots, \gamma_{n-1}\right):=e_{1}^{\mathrm{T}} R_{n}, \quad \gamma_{0}:=1
$$

We conclude that the unit right Hessenberg matrix

$$
H_{n}:=\left(\eta_{i, j}\right)_{i, j}^{n-1}=0
$$

has its nontrivial elements

$$
\eta_{i, j}=\frac{-\bar{\gamma}_{i} \gamma_{j+1} \delta_{j}}{\delta_{i}}, \quad i \leqslant j
$$

From the recurrence relations,

$$
\frac{\psi_{n}(\zeta)}{\psi_{n}^{*}(\zeta)}=t_{n}\left(\zeta \frac{\psi_{n-1}(\zeta)}{\psi_{n-1}^{*}(\zeta)}\right), \quad t_{n}(\omega):=\frac{\psi_{n}+\omega}{1+\bar{\gamma}_{n} \omega}
$$

Since $\left|\gamma_{n}\right|<1$, the well-known mapping properties of $t_{n}(\omega)$ give

$$
|\zeta|<1 \Rightarrow\left|\frac{\psi_{n}(\zeta)}{\psi_{n}^{*}(\zeta)}\right|<1, \quad \psi_{n}(\zeta)=0 \Rightarrow|\zeta|<1
$$

Moreover, clearly,

$$
\left|\frac{\psi_{n}(\zeta)}{\psi_{n}^{*}(\zeta)}\right|=1, \quad \text { for }|\zeta|=1
$$

Hence

$$
\frac{\psi_{n}(\zeta)}{\psi_{n}^{*}(\zeta)}=\prod_{k=1}^{n} \frac{\zeta-\lambda_{n, k}}{1-\bar{\lambda}_{n, k} \zeta}
$$

is a Blaschke product and $\lambda\left(\mathscr{H}_{n}\right)$ lies in the open unit disk. Now, for fixed n, replace γ_{n} by a general parameter τ, call the resulting matrix $\mathscr{H}_{n}(\tau)$, and replace $t_{n}(\omega)$ by

$$
t(\tau ; \omega):=\frac{\tau+\omega}{1+\bar{\tau} \omega}
$$

Then also $\left|\lambda\left(\tilde{\mathscr{H}}_{n}(\tau)\right)\right|<1$ for $|\tau|<1$. Now, the eigenvalues of $\tilde{\mathscr{H}}_{n}(\tau)$ are the zeros of

$$
t\left(\tau ; \zeta \frac{\psi_{n-1}(\zeta)}{\psi_{n-1}^{*}(\zeta)}\right)=t\left(\tau ; t_{n}^{-1}\left(\frac{\psi_{n}(\zeta)}{\psi_{n}^{*}(\zeta)}\right)\right)
$$

that is, they are the zeros of

$$
\psi_{n}(\zeta)-t_{n}(-\tau) \psi_{n}^{*}(\zeta)
$$

Now we have

$$
t_{n}^{-1}(\omega)=-t_{n}(-\omega)
$$

Hence, on replacing τ by $t_{n}(\tau)$ we see that the eigenvalues of

$$
\mathscr{H}_{n}(\tau):=D_{n}^{1 / 2} H_{n}(\tau) D_{n}^{-1 / 2},
$$

with

$$
H_{n}(\tau):=D_{n}^{-1}\left(\begin{array}{cccccc}
-\bar{\gamma}_{0} \gamma_{1} & -\bar{\gamma}_{0} \gamma_{2} & -\bar{\gamma}_{0} \gamma_{3} & \cdots & -\bar{\gamma}_{0} \gamma_{n-1} & -\bar{\gamma}_{0} t_{n}(\tau) \\
1-\left|\gamma_{1}\right|^{2} & -\bar{\gamma}_{1} \gamma_{2} & -\bar{\gamma}_{1} \gamma_{3} & \cdots & -\bar{\gamma}_{1} \gamma_{n-1} & -\bar{\gamma}_{1} t_{n}(\tau) \\
& 1-\left|\gamma_{2}\right|^{2} & -\bar{\gamma}_{2} \gamma_{3} & \cdots & -\bar{\gamma}_{2} \gamma_{n-1} & -\bar{\gamma}_{2} t_{n}(\tau) \\
& & \ddots & \ddots & \vdots & \vdots \\
& & & & -\bar{\gamma}_{n-2} \gamma_{n-1} & -\bar{\gamma}_{n-2} t_{n}(\tau) \\
& & & & 1-\left|\gamma_{n-1}\right|^{2} & -\bar{\gamma}_{n-1} t_{n}(\tau)
\end{array}\right) D_{n}
$$

are the zeros of

$$
\psi_{n}(\tau, \zeta):=\psi_{n}(\tau)+\tau \psi_{n}^{*}(\zeta)=\left(1+\tau \bar{\gamma}_{n}\right) \zeta^{n}+\cdots
$$

a polynomial of degree $\leqslant n$ in ζ. But $\mathscr{H}_{n}(\tau)$ is unitary for $|\tau|=1$, so has its eigenvalues on $|\lambda|=1$. Since $\psi_{n}(\zeta) / \psi_{n}^{*}(\zeta)$ has all its zeros in $|\zeta|<1$, and poles in $|\zeta|>1$, it has winding number n with respect to $|\zeta|=1$. Hence, for $|\tau|=1$, the eigenvalues $\left\{\lambda_{n, k}(\tau)\right\}_{k=1}^{n}$ of $\mathscr{H}_{n}(\tau)$ are all distinct and lie on $|\lambda|=1$.

The eigenvalues of $\mathscr{H}_{n}:=\mathscr{H}_{n}(0)$ can be of the highest possible multiplicity. For example, with $\mu_{n}=\delta_{n, 0}$, we have $\psi_{n}(\zeta)=\zeta^{n} \cdot \psi_{n}^{*}(\zeta) \equiv 1$, and the $\left\{\lambda_{n, k}(\tau)\right\}_{k=1}^{n}$ are the nth roots of $-\tau$. The motivation behind the Arnoldi process is that the spectrum of the matrices $\mathscr{H}_{n}(0)$ should, in some sense, approximate that of A as n becomes (hopefully only moderately) large. For $A: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$ unitary, with respect to $y^{\mathrm{H}} x$, we have $|\lambda(A)|=1$. At least in this simplest case it seems natural to force the approximating spectrum to also lie on $|\lambda|=1$. This can be done by working with $\mathscr{H}_{n}(\tau):|\tau|=1$, which can be viewed as a rank-one modification of $\mathscr{H}_{n}(0)$. In fact, $\mathscr{H}_{n}(\tau)$ is not even normal, with respect to $y^{\mathrm{H}} x$, for $|\tau|<1$ and $\left|\gamma_{k}\right|<1,1 \leqslant k \leqslant n$.

We henceforth assume that $|\tau|=1$. Let

$$
V_{n}(\tau):=\left(v_{n}\left(\lambda_{n, 1}(\tau)\right), v_{n}\left(\lambda_{n, 2}(\tau)\right), \ldots, v_{n}\left(\lambda_{n, n}(\tau)\right)\right)
$$

The Christoffel-Darboux formula shows that

$$
V_{n}(\tau)^{\mathrm{T}} M_{n}^{-1} \overline{V_{n}(\tau)}=W_{n}(\tau)^{-1}
$$

with

$$
\begin{aligned}
& W_{n}(\tau):=\operatorname{diag}\left(\omega_{n, 1}(\tau), \omega_{n, 2}(\tau), \ldots, \omega_{n, n}(\tau)\right) \quad \text { and } \\
& \omega_{n, k}(\tau)^{-1}:=\sum_{j=0}^{n-1} \frac{\left|\psi_{j}\left(\lambda_{n, k}(\tau)\right)\right|^{2}}{\delta_{j}}>0
\end{aligned}
$$

Hence

$$
M_{n}=\overline{V_{n}(\tau)} W_{n} V_{n}(\tau)^{\mathbf{T}}
$$

For $|\tau|=1$ this is equivalent with

$$
\mu_{k}=\sum_{j=1}^{n} \omega_{n, j}(\tau) \lambda_{n, j}(\tau)^{k}, \quad|k|<n
$$

since then $\lambda_{n, j}(\tau)^{\mathrm{H}}=\lambda_{n, j}(\tau)^{-1}$. For $|\tau|=1$ we put

$$
2 \pi \nu_{n}(\tau ; \theta)=\sum_{j}\left\{\omega_{n, j}(\tau): 0 \leqslant \arg \lambda_{n, j}(\tau)<\theta\right\}
$$

to get

$$
\mu_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{e}^{\mathrm{i} k \theta} \mathrm{~d} \nu_{n}(\tau ; \theta), \quad|k|<n .
$$

Since

$$
\int_{0}^{2 \pi} \mathrm{~d} \nu_{n}(\tau ; \theta) \equiv 2 \pi \mu_{0}, \quad n=0,1,2, \ldots
$$

we may apply the Helly theorems to conclude the existence of a bounded nondecreasing function $\nu(\theta)$, with infinitely many points of increase, for which

$$
\mu_{k}=\frac{1}{2 \pi} \int_{0}^{2} \mathrm{e}^{\mathrm{i} k \theta} \mathrm{~d} \nu(\theta), \quad-\infty<k<+\infty .
$$

Then the "Gauss-Szego"" quadrature formula

$$
\sum_{k=1}^{n} \omega_{n, k}(\tau) f\left(\lambda_{n, k}(\tau)\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) \mathrm{d} \nu(\theta)
$$

is exact for trigonometric polynomials of $f\left(\mathrm{e}^{\mathrm{i} \theta}\right)$ of degree $<n$. Conversely, every such $\nu(\theta)$ determines, in this manner, a positive definite Toeplitz matrix M. If $\nu(\theta)=\theta$, then $\mu_{n}=\delta_{n, 0}$, $\psi_{n}(\zeta)=1$, and $\omega_{n, k}(\tau) \equiv 1 / n, 1 \leqslant k \leqslant n$. Hence, the Gauss-Szegő quadrature formulas for $\nu(\theta)=\theta$, which are analogs of the classical Gauss-Legendre quadrature formulas for the interval $(-1,1)$, are the trapezoidal rule and its rotations.

Let us now put

$$
Q_{n}(\tau):=R_{n}^{\mathrm{T}} V_{n}(\tau)=\left(\psi_{i-1}\left(\lambda_{n, j}(\tau)\right)\right)_{i, j=1}^{n}
$$

and

$$
\Lambda_{n}(\tau):=\operatorname{diag}\left(\lambda_{n, 1}(\tau), \lambda_{n, 2}(\tau), \ldots, \lambda_{n, n}(\tau)\right)
$$

Then,

$$
Q_{n}(\tau) W_{n}(\tau) Q_{n}(\tau)^{\mathrm{H}}=D_{n}
$$

and, because $H_{n}(\tau)$ is obtained from $H_{n}(0)$ be replacing γ_{n} by $t_{n}(\tau)$, we have already shown that

$$
H_{n}(\tau)^{\mathrm{T}} Q_{n}(\tau)=Q_{n}(\tau) \Lambda_{n}(\tau)
$$

It follows that the matrix

$$
\mathscr{Q}_{n}(\tau):=D_{n}^{-1 / 2} Q_{n}(\tau) W_{n}(\tau)^{1 / 2}
$$

is unitary, and that

$$
\mathscr{H}_{n}(\tau)^{\mathrm{T}} \mathscr{Q}_{n}(\tau)=\mathscr{Q}_{n}(\tau) \Lambda_{n}(\tau)
$$

We now wish to show that

$$
\rho_{n}:=\mu_{n}-\sum_{k=1}^{n} \omega_{n, k}(\tau) \lambda_{n, k}(\tau)^{n} \neq 0 .
$$

We have

$$
\begin{aligned}
\rho_{n} & =e_{1}^{\mathrm{T}} M_{n}^{\prime} e_{n}-e_{1}^{\mathrm{T}} \overline{V_{n}(\tau)} W_{n}(\tau) \Lambda_{n}(\tau) V_{n}(\tau)^{\mathrm{T}} e_{n} \\
& =e_{1}^{\mathrm{T}}\left[M_{n} F_{n}(0)-\overline{V_{n}(\tau)} W_{n}(\tau) V_{n}(\tau) F_{n}(\tau)\right] e_{n} \\
& =e_{1}^{\mathrm{T}} M_{n}\left[F_{n}(0)-F_{n}(\tau)\right] e_{n},
\end{aligned}
$$

where $F_{n}(\tau)$ is the companion matrix of $\psi_{n}(\tau, \zeta)$. If we put

$$
\binom{r_{n}}{1}:=\binom{\gamma_{n}}{s_{n}},
$$

then we have

$$
F_{n}(\tau)=E_{n}-\frac{1}{1+\bar{\gamma}_{n} \tau}\left(r_{n}+\tau J_{n} \bar{s}_{n}\right) e_{n}^{\mathrm{T}}
$$

The use of $M_{n} r_{n}+m_{n}=0$ now gives

$$
\begin{aligned}
\rho_{n} & =\frac{\tau}{1+\bar{\gamma}_{n} \tau} e_{1}^{\mathrm{T}}\left(\bar{\gamma}_{n} m_{n}+M_{n} J_{n} \bar{s}_{n}\right)=\frac{\tau}{1+\bar{\gamma}_{n} \tau} e_{1}^{\mathrm{T}} M_{n+1} J_{n+1}\binom{\bar{r}_{n}}{1} \\
& =\frac{\tau}{1+\bar{\gamma}_{n} \tau}\left(m_{m}^{T} \bar{r}_{n}+\mu_{0}\right)=\frac{\tau \delta_{n}}{1+\bar{\gamma}_{n} \tau} \neq 0,
\end{aligned}
$$

as required.

References

[1] T. Ando, Truncated moment problems for operators, Acta Sci. Math. (Szeged) 31 (1970) 319-334.
[2] W.E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue problem, Quart. Appl. Math. 9 (1951) 17-29.
[3] F.V. Atkinson, Discrete and Continuous Boundary Value Problems (Academic Press, New York, 1964).
[4] F.L. Bauer and A.S. Householder, Moments and characteristic roots, Numer. Math. 2 (1960) 42-53.
[5] A. Bultheel, Toward an error analysis of fast Toeplitz factorization, Report TW44, Appl. Math. Programming Division, Kath. Univ. Leuven, 1979.
[6] J.R. Bunch, C.P. Nielsen and D.C. Sorensen, Rank one modification of the symmetric eigenproblem, Numer. Math. 31 (1978) 31-48.
[7] G. Cybenko, The numerical stability of the Levinson-Durbin algorithm for Toeplitz systems of equations, SLAM J. Sci. Statist. Comput. 1 (1980) 303-319.
[8] G. Cybenko, Error analysis of methods for Toeplitz systems and linear prediction, in: R. Boite and P. Dewilde, Eds., Circuit Theory and Design (North-Holland, Amsterdam, 1981) 379-386.
[9] G. Cybenko, A general orthogonalization technique with applications to time series analysis and signal processing, Math. Comp. 40 (1983) 323-336.
[10] G. Cybenko, Restrictions of normal operators, Padé approximation and autoregressive time series, SLAM J. Math. Anal. 15 (1984) 753-767.
[11] W.B. Gragg, Matrix interpretations of the continued fraction algorithm, Rocky Mountain J. Math. 4 (1974) 213-225.
[12] W.B. Gragg, F.G. Gustavson, D.D. Warner and D.Y.Y. Yun, On fast computation of superdiagonal Padé fractions, Math. Programming Stud. 18 (1982) 39-42.
[13] A.S. Householder, Separation theorems for normalizable matrices, Numer. Math. 9 (1966) 46-50.
[14] A.S. Householder, Moments and characteristic roots. II, Numer. Math. 11 (1968) 126-128.
[15] T. Kailath and B. Porat, State-space generators for orthogonal polynomials, in: H. Salehi and V. Mandrekar, Eds., Harmonic Analysis and Prediction Theory: Essays in Honor of P. Masani (North-Holland, Amsterdam, 1982) 131-163.
[16] A. Ruhe, The two-sided Arnoldi algorithm for nonsymmetric eigenvalue problems, in: B. Kågström and A. Ruhe, Eds., Matrix Pencils, Lecture Notes in Math. 973 (Springer, Berlin, 1983) 104-120.
[17] H. Rutishauser, Bestimmung der Eigenwerte orthogonaler Matrizen, Numer. Math. 9 (1966) 104-108.

