
Calhoun: The NPS Institutional Archive

Reports and Technical Reports All Technical Reports Collection

1982-03

Navlisp Reference Manual

Samples, A. Dain

http://hdl.handle.net/10945/48739

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/45464097?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NPS52-82-004

NAVA L POSTGRADUATE SCHOOL
- Monterey, California

Navlisp Reference Manual

A. Damn Samples

March 1982

CD Approved for public release; distribution unlimited

Prepared for:

Chief of Naval Research
LL. Arlington, Va 22217

O4?~ o25
-9 2 0 4. 0,

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral J. J. Ekelund David A. Schrady
Superintendent Acting Provost

The work reported herein was supported in part by the Foundation
Research Program of the Naval Postgraduate School with funds provided by
the Chief of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

A. DAIN SAMPLES
Computer Programmer
of Computer Science

Reviewed by: Released by:

rman WILLIAM M. TOLLES
Department of C er Science Dean of Research

I _ _ _ _ _ _ _ _ _ _ _ _ _
x? 4. . ''- -- -- !

SECURITY CLASSIFICATION OF T4IS PAGE (When, De Cnired)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
f REPORT NUMBEft 2. GOVT ACCESSION NO I. RECIPINT'S CATALOG NUMBER

NPS52-82-004 e &,1 .
4. TITLE (and Subtitle) S. TYPE OF REPORT b PERIOD COVERED

Navlisp Reference Manual Technical Report
6. PERFORMINO ORO. REPORT NUMBER

7. AUTHOR(a) 6. CONTRACT ON GRANT NUMIERf.)

A. Dain Samples

I. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AftEA & WORK UNIT MUMUERS

Naval Postgraduate School 1 O OONT 1U1OMonterey, CA 93940 61152N; RR000-01-10
N0001482WR20043

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Postgraduate School March 1982

Monterey, CA 93940 3. 5UMOCR OF PAGE
35

14. MONITORING AGENCY NAME & AOOR[SSf/ diflerent ftom Controing Office) IS. SECURITY CLASS. (of thle speOt)

Chief of Naval Research UNCLASSIFIED
Arlington, Va 22217 Is. DECLASSIFICATION/ DOWNGRADING

SCHEDO LL

16. OISTRI UTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited

17. DISTROiGU TION ST AT EMEN T (at the obstrect entered in Block 20, It different fromt Report) (I

IS. SUPPLEMENTARY NOTES ,

IS. KEY WORDS (Continue an reverse side it necesaraw idenhtify by block number)

LISP

20. AISTRACT (Continue an -reves side if nece..ssar and dmnti' by block ,ber)

IThe Naval Postgraduate School's Computer Laboratory has developed a dia-
lect of LISP, called Navlisp, to run under PWB/UNIX on a PDP11/50. This man-
ual is not a tutorial to LISP. It is intended for those who know the basics
of the LISP programming language and wish to use the Navlisp dialect.A

DO , FAM17 1473 COITION OF I NOV Of IS OSROLET UNCLASSIFIED
$ N 0102- LF. 014- 6601 SECURItY CLASI ICATION Oi

r
THIS PAGE (11161. =r"ed!)

'_;avliso .402 i

Reference :1anual V1 .2
A. Dain Samplesarch 17, 1982

Introduction

The "laval Post-Graduate School's Computer Laboratory has
develoned a dialect of LISP, called 2 avlisp, to run under
WB/Mlt- on a PDP 11/50. While loosely based on .Maclisp, Navlisp

is unlike other LISP systems in several important ways.

Like all processes that run under UINIX, Iavlisp interfaces
easily to other processes. Since many functions normally found
in LISP systems e.g. LISP oriented editors) are available
through the UNIX environment, Navlisp is much smaller than con-
ventional LISP systems (approximately 36K of code) and yet has
full LISP functionality.

Navlisp is also different from other LISPs in the design of
the language. A new control structure, Parnas' it-ti*, has been
implemented as an enhancement to the stan R- LISP cond.
Surprisingly, this modification is compatible with the old deFi-
ition of cond, but is much more powerful: with the let function,
the new coni s powerful enough that the very unsti---tured (and
anachronistc) Drog feature of standard LISP is not necessary,
and has not been implemented in Navlisp.

In addition, a list element accessing function suggested by
Dana Scott has been implemented: (n list) will access the nth
element of list, where n is an integer (see the description of
the 0 function).

*This manual is not a tutorial to LISP. It is intended for
those who know the basics of the LISP programming language and
wish to use the Navlisp dialect. The descriptions contained
herein are brief and assume at least a passing knowledge of both
LISP and UNIX. Winston and van Horn's LISP book provides a good
tutorial to the langua e, and is highly recommended.

1. Running Navlisp

Navlisp maintains a user "workspace" in which user defined FAcession Fr_
objects are maintained in internal format. This workspace is -RAkI
loaded each time Navlisp is executed, and saved each time the IC TAB n
user exits Navlisp. The workspace must be initialized in your AB

directory before running Navlisp. To do this, run initnavlisp Justification-

For a more detailed explanation of the it-ti, see

"Implementation of Parnas' it-ti Constr-t-'n LISP", A. D. D_
Samples, Computer Science Laboratory Technical Report NPS52- Distrbutica/
82-005, Naval Postgraduate School, 1982. Availablitty Codes

copyTI Aivll arid/or - -
T Dist i ei/l
I o i 1

.. ,, : & :r,. .ttIC O P . .Y). _ ,
-1-.... " '.... 1f i .. I1toI,'

first:

initnavlisp : do only once

I navlisp : now running

Currently, the default workspace file name is .navlisp in the

current directory. Tn anticipation of future enhancements, the
user is able to specify a different workspace file name on the
command line for initnavlisp or navlisp. This file will then be

the target of SAVE, RETORE, SCJPUNCH, and bye (q.v.). Currently,
the file name cannot be changed while navlisp is running,
although that is a planned enhancement. E.g., to use . ./mryZnork
as the workspace storage file:

initnavlisp .. /mywork

% navlisp ../mywork

Some development work will continue on Navlisp. In the future

you might receive a warning message to the effect that the
current version of Navlisp does not match the version of init-
navlisp that created your workspace. This is usually not signi-
ficant. The only compatibility problem that may arise is when
you attempt to use a system function in Tavlisp that the init-
navlisp program did not know about. Occasionally, the changes to
Navlisp will create irreconcilable differences, and initnavlisp
will Ihave to be re-run. This will, of course, destroy the con-
tents of your current workspace. Therefore, keep your favorite
functions in source files. Then they can be restored easily (see
getfun for an example of how to do this).

File handling capabilities are embedded in the MIX operat-
ing system. Navlisp gets its input from the standard input file
(stdin) and writes on the standard output file (stdout). This
can be changed on the invocation line by:

% navlisp <notherin >notherout

as for any other UNIX process.

For news on the latest developments in Navlisp, display the
file /etc/navlispnews. E.g.,

% page navlispnews

2. Terms used in the descriptions

The f .lowing meta-terms will be used in the next section to help
describe the objects and functions of Navlisp. Note that these
meta-terms are not part of the programming language proper and
are not recognized by Navlisp as they are used below (unless the

-2-

,, ,, , , , ,... . .. ,1 ' .',. -A'-L

user lefines them so).

=> A symbol used to denote the resulting value or type of
a function.

alist Refers to a special data structure used rather commonly

in the interpreter:

((objil . vail) (obj2. val.2) (obj3 . val) ...

It is an 'association list' in that it associates an
object with a value. The elements of an assocation
list are dotted pairs.

boolean Basically, this refers to one of two values: nil
(false) or T (true). However, many functions in LISP
recognize any non-nil value as a true value. See
member and remprop for examples.

dotted pair The basic element of LISP is the cell, each of which
consists of two fields: the car and the cdr fields.
Most LISP cells contain atoms or lists in the car field
and only lists in the cdr field. Occasionally (see
alist, above) it is convenient to store atoms in the
cdr field: this cell is then said to contain a "dotted
pair". Note that the following two S-expressions are
identical, but the first shows the contents of the
cells of the list explicitly, while the second is the
more usual representation:

(a . (b • (c . (d . nil))))

(a b c d)

eip Used wherever a numeric expression could be used.
Implies that the type of the expression must be an
integer or real.

list Implies that only lists are acceptable and that atoms
are excluded.

a an atom, not a list
(a) acceptable, a list
(a (b o)) another good list

number An atom type that subsumes both integers and reals.

object Refers to any entity that can be defined in Navlisp:
atoms, numbers, strings, symbolic atoms, or lists (not
a mutually exclusive list of entities).

oblist Navlisp keeps a list of all defined symbols. This list
is of the form:

-3-

aymboll symbol2 symbo13 ...

where each symboli is a plist.

plist Each element of the oblist is the property list (i.e.,
plist) of a symbol. This plist is of the form

(syml objectl sym2 object2 sjm3 object3 ...

The symi are the attributes, or properties, of the sym- !
bol. Unless the user has modified the plist, one of
these symi is the property INAME. Other symbol proper-
ties the system recognizes are SUBR, FSSUBR, ISUBR,

=XPR, F_(PR, LECPR, FILE, CADRS, VALUE, and TRACE (all
of which are defined below). The user may define addi-
tional properties through the use of putprop.

S-expr Denotes a list; a balanced set of parentheses:

a is an S-expr
(a b) is an S-expr
(a b)) is not
(a (b c) d) is an S-expr
(a ((b c) d) is not

string Refers to a concatenation of zero or more characters.
The functions print and fprint print strings surrounded
with double-quot-esand w=l non-printable charac-
ters expanded using the up-arrow escape convention (see
the section on input conventions). The functions
printf and fprintf do not print the surrounding quotes,
nor o they translate the non-printable characters.

symbol There are basically three kinds of atoms in Navlisp:
numbers, strings, and symbolic atoms. A symbolic atom

is simply an object on the oblist, which is the 'symbol
table' for Navlisp. Note that 'oblist' is a slightly
misleading use of the word as not all objects are on
the oblist (e.g. numbers and strings).

3. Input conventions

:Tavlisp's prompt is a curly brace 'I'. The interpreter reads an
S-expression from the standard input, and evaluates it, and
writes the result on the standard output. For convenience, the
user m-a indicate the end of an S-expression with a closing curly
brace '1' which will be expanded automatically to close all open
sub-S-expressions. Navlisp also implements the square-bracket
convention from Interlisp: a right square bracket ']' will pro-
duce enough right parentheses to match the most recent left
square bracket 'L'*

.... -4-

, i fl m/ f. [ol (cond I(null 'l) ,foo bar nil '"

T (foo (car pl

is equivalent to

(defun f (pl) (cond ((null pl) (foo (bar nil)))
(T (foo (car pi))))

)

To imbed arbitrary characters in strings and names follow the
UN X convention: the back-slant character inhibits interpretation
of the immediately following character. There are two exceptions:
'\n' is the new-line character, and '\t' is the tab character.
the null character '\0' may not be imbedded in Navlisp strings or
names. For example, ab\ cd would imbed a blank in the name "ab
cd". Non-printable characters can also be imbedded in names, so
use with caution.

Use the above convention also to put non-printable or con-
trol characters in strings (a more likely necessity). In addi-
tion, to give the user full access to the control characters, the
up-arrow escape convention is used. For example, '\t' = I ,
and '\n' = '4 J'. (The up-arrow convention is used when printing
control characters in strings printed with - or printf.) The
up-arrow is escaped with the backslant.

(printf "ab\ncd" CR)
ab
cd

(Rrint "ab\ncd" CR)
"ab Jcd"

I (printf "The length of 4J is "1
(stringlength "'J") CR) ; non-printable

The length of
is I

(print "The length of \4J is "
(stringlength "\4J") CR)

The length of 4J is 2

4.Error messages

Error messages in Navlisp are of the form

object cName: * Message *

-5-

-.ere '.we is a nemonic indicating wheIe error ..a.

discovered. Most often UIame will be the flunction that letects
the error. Occassionally it will be the name of an internal (to
the interpreter) function. The message will indicate what the
problem was and hopefully give enough information that the prob-
lem can be corrected. The character prefix to Name differen-
tiates the various messages within a function. if an object can
be nrinted that would be he!rful it is displayed before the mes-
sage proper.

Messages that begin "Sys err:" are just that and should
(ideally) never occur. However, if one does occur, please note
the circumstances and report them.

5. Alphabetic listing of Navlisp objects and functions

Fach of the following entries is in the format:

name type (syntax) => returned tjpe or value

where type is usually SUR, FSUBR, ISUBR, system symbol, or one
of a few other miscellaneous types. Square brackets indicate
optional items and should not be confused with the square bracket
input convention described above. Numbers appended to names are
for identification purposes only.

input convention
The single quote is used as an input convention for the
quote f'unction (q.v.).

* UER (* exp exp ...) => number
Returns the products of the expressions. Times is a
synonym.

+ LSU (+ exp exp ...)=> number
Returns the sum of the exp's. Plus is a synonym.

ISM (- expl exp2 exp3 ...) => number
Returns expl minus exp2 minus exp3 Difference is
a synonym.

* system symbol
Used in input and output to indicate that the cdr of a
cell is not a list but an atom. Care should be taken
to always surround the dot of a dotted pair with blanks
as it is legal to imbed dots in names and numbers.

-6-

... '

:ons 'x

{ (cons 'x '(y))
(x y)

f (cdr '(x.y))
nil

/cdr 'x y)
Y

J (setq x.y 'something)
something

(setq x . y 'something)
aRead: * ')' expected at end of dotted pair's cdr *

x.y
something

Ai B (/ expi exp2 exp3 ... expn) => number
Returns(...((expl/exp2)/exp3)...)/expn. Quotient is
a synonym.

< ILME (< expl exr2 exp3 ...) => boolean
Returns T if expl < exp2 < exp3 ess is a
synonym.

SUM (= objecti object2) => boolean
If objectl and object2 have the same values, then equal
returns T, otherwise nil. E is a synonym.

IZUE (> expl exp2 exp3 ...) => boolean
Returns T if expi > exp2 > exp3 Greaterp is a
synonym.

0,1,2,... SUR (integer list) => object
Returns the nth element of the list. That is

0 '(a b c)) (car list) => a
(2 '(a b c)) = (cadr list) => b
(3 '(a b c)) -- (caddr list) => c
(4 '(a b c)) => nil, as does 5, 6, etc.
(0 '(a b c)) => (a b c)
(-1 '(a b c)) => (a b c) so do negative numbers

It is not an error to apply the nth function to nil, as
it will only return nil. However, it is still an error
to take the car or cdr of an atom other than nil.
(TRACE INTGERS) will trace all of the integer func-
tions: integer functions cannot be traced individually
(e.g. (TRACE 1) will not work). Also note the

-7-

~i

I
(setq n I)

(n '(abc')
n dinternreter: * '.7known functicn in eval *

\eval n' -a 2'

abs --? 'aabs exo) => number
.eturns the absolute value of the nutmeric ex.ression
exr.

addl SUBR ',addl exp) => number
Adds one to the value of the numeric expression exp.

alphalessp SUBR (alphalessp stringl string2 => boolean
Returns T if, in a character by character comparison
using the AZCIi collating sequence, string is strictly
less than string2. Shorter strings are less than
longer strings, all else being equal.

and ?SUER (and objectl object2 ...) => object
The objects are evaluated from left to right until one
evaluates to nil. Evaluation is discontinued at that
point and nil is returned. If none of the objects
evaluate to nil, then the value of the last object
evaluated is returned as the value of and.

append :.SMR (append list list ...) => list
Creates a new list that has all the elements of the
argument lists as members. This is distinguished from
the nconc function in that a new list is created and
the argument lists are not changed.

[(append '(a b c) '(d e))
(a b c d e)

(setq x '(a b))

(eq (append x '(i e)) x)
nil

(eq (nconc x '(d e)) x)
T

apply LUM (apply fcn args [alist]) => object
The function fcn is applied to the arguments args in
the context/environment alist, if specified.

-8-

a '-_'ply 'cons ',ab'
(ab)

ascii MBR (ascii integer) => string
Returns a string consisting of the single character
corresponding to the integer parameter. E.g. (ascii
10) returns a string consisting of a carriage-return.

assoc M17 'assoc object alist ; => iotted nair
Returns the dotted nair whose car is the objec- and
whose cdr is the value associated with that object. if
no such object is on the alist, assoc returns nil.
Uses ecual for the equality comparison on the associa-
tion list.

assq SJ- (assq object alist) => dotted pair
Returns the dotted pair whose car is the object and
whose cdr is the value associated with that object. if
no such object is on the alist, asso returns nil. Uses
ea for the equality comparison oT-- te association list.

atom SUB (atom object) => boolean
Returns T if object is an atom. There are several
kinds of atoms to be distinguished:

integer 16-bit, two's complement

reals 32-bits; corresponds to C's float

string a variable length concatenation of characters

symbol anything on the oblist, including nil

boundp SUBR (boundp symbol) => boolean
Returns T if symbol is in the current environment. If

symbol is not on the current alist, then if it has a
VALUE attribute/property, boundp returns T. Ctherwise,
boundp returns nil. Note that if the VALtYE of the sym-
bol is nil, that is considered unbound.

(setq x nil)
nil

I (boundp 'x)
nil

(let ((x nil)) (boundp 'x))

break system symbol
Used in cond (q.v.) to implement Parnas' it-ti con-
struct.

-e- .-

n n l i l l l I III III n I I ,, ' " " .. _I. _ .: . ' " . ; , : . •

ye iJJ! bye' => nc-.-in
-he .workspace is saved and :'he rocess is exited,
returning the user to the process that invoked :Navlisp.

,ADPF system symbol
A property name that indicates this symbol is an
extended c'r; e.2. cadr, caddr, cdadadadddaar, etc.
-here =o be uo -- 16 i's and a's in cetween the c and
-he r. "he value of the -- at-trite :*s -a ar
encoding of the i and a secuence.

::ar -2-7-12 (car (objectl . object2), => objectl
Equivalent to first. Returns the first element of the
list. If the arnment is not a list, car reports an
error. (car nil) is currently an error, althoug there
is some debate as to whether it should simply return
nil (see the integer functions 0, 1, 2, etc.).

cdr S=/h (cdr (objectl . object2)) => object2
Equivalent to rest. Returns all but the first element
of the list.---f the parameter is not a list, cdr
reports an error. (cdr nil) is currently an error,
although there is some debate as to whether it should
simply return nil (see the integer flanctions 0, 1, 2,
etc.).

chdir STJR (chdir dirname) => boolean
A U7W-=-secific command that changes the default direc-
tory. Dirname must evaluate to a string. Chdir
returns T if the command was successfully executed, and
nil otherwise. The directory name must be less than
256 characters.

cond F'zUR (cond (pl sl) (p2 s2) ...) => object
Navlisp's conditional expression evaluation function.
The pi's are predicate expressions evaluating to a
boolean value. The si's are sequences of S-
expressions. The cond in Navlisp is a partial imple-
mentation of David Pas' it-ti construct, an exten-
sion to the normal LISP cond. The pi are evaluated
until one evaluates to a non--T value. The si associ-
ated with this non-nil pi are evaluated in a left to
right order. The last element of the si list is one of
the keywords break or repeat (if neither is present,
break is assumeT-The fomer exits the cond command,
eT atter repeats it.

-10-

A

,let C,,.
(cond ((lessp i 5) !printf i '

*setq i (addl i))
repeat

'ternri) break'

nil

cons SM (cons obiectl object2) => list (or dotted pair)
Constructs a 'dotted pair' whose car is objectl and
whose cdr is object2. The following identities hold:

(eq (car (cons x y)) x) => T
(eq (cdr (cons x y)) y) => T
(cons 'a 'b) => (a . b)
(cons 'a (cons 'b 'cons 'c nil)') => 'a b cI
cons 'a '(b c d e f) => (abc e f,

CR system symbol
This symbol has a VALUE property whose value is a new-
line character. Note that the VALUE for this symbol is
not a string consisting of the single character, new-
line, but is rather another symbol whose ?NA!E is a
new-line character. This allows CR to be used by all
the print functions and still serve as a new-line char-
acter. Otherwise, if the VALUE were a single character
string, the results would not be pleasing:

I (print "stringi" CR "string2" CR)
"~stringl1" "'J" "string2"' "^J"1 "^J"1

when what we really want is

(print "stringl" CR "string2" CR)
"stringl"
"string2"

DEBUGGC SJR (DEBUGGC) => boolean
Primarily for the developer's use, this causes a gar-
bage collection each time a cell is allocated from the
free list. If you really want to slow your program
down ...

defun FSUB (defun [type] fcnname ([parlist]) body) =>
fcnname
PSUB (def un fcnname [type] ([parlist]) body) =>
fcnname
Defines a lambda expression with the name fcnname; t
must be one of =XPR, MPR, or LEXPP, with -- R the
default. If type is I-PR or L-PR then the parameter

-I I-

. . . . - ,i,, ,1...-

hist :'culi hve -,nly Dne ,a 7arare'er . Any rre'!:-
ously existing =(PR, =7?P, or __R rroperies 'n
fcnname's plist are removed before the new one is
added.

delete LSLMtR (delete object list [integer]) => list
A verj bizarre ftnction from "Iaclisn: it returns a ist
with all oob.ects eaual to obectle.ed. te
integer is !:resent, 7h~eonly tTe :rst n objects are
leleted. As a side effect, it also removes all
objects equal to object from the original list unless
the obiec is thae rst in the list, in which case--.e

rst occurence 3object is not removed from the ori-
ginal list. Some examples will help clear this up:

(setq x '(a b a c a b a d a c a b a d))
(a b a c a b a d a c a b a d)

(delete 'a x 5)
(b o b d c a b a d)
lx
(ab c b d c a b a d) ;note the first a

Note that delete uses equal for its equality test.

delq 1=tJ (delq object list [integer])i => list
Same as delete but uses ea for its eauality test.

difference LS3Z (difference expl exp2 exp3 ...), => number
Returns (expl - exp2 - exp3). '-' is a synonym.
It is equivalent to (- (+ expl exp2 ...)).

divert 1SUBR (divert which name [string])

which Must evaluate to one of the atoms in ,
output, or append. If aend is us

thetout t is -r ted an pended to
the en o? the named file.

name 'valuates to a symbolic atom whose value
will be UNIX's file descriptor.

string An optional expression that evaluates to
a string that is the UTRIX recognized
file name. If no string is specified,
the PNAME of name is used as the file
name.

(divert 'input 'inf "in.file")

This example diverts the input from the current input
file to ./in.file (the UNIX name), but -which will be

-12-

-. . - , , - .s,. ? .A,, -.. . -.

referenced in :;a';:sp via the a-om i..

(divert 'input 'in.file)

This example is the same as the previous, except that
the atom in.file is the atom by which the file is
referenced witYhTnavlisp, and whose PNAME will also be
the "711-reco-nized file name.

else system symbol
A 'pretty' symbol that is optional in a cond. It helps
to make the code more visible and is ignor-e:

(cond ((eq x y) then (fcn ..)(fcn ...)
else ((eq x z) then (fcn.) (fcn ...)
else
)

_ECF system symbol
A special object that is returned by 1/0 routines when
end-of-file is reached.

eq SUBR (eq objectl object2) => boolean
If objectl and object2 are identically the same (not
the same value, but the same object) then eq retuarns T,
otherwise nil. Note the following:

(eq 'x 'x) => T
(eq '(x y) '(x y)) => nil
(eq (cons x 'y (cons x 1y)) => nil
(setq x '(a b))
(setq y x)
(eq x x) => T
(eq x y) => T
(setqy '(a b))
(eq x y) => nil

equal SUER (equal objectl object2) => boolean
If objectl and object2 have the same values, then equal
returns T, otherwise nil. '=' is a synonym.

(equal 'x 'x) => T
(equal '(x y) '(x y)) => T
(equal (cons 'x 'y) (cons 'x 'y)) => T
(setq x '(a b))
(setq y x)
(equal x x) => T
lequal x y) => Tsetq y '(a b))

(equal x y) => T
(equal 11 11.0) => T
(equal (+ 5 6) 11) => T
(equal "str" (implode ' ("a" "t" "r"))> T

.i -13-

error LU_ !error object atom ... atom) => nothir
The mechanism by ;¢nich the user -an generate error _es-
sages. The first object is printed with a Navlisp
error message. This allows the user to print an error
message with, perhaps, the offending value or expres-
sion. Error uses prints to print the object and printf
to prin-Ee sequence of atoms. E.g.

(seta badlist '(a b)')
'a b)

(error badlist "Pretty bad list: " 'badlist MR)
Pretty bad list: badlist
(a b) aUser: * User generated error *

eval SL:'BR (eval S-expr [alist]) => object
This is the universal function: the function that can
evaluate all other functions, even itself. The S-expr
is evaluated in the context of the environment speci-
fied by alist. If alist is absent, the S-expr is
evaluated in the current context/environment.

I (setq x 1 y 2 z 3)
3

I (setq alist '((x • 5) (y • 7) (z . 8))
((x . 5) (y . 7) (z .8))

(eval '(plus x y z))
6

(eval '(plus x y z) alist)
20

exec FMM (exec objectl object2 ...) => integer
The objects in the parameter list (which must evaluate
to atoms) are converted into strings and concatenated
with separating blanks. The resulting string is then
passed to the UNIX shell for execution as a separate
process. Exec returns the status. E.g.:

(exec 'vi 'file)
(exec 'Is '-1 ': 'page)

execq ISUR (execq atoml atom2 ...) => integer
The same as exec except the parameters are not
evaluated beforeT-ing converted into strings. E.g.:

(execq vi file) same as for exec
(execq ls -1 page)

explode SUB (explode atom) => list
Returns a list of single-character strings that are the

-14-

i..diviiua.: ,haracters in he string retrned by 'rinz
atom). Inverse of implode: (implode explode atom)Y
yields (string atom).

EXPR system symbol
A symbol property specifying that this symbol has a
user defined S-expression to be evaluated when the sym-
bol appoears as the first element of a list. The arza-
ments to an ZIPR function are evaluated be'fore they are
Dassed to the function for processing. 7.g.

(defun f (fx fy fz) (... body ...))
(setq x 1 y 2 z 3)
(f x y z)

will pass to f the individual arguments 1, 2, and 3.

F system symbol
An equivalent symbol for nil; false.

fclose LTBER (fclose [name ...]) => T
Closes all or selected files. If no names are given
then all files but the standard input and standard out-
,jut files are closed.

=(PR system symbol
A symbol property specifying that this symbol has a

user defined S-expression to be evaluated when the sym-
bol appears as the first element of a list. The argu-
ments to an MOR function are not evaluated before
they are passed to the function fo-r processing. An
F.=PR function does not receive the individual argu-
ments, but rather a list of the arguments. An FECPR
function can, therefore, have a variable number of
arguments. Assume f is an FEXPR function. Then

(f x y z)

will be invoked with a single argument

(x y z)

FEXPRs are defined by, e.g.

-' (defun FEXPR fcnname (parm) (... body ...

FILE system symbol
A property symbol whose value is the UNIX file descrip-
tor. Symbols with this property may be used as the
first argument to fprint, fprintf, freads, etc.

first SUER (first (objectl . object2)) => objectl
Equivalent to car. Returns the first element of the

i -15-

• 1

list. 7f the zarameter is nct a list-, first reports 9.
error. (first nil) is currently an error, althoulgh
there is some iebate as to whether it should simply
return nil.

foren I-SUER (fopen mode name [string]) => integer
% ens a L'.I-X file, where:

mode Evaluates to one of the symbolic atcrs
innut, output, or append.

name Evaluates to a sybolic atom whose value
will be the file descriptor used by the

file system.

string An optional expression that evaluates to

a string that is the UNIX file name. If
no string is specified, the PNAYIE of the
second argument is used as the file
name. The filename must be less than
256 characters long.

fprint LSB (fprint name object object ...) => object
The objects are written onto the file denoted by the
symbolic atom name, which will have been the second
argument to an earlier fopen. This function prints
atoms and non-atoms. Strings are printed with the dou-
ble quotes, and each object is separated from its
neighbors by blanks. The last object printed is
returned as the value of fprint. (cf. print, printf,
fprintf)

fprintf LSUER (fprintf name atom atom ...) => atom
The atoms are written onto the file denoted by the sym-
bolic atom name, which will have been the second argu.-
ment to an earlier fopen. This function prints only
atoms. Strings are printed without the double quotes,
and each object is printed adjacent to its neighbors.
The last atom printed is returned as the value of
fprintf. (cf. print, printf, fprint)

freada SUER (freada name) => atom
Returns as its value a single atom read from the file
name, which was the second parameter to an fopen. (cf.
re a)

freadc SUER (freadc name) => string
The value of this expression is a one character string
read from the file denoted by name. The function
returns the atomic symbol EOF when -end of file is
reached. (cf. readc)

-16b-
i*

-reads a-M 'freads name) => object
Reads an .3-expr from the file denoted by name, the
value of which is set in the second parameter to fopen.
(cf. reads)

Fsystem symbol
A property of symbols that are "Tavlisp primitives.
MUMR functions expect one argument: a list of the
unevaluated arguments. Assume that f is an FSBR prim-
itive. Then

'f x y z)

will invoke f with the single argument

kx y z)

fterpri SUB (fterpri name) => CR
Prints a new-line character on the specified file
Equivalent to (fprintf name CR). name.

fumarg system symbol
See the entry for function below for an explanation.

function P'SUR (function fcn) => (furarg fcn alist)
There is a 'problem' in LISP that iavlisp shares: LISP
is a dynamically scoped language, as opposed to a lexi-
cally scoped language. This means that the free vari-
ables in a function definition are not 'bound' until
the function is being evaluated. This may or may not
have been what the programmer had in mind. An admit-
tedly contrived example:

(setq pi 3.14159)
(defun perimeter (radius)

(times 2 (times radius pi)))
later

(defun hexagon (radius)
(let ((pi 3))

(printf "perimeter of hexagon is
(times 2 (times pi radius)) CR)

(printf "perimeter of outer circle is="
(perimeter radius) CR))

(perimeter 4)
25.1327

(hexagon 4)
perimeter of hexagon is =24
perimeter of outer circle is=24

Let us assume that the programmer's intention for

-17-

A l -

rerimeer was 'c zal-ul.ate :e ircz.:'* nce : e
circlTin which a polygon of a certain radius
inscribed. However, it is also necessary to calculate
the circumference of the polygon using its own value of
"ratio of perimeter to diameter" (for hexagons it is
three). if the programmer insists on calling both
values 'pi', coniusion will result, especially if this
is buried in a large program and not so obvicus as in
this small exanple. The problem ar-.se when the program-
mer thought 'lexical scopin2' "'this function will use
the global variable/constant") in a dynamically scoped
language (which will use the latest definition of an
object).

The solution implemented in most LISP systems is
to provide a function which tags other functions with
the environment in which they are to be evaluated: the
third element in the funarg list described above. The
-unarg symbol at the head of the list is LISP's way of
flagging such a construct to the interpreter. By this
method, the above problem would be solved by:

(defun auxper (radius)
(times 2 (times radius pi)))

(defun perimeter (radius)
((funarg auxper nil) radius))

This is not very satisfying or transparent, and an
enhancement is being considered to either develop a
lexically scoped LISP, or allow a switch in Navlisp
which will toggle between dynamic and lexical scoping.

go SUM (gc) => (gccnt chpair intpair realpair listpair
bufpair hwm)
Forces a garbage collection and returns as its value a
report on space usage:

gccnt the number of garbage collections since
startup

chpair, intpair, realpair, listpair are lists of the
form (free max) where free is the number of
cells of that type that isfree, and max is
the maximum available; note that this is the
number of cells, not the number of bytes.
There are four bytes per character/string
cell, two per integer cell, four per real
cell, and four bytes per list cell.

bufpair file buffers are allocated on an as needed
basis; this pair of the form (free alloc)
specifies the number of buffers allocated and
not in use and the total number of buffers

-18-

al'_caed. there s oe.
file oren; 11 1) says there are no files
open with one buffer allocated.

hwm the high water mark, cr highest address in
use; for addresses greater than 32767 you
-dill have to do ten's complement arithmetic
to fizure it out as it will print as a nega-
tive number.

See MICRY for an example of use.

gutwa SUER (gctwa) => integer
Removes all 'truly worthless atoms' from the object
list. A 'truly worthless atom' is defined to be one
which has no properties (other than PNAM), and is not
referenced by any other object in the system. Itreturns the number of atoms so removed.

get STUBR (get symboll symbol2) => object
Searches the property list (plist) of symboll looking
for a property whose name is symbol2. If symbol2 is
found on the plist, the value associated with that
attribute of symboll is returned. Both parameters must
be atomic symbols (i.e. on the oblist) or nil is
returned. If symboll does not have a plist, or if sym-
bol2 is not on symboll's plist, then nil is returned.

the form of a Dlist for a symbol is
(-1 attrl vall attr2 va2 attr3 val ...)

therefore
(get symbol attri) => vali

getfun IZUER (getfun fname [string]) => object
If the file string (or the print name of fname, if
string is not given) is not open it is opene-.An S-
expr is read and evaluated, and the result is returned.
If the expression is a defun the function will then be
defined as a side effect.--e symbol EOF is returned
at end of file (be careful of other S-expressions that
may return the symbol EOF when evaluated!). Note that
the input file is not closed by getfun. Therefore, the
next call on tfun will read tlSliext q-exmression
from the file.7 h a file of personal function defin-
itions can then be read with

-19-
~ -~-~2~TAII

!e't (temp) (fd 'I x") 'str (2x,)

(cond ((eq (setq temp (getfun fd str)) ZOF)
(fclose fd) (terpri)
break)
(T (cond ((atom temp) (printf temp "

(T (print CR temp CR)))>'
repeat)

If the evaluated S-expr reads from the standard input
during its evaluation, the input will come from the
same file fname, and not the current stdin.

getpname UER (get pname symbol) => string
Returns the print name of symbol, which must be an
object on the oblist. Notetha ' ' is the underscore
character on most terminals, but may be a back-arrow on
some.

greaterp LSUBR (greaterp expl exp2 exp3 ...) => boolean
Returns T if expl > exp2 > exp3 ... '>' is a
synonym.

imDlode SUER (implode (atoml atom2 ... /)) => string
Returns a string that is the result of concatenating
the values of (string atomi) for each atom i in the
argument. It is the inverse of explode, with the addi-
tional capability of accepting multi-character strings
in the parameter list.

IGNBOF SUER (IGNEOF) => boolean
Normally, an end-of-file on the standard input will act
as if the (bye) command had been entered. Toggling
IGNEOF will change this to simply report the occurence
of an end-of-file. Note that control-D from the key-
board is equivalent to an end-of-file.

input system symbol
Used in fopen, divert, and undivert to indicate that
the file mode is for reading.

DTEGERS system symbol
Used to denote the integer functions to the TRACE com-
mand. The individual functions cannot be traced, but
(TRACE ITM"EGS) will report each use of any integer
function.

intp SUM (intp object) => boolean
Returns T if the object is an integer. Note that if
the object is real (e.g. 23.0) it is not considered an

-20-

inte.der even If s fracticnal cart is zerc.

it i'U " it (pl s1 (p2 s2) ...
An equivalent name for cond.

label P 7B (label fcnname S-expr) => object
Associates fcnname with the S-exrr on the alist. In
this way, the S-exnr can reference itself. Usually it
is better 4ust to lse defun and associate fzrnname with
the S-expr globally.

lambda primitive (lambda (pl p2 ...) S-expr) (argl arg2 ...)
=> object
The object returned is the value obtained by evaluating
S-expr with all occurences of pi replaced with the
corresponding argi.

last SUBR (last list) => list
Returns a list which has as its single element the last
element of the argument list.

length SUM (length list) => integer
Returns the number of elements in the list.

f (length '(a b (c d)))

lessp I!JR (lessp expl exp2 exp3 ...) => boolean
Returns T if expl < exp2 < exp3 ... '<' is a
-ynonym.

let FPtJM (let par-list stmtl stmt2 ...) => object
where par-list is of the form

((symboll objectl) (symbol2 object2) ...)

All objects are evaluated in the current environment.
Then the symbols are associated with the respective
values and added to the environment. Then the state-
ments are evaluated. This is Navlisp's form of a local
block. The let statement returns the result of the
last evaluateT-statement as its value.

(setq x '(a b c))
(a b c)

(let ((x '(d e f))) (print x CR))
(d e f)

~a b c)

-21-

LZ 2£ -e y bo.

A symbol prorerty cecii- -- ngn that "'his symbol as
iser efined 3-expression to be evaluted when the sym-
bol appears as the first element of a list. The argu-
ments to an L2"PR function are evaluated before they
are passed to the function for processing. An IT-APR
function does not receive the individual arguments, but
rather a list of the arguments. An L_PR function can,
therefore, have a variable number of evaluated ar_u-
ments. Assume f is an =R fanction. Then

(setq x I y 2 z3)
(f x y z)

will be invoked with a single argument

(1 2 3)

PRs are defined by

(defun LMCPR fcnrme (parm) (... body ...

=EIN system symbol
whose VALUE is the currently executing command stored
as a list.

list :SUM (list object object ...) => list
Returns a new list containing the objects as its ele-
ments:

(setq x '(a b c)
a b c)

(list 'x x '(d e f) (plus 3 5))
(x (a b c) (d e f) 8)

LSUER system symbol
A property of symbols that are Navlisp primitives.
LZUM functions expect one argument: a list of the
evaluated arguments. If f is an ISUIR primitive. Then

(setqxI y 2 z)
(f x y z)

will invoke f with the single argument

(1 2 3)

mapcar IUE (mapcar fcn listl list2 ... listn) => list
If listi = (elil eli2 eli3 ... elim) then mapcar
returns

-22-

,...

tn

(list (fcn ell el21 ehln)
(fcn e112 e122 eln2)

(fcn ellm elaa elnm)

viously, f cn nust be an n-arueent functicn. ff t .e
'enzhs f he lists are meotal. the shcrtest list
4etermines -he number of elements in the ret'arned list
(and therefore the number of evaluations of fcn,. 'he
fcn used in mapcar should probably not be an FS-R or

=-CPR as the results may be unexpected.

max :03= (max exp exp ...) => number
Returns the value of the expression with the maximum
value.

member TUBR (member object list) => list
'f the object is in the list then the remainder of the
list starting with object is returned. If the object
is not a member of list, then nil is returned. -.ote
that the equality comparison is made by equal.

(member 'x '(a b m r x z)) :> (x z)
,'member 'x '(a b (x z) 2)) => nil
'member '(x z) '(a (x z) b 2)) => ((x z) b 2)

, CRY cUER _=CRY integerl integer2 integer3 integer4) =>
nothing
:ncreases the memory allocations for the various types
of memory spaces. Navlisp memory is divided into char-
acter (or string) space, integer space, real number
(floating point) space, and list cell space. There are
actually more spaces (file buffer space, garbage col-
lection space, and miscellaneous space) but the user
does not have control over these. By using the MEMORY
command the user can increase (see SCRUNCH for decreas-
ing) the amount of memory available for characters,
integers, reals, and lists. That order corresponds to
integerl, integer2, integer3, and integer4 in the com-
mand list. The integers must be positive and small
enough to not overflow memory. INU0RY does not return
a value: it does not return! Calling MEORY resets the
interpreter to prompting at the command level. The
following example should help make this clear:

{(gc)

(2 (224 500) (93 200) (100 100) (3224 5000)
(0 0) 27800)

shows that two garbage collections have taken place so

-23-

AkI"

a rs -ax : ell u f free 4n'eger
cells out of 2C, all 100 real number cells are free,
3224 list cells are free out of 5000, there are no file
buffers allocated, and the high water mark in memorj is
27800. :-ow allocate 7000 more character cells allowing
uT to 20C0 bytes of c'harac-er s-crage:

,4 7224 '500) (93 200) (1C0 '00) ,3224 5000C)
0 DN -9076)

(XDIa!CRY 10 io 0 o)a~djmem: * Insufficient system memory *

mema SUER (memq object list) => list
Same as member above except that the equlit- compari-
zcn is maleW ea instead of equal.

,memq 'x '(a b m r x z)) => (x z)
(memq 'x '(a b (,x z) 2)) => nil
(memq '(x z) '(a (x z) b 2)) => nil

-ln :UBR 'min exr exp exp. ., => number
Retarns the minimum value of the exoressions.

minus SUTR (minus exp) => -exp
-legates the value of exp.

minusp =UBR (minus number) => boolean
Returns T if the number is less than zero (negtive).

mkatom STUR (mkatom string) => symbol
If there exists an object on the oblist whose print
name is string, then that object is returned. Other-
wise, a new bject with the name string is added to the
oblist. Note that it is possTe--So define objects
this way that are very difficult to access:

S(mkatom "a b")
ab

(remob "a b")
"a b" aRemob: * Not a symbolic atom *

(remob (mkatom "a b"))
nil

nconc SUBR (nconc listl list2) => listl
List2 is appended to listl (via rnlacd) and the new
(modified) listl is returned. -!sis distinquished

-24-

... ...e .r.en. . .i.n :,-.. .. n2.nc ,ar. .es.: s. r
produce the new list.

(append '(a b c) '(d e))
(a b c d e)

(seta x '(a b c)
ab

(eq (append x '',d e) x)
nil

(eo (nconc x '(d e)) x)

(nconc x x)
(abc abc abc ...

will produce a circular list -which will put the print
routine in an infinite loop. However,

S(append x x)
(a b c a b c)

does not.

ncons -UBR (ncons object) => list
Equivalent to (cons object nil.

nil system symbol
The empty list, sometimes written 0) Used by boolean
functions to indicate false. Also used to indicate the
end of a list: every list ends with an empty sub-list.

not SJM (not object) => boolean
Negates the boolean value represented by the object.
Equivalent to the null function.

null SUR (null object) => boolean
Returns T if the parameter is nil, otherwise returns
nil.

numberp SUBR (numberp object) => boolean
Returns T if the object is an integer or a real.

OELIST SUBR (OMIST) => oblist
The current oblist is returned. The following function
dill display each object on the oblist:

-25-

-ond ,null ntr) break
(: (print (plist (car Dtr)) CR)

(setq ptr (cdr ptr))
repeat)

d d r ;3R oddc number) => boolean
Returns 7 if the number (or its integra! 'art, is odd;
otherwise returns nil.

or STUJBR (or objectl object2 ...) => object
The objects are evaluated from left to right until one
evaluates to something other than '2, at which point
evaluation ceases and that non-nil value is returned.
If all values are nil, then nil is returned.

out'nut system symbol
Used in fopen, divert, and undivert to indicate that
the file mode is for writing.

pair SUBR (pair listl list2) => list3
Each element of listl is matched up with each element
of list2; each list must have the same number of ele-
ments. Note that the LISP 1.5 implementation (and,
therefore, this one) reverses the order of the lists.

, (pair '(a b c) '(1 2 3))
(C . 3) (b . 2) (a . 1))

plist SUBR (plist symbol) => list
Returns the plist for the atomic symbol symbol. if the
argument is not an atomic symbol an error results.

plus LSDBR (plus exp exp ...) => number
Returns the sum of the exp's. '+' is a synonym.

plusp SUBR (plusp number) => boolean
Returns T if the number is greater than zero, otherwise
returns nil.

PNAME system symbol
The print name property of symbols.

print LSUBR (print object object ...) => object
The objects are written onto the standard output
separated by blanks (there is no blank after the last
object). The last object printed is returned as the
value. Note that string atoms are surrounded by quotes 4
when using print. (cf. printf, fprint, fprintf)

-26-

-he atoms or expressions which evaluate -o atorns are
ritten on the standard output. The atoms are not
separated by blanks. String are not surrounded by
double quotes. The last atom printed is returned as
the value of printf. (cf. print, fprint, fprintf)

nutorop M-JR -pulrroo syn.bol value prop" => value
The proper-y prop which shculd be a smbolic atcm" 4S
added to the plist of -he symbolic atom symboi ar.d is
given the value value, which is returned a~s" -e value
of putprop.

QUIT = (QUIT) => nothing
Returns the user to the process that invoked Navlisp
(presumably the shell) without saving the workspace.

quote FSUBR (quote object) => object
This function simply returns its argument, whatever it
may be. This is a convenient way to delay evaluation
of a list or object. ?or convenience, the apostrophe
is used as a shorthand for the quote function. That
is, 'a is equivalent to (quote a); and '(a b) is
equivalent to (quote (a b)); etc.

(Cons (+ 1 2) 5)

31 2) 5)

Sm5
)I(+ 1 2)(cn '5- 5)

quotient LSUBR (quotient expl exp2 exp3 ...) => number
Returns (... ((expl / exp2) / exp3)). 'I/ is a
synonym.

reada SUER (reada) => atom
Returns as its value a single atom read from the stan-
dard input. The function returns the atomic symbol EOF
when end of file is reached. (cf. freada)

readc SUBR (readc) => string
The value of this expression is a one character string
read from the standard input file. The function
returns the atomic symbol EOF when end of file is
reached. (of. freadc)

reads SUBR (reads) => object
The value of this expression is the S-expression read
from the standard input. The atomic symbol EOF is
returned at end of file. (cf. freads)

realp SUBR (realp object) => boolean
Returns T if the object is a real number; otherwise

-27-

. " -. :- - ' , -- •

ni.,

remainder SUBR (remainder numberl number2) => integer
Returns numberl modulo number2. If the numbers are
reals, they are truncated to integers before the opera-
tion.

remob SUBR (remob symbol) => nil
Removes all properties (except ?oTA) for the sy..o.i.
atom m from the oblist. Use the (gct-a) function
to removetHese 'truly worthless atoms'.

remprop SMR (remprop symbol prop) => list
Removes the property prop from the plist for symbol.
The list returned is the rest of the propertlt,
beginning with the removed prop.

repeat system symbol
Used in cond (q.v.) to implement Parnas' it-ti con-
struct.

rest SR (rest (objectl . object2)) => object2
Equivalent to cdr. Returns all but the first element
of the list.--If the parameter is not a list, rest
reports an error.

RES9CRE LSUBR (RESTORE) => nothing
Throws away the current memor-resident workspace and
reads the workspace stored in the current workspace
file. A planned enhancement is the ability to specify
the file from which to read the new workspace. The
function is useful only at the command level, as
RESTORE resets the interpreter.

reverse SUBR (reverse list) => list
Reverses the order of the elements in the list. Does
not modify the argument.

rplaca SUB (rplaca objectl object2) => objectl
A dangerous function to physically alter memory in
favlisp. It replaces (car objectl) with object2.

rplacd SUBR (rplacd objectl object2) => objectl
A dangerous function to physically alter memory in
Navlisp. It replaces (cdr objectl) with object2.

SAVE ISM (SAVE) => nothing
Writes out the user's workspace. Currently, always
uses the default workspace (either .navlisp in the
current directory, or the file specified on the invoca-
tion line). A planned enhancement is to allow SAVE to
accept another filename into which the workspace is
written. The function is useful only at the command

-28-

=-.

level, as 2AVT resets the interpreter.

SCRUNCH I.SUBR (SCRUNCH) => nothing
The only way the user has of returning unneeded free
space is by using SCRUNCH. This function will reduce
ALL free lists and memory allocation to the minimum
required to run. The user will then need to use MORY
to increase the size of those free lists needed. The
function is useful only at the command level, as
SCR NCH resets the interpreter.

set SUBR (set symbol object)' => object
The atomic symbol symbol is updated on the alist to be
associated with object. If the symbol is not on the
alist, then the propert VALUE on the symbol's plist isadded/modified to have the value object.

setq FSUBR (setq symbol object [symbol object ...]) =>
object
The same as set except that symbol is not evaluated:
this sometime-s saves typing quote marks at the key-
board. Setq is also set up to accept a list of symbols
and objects, each symbol receiving the value oblec.
The last object in the list is the returned vau of
setq.

stdin system symbol
The value of the FILE attribute of this symbol is the
UNIX file descriptor for the standard input file asso-
ciated with the Navlisp process.

stdout system symbol
The value of the FILE attribute of this symbol is the
UNIX file descriptor for the standard output file asso-
ciated with the Navlisp process.

string SUR (string atom) => string
Returns the string form of the atom. If the atom is a

string it is returned unchanged

number the value is converted into a string of ascii
characters

symbol the print name (PNAME) is returned

stringlength SUER (stringlength atom) => integer
Returns the length of the string form of the atom.
Stringlength measures the length of the string returned
by (string atom).

stringp SUM (stringp object) => boolean
Return T if the object is a string; otherwise returns

-29-

nil.

subl SUBR (subl exp) => number
Subtracts one from the value of the numeric expressionexp.

MTBR system symbol
A property of symbols a are :.avlisp primitives.
SMJBR unctions are passed the results of evaluafing
each of the arguments. Assume that f is a -UBR primi-
tive. Then

(setq x 1 y 2 z 3)
(f x y z)

will invoke the function f with the three arguments 1,
2, and 3.

subst SUR (subst objectl object2 list) => list
A new object is created from list in which all
occurrences of object2 in the list (and its sub-lists)
are replaced with objecti. Note that the ea function
is used for the equality test.

(subst 'a 'b '(a b (a b c)))
(a a (a a c))

symbolp SUBR (symbolp object) => boolean
Returns T if the object is on the oblist (i.e., is a
symbol, not a list or number, or string); otherwise
returns nil.

system symbol
The symbol whose interpretation is 'true': nil is
interpreted to be 'false'.

terpri SUBR (terpri) => CR
Prints a new-line character on the standard output.

then system symbol
A 'pretty' symbol that is optional in cond. It helps
to make the code more visible and is ignored:

(cond (eqxy) then (fcn ..)fcn ...)
elsb eq x z) then (fen..) (fcn .))
else .

times LSUBR (times exp exp ...) => number
Returns the product of the exp's.

TRACE UBr (TRACE symboll [symbol2 ... 1) => (symboll ...)
Places a TRACE property on the plists for the indicated

-30-

symbols. f there is an ZPR, =-PP , -P R,
LdUBR, or FSUBR defined for the symbol in question,
then during evaluation a trace will be printed showing
the name of the function and the parameters being
passed to it.

undivert LSLBR (undivert [which]) => T
Which must evaluate to one of the atoms input, output,or- ppen. f elided, both the input --d --utlu--ii
be rese to the standard input and output. THI3 FLT TC-
TION DOES NOT CLOSE THE UNDIVERTIM FILES! (see fclose)

(divert 'output 'outf)
(undivert 'output)

UNTTACE SUBR (UNTRACE [symboll symbol2 ...]) => (symboll ...)
Removes the TRACE property from the indicated symbols.
If no symbols are specified, then the TRACE property is
removed from ALL symbols on the oblist.

VALUE system symbol
The property which holds the value of the symbol.

zerop SUBR (zerop number) => boolean
Returns T if the number's value is zero. Otherwise,
returns nil.

-31-

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, CA 93940

A Office of Research Administration
Code 012A
Naval Postgraduate School
Monterey, CA 93940

Chairman, Code 52Bz 40
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

A. Dain Samples, Code 52 12
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

Professor Bruce J. MacLennan, Code 52M1 1
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

Professor Douglas R. Smith, Code 52Sc 1
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

Professor David Parnas
12503 Davan Drive
Silver Spring, MD 20904

Chief of Naval Research
Arlington, Va 22217

i-

-32-

' ,* * - -

