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ABSTRACT

We develop an alternative to confidence intervals, called cumulative mean bounds, for estimating the mean
behavior of system performance. Cumulative mean bounds assess the probability that the cumulative sample
mean stays within a given distance from the unknown true mean and rely on properties of standardized time
series. We extend the properties of cumulative mean bounds to estimate the probability that the cumulative
sample mean will reach a particular value. This idea can be used to analyze quality control methods for
predicting mean simulation output behavior given an initial sample of output.

1 INTRODUCTION

Simulation output analysis research is often devoted to estimating the mean performance of a simulation
system. Confidence intervals are one way of assessing the quality of a system by providing a measure
of variation in the estimate of mean system performance. We introduce a new measure of reliability for
evaluating the mean performance of a system, which considers the path taken by the cumulative sample
mean over time. We calculate the probability that the cumulative sample mean will stay within a given
distance from the unknown true mean after an initial sample size. This measure is called cumulative mean
bounds (CMB).

This is different from confidence intervals, which consider the sample mean at one point in time, but
there are many similarities between the two measures. Both face a tradeoff between desired confidence in
the measure (the probability guarantee), and the precision (the prescribed distance allowed from the true
mean). Increasing the number of samples will improve the quality of the results. Confidence intervals give
an estimate of the mean and the variability associated with that estimate, and our measure is stronger in
that we desire the sample mean to be within a given distance from the true mean over an extended period
of time.

In this paper, we show how CMB can be used to estimate the probability that the cumulative sample
mean will cross a particular threshold value given an initial starting sample. This makes the measure useful
in a quality control setting, where we may wish to design a system that will stay within a certain acceptable
range that is defined in absolute terms. We imagine a setting in which performance of the system is based
on the average performance throughout the entire time period, not just the current time period. Examples of
this include reporting mean profitability at the end of a fiscal year, or assessing the daily cost of operating
a plant over the long term. While a confidence interval can assess the quality of the long-term mean,
CMB measures the probability that the mean is likely to be consistently good over time. For example,
in investment management, average rates of return are reported regularly. Consistent mean performance
can help maintain or attract customers, whereas volatility in the sample mean may reflect poorly, even
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if long-term performance is good. A confidence interval will not directly measure this volatility in the
reported mean over time.

As with confidence interval procedures, we require a good variance estimator for our measure to be
valid. While confidence intervals rely on approximate normality of the sample mean, CMB relies on
convergence of a standardized time series formed from the data to a Brownian bridge. The validity of CMB
for a particular data type depends on the extent to which a standardized time series can be approximated by a
Brownian bridge. The quality of this approximation depends on the levels of dependence and non-normality
in the data, and standardized time series methods often require large amounts of data. The covariance
structure of the standardized time series should approximately match that of its limiting Brownian bridge
process. Details on the construction of CMB for the independent and normally distributed case are in
Singham and Atkinson (2015a). In this paper, we summarize the CMB metric and focus on estimating the
probability the sample mean will cross a given threshold. In particular, we develop the measure in the case
where the underlying data is assumed to be independent and identically distributed (i.i.d.) with a normal
distribution so that the standardized time series has the statistical properties of a Brownian bridge.

In many classical CUSUM charting methods, it is assumed that the true mean µ and variance σ2 of
the in-control system are known from extensive experimentation in order to develop methods for testing
long-term shifts to a new mean. See Hawkins and Olwell (1998) for more information on CUSUM charts.
Kim, Alexopoulos, Goldsman, and Tsui (2006) develop CUSUM charts for detecting changes in the mean
of a simulation process without assuming a model structure. Rather than detect shifts in a process, we
attempt to predict whether the mean performance will reach a particular level given its variability. We do
not assume knowledge of the true mean and variance, but will use estimates to predict the probability that
the sample mean will stay within acceptable levels.

We propose the following two-stage experiment. In the first stage, estimates for the mean and variance
are collected. This is then used in conjunction with CMB to estimate the probability that in the second
stage, the cumulative sample mean will stay below a pre-specified control limit, given another initial set
of samples. While CMB was developed to predict performance relative to the true mean, here we use it to
estimate performance relative to a fixed value which could be chosen without knowledge of the true mean.
In Section 2 we describe the construction of CMB. Section 3 introduces the translation of CMB to quality
control by relating it to the probability of a false detection of a shift in the mean. We provide numerical
results and analysis in Section 4 and Section 5 concludes.

2 CUMULATIVE MEAN BOUNDS

We summarize the construction of CMB from Singham and Atkinson (2015a). Suppose we have simulation

output Y1,Y2, . . .Ym. Define the cumulative mean after j samples, j = 1, . . . ,m as Y j =
1
j ∑

j
i=1Yi. We are

interested in evaluating the probability that after k initial samples, the cumulative sample mean stays within
a given distance δ from the long term mean Y m, when m is large. Taking m to the limit, CMB is the
probability that after k initial samples, the cumulative sample mean of these samples stays within a given
distance δ from the true mean of the process, µ . Explicitly, we define CMB as follows:

CMB := P

(

⋂

j≥k

∣

∣

∣

∣

∣

µ −
1

j

j

∑
i=1

Yi

∣

∣

∣

∣

∣

≤ δ

)

. (1)

We note that k > 0 is the initial sample size required to avoid a trivial value of CMB as zero when k = 0,
and also gives us an initial sample required in order for the probability guarantee to hold. As k becomes
large, we expect the probability that the sample mean stays within distance δ from µ approaches 1. In
Singham and Atkinson (2015a), the authors suggest a secondary measure which calculates the probability
that the sample mean stays within a given distance from the true mean in one direction, where the sample
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mean stays below the true mean with an allowed tolerance δ . This is written as

CMB′ := P

(

⋂

j≥k

1

j

j

∑
i=1

Yi −µ ≤ δ

)

(2)

where we calculate the probability the sample mean stays less than µ plus some allowed tolerance δ . In
this paper, we focus on this “one-sided” measure to develop a quality control metric, where average system
performance should stay below some upper threshold value. The results can be modified to consider a
lower threshold value.

To calculate the value of CMB, we rely on properties of standardized time series developed in Schruben
(1983). Standardized time series based on m samples of observations rescale the data to form a new time
series over the range of time t ∈ [0,1] according to the following function:

X(t) =
⌊mt⌋

(

1
m ∑

m
i=1Yi − 1

⌊mt⌋ ∑
⌊mt⌋
i=1 Yi

)

σ
√

m
, t ∈ [0,1].

Let σ2 be the asymptotic variance constant σ2 = limm→∞ mVar[Ym]. To use standardized time series,
we require the conditions for a Functional Central Limit Theorem (FCLT) to hold, and Schruben (1983)
shows that under these mild conditions the standardized time series will converge to a Brownian bridge as
m → ∞. For more details on how standardized time series can be used to analyze simulation output, please
see Alexopoulos (2006).

In Singham and Atkinson (2015a) we derive a lower bound for CMB′ when the data are i.i.d. normally
distributed. We note that for a given value of µ , we can estimate the value of CMB′ using simulation. We
present the associated theorem for CMB′ here.

Theorem 1 Under the assumption that the data is i.i.d. normally distributed, the probability that the sample
mean stays within distance δ (on one side) from its long term mean Y m for all k ≤ j ≤ m has a lower bound

CMB′
L(δ ,σ ,k,m)≤ P

(

⋂

k≤ j≤m

1

j

j

∑
i=1

Yi −
1

m

m

∑
i=1

Yi ≤ δ

)

=CMB′(δ ,σ ,k,m)

where

CMB′
L(δ ,σ ,k,m) = 2Φ

⎛

⎝

δ
√

k

σ
√

1− k
m

⎞

⎠−1. (3)

Define Φ(x) as the standard normal cumulative distribution function applied to x. We derive (3)
by rewriting (2) as a function of a standardized time series X(t). For the i.i.d. normal case the points
j

m , j = 1, . . . ,m of a standardized time series will have the same joint distribution as the same points of a
standard Brownian bridge. Details and proofs are given in Singham and Atkinson (2015a). We calculate (3)
by deriving boundary-crossing properties of Brownian bridges. The lower bound is the result of assuming
a continuous Brownian bridge in calculating boundary-crossing probabilities, as opposed to a standardized
time series evaluated at discrete points. In practice the lower bound is fairly tight. In the limit as m → ∞
we can extend Theorem 1 by replacing the long term mean Y m with the true mean µ . This extension
produces the following result

CMB′
L(δ ,σ ,k)≤ P

(

⋂

j≥k

1

j

j

∑
i=1

Yi −µ ≤ δ

)

=CMB′(δ ,σ ,k)
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where

CMB′
L(δ ,σ ,k) = 2Φ

(

δ
√

k

σ

)

−1. (4)

The details extending Theorem 1 in the limiting case to produce (4) appear in Singham and Atkinson
(2015b). We will focus on the limiting case in (4) for the remainder of this paper. An issue to consider
when using CMB in a non-i.i.d. normal setting is the quality of the approximation of a standardized time
series by a Brownian bridge. Small sample sizes or highly dependent data may prevent this approximation
from being valid, and could result in (4) failing to be a lower bound for finite sample sizes. Singham and
Atkinson (2015b) study appropriate limiting conditions for FCLT data results to hold.

As confidence intervals can be defined exactly for i.i.d. normal data, in this paper we develop quality
control extensions of CMB′ using i.i.d. normal data to develop properties of the measure. The objective
is to use CMB′ to predict the likelihood of the cumulative sample mean staying within some acceptable
range. As stated in (1) and (2), we have defined this acceptable range in the original statement of CMB
as [µ − δ ,µ + δ ], and for CMB′ as [−∞,µ + δ ] in the one-sided case. Next, we will translate CMB′ to
estimate the probability the cumulative sample mean will stay within the fixed range [−∞,Q] where Q is
the control limit.

3 QUALITY CONTROL METRICS

We translate information from CMB′ into quality control metrics for the sample mean. Information about
cumulative mean behavior can be used to predict the probability that a sample mean will stay below a
specified level Q given past data samples. We note that we have a different objective than traditional quality
control metrics which are designed to detect shifts in the mean as data arrives. Our goal is to estimate the
probability that the sample mean will stay below some level Q. This can be related to a probability of a
false alarm in a CUSUM framework, where the quality of the measure is evaluated using the average run
length until a false alarm occurs.

We derive this related measure by conditioning on the distribution of the true mean given past data to
obtain absolute control limits. To do this, we set up a two-stage experiment. In the first stage, we collect
samples to estimate the mean and variance. To start, assume that we have k1 samples with sample mean
Y k1

collected from the first stage. We would like to calculate the probability that the sample mean will
stay below some level Q after k2 further samples. CMB′ gives a probability guarantee for the sample mean
staying below its true mean µ with allowed tolerance δ after a given number of samples (in this case, k2

samples in the second stage). Thus, we use CMB′ in the second-stage to estimate the probability that the
sample mean stays below Q. Figure 1 shows the second stage control limit and how the value of Q can
be related to µ and δ in the CMB′ context. In a quality control setting, we would fix µ as the in-control
mean value and try to detect when the sample mean has shifted by at least δ to be higher than Q. A high
average run length until a detection means the probability of a false alarm is low. CMB can be used to
estimate the probability a false alarm will occur over a given time period if the true mean remains at µ .

For this paper, we assume the underlying samples Yi are i.i.d. normal to help establish the properties
of the estimation. Many algorithms exist for determining batch sizes required to obtain batched means
that are approximately i.i.d. normal. For examples, see Steiger and Wilson (2002), or for one that uses
standardized time series, see Alexopoulos, Goldsman, Tang, and Wilson (2013). Assuming the samples
are obtained from an i.i.d. normal population, given that the first-stage sample mean is Y k1

and the sample

variance is σ̂2
k1
= 1

k1−1 ∑
k1
i=1(Yi −Y k1

)2, we can approximate the distribution of Y k1
as Y k1

∼ N (µ, σ̂2
k1
/k1),

so our uncertainty about the value of µ can be quantified as N (Y k1
, σ̂2

k1
/k1). To calculate the probability

that the sample mean will stay below Q after another k2 samples, we condition on possible values of µ
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Figure 1: Second stage control limits. We estimate the probability that the cumulative sample mean will

stay below Q after k2 samples. We fix Q, while µ and the corresponding δ are estimated via first-stage

sampling.

and use CMB′:

CMB′
Q := P

(

⋃

i≥k2

(Y i ≤ Q)

)

=CMB′(Q−µ,σ ,k2) (5)

≈
∫ Q

−∞
CMB′(Q− x, σ̂k1

,k2)N (x,Y k1
, σ̂2

k1
/k1)dx (6)

≥
∫ Q

−∞
CMB′

L(Q− x, σ̂k1
,k2)N (x,Y k1

, σ̂2
k1
/k1)dx (7)

=
∫ Q

−∞

(

2Φ

(

(Q− x)
√

k2

σ̂k1

)

−1

)

N (x,Y k1
, σ̂2

k1
/k1)dx (8)

:=ĈMB′
Q.

Because we are uncertain about the value of µ , we approximate our uncertainty by conditioning on µ
using the distribution obtained from the information in the first stage in (6). As our first stage sample k1

increases to ∞, our uncertainty about the sample mean decreases and we obtain (5) in the limit. Conditioning
on the value of µ as x, we can use CMB′

L to estimate obtain a lower bound for the probability that the

cumulative sample mean ever exceeds Q in (7). The lower bound estimate ĈMB′
Q is then readily available

as (8) using numerical integration which is much faster than simulating the value of CMB′ exactly in (5)
or (6). We evaluate the quality of the approximation and the lower bound in the next section. We need to
determine under what conditions the lower bound is actually a lower bound, and we would like the lower
bound to be tight for it to be meaningful.

4 RESULTS AND ANALYSIS

With an infinite sample size in stage 1, we would have full knowledge of the distribution of mean and
variance of the data and would be able to determine the probability the sample mean ever crossed Q as
CMB′(Q−µ,σ ,k2) with k2 initial samples. Because we approximate the distribution of the data, we assess
the quality of this approximation from using a finite sample size k1.

We explore the tradeoff between investing samples in the first stage (k1) to obtain a good estimate of
µ as opposed to allowing for a larger initial sample size in the second stage (k2) before the probability
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guarantee applies. We explore the relationships in two contexts. In the first context, the first stage is a
simulation experiment to estimate the mean performance of the system where we can take k1 to be arbitrarily
large. The second stage samples consist of observations of a real process, where we require some initial
sample size k2 for the sample mean to stabilize. In the second context, the second stage has the same
sampling cost as the first stage. In this case, we allocate between the two stages using a fixed budget. For
both cases, the usage of Section 3 can be summarized as follows:

1. Collect k1 samples of Yi data samples.
2. Estimate µ and σ2 from samples Y1, . . . ,Yk1

using Y k1
, σ̂2

k1
.

3. Return ĈMB′
Q using (8).

4. ĈMB′
Q gives the probability estimate that the sample mean in the second-stage will remain below

Q after more than k2 samples.

4.1 Different Sampling Costs in Each Stage

We experiment with different sample sizes k1 and k2 to understand the relationships between the sample

sizes and the performance of ĈMB′
Q. We assume that k1 can be made arbitrarily large as in a simulation

context, while k2 consists of real data samples which are more costly or take time to observe. For example,
k2 could be the number of days needed to observe daily failure rates of a machine to ensure that the mean
failure rate will not exceed some level in the future. For all results, we simulate sample paths to estimate
the true value of CMB′

Q.

We note that the true value of CMB′
Q increases as k2 increases, because given a higher starting sample

size in the second stage we have a higher probability that the sample mean will stay in a given acceptable
range past that point, as extreme fluctuations in the mean are more likely to happen early on. Also,
the quality of the lower bound CMB′

L improves as k2 increases if the data are independent or positively
correlated. Thus, we generally expect better results for higher values of k1 (more information about the
likely sample mean) and higher k2 (the measure CMB′ improves).

For the experiments in this subsection, we used µ = 0,σ = 1,Q = 0.1,m = 10000, and ran n = 2000

replications to generate each table value. Table 1 shows the probability that ĈMB′
Q is an actual lower

bound for CMB′
Q, as there is an approximation made in (6). Table 2 shows the mean values of ĈMB′

Q as

well as the true value of CMB′
Q.

Looking at Table 2 we see that as k1 increases the mean value of ĈMB′
Q approaches the true value.

For small values of k1 the mean value of ĈMB′
Q is biased away from its true value toward 0.5. Table 1

produces a surprising result: the probability that ĈMB′
Q is a lower bound decreases as we increase k1 for

several values of k2. As we increase k2 there are two conflicting dynamics that influence whether ĈMB′
Q

will be a lower bound in opposite ways. A larger value of k1 leads to a reduced variance in the estimate of

µ , which decreases the likelihood of a random sample producing a ĈMB′
Q larger than CMB′

Q. However,

we see from Table 2 that as we increase k1, ĈMB′
Q is likely to be closer to CMB′

Q, and hence variance in

ĈMB′
Q is more likely to produce values above CMB′

Q. While large k1 and k2 produce lower probabilities

of being a lower bound, we shall see shortly that any excess of ĈMB′
Q over CMB′

Q in these situations is
small.

Table 3 shows that as k1 increases, the variance in ĈMB′
Q decreases, as more information in the mean

is obtained in the first stage of sampling. The variance remains relatively constant as k2 increases.

To further evaluate the distribution of ĈMB′
Q, we plot its cumulative distribution function for different

values of k1 and k2 in Figure 2. We see that as k1 increases, the distribution of the estimate tightens around

546



Singham and Atkinson

Table 1: Probability that ĈMB′
Q is a lower bound for CMB′

Q.

k2=20 56 92 128 164 200

k1=10 0.472 0.578 0.669 0.729 0.776 0.830

100 0.571 0.612 0.643 0.673 0.710 0.744

1000 0.663 0.594 0.603 0.608 0.631 0.649

10000 0.874 0.710 0.669 0.623 0.630 0.625

100000 1.000 0.965 0.891 0.833 0.826 0.761

Table 2: Mean value of ĈMB′
Q.

k2=20 56 92 128 164 200

k1=10 0.434 0.493 0.509 0.526 0.525 0.525

100 0.358 0.486 0.544 0.588 0.609 0.626

1000 0.339 0.525 0.625 0.692 0.739 0.768

10000 0.345 0.544 0.657 0.738 0.793 0.835

100000 0.345 0.545 0.662 0.742 0.799 0.842

True 0.382 0.571 0.681 0.756 0.812 0.852

Table 3: Variance of ĈMB′
Q.

k2=20 56 92 128 164 200

k1=10 0.077 0.088 0.087 0.085 0.086 0.085

100 0.043 0.061 0.066 0.068 0.069 0.072

1000 0.010 0.020 0.022 0.023 0.022 0.023

10000 0.001 0.002 0.002 0.002 0.002 0.002

100000 0.000 0.000 0.000 0.000 0.000 0.000

the true value, but the estimates may have a higher chance of failing to be a lower bound. As k2 increases,

the true value of CMB′
Q increases leading to higher values of ĈMB′

Q.

4.2 Allocation Within a Fixed Budget

The motivation for the prior section was that we are able to simulate many samples in stage 1 but
have limited flexibility in the number of samples in stage 2 because these could be samples collected
from physical experimentation. We now explore a situation where we have a fixed budget B = k1 + k2

where samples in both stages are equally costly and we need to allocate some samples to estimation of
the first stage in k1 and the rest to the second stage initial sample size. We analyze the same metrics
from before, but fix the total number of samples. To further evaluate the quality of the lower bound,

we estimate the conditional mean shortfall (E[ĈMB′
Q −CMB′

Q|ĈMB′
Q < CMB′

Q]) and conditional mean

overage (E[ĈMB′
Q −CMB′

Q|ĈMB′
Q >CMB′

Q]) of the estimator. Table 4 shows the results by varying the
allocation of a budget of 1000 samples when µ = 0,σ = 1, and Q = 0.1.

The results for most of the metrics are generally monotone in the direction we expect. The true value

of CMB′
Q decreases as k1 increases (k2 decreases) and the probability of ĈMB′

Q being a lower bound

decreases as k1 increases (k2 decreases) as the true value of CMB′
Q is decreasing. The variance decreases

as k1 increases, as does the expected shortfall, while the expected overshot increases as k1 increases and k2

decreases. The increase in overshoot occurs primarily because CMB′
Q is so close to 1 for most columns,

that there is a relatively small cap on what the overshoot can be except for the last columns as k2 decreases.
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Figure 2: Cumulative distribution function of estimates ĈMB′
Q for different values of k1 using a low value

of k2 = 20 (left) and high value of k2 = 200 (right). The dashed vertical line represents the true value of

CMB′
Q.

Table 4: Allocation combination results, used µ = 0,σ = 1,Q = 0.1,nreps =10000, m =10000, B =1000.

k1=10% 20% 30% 40% 50% 60% 70% 80% 90%

True CMB 0.997 0.995 0.992 0.986 0.975 0.957 0.921 0.852 0.700

Probability Lower Bound 0.980 0.950 0.915 0.875 0.815 0.769 0.720 0.659 0.614

Mean 0.696 0.762 0.793 0.814 0.828 0.822 0.802 0.756 0.637

Variance 0.067 0.052 0.044 0.038 0.033 0.030 0.028 0.028 0.025

Expected Shortfall -0.307 -0.246 -0.218 -0.197 -0.184 -0.182 -0.180 -0.176 -0.157

Expected Overshot 0.001 0.003 0.005 0.008 0.014 0.022 0.037 0.060 0.087

The one metric for which the relationship is non-monotonic is the mean value of the estimator ĈMB′
Q.

The mean increases and then decreases, appearing to be its highest at around a 50% allocation to each
stage. Even though k2 is high when k1 is low, and hence CMB′

Q should be higher for smaller k1, the large
variation in our estimate of µ caused by small k1 leads to a larger probability that the estimated value of

the true mean is actually greater than the boundary Q, which produces a lower estimate of ĈMB′
Q and

drags down the mean calculation in Table 4. As k1 increases, the uncertainty around the mean decreases

and it is much less likely that the possible mean will exceed Q and deflate ĈMB′
Q. But if k1 is too large,

then k2 is small and the the value of CMB′
Q decreases and hence so too must ĈMB′

Q.
We next decrease Q to impose a more strict limit on the cumulative mean. In Table 5 we set Q = 0.05

which is even closer to the true mean 0. The results are similar to Table 4. The highest mean estimate

ĈMB′
Q occurs when 30% of the samples are allocated to the first stage.

Table 6 shows the results for an even more strict upper bound when Q = 0.01. In this case, the mean

value of ĈMB′
Q is larger than the true value of CMB′

Q in all cases, though the average overage decreases

as k1 increases and k2 decreases. In this case, the true value of CMB′
Q is quite low to begin with, and it

seems unlikely the sample mean will stay within this strict range, in which case the quality of the estimate

ĈMB′
Q is less useful anyway.
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Table 5: Allocation combination results, used µ = 0,σ = 1,Q = 0.05,nreps = 10000,m = 10000,B = 1000.

k1=10% 20% 30% 40% 50% 60% 70% 80% 90%

True CMB 0.906 0.877 0.845 0.807 0.763 0.707 0.636 0.543 0.406

Probability Lower Bound 0.868 0.816 0.768 0.726 0.695 0.643 0.612 0.577 0.566

Mean 0.563 0.585 0.595 0.594 0.585 0.570 0.540 0.482 0.375

Variance 0.079 0.077 0.074 0.070 0.067 0.063 0.057 0.050 0.032

Expected Shortfall -0.403 -0.373 -0.348 -0.328 -0.306 -0.283 -0.248 -0.219 -0.161

Expected Overshot 0.050 0.063 0.078 0.093 0.113 0.128 0.144 0.155 0.139

Table 6: Allocation combination results, used µ = 0,σ = 1,Q = 0.01,nreps = 10000,m = 10000,B = 1000.

k1=10% 20% 30% 40% 50% 60% 70% 80% 90%

True CMB 0.260 0.245 0.230 0.213 0.195 0.176 0.153 0.127 0.091

Probability Lower Bound 0.318 0.321 0.334 0.330 0.331 0.340 0.337 0.341 0.353

Mean 0.453 0.433 0.402 0.388 0.359 0.328 0.292 0.248 0.179

Variance 0.081 0.078 0.073 0.071 0.063 0.057 0.048 0.037 0.021

Expected Shortfall -0.134 -0.127 -0.120 -0.113 -0.103 -0.092 -0.083 -0.068 -0.048

Expected Overshot 0.345 0.335 0.319 0.316 0.296 0.278 0.251 0.218 0.163

Finally, we consider a generous upper bound Q, where Q = 0.2. In this case, the true value of CMB′
Q is

much higher. We note that a higher allocation to k1 leads to the highest mean estimate at 50-60% allocation.
Overall the estimator performs well for all allocations and across all metrics.

Table 7: Allocation combination results, used µ = 0,σ = 1,Q = 0.2,nreps = 10000,m = 10000,B = 1000.

k1=10% 20% 30% 40% 50% 60% 70% 80% 90%

True CMB 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.959

Probability Lower Bound 1.000 1.000 1.000 1.000 1.000 0.915 0.857 0.756 0.676

Mean 0.887 0.954 0.977 0.986 0.991 0.991 0.989 0.979 0.930

Variance 0.025 0.008 0.003 0.002 0.001 0.000 0.001 0.001 0.003

Expected Shortfall -0.113 -0.046 -0.023 -0.014 -0.009 -0.009 -0.012 -0.023 -0.051

Expected Overshot 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.015

For practical purposes, it is critical to obtain a good estimate of the variance for the estimate to be

reasonable. Higher values of k1 result in better estimators for µ and better precision in ĈMB′
Q, while

higher values of k2 lead to larger values of CMB′
Q. If it is likely that Q is close to µ , then even larger

values of k1 will be needed to reduce the uncertainty in µ and larger values of k2 will be needed to obtain
a reasonable value of CMB′

Q. If Q is far from µ , as in Table 7, then the results are less sensitive to the
values of k1 and k2.

5 CONCLUSIONS

We present a new way of evaluating mean system performance called cumulative mean bounds. As an
alternative to confidence intervals, we consider the probability that the cumulative system mean will stay
within a given distance from its true mean. We translate this measure to estimate the probability that the
cumulative sample mean will stay below a specific value after a given time period. This can be used as
a quality control measure to relate the mean behavior of the system to some externally imposed limit. In
order to achieve this translation, we require an estimate of the mean and variance based on some initial
samples in the first stage of the experiment. We then require further samples in a second stage before the
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probability guarantee can be applied. We analyze the tradeoff between these two stages of sampling. We
find that whereas a better probability guarantee can be found by increasing samples in the second stage, it
is important to have an adequate number of samples in the first stage to estimate the mean.
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