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ABSTRACT

When bottom mounted structures of large
displacement are immersed in the sea, earth-
quake 1nduced hydrodynamic loads may become
important design factors. Specifically, as
the earth oscillates, a bottom mounted struc—
ture 1s forced to describe time dependent
motion in an otherwise still fluid. As a
result, hydrodynamic loads in additiom to the
inertial loads of the strecture itself are
induced. In this paper, a theoretical approach
to the calculation of these hydrodynamic loads
is outlined and numerical results are presented
for several submerged configurations. Practical
geometries considered include a submerged oil
storage tank configuration and a conical con-
figuration as has . been proposed for offshore
drilling rig designs for deployment in the
Arctic. Also, computations were carried out for
a sphere and vertical circular cylinder and
various comparisons with classical results are
made.

Numerical results for these submerged
structures are presented in the form of a
dimensionless hydrodynamic load parameter or
added mass coefficient. Results corresponding
to a number of different water depths are pre-
sented to show the rather sizable effect of
the relative water depth on the hydrodynamic

References and illustrations at end of paper.

force. It is shown that for typical earthquake
frequencies, the effect of the free water sur-
face is to reduce the hydrodynamic loads in
comparison to the corresponding infinite depth
values,

Experimental results obtained by vibration
testing are presented for a submerged sphere
and a vertical circular cylinder, These results
show excellent agreement with the theoretical
regults.

INTRODUCTION

Princlpal attentlon in earthouake engineer-
ing has been given to the generation of tsunami
waves, the shoreline run-up and damage caused
by these waves, as well as the damage to dry
land structures caused by strong ground motion.
With the increased deployment of large submerged
structures, an additional facet of this impor-
tant problem has come to light. Namely, if a
large bottom mounted structure submerged in the
ocean 1s excited by oscillatory ground motion,
hydrodynamle loads in addition to its own iner-
tia forces come into play. As the structure is
caused to move through the water, hydrodynamic
forces which are dependent upon the size and
shape of the structure as well as the water depth
and frequency of oscillation arise. On account
of the large deasity of water, these forces are
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often quite large and have considerable
influence on the structural design.

When an object is accelerated through a
fluld there are, in general, two types of
forces that are recognized, one belng a drag
component and a second, the inertial component.
The nature of the flow produced by the time
dependent motion of the immersed rigid object
and the relatlive contribution ¢f these two
components of force is generally considered to
be strongly dependent on the amplitude of the
relative fluld wotion in c¢omparison to the
characteristic lineal dimension of the object.
For example, Keulegan and Carpenter [1] found
that, for harmonic motion of the fluld past a
fixed cireular cylinder, major flow separation
did not occur and the forces were well repre-
sented by potential flow values provided the
amplitude of the motion was less than about
a half diaweter. 1f the amplitude of the
motion is small enough the flulid does not move
in one direction far enough for separation and
wake development to occur and, accordingly,
an invisecid flow analysis is a valid mathemati-
cal model.

Typical values of oscillatory ground dis-
placement produced Iin earthquakes are only a few
inches. Therefore, for most large engineering
structures the assumption of swall values of
the relative amplitude of the fluid motion is
well gatiafled. Accordingly, the assumption
of inviscid fluid motion is valid and it is
justified to assume a time dependent potential
flow model for analysis of the fluid motion
and resulting forces.

John [2] has shown that the wvelocity poten—
tial assoclated with the harmonic motion of a
rigid object immersed in a fluid with a free
surface may be represented by a surface distri-
bution of poilnt wave sources for arbitrary
values of frequency. The source distribution
for welghting) function is obtained in this formu-
lation from the solutlion of an intepgral equation
resulting from the kinematic boundary conditilon
applied on the immersed surface. Using this
technlque, numerical results have been obtained,
for example, for a semiellipsold oscillating in
a free surface in water of infinite depth by
Kim [3], the intended application being to
surface ships. Numerical results for a bottom
mounted hemisphere have been presented by
Carrigson and Seetharama Rao {4] and results
for several axisymmetric configurations by
Milgram and Halkyard [5]. Garrison and Chow
[6] have recently presented both theoretical
and experimental results for wave forces acting
on a fixed submerged oil storage tank.

In the work cited, the hydrodynamic force
coefficlents are represented as a function of
a dimensionless frequenecy parameter (or equiv-

~alently, a dimensionless wave length parameter)

of the form v = o2 a/g where ¢ denotes the
frequency of the motion, @ denotes the charac-
teristic lineal dimension of the submerged
object and g denotes the gravitational constant.
(This dimensionless parameter is essentially

a form of the Froude number.) In all cases,
however, the theory has a fundamental limita-
tion. The source potential oscillates with a
wave length inversely proportional to the dimen-
sionlegs frequeney v and, consequently, a
reasonable partition size of the immersed sur-
face limits the validity of the numerical scheme
to small to moderate values of frequency. Spe-
cifically, it is the experience of the authors,
uging the Haskind's relations [7] and am energy
balance for purposes of checking accuracy, that
results can be obtained with reasonable accuracy
up to about v = 2.0. Beyond this, the accuracy
of the numerical results becomes questionable.

Although the range v = 0 to about 2.0
includes most applications in ship hydrodynamics
and wave forces acting on large structures, the
frequencies encountered in earthquake excitation
corresponds to rather large values of v in the
case of large structures. Accordingly, an altert
nate method which includes the effect of the
free surface and bottom on the hydrodynamic
forces and is valid for large values of the
dimensionless frequency v is required. There-
fore,. the work described herein 1s directed
toward obtalning numerical results for objects
of arbitrary shape for the asymptotic case of
very large values of v, i.e., for the infinite
Froude number case.

High frequency added mass coefficients for
two-dimensional shapes oscillating on a free
surface have been presented in a series of
papers by Landweber et al. [8]), [9], [1C]. The
motivation for this work was to provide hydro-
dynamic coefficients for two-dimensional ship
forms. TFor three-dimensional objects the only
results known to the author are those of Waugh
and Ellis [11l} for the case of a sphere in
infinite depth water. Their theoretical method
consisted of using successlve image doublets to
account for the effect of the free surface,
However, the case of vertical motion only was
studied and their method was limited to a sphere.

In the present paper the theoretical formu-
lation of the forces acting on a rigid object
of arbitrary shape is presented. The effect of
the bottom and free surface is taken into con-
sideration and the force coefficient is shown
to depend on a frequency of oscillation param-
eter., The problem is first formulated for
arbitrary values of the frequency and the asymp-
totic form of the solution for both large and
small wvalues of the frequency is discussed. A
computer method for numerical evaluation of the
force coefficient for submerged objects of

arbitrary shape is discugsed and numerical |
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results are presented for a number of specific
geometric ‘shapes including a circular cylinder
and sphere. Also, numerical results are gener—
ated for a possible ice breaker-drilling rig
configuration for deployment in the Artic and a
submerged oil storage tank. High frequency
experimental results are presented for a verti-
cal circular cylinder and submerged sphere and
compared with the theoretical results.

THEORY

The geometry involved in the problem under
consideration is shown in Fig., 1. A rigid
object of arbltrary shape having characteristic
lineal dimension a3 1s submerged to a depth @
in water of depth R and caused to move in a
small amplitude harmonic motien. The ingtan-
taneous motion of the rigid object 1s specified

¥ the lineal velocity U-and angular velocity
- The object may intersect the bottom or free
surface.

Assuming an unseparated, incompressible and
irrotational flow, a velocity potential
Q(xl,xz,xa,t) defined by

*
q = Vo (1}
=
where q denotes the fluid wvelocity vector, may
be introduced and musat satisfy the continuity
equation,

72p = 0 (2)

within the fluld region, {The bars over the
spatial varlables denote dimensional quantities)

_ On_the rigid bottom surface described by
%X, = ~h the fluld velocity in the wvertical
d%rection must vanish and, accordingly, the
corresponding kinematic boundary condition on
the velocity potential is

%;_{ (xy5
2

The velocity of a point on the immersed
surface 1s given by :

"h’XB’t) 1 (3)

-+

V=0+Ux*T (4
5

where r denotes the position vector as shown
in Flg. 1. The appropriate kinematic and
dynamic boundary condition on the immersed
surface, therefore, takes the form

b2 (x
an

1°%22%3:%) o §.2 5)
where o = in, + En + §n3 denotes the unit
normal vecto¥ on the surface and is directed

outward into the fluid regiom.

Assuming the amplitude of the motion of
the object to be small, the kinematic and
dynamic boundary condition applied at the £free

surface wmay be linearized to give

3P (Ry,0,%q,t) , 0%0(%,,0,%,,t
= R 3t L Pt - o {(6)

I

Furthermore, if the object oscillates with fre-
quency ¢, the time dependence of the wvelocity
potential may be separated and written as
Re[¢(xl,x2,x%)e“10t] where Re denotes the real

part. In which case Eg. (6) becomes
Ei(ElIOyEB) = gi_ = T =
8%2 g ¢(x1;09x3) 0 {7)

Thus, when o 1s very large, the free surface
boundary condition takes the form

$(X),0,%;) = 0 (8)
and when o is very small the free surface appears
as a rigid boundary as described by
39.08.0,%9)
aX
2
If consideration is restricted to eithexr of
the boundary conditions Eq. (8) or Eq. (9) the
velocity potential may be written as the sum

(9

T(X, 3 Xy %a, ) = W, (£) &, (%, ,%,,%X.),
1 a5aay i 177172003 (10)
1=1,2,...6

where each term in the sum ﬁepresents the poten-
tial associlated with the il component of body
motion. (1 = 1,2,3 refers to lineal motlion com-
ponents in the x 395X 3 directions, respectively
and 1 = 4,5,6 refers to the angular motion com—
ponents about the %,,X,,%, axes, respectively.)
The time dependent function W is deflned as

Wi(t) = Ui(t) a

i =1,2,3 (11)

—2
Hg(t) = 2,(e) a

the symbols U, and 2; denoting the components

of the lingal ang angular veloclty vectors of
the body, U and @, respectively. The potentials
¢i are dimensionless quantilties.

It 1s dimportant to note that the application
of either of the two boundary conditions, Eqs.
(8) and (9), makes the problem homogeneous iIin
time. Consequently, the assumption of harmonic
motion may be relaxed and the fupnctions W, (&)
may be allowed to be arbitrary functions.” This
is fortunate since earthquake excitation is not
harmonlc but rather.a high frequency random
vibration,

Substituting Eq. (10) into Egs. (2), (3),
{(5) and (B) or {9) and introducing the dimen-
sionless varlables defined as
xi = ;ifg, h = h/a, d = d/a (12}
vields the boundary value problem for

b, (1 =1,2,...6) as:
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v 4’1(’(1: ,J{ } =

$,(x),0,%3) =0, (¢ > =)

or, 3, (x,,0,x%,)
—.-...-j.'... 1 3 = 0 5 (g -+ 0)
3x2
{13 a-e)
a¢i(xl’~h'x3) "
ex2
a¢i(xl’x2’x3) .
an i
where
mgo= g, i =1,2,3
m, = (%, + d)n. - x.n
4 2 3 372 (d asd)
Wy = 40y = Xj0q
m6 = x1“2 - (x2 + d)n1

The boundary conditions {(13b) and (13c) repre-
sent two different possibilities on the free
surface, the flrst beipg the high frequency
condition and the second the rigid boundary
condition. In as much as the method of solu-
tion Involving either boundary condition is
gimilar, both solutions are developed simul-
taneously in the following.

Green's Function Solution

The solution to the boundary value problem
(13) may be carried out by use of a Green's
function. The Green's function represents the
potential for a point source and these sources
are distributed over the immersed surface
according to the distribution function
f(a P ) According to this concept the
potent%al ¢ may be writtem as

¢~(x.x,x)=ﬂ
S P 1s)

_,/’f f (El'EZ’E ) G(Kl,xz»XB,EI:ﬁzyﬁ )ds

where (ﬂl,F ,53) denotes a point on the
immergsed surface, G denotes the Green's func-
tion and dS = dS/al denotes the surface area
element made dimensionless with the character-
istic body dimension a.

In order that Eq. (15) represent a solution
to Eqs. (13) it 13 necessary that G satisfy
the equation

V2G(X, , X3 X3 E. En EL) =

1772*737 7177203 (16)
5(31*51) ﬁ(xz—Ez) G(XS-EB)
where §(x) denotes the Dirac delta function, as
well as boundary conditions (13d) and (13b) or
(13c).

The Green's function satisfying Egq. (16) as
well as Eq. (13b) and (13d) is obtained by use
of successive images as depicted in Fig. 2 and
ig given by

f i
Gx)s%ysXq361,69,85) = F ~

_ X (17)
Y ent ¢ +o e en™ad + 1)
oot 4 3 s

n n o n

The corresponding form of G satisfying the rigid
boundary condition Eq. (13¢) (o0 = 0 on x, = 0)
ig also obtained by successive images an% is
similar to Eq. (17) except that all of the
sources have positive strengths. TFor this case,
the Green's function takes the form
G(xlix29x3;51u52s53} = TI:'L{' + ":lli'l

(18)
1 1 1
+Z(§ +R +-§4 :
n=1 n n n n

(17) and (18)

2 3"
w =\£x1~£1} + (x3-53)
R =\£E_+ (xz

1
+E)

where in both Eq.

2
£y)

R, =Wa2 + (x, + £.)%
2 2 (19)

R =N&2 + (x2 -~ 2nh - Ez)

R EVwZ + (x2 + 2nh + 52)2‘

3
n
R, =W +)x, + 2o - £,)7
7
Rsn =V + (x, = 2oh + §,)

Since G satisfies Eq. (13a-e) the potential ¢i
as given by Eq. (15) must also satisfy these
conditions, Thus, it remains to select the
function £ such that Eq. (l3e) is satisfied.
Application of this boundary condition yields

the following integral equation

_fi{xl’xZ’XS)

1 3G (X, ,X,,X,3E,,6,,E,) dS
+ Z“H[]}i(gl,gz,as) = S Lt
s (20)

= 2m1{x1,x2,x3) » i=1,2,...6

which is to be solved for f(£ s E-oE ). Because
of the form of G, Eq. (20) is ragher complex

and it is therefore necessary to carry out the
solution numerlcally. Since the scurce strength
f is a well-behaved function, the immersed sur-
face may be partitioned into N area elements of
size AS, and the integral in Eq. (20) written

as the sum
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“fni + fnj aij = 2m-ni s, no=1,2,...6 {21}

where 1,1 = 1,2,...N and n refers to the six
possible wmodes of motion of the object. It
follows from Eq. (20) that

L AG(x, X, oKy JEpsEuaba)
Sy =5 IIASQ“ 1,°%2, %3, 381°52°%9 a5 (22)
The function 3@73n is obtained in a straight-
forward manner by differentiation of Eq. (17)

or {(18).

Once the coefficient matrix o,, 1s obtained
froem Eq. (22) a standard digital cgmputer sub-
routine may be used to invert the matrix equa-
tion, Eq. (21), to obtain the source strength
f at points on the immersed surface. Fer pur-
poses of evaluation of G and 3G/5n by use of
(17) and (18) it was found that about 15 terms
were adequate. The data presented herein, how-

ever, were obtained using 30 terms.

Hydrodynamic Forces and Moments

The dynamic fluid pressure 1s obtained from
the linearized form of Bernoulli's equation as

Em = e (23)

at
Corresponding to the ith component of body
motion, the pressure is obtained by use of
Eq. (10) as

Pi = —pwi¢i {no sum) 1= 1,2,...6 (24)

The pressure may be written in dimemsionless
coefficient form as P
o 1(x1s%g,%5

pi(xl,xz,x3) :

PMy

= -¢i(xl’x2!x3) » :E- = 1,2,--;6 {25)

The hydrodynamic force acting on the object
is finally obtained by carrylng out the inte~
gration of the pressure over the immersed sur-

face. Using Eq. (24) the force vector asso-
ciated with the 3t component of body motion 1is

fj = -EEI,LPjEdS’ §o=1,2,...6

The corresponding result for the moment vector
is

(26)

M =-£3J,j? Txn ds, 3 =1,2,...6 (27)
1 E

Using Eq. (24) as well as the definition of

m; as given in Eq. (l4), the 1* component

o% force asscciated with the jt® component

of motion 1Is given in dimensionless coefflclent
form as

F
A"i = —E—%— Bff¢ midS E3 1 = 1}2,3 (28)
3 e &j ‘Sj 3= 31,2,...6

and the corresponding expression for moment is

M
g m e[ [ogues, (1= 6
37 oas % 5 *
pa Wj 3 j’“ 1,2,...6

where W is defined by Eg. (11),.

(29)

Equations (28) and (29) define the inertia
{or added mass) tensor having 36 elements. The
dimensionless coefficients A defined by Eq.
(28) represent the dimensioniéss force coeffi-
cient and Eq. (29) represents the dimensionless
moment coefficient. These coefficients are
generally referred to as added mass (or moment
of inertia) coefficients. Although these coef-
ficlents are made dimensionless by use of a in
the definitions (28) and (29), there are cases,
depending on the beody geometry, where cther
length scales are more appropriate. It is also
standard practice in many cases to use the
displaced fluld volume. However, Iin all numer-—
ical results presented herein the definition of
A,. ia specified on the figure sc that although
t%é definitions vary, no confusion should regult

For purposes of numerical evaluation of the
coefflclents given In Eqs. (28) and {29) the
integrals may be written as summation

i,j = 1,2,...6
k=1,2,...N
However, in order to apply Eq. (30) it 1is nec-

esgary to first evaluate ¢, at all of the nodal
points on the immersed sur%ace. For this pur-

Ay ™ (‘bjmi)k A o (30)

pose the surface integration in Eq, (15) is
also converted to the summation
(b)), =8 (£.), , 1 =1,2,...6
17k T k,2 = 1,2,...N L)

where
i3
Byt ™ a7 J[l/FG(x Xy 9¥q 363555554045 (32)
194 A Asz lk Zk 3k Err2reg

Once Eq. (32) i3 evaluated, the summation indi-
cated in Eq. (31) may be carried out te deter-
mine ¢, at all nodal polnts on the fmmersed
surfacg, The coefficlents Ai are then obtained
by use of Eq. (30). 1

Although there are 36 possible added mass
coefficients, many are zero on account of sym-—
metry and wmost off-dlagonal elements are small.
Also, even for a body of arbitrary shape A is

symmetrical so that at most only 21 of theij
ceefficients need be evaluated, That is, Eq.
(13e) along with Eq. (28) and (29} glves

(33)

3¢i
By "ﬂ;"’jmi"s - fl“’j‘é?{ a8

By use of the Green's theorem applied to the
fluld reglon extermal to the boady, it can be
shown that :
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flﬁ“ﬁrds"f e 45 OB
S

gince on the free surface either ¢ = 0 or
3¢/3n = 0 (depending on the boundary condition
being enforced) and 34/9n = 0 on the bottom.
Therefore, 1in view of Eq. (34) and (33) it is
apparent that the added mass tensor 1s sym-
metrical,

g™ Aji

EXPERIMENTAL APPROACH

(35)

Experiments were conducted to determine the
added mass coefficlent of a circular cylinder
and a sphere in proximity of a free surface and
rigid bottom, The basic experimental approach
consisted of mounting the test object on flex-
ible beams and measuring its natural frequency
in alr and water. The reduction in natural fre-
quency when placed in water was then related to
the added maas of the water.

The test rig used to determine the added
magss coefficient corresponding to the horizontal
motion of a vertical circular cylinder and
sphere is shown in Flg. 3 and 4. The sphere
wag mounted in thils test. rig on a thin 6 inch
long by 2 inch chord vertical strut., Two large
steel channels were placed perpendicular to
each other and welded to a 1/2-inch steel plate
to form a rigid support for the spring-mass
system. These channels were supported at four
points on the top edge of a shallow, water-
tight box (24" x 70" x 48"). The cylinder and
gphere, mounted on a palr of flexible beams,
was bolted to this supporting structure as shown
in Fig. 3. (The sphere is not shown.)

Four strain gages were mounted on the top
end of one of the flexible beams and connected
Into a Wheatstone bridge. The bridge was then
connected to a carrier preamplifier and the fre-
quency of the bridge output was measured by use
of a Monsanto programmable counter=—timer., A
ten second duration was set on the counter-
timer and, depending on the depth of water and
test object, the readings vanged from about
110 to 180 cycles. The time duration programmed
on the counter was highly accurate so that the
major error In the process was considered to
result from reading the number of cycles occur-
ring in the 10 second interval to integer
values. However, since the starting of the
interval was random, this error was minimized
by repeating each test rum six times and record-
ing the average reading. It wes noted that the
spread in readings from the counter was never
greater than one cycle for a given configuration.

A calibration curve for the system was
developed by plucking the mass (test object)
in air with the addltion of pre-measured weights
attached to the test object. In general, the

test procedure was considered to be highly -
accurate and good repeatability was obtained
in all cases. : -

The same procedure was used for the deter-
mination of the added mass coefficients for
the sphere in vertical motion but a different
apparatus and tank was employed. The parallel
beam mount which carried the rod with attached
6 dnch diameter plexiglass sphere is shown in
Fig, 5 and 6. The tank used in this experiment
was 4.0 fr. deep and represented, for practical
purposes, am Infinite depth case, The sphere
was oscillated in the vertical direction,

DISCUSSION OF RESULTS

Theoretical and experimental values of
added mass coefflclents have been generated
for a number of configurations and are plotted
in Figs. 7 — 18. These include results for a
vertical circular cylinder, a sphere, a hemi-
spherical bottom mounted vessel, a practical
submerged oll storage tank and a conically
shaped tower.

The theoretical and experimental results
for the added mass coefficient for a vertical
circular cylinder are shown in Figa. 7 - 11.
The added mass coefficient corresponding to
the case of horizontal acceleration as based
on the cylinder radius cubed is presented in
Fig. 7 both with a free surface and with a rigid
upper boundary. Results for two different grid
sizes are shown, 120 and 192 effective nodal
polnts, and little difference was found to exist|
It can be seen that the computer results for
the "rigid boundary” case closely follow the
straipght line relationship (rh) representing
the classical two-dimensional result. The
results corresponding to the "free surface"
case show that the effect of the free surface
is te reduce the added mass coefficient and for
larger wvalues of h the results appear to be
closely approximated by the straight iine rela-
tionship {(wh - 3.0).

The same result In a slightly different form
is presented in Fig. 8. In this figure the
added mass coeffiiclent made dimensionless in the
more common manner, by use of the displace vol-
une wa‘h, is plotted for two different grid
sizes. Also, the experimental results obtained
from vibration testing 1s presented for compari-
son. The results show that the effect of the
free surface is to reduce the added mass coef-
ficients and agreement between the experimental
and thecoretical results is shown to be excellent/
On the same figure the computer results for the
Tigid boundary case is presented. The classical
result for two-dimensional flow gives Ayy = 1.0
and, therefore, the deviation from this value
gives the percentage numerical error in the com-
puter results directly. The figure indicates a
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maximum of about 3.0 per cent error at the
extreme low values of h.

There is no doubt that accuracy of the com-
puter results could be Improved by means other
than the most obviocus: inereasing the number
of area elements. However, any gain in pre-~
cision is generally offset by increased com-
puter storage requirements, complexity and
computer run time. The present methed is con-
sidered to be quite simple and versatile with
respect to configeration and yet possesses ade-
quate accuracy for most purposes.

For the case of horizontal motion, the
line of action of the horizontal force is also
a parameter of interest. When the upper
boundary acts as a "wall," the force acts at
the center, i.e., at £ = .5. However, for the
free surface case the pressures are reduced
near the free surface and the line of actionm
is somewhat below center. This result is pre-
sented in Fig., 9 as obtained using 192 nodal
points.

A second degree of freedom is also possible
for the vertlcal cylinder. The cylinder may
be allowed to rotate about some convenient axis
with angular acceleration. In which case an
added moment of inertia way be defined. HNumer-
ical results have been generated, using 192
nodal points, for this coefficient for rotation
about an axis passing through the center of the
cylinder at its base. These theoretical results
are presented in Fig. 10. The results show
that the free surface has the effect of reducing
the hydrodynamic reaction when compared to the
rigid boundary case., This 1s the expected
result since the free surface tends to reduce
the pressure differential near the top of the
cylinder.

Finally, in order to show how the maximum
pressure on the surface of the cylinder varies
with depth, Fig. 11 has been prepared. In
this figure the dimensionless pressure coef-
ficient as defined by Eq. (25) is plotted for
the case of horizontal acceleration. It may
be noted that the classical solution corres-
ponding to the tigld boundary case ylelds the
maximum pressure of p, = 1.0 over the complete
length., Fig. 11 shows that the pressure cor-
responding to the free surface case begins at
zero and appears to approach unity as the
distance from the free surface and depth
increase. This is the expected trend since
the effect of the free surface diminishes at
large distances.

Theoretical results for a sphere accelera-
ting both horizontally and vertically are
shown in Figs. 12 - 14, For the case of ver-
tical acceleration in deep watexr, Fig. 12
shows experimental results obtained by vibra-
tion testing for comparisom with theory and

the agreement appears to be qulte good. It may
be noted that the effect of the free surface

is always to decrease the added mass coeffi-
cients while the proximity of a rigid boundary
has the opposite effect., All of the computer
results for the sphere have been generated
using 264 nodal points.

The well-known classical solution for a
sphere gives an added mass coefficlent of .5
for the case of a fluld of infinite extent.
Accordingly, as d becomes large, the coefficilent
plotted in Fig. 12 is expected to approach this
closed form result but approximately a 4,0 per
cent deviation Is noted. This error is due to
numerical inaccuracles and approximations used
in the computer program,.

The same kind of results are plotted in
Fig. 13 as generated by the computer, the only
difference being the finite depth, h = 4.0,

The same general trends as In Fig. 12 are
observed when the sphere i3 near the free sur-
face; the rigid boundary results are greater
than .5 while the free surface results are less
than .5. However, as the depth 1s increased
and the sphere approaches the bottom, the added
mass coefficient increases in either case.

Theeretical and experimental results for
the added mass coeffilclent in horizontal accel-
eration corresponding to a bottom mounted sphere
is shown in Fig. 14. The experimental results
were obtained by use of the test rig shown in
Figs. 3 and 4. The sphere was mounted on the
lower plate by use of a 6.0 inch strut and the
sphere was adjusted to within .02 inches of
the tank floor. It may be noted that the
results show good agreement with theoretical
regsults and have the same general trends as
previous results except for the break off in
A for the rilgld boundary case as h becomes
smdll, Thls reversal in trend is caused by
the unwetting of the sphere occurring at values
of h less than 2.0.

Fig. 15 presents the added mass coefficlent
associated with a bottowm mounted hemispherical
object as a function of water depth for both
the rigid boundary and free surface case. The
results appear somewhat similar to previous
ones with the rigid boundary having the effect
of increasing the added mass coeffilclent and
the free surface having the opposite effect.

In order to demonstrate the capabllity of
the method, computer results have been genera-
ted for two practical concrete structures. The
first, shown in Fig. 16, is a conically shaped
tower which may £ind application as a drilling
rig for deployment in the Arctic. The computer :
results were generated using 192 effective nodal
poelats distributed over the immersed surface.

The added mass coefficient (based on actual
displaced volume) for the conically shaped tower |
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is presented in Fig. 16 as a function of water
depth. The results for the rigid boundary case
shows coefficlents which are much greater than
those corresponding to the free surface case.
Moreover, for the free surface case the line of
action of the hydrodynamic force was found to
actually lie below the bottom. This rather
unexpected result is caused by the fact that the
pressures on the lower portion contribute to
a moment opposite that induced by pressures on
the upper part. In general, as the object is
accelerated horizontally, positive pressures are
produced on the front side while negative pres-
sures occur on the back side, Therefore, since
the pressure as well as area which contributes
to a negative moment 1s much greater than those
tending to induce a positive moment, the result
is a moment tending to tip the top of the cone
in the direction of the acceleration. This
moment 1s equivalent_to applying the horizontal
force at a distance £ below the bottom.

A second configuration of practical interest
is the bottom mounted gubmerged oll storage ves—
sel described in Fig. 17. The dimensions are
made dimensionless with respect to the tank
half-width. In the original design the tank
width was approximately 100 feet.

The added mass coefficient based on the dis-
placed volume both with a rigid upper boundary
and with a free surface is shown in Fig. 18.
Here again the results are similar to previous
ones with the rigid boundary case showing an
increase and the free surface case showing a
decrease in added mass coefficient at smaller
values of the depth. These results were gen-
erated using 236 effective nodal polnts dis-
tributed over the complete immersed surface.

CONCLUSIONS

A practical, nurerical analysis has been
developed using three dimensional sources and
image sources to represent the flow produced
during impulsive motion of large rigid struc-
ture of arbitrary shape immersed in the sea.
The bottom and free surface have been tagken
into account and it is shown that the prox-
imity of the free surface has a sizable effect
and always tends to reduce the added mass coef-
ficients in comparison to the rigid boundarxy
case. The experimental results obtained by
vibration testing for a sphere and cylinder
were found to agree well with the theoretical
results. The results are directly applicable
in the determination of earthquake loading of
rigid submerged and semi-submerged bottom
mounted strxuctures,

NOMENCLATURE

a: characteristic dimension of the body
A, added mass coefficient

atd depth of submergence

f(£1,52,53): source strength function

iy

force vector

acceleration of gravity
Green's function

depth of water

moment vector

unit normal vector

dynamic pressure, dimensionless
dynamic pressure

BT I m

L

fluid velocity vector
surface of body

time

velocity of object
coordinates

" s e

® CHT .0t

1r%20%3¢

2-
o alg

coordinates of a point on the surface
of the ohject

fluid density

frequency

velocity potential, dimensionless
veloclty potential

angular velocity of body

51,52,€3:
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