brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk

“Lalhoun

Institutional Archive of the Naval Pastgraduate School

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

Calhoun: The NPS Institutional Archive

Reports and Technical Reports All Technical Reports Collection

1982-03

Navlisp Reference Manual

Samples, A. Dain

http://hdl.handle.net/10945/48739

goals of open government and government transparency. All information contained

m‘ KN Ox herein has been approved for release by the NPS Public Affairs Officer.

LIBRARY Dudley Knox Library / MNaval Postgraduate School
411 Dyer Road / 1 University Circle
Monterey, California USA 93943

ﬂﬂ“: DUDLEY &@hounisa project of the Dudley Knox Library at NPS, furthering the precepts and

hitp://www.nps.edu/library

https://core.ac.uk/display/45464097?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ADAl13744

‘ DTIC FILE COPY

NPS52-82-004

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

Navlisp Reference Manual

A. Dain Samples O
TN
Q¢
< &

>

March 1982

Approved for public release; distribution unlimited

Prepared for:

Chief of Naval Research
Arlington, Va 22217

R9 04 23 025

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admirail J. J. Ekelund
Superintendent

David A. Schrady
Acting Provost

The work reported herein was supported in part by the Foundation
Research Program of the Naval Postgraduate School with funds provided by

the Chief of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Reviewed by:

K DAIN SAWPLES 7
Computer Programmer
of Computer Science

Released by:

) N H. BRADLEY, man
Department of ter Science

WILLTAM M. TOLLES
Dean of Research

—UNCLASSIFIED .

SECURITY CLASSIFICATION OF TuiS PAGE ("hen Dacta Entered)

REPORT DOCUMENTATION PAGE sl 21,
[T "REPORTY NUMBER 2. GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
NPS52-82-004 p A//z I
& TITLE (and Subdtitle) 7 "18. TYRE OF REPORT & PEMOD COVERED
Navlisp Reference Manual Technical Report

6. PERFORMING ORG. REPORT NUMBEAR

7. AUTHOR(s) §. CONTRACT OR GRANT uuu.ih(-)

A. Dain Samples

3. PERFORMING ORGANIZATION NAME AND ADDRESS 7o. ::gﬁa:%W‘
Naval Postgraduate School

Monterey, CA 93940 61152N; RR0O00-01-10

NO001482WR20043
11, CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
March 1982
Naval Postgraduate Schooil =
. NUMBER OF PAGES
Monterey, CA 93940 35

. MONITORING AGENCY NAME & ADDRESS(!! dilterent from Controlling Office) 18. SECURITY CLASS. (of this report)

Chief of Naval Research UNCLASSIFIED

Arlington, Va 22217 [78a BECLASSIFICATION/ DOWNGRADING
SCHEOULE

16. OISTRIBUTION STATEMENT (of thig Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the sbatract sntered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse eide if necessary and identity by block number)

LISP

\ -
‘«
i

20. T‘STIACT (Continue on reverse side If necesaary and identify by block number)

\ The Naval Postgraduate School's Computer Laboratory has developed a dia-
1ec¥ of LISP, called Navlisp, to run under PWB/UNIX on a PDP11/50. This man-
ual is not a tutorial to LISP. It is intended for those who know the basics
of the LISP programming language and wish to use the Navlisp dialect.f

DD "5 1473 «oimion o 1 nov e8 1s omsoLETR
SN 0102 LF- 014- 6601

UNCLASSIFIED
SECURITY CLASBIFICATION OF THIS PAGE (Whan Dera Enores)

Savlisp X402
Zeference fanual V1.2
A. Dain Samples
March 17, 1982

Introduction

™e Yaval Post-Graduate School's Computer laboratory has
develoved a dialect of LISP, called Navlisp, to run under
PWR/UNIX on a PDP 11/50. While loosely based on Maclisp, Navlisp
is unlike other LISP systems in several important ways.

Like all processes that run under UNIX, UNavlisp interfaces
easily to other processes. Since many functions normally found
in LISP systems (e.g. LISP oriented editors) are available
through the UNIX environment, Navlisp is much smaller than con-
ventional LISP systems (approximately 36K of code) and yet has
full LISP functionality.

Yavlisp is also different from other LISPs in the design of
the language. A new control structure, Parnas' it-ti¥*, has Ybeen
implemented as an enhancement to the standard ISP cond.
Surprisingly, this modification is compatible with the old defin-
ition of cond, but is much more powerful: with the let function,
+he new cond is powerful enough that the very unstructured (and
anachronistic) prog feature of standard LISP is not necessary,
and has not been Implemented in Navlisp.

In addition, a list element accessing function suggested by
Dana Scott has been implemented: (n list) will access the nth
element of list, where n is an integer (see the description of
the O function).

This manual is not a tutorial to LISP. It is intended for
those who know the basics of the LISP programming language and
wish to use the Navlisp dialect. The descriptions contained
herein are brief and assume at least a passing knowledge of both
LISP and UNIX. Winston and van Horn's LISP book provides a good
tutorial to the language, and is highly recommended.

1. PRunning Navlisp

Navlisp maintains a user "workspace" in which user defined | Accession For [
objects are maintained in internal format. This workspace is ["yr1s™ " gRagr ‘““‘1541——

loaded each time Navlisp is executed, and saved each time the DTIC TAB
user exits Navlisp. The workspace must be initialized in your Unannane 4 J
directory before running Navlisp. To do this, run initnavlisp N a

Justification
¥ Tor 2 more detailed explanation of the it-ti, see
"Implementation of Parnas' it-ti Construct in LISE", A. D. By -
Samples, Computer Science Laboratory Technical Report NPS52- | Distributica/
82-005, Naval Postgraduate School, 1982. Availability Codes
T Avetl andjor T
Dist | Special

-1=

|]

Jirst:
% initnavlisp : do only once
%4 navlisp : now running

Currently, the default workspace file name is .navlisp in the
current directory. In anticivation of future enhancements, the
user is able to specify a different workspace file name on the
commani line for initnavlisp or navlisp. This file will then bte
the target of SAVE, RESTCRE, SCRUNCH, and bye (q.v.). Currently,
the file rame cannot be changed while navlisp is running,
although that is a planned enhancement. Z3.g., to use .. /mywork
as the workspace storage file:

% initnavlisp ../mywork
% navlisp ../mywork

Some development work will continue on Navlisp. In the Iuture
you might receive a warning message to the effect that the
current version of Navlisp does not match the version of init-
navlisp that created your workspace. This is usually not signi~
ficant. The only compatibility problem that may arise is when
you attempt to use a system function in Navlisp that the init-
navlisp program did not ¥mow about. Occasionally, the changes to
Yavlisp will create irreconcilable differences, and initnavlisp
will have to be re-run. This will, of course, destroy +the con-
tents of your current workspace. Therefore, keep your favorite
functions in source files. Then they can be restored easily (see
getfun for an example of how to do this).

File handling capabilities are embedded in the UNIX operat-
ing system. Navlisp gets its input from the standard input file
(stdin) and writes on the standard output file (stdout). This
can be changed on the invocation line by:

% navlisp <notherin >notherout
as for any other UNIX process.

For news on the latest developments in Navlisp, display the
fil?‘/itc/navlispnews. E.8,
.:%:pege navlispnews

I

2. Terme used in the descriptions

The following meta-terms will be used in the next section to help
describe the objects and functions of Navlisp. Note that these
meta-terms are not part of the programming language proper and
are not recognized by Navlisp as they are used below (unless the

user lefines *hem 30).

=>

alist

boolean

A symbol used to denote the resulting value or type of
a function.

Refers to a special data structure used rather commonly
in the interpreter:

{{obj1 . vall) (obj2 . val2) (obji3 . val®) ...).

It is an 'association list' in that it associates an
object with a wvalue. The elements of an assocation
list are dotted pairs.

Basically, this refers %o one of +wo values: nil
(false) or T (true). However, meny functions in LISP
recognize any non-nil value as a %rue value. See
member and remprop for examples.

dotted pair The basic element of LISP is the cell, each of which

exp

list

nuber

object

oblist

congists of two fields: the car and the cdr fields.
Most LISP cells contain atoms or lists in the car field
and only lists in the cdr field. Occasionally (see
alist, above) it is convenient to store atoms in the
cdr field' this cell is then said to contain a "dotted
pair". lote that the following two S-expressions are
identical, but the first shows the contents of the
cells of the list explicitly, while the second is the
more usual representation:

(@« (b.(c.(d.nil))))

(abcd)
Used wherever a numeric expression could be used.
Implies that the +type of the expression must be an
integer or real.

Implies that only lists are acceptable and that atoms
are excluded.

a an atom, not a list

(a) acceptable, a list

(a (b ¢)) another good list
An atom type that subsumes both integers and reals.
Refers to any entity that can be defined in Navlisp:
atoms, numbers, strings, symbolic atoms, or lists (not
a mutually exclusive list of entities).

Navlisp keeps a list of all defined symbols. This list
is of the form:

‘3ymbol! symbol2 symbol? ...)
where each symboli is a plist.

plist Bach element of the oblist is the property list (i.e.,
plist) of a symbol. This plist is of the form

{sym! object! sym2 object2 sym3 object? ...)

The symi are the a%iributes, or oroperties, of the sym-
bol. Unless the wuser has modified the plist, one of
these symi is the vroperty FPNAME. Other symbol proper-
ties the system recognizes are SUZR, FSUER, LSURR,
“XPR, FEXPR, LEXPR, FILE, CADRS, VALUE, and TRACE (all
of which are defined below). The user may define addi-
tional properties through the use of putprop.

S-expr Denotes a list; a balanced set of parentheses:

a is an S-expr
(ab) is an S—expr
(a D)) is not

(a (be)d) is an S-expr
(a ((be)d) is not

string Refers to a concatenation of zero or more characters.
The functions print and fgrint print strings surrounded
with double-quotes and wi 1 non-printable charac-
ters expanded using the up-arrow escape convention (see
the section on input conventions). The functions
printf and fprintf do not print the surrounding quotes,
nor do they translate the non-printable characters.

symbol There are basically three kinds of atoms in Navlisp:
numbers, strings, and symbolic atoms. A symbolic atom
is simply an object on the oblist, which is the 'symbol
table' for Navlisp. Note that 'oblist’' is a slightly
misleading use of the word as not all objects are on
the oblist (e.g. numbers and strings).

3. Input conventions

llavlisp's prompt is a curly brace '{'. The interpreter reads an
S-expression from the standard input, and evaluates it, and
writes the result on the standard output. For convenience, the
user indicate the end of an S—-expression with a closing curly
brace '}' which will be expanded automatically to close all open
sub-S-expressions. Navlisp also implements the square-bracket
convention from Interlisp: a right square bracket ']' will pro-
duce enough right parentheses to match the most recent left
square bracket '|'.

T g W~ - o A e

{ “3etun ¢ {pt’ (cond E(null pt) (Soo (bar nil]
(D (foo (car pl}

is equivalent to

{ (defun £ (p1) {cond ((mll p1) (foo (bar nil)))
gT (foo (car p1)))

)

To imbed arbitrary characters in strings and names follow the
UNMIX convention: the back-slant character inhibits interpretation
of the immediately following character. There are two exceptions:
'\n' is the new-line character, and '\t' is the tab character.
the mall character '\O' may not be imbedded in Navlisp strings or
names. For example, ab\ cd would imbed a blank in the name "ab
cd". Non-printable characters can also be imbedded in names, so
use with caution.

Use the above convention also to put non-printable or con-
trol characters in strings (a more likely necessity). In addi-
tion, to give the user full access to the control characters, the
up-arrow escape convention is used. For example, '\t' = '°‘I',
and '\n' == '"J'. (The up-arrow convention is used when prmtmg
control characters in strings printed with print or printf.) The
up-arrow is escaped with the backslant.

{ (printf "ab\ncd"” CR)
ab
cd

{ (grint "ab\ncd" CR)
"ab ch"

{ (printf "The length of “J is "

(stringlength "“J") CR) ; non-printable
The length of
is 1

{ (print "The length of \"J 1s "
(stringlength "\"J")
The length of “J is 2

4. ZError messages

Error messages in Navlisp are of the form

object cNeme: * Message *

where XName i3 a mnemonic indicating wnere <che arrer was
discovered. Most often llame will be the Junction that letects
the error. Occassionally it will be the name of an internal (%o
the interpreter) function. The message will indicate what the
problem was and hopefully give enough information that the prob-
lem can be corrected. The character prefix to Name differen-
tiates the various messages within a function. If an object can
be ovrinted that would be helpful it is displayed before the mes-
Sage prover.

Messages that begin "Sys err:" are Jjust that and should

(ideally) never occur. However, if one does occur, please note
the circumstances and report them.

5. Alphabetic listing of Navlisp objects and functions

Zach of the following entries is in the format:
neme type (syntax) => returned type or value

where type is usually SUER, FSUBR, LSUBR, system symbol, or one
of a few other miscellaneous types. Square brackets indicate
optional items and should not be confused with the square bracket
input convention described ahove. Numbers appended to names are
for identification purposes only.

! input convention
The single quote is used as an input convention for the
quote function (q.v.).

* ISUER (* exp exp ...) => number
Returns the products of the expressions. Times is 2
synonym. —_—

+ ILSUER (+ exp exp ...) => number
Returns the sum of the exp's. Plus is a synonym.

- ISUER (- exp! exp2 exp3 ...) => number
Returns exp! minus exp2 minus exp3 Difference is
a synonym.

. system symbol

Used in input and output to indicate that the cdr of a
cell is not a list but an atom. Care should be taken
to always surround the dot of a dotted pair with blanks
as it is legal to imbed dots in names and numbers.

X .y

{ (cons 'x '"{y))
(x y)

{ (edr "(x.y))
nil

{ fedr "(x . 7))

¥

{ (setq x.y 'something)
something

{ (setq x . y 'something)
" aRead: * ')' expected at end of Jotted pair's cdr *

{ x.y
socmething

SUER (/ expl exp2 exp3 ... expn) => number
Returns (...((expl/exp2)/exp3)...)/expn . Quotient is

a synonym.
< LSUFR (< exp! exp2 exp3 ...) => boolean

Returng T if exp! < exp2 < exp3 lessp is a

synonym.

= SUBR (= object! object2) => boolean
If object! and objectl2 have the same values, then equal
returns T, otherwise nil. ZEqual is a synonym.

> ISURR (> exp! exp2 exp3 ...) => boolean
Returns T if expt > exp2 > exp? Greaterp is a
Synonym.

0,1,2,... SUBR (integer list) => object
Returns the nth element of the list. That is

(1 '"(abe)) == (car list) => a

(2 '(abec)) = (cadr list) =1

(3 '(abec)) == (caddr list) => c

(4 '"(abe)) = nil, as does 5, 6, ete

(0 "(abe)) =>(abe)

(=1 "(abe)) => (abc) so dc negative numbers

It is not an error to apply the nth function to nil, as
it will only return nil. However, it is still an error
to take the car or cdr of an atom other than nil.
(TRACE INTEGERS) will trace all of the integer func-
tions: integer functions cannot be traced individually
(e.g. (TRACE 1) will not work). Also note the

-7~

LRI]

Tollowing:

{ (setq n 1)
1

{f (n'(abec))
n iintervreter: * Unknowm functicn in eval *

AN

Poweval nl ta ko2t
abs SUBR ‘abs exp) => number
leturns the absolute value of <the nurmeric expression
exXp.
el
2341 SUER (add! exp) => number

Adds one %o the value of the numeric expression exp.

alphalessp SURR (alrhalessp string! string2) => toolean
Returns T if, in a character Yy charactsr comparison
using the ASCII collating sequerce, string! is strictiy
less than string2. Shorter strings are less than
longer strings, all else bteing equal.

and PCUER {and cbjectl object2 ... | => object
The objects are evaluated frem left 4o right until one
svaluates %to0 nil. Z=valuation is discontinued at that
voint and nil is returned. If none of the cbjects
evaluate to nil, <*hen +the value ¢f the last object
evaluated is returned as the value of and.

append ISUBR {append list list ...) => list
Creates a new list that has all the elements of <%he
argument 1lists as members. This is distinguished from
the nconc function in that a new list is created and
the argument lists are not changed.

{ (append '(a bc) '(d e))
(abcde)

(setq x '(a b))
ab)

{ (eq {(2ppend x '(d e)) x)
nil

{ {eq (nconc x '(d e)) x)
m

apply LSURR (apply fcn args [alist]) => object
The functiorn fcn is applied to the arguments args in
the context/environment alist, if specified.

N e]¢

assq

stom

boundp

break

SURR (ascii integer) => string

Returns a string consisting of the single character
corresponding to the integer varameter. Z.g. (ascii
10) returns a string consisting of a carriage-return.

SU3R ‘assoc object alist) => iotted pair

Returns the dotted pair whese car Is the object and
whose cdr is the value associated with that object. IT
no such object is on the alist, assoc returns nil.
Uses equal for the equality comparison on the associa~
tion list.

SURR (assq object alist) => dotted pair

Returns the dotted pair whose car is the object and
whose cdr is the value associated with that object. If
no such object is on the alist, assq returns nil. TUses

2q for the equality comparison on The association list.

SUZR (atom object) => boolean
Returns T if object is an atom. There are several
kinds of atoms to be distinguished:

integer 16~bit, two's complement

reals 32~bits; corresponds to C's float

string a variable length concatenation of characters
symbol anything on the oblist, including nil

SURR {boundp symbol) => boolean

Returns T if symbol is in the current environment. If
symbol is not on the current alist, then if it has a
VALUE attribute/property, boundp returns 7. Ctherwise,
boundp returns nil. Note that if the VALUE of the sym-~
bol is nil, that is considered unbound.

{ (setq x nil)
nil

{ (boundp 'x)
nil
{ (let ((x nil)) (boundp 'x))

m

-

system symbol
Used in cond (q.v.) to implement Parnas’' it-ti con-
struct. -

b
)

Ty

ZADRS

cdr

chiir

cond

—~r
SIS
[ORVPRRY

The worksgpace Is saved and “<he Trocess i1s exited,
returning the user +o the process that invoked iavlisp.

"N Yoy mpaee i
e =>n 1

system symbol

A property name that indicates +*this symbol is an
extended c*r; e.a2. cadr, caddr, cdadadadddaar, etc.
There can be up o 15 i's and a's in Tetween the o ang
<re r. The value of the CADRS attrituve Is a tinary
encoding of <he i and 2 sequence.

SURR (car (obiect! . otject2)) => object!

Zquivalent to first. Returns *nhe first element of *he
list. If the argument is no* a list, car reverts an
arror. (car nil) is currently an error, although there
is socme debate as to whether it should simply return
nil {see the integer functions O, 1, 2, etc.).

SURR (edr (object! . object2)) => otject2

Zquivalent fto rest. Returns all btut the first element
of +the list. If the vparameter :is not a list, cdr
reports an error. ({cdr nil) is currently an error,
although there 1is some debate as to whether it should
simp%y return nil (see the integer functions 0, 1, 2,
ete.).

SUBR (chdir dirname) => boolean

A UNX-svecific commend that changes the default direc-~
tory. Dirname must evaluate %o a2 string. Chdir
returns T if +he command was successfully executed, and
nil otherwise. The directory name must te less than
256 characters.

PSURR (cond (p! s1) (p2 82) ...) => object

Navlisp's conditional expression evaluation function.
The pi's are predicate expressions evaluating to a
boolean value. The si's are sequences of S-
expressions. The cond in Navlisp is a partial imple-
mentation of David Parnas' it-ti construct, an exten-
sion to the normal ILISP cond. The pi are evaluated
until one evaluates to a non-nil value. The si associ-
ated with this non-nil ri are evaluated in a left *c
right order. The last element of the si list is one of
the keywords break or repeat (if neither is present,
break is assumed). The former exits the cond command,
the latter repeats it.

=10~

DEBUGGC

defun

{ {let ({1 Q)
(cond ((lessp i 5)

{printf i " ")
(setq 1 {addt 1))

repeat

{7 "4erpri) break’

SUBR /cons object! object2) => list (or dotted pair)
Constructs a 'dotted zair' whose car is object! and
whose cdr is object2. The following identities hold:

(eq (car (cons x y)) x) = T

(eq {cdr (cons x y)) y) =T

(cons 'a 'b) = (a . b)

{cons 'a {cons 'b ‘cons 'c nil)})) => ‘a b 2}

{cons 'a '(bcdie) => ‘abcies

system symbol
This symbol has a VALUE property whose value is a new-—
line character. Note that the VALUE for this symbol is
not a string consisting of the single character, new-
line, bdbut 1is rather another symbol whose PNAME is a
new-line character. This allows CR to te used by all
the print functions and still serve as a new-line char-
acter. Otherwise, if the VALUE were a single character
string, the results would not be pleasing:

{ (print "string!” CR "string2" CR)

"S-tring1 " "‘J" llstriny" "“J" "“JH

when what we really want is

{ (print "string!" CR "string2" CR)
"stringl"
"string2"

SUBR (DEBUGGC) => boolean

Primarily for the developer's use, this causes a gar-
bage collection each time a cell is allocated from the
gree list. If you really want to¢ slow your program
own ...

PSUBR (defun [type] fcnname ([parlist]) bdody) =>
fenname
FSUER (defun fcnname [type] ([parlist]) body) =

fenname

Defines a lambda expression with the name fcnname;

mist be one of IXPR, FEXPR, or LEXPR, With EXFR tne
default. If type is FEXPR or LEXPR then the parameter

S P

delete

delq

difference LSUPR (difference exp! exp2 exp3 ...)

divert

-

list ahowli have only one formal raramweter. any rrevi-
ously existing "=FR, 1ZIPK, or ZXZR properties <n
fenname's plist are removed before the new one is
added.

L3URR (delete object list [integer]) => list

A very bizarre function from Maclisp: it returns a list
with all obiects 2qual to cbject deleved. [If “he
integer is rsresent, “Then only *ne Z.rst n objects are
jeleted.’ As =2 s3ide effect, it also removes all
objects equal *o ob;ect from the original 1list unless
the obiect 1s the Zirst in *he list, in which case the
T —'u:——-—z—v—;—+—r~—-—— + s
Tirst occurence of ovject is not removed from the ori
ginal list. Some examples will help clear this up:

{ (setg x 'latacabadacabad))
(abacabadacabad)

{ x
(abecbdcadbad) ; note the first a

Note that delete uses squal for its equality test.

LSUER (delq object list [integer]; => list
Same as delete but uses eq for its equalitly te

m
ot
.

Returns (exp! - exp2 - exp? - ...). '-!
It is equivalent to (- (+ exp! exp2 ...))

ISUER (divert which name [string])

which Must evaluate to one of the atoms input,
output, or append. If append is usga,
e output is §£verted and appended to

the end of the named file.

name Zvaluates to a symbolic atom whose value
will be TNIX's file descriptor.

string An optional expression that evaluates %o
a string that is the UNIX recognized
file name. If no string is specified,
the PNAME of neme is used as the file
name.

{ (divert 'input 'inf "in.file")

This example diverts the input from the current input
file to ./in.file (the UNIX name), but which will be

=12~

equal

referenced in lHavlisp via “ne atom inf.
{ (divert 'input 'in.file)

This example is the same as the previous, except that
the atom in.file is the a%om by which the file is
referenced within avlisp, and whose PNAME will alsc be
the Jlli{-recognized file name.

system 3ymbol
A 'pretty' symbol that is optional in a cond. It helps
to make the code more visible and is ignored:

(cond ((eq x y) then (fen ..) (fen ...})
else ((eq x z) then (fen ..) (fen ...))
else

)

system symbol
A special object that is returned by I/0 routines when
end-of-file is reached.

SURR (eq object! object2) => boolean
If object! and object2 are 1dentlcallx the same (not

the same value, but the same object) then eq returns 7,
otherwise nil. lNote the following:

(eq 'x 'x) = 7
(eq "(x7) "(x) => nil
(eq (cons 'x (cons 'x 'y)) => nil
(setq x '(a b){

(setq y x)

(eq x x) =T
(eq x ¥) =T
(se tq y '(ab))

(eq x ¥) => nil

SURR (equal object! object2) => boolean
If object! and object2 have the same values, then equal

returns T, otherwise nil. '=' is a synonym.
(equal) T
(equal '(xy) '(x y)) =T
(equal (cons 'x y) (cons 'x 'y)) >0

(setq x '(a b))

(setq y x)

(equal x x) = T
gequal xy) =7
setq y '(a b))

(equal x y) =T
(equal 11 11.0) = 7
(equal (+ 5 6) 11) = 7

(equal "str" (implode '("s" "t" "r")))=>

-13=

error

eval

exec

execq

explode

SUmR ‘error object atom ... atom) => nothing

The mechanism by which the user can generate error nmes-
sages. The first object is printed with a Navlisp
error message. This allows the user to print an error
message with, perhaps, the offending value or expres-
sion. Error uses prints to print the object and print{

-y

to print the sequence of atoms. 3.g.

{ (setq badlist '{a b))
a b)

[(error badlist "Pretty bad list: " 'badlist CR)
Pretty bad list: badlist
(a b) alser: * User generated error *

ISUER (eval S-expr [alist]) => object

This is the universal function: the function that can
evaluate all other functions, even itself. The S-expr
is evaluated in the context of the environment speci-
fied by alist. If alist is absent, the S—expr is
evaluated in the current contexh/environment.

{ (setq x1 y2 z3)

3

{ (setq alist '"((x . 5) (y . T) (z . 8)))
(x.5 .7 (z.8)
(

{ (eval '(plus x y z) alist)
20

PSUBR (exec object! object2 ...) => integer

The objects in the parameter list (which must evaluate
to atoms) are converted into strings and concatenated
with separating blanks. The resulting string is then
passed to the UNIX shell for execution as a separate
process. Exec returns the status. E.g.:

(exec 'vi 'file)
(exec 'ls '=1 '| 'page)

LSURR (execq atom! atom2 ...) => integer
The same as exec except the parameters are not
evaluated before being converted into strings. E.g.:

(execq vi file) same as for exec

(execq 1ls ~1 | page)

SUER (explode atom) => list
Returns a list of single~character strings that are the

14~

EXPR

teg

FILE

first

irdiviiual characters in <he string returned by .s+rin
atom). Inverse of implode: (implode .explode atom)
vields (string atom).

2
=
J

system symbol

A gymbol property specifying that this symbol has a
user defined S-expression to be evaluated when the sym~-
bol appears as *the first element of a list. The argu-
zents to an Z{PR functicn are evaluated tefore “ney are
vassed to the function for orocessing. Z=.g.

(defun £ (£x %y fz) (.
(setg x1 y2 z3)
(fxy z)

.+ body ...))

will pass to f the individual arguments 1, 2, and 3.

system symbol
An equivalent symbol for nil; false.

LSURR (fclose [name ...]) => 7

Closes all or selected files. If no names are given
then all files but the standard input and standard out-
Jut files are closed.

systen symbol

A symbol property specifying that this symbol has a
user defined S-expression to be evaluated when the sym—
bol appears as the first element of a list. The argu-
ments to an FEXPR function are not evaluated before
they are passed to the function for processing. An
FEXPR function does not receive the individual argu-
ments, but rather a list of the arguments. An FEXFR
function can, therefore, have a variable number of
arguments. Assume f is an FEXPR function. Then

(£ xy z)
will be invoked with a single argument

(x ¥ 2)
FEXPRs are defined by, e.g.

(defun FEXPR fcnname (parm) (... body ...))
system symbol
A property symbol whose value is the UNIX file descrip-
tor. Symbols with this property may be used as the
first argument to fprint, fprintf, freads, etc.

SUBR (first (object! . object2)) => object!
Zquivalent to car. Returns the first element of the

-15-

foren

forint

fprintf

freada

freadc

list. If the parameter i3 nect 2 lis+, first revorts an
arror. /first nil) is currently an error, although
there is some Jebate as to whether it should simply
return nil.

LSURR (foven mode name [string]) => integer
Crvens a UNIX file, where:

node Zvaluates to one of the symbolic atoms
input, outovut, or arpvend.

name Zvaluates to a symbolic atom whose value
will be the file descriptor used by the
UIIX file systen.

string An optional expression that evaluates to
a string that is the UNIX file name. If
no string is specified, the PNAME of the
second argument is used as the file
name. The filename must be less than
256 characters long.

ILSUBR (fprint name object object ...) => object

The objects are written onto the file denoted by the
symbolic atom name, which will have been the second
argument to an earlier fopen. This function prints
atoms and non-atoms. Strings are printed with the dou-
ble quotes, and each object is separated from its
neighbors by blanks. The lagt object printed is
returned as the value of fprint. (cf. print, printf,
forintf)

LSURR (fprintf name atom atom ...) => atom

The atoms are written onto the file denoted by the sym-
bolic atom name, which will have been the second argu-
ment to an earlier fopen. This function prints only
atoms. Strings are printed without the double quotes,
and each object is printed adjacent to its neighbors.
The last atom printed is returned as the value of
fprintf. {cf. print, printf, fprint)

SURR (freada name) => atom
Returns as its value a single atom read from the file
name, which was the second parameter to an fopen. (cf.

reada)

SUBR (freadc neme) => string

The value of this expression is a one character string
read from the file denoted by name. The function
returns the atomic symbol KEOF when end of file is
reached. (cf. readc)

-16=

Sterpri

funarg

function

IR | freads name) => object

Reads an S-expr from the file iJenoted Yoy name, the
value of which is set in the second parameter to fopen.
(cf. reads)

system symbol

A vroperty of symbols that are Iavlisp primitives.
TCUERR functions expect one argument: a list of the
unevaluated arguments. Assume that £ is an FSUER prim-
itive. Then

£xyz)

#ill invoke f with the single argument
(x ¥ 2)

SURR (fterpri name) => CR

Prints a new~line character on the specified file
Equivalent to (fprintf name CR). name.

system symbol
See the entry for function below for an explanation.

FSUER (function feon) => (funarg fen alist)

There is a 'oroblem' in LISP that Navlisp shares: 1IS?
is a dynamically scoped language, as opposed 40 a lexi-
cally scoped language. This means that the free vari~
ables in a function definition are not 'bound' until
the function is being evaluated. This may or mey not
have been what the programmer had in mind. An admit-
tedly contrived example:

(setq pi 3.14159)
(defun perimeter (radius)
(times 2 (times radius pi)))
; later
{ (defun hexagon (radius)
(let ((pi 3))
(printf "perimeter of hexagon is ="
(times 2 (times pi radius)) CR)
(printf "perimeter of outer circle is="
(perimeter radius) CR)

)
{ (perimeter 4)

25.1327
{ (hexagon 4)
verimeter of hexagon is =24

perimeter of outer circle is=24

let us assume +that the programmer's intention for

-{T=

%

c¢ircle in whicn a polyzon of 2

rverimeter wa3 o 22lculate a2 circumSsrence o7 tne

cervain radius iz
inseribed. However, it is also necessary to calculate
the circumference of the polygon using its own value of
"ratio of perimeter to diameter" (for hexagons it is
three). If the programmer insists on calling both
values 'vi', confusion will result, especially if <his
is turied in a large vrograr and rot so sktvicus a3 in
this small =xample. The groblem zrsse wren the yrogran-
mer though® 'lexical scoping' ("this Zfuncticn will wuse
the global variable/constant") in a dynamically scoped
1 (which will use the latest definition of an
objects.

The solution implemented in most LISP systems is
tc provide a function which tags other functions with
the environment in which they are to be evaluated: the
third element in the funarg list described above. The
funarg symbol at the head of the list is LISP's way of
flagging such a construct to the interpreter. 3By this
nethod, the above problem would be solved by:

{ (defun auxper (radius)

(times 2 (times radius pi)))
{ (defun perimeter (radius)

({funarg auxper nil) radius))

This is not very satisfying or transparent, and an
enhancement is being ccnsidered %o either develop a
lexically scoped LISP, or allow a switch in HNavlisp
which will toggle between dynamic and lexical scoping.

SURR (ge) => (geent chpair intpair realpair listpair
bufpair hwm)

Forces a garbage collection and returns as its value a
report on space usage:

geent the number of garbage collections since
startup

chpair, intpair, realpair, listpair are lists of the
form (free max) where free is ‘the number of
cells of that type that Is free, and max is
the maximum available; note that this is the
number of cells, not the number of bytes.
There are four bytes per character/string
cell, two per integer cell, four per real
cell, and four bytes per list cell.

bufpair file buffers are allocated on an as needed
basis; this pair of the form (free alloc)
specifies the number of buffers allocated and
not in use and the total number of buffers

-18-

getwa

getfun

allocated. O ') implies <hat “hers is ore
®ile oren; 1 1) says there are no files
open with cne buffer allocated.

hwm the high water mark, cr highest address in
use; for addresses greater than 32767 you
will hqave to do ten's complement arithmetic
to figure it out as it will orint 2s 2 nega-
*ive numcer.

See I™ICRY for an sxample of use.

SUBRR (getwa) => integer

Removes all 'truly worthless atoms' from the object
list. A ‘'truly worthless atom' is defined %o be one
which has no properties (other than PNAME), and is not
referenced by any other object in the system. It
returns the number of atoms so removed.

SUER (get symboll symbol2) => object

Searches the proverty list (plist) of symbol! looking
for a property whose name is symbtol2. If symbol2 is
found on the plist, the value associated with that
attribute of symbol! is returned. Both parameters must
be atomic symbols (i.e. on the oblist) or nil is
returned. If symbol! does not have a plist, or if sym~
20l2 is not on symboll's plist, then nil is returned.

the form of a plist for a symbol is

(=1 attr1 vall attr2 val2 attr3 val? ...)
therefore

(get symbol attri) => vali

ISUER (getfun fname [string]) => object

If the file string (or the print name of fname, if
string 1is not given) is not open it is opened. An S-
expr is read and evaluated, and the result is returned.
If the expression is a defun the function will then be
defined as a side effect. The symbol ECF is returned
at end of file (be careful of other S-expressions that
may return the symbol ECF when evalusted!). Note that
the input file is not closed by getfun. Therefore, the
next call on getfun will read tge next S-expression
from the file. Such a file of personal function defin-
itions can then be read with

-1

get_pname

greaterp

implode

IGNECF

input

INTEGERS

intp

‘detun LINPR zetall (x)
‘let {(%emp) (fd {1 x)) Istr (2 x)))
(cond ({eq (setq temp (getfun #d str)) 3OF)
(fclose fd) (terpri)
break)

\

(T (cond ((atom temp) (printf temp
(T (print CR temp CR

repeat)

)

If the evaluated S—expr reads from the standard input
during its evaluation, the input will come from the
same file fname, and not the current stdin.

SUER (get _oname symbol) => string

Returns the print name of bcl, which must te an
object on the oblist. Note ' ' is the underscore
character on most terminals, but may be a back-arrow on
sore.

LSURR (greaterp expl exp2 exp3 ...) => boolean
Returns T if exp! > exp2 > exp3 "' is a
Synonym.

SUBR (implode (atom! atom? ...)}) => string

Returns a string that is the result of concatenating
the values of (string atomi) for each atom i in the
argument. It is the inverse of explode, with the addi-
tional capability of accepting multi-character strings
in the parameter list.

SUER (IGNEOF) => boolean

Normelly, an end-of-file on the standard input will act
as if the (bye) command had been entered. Toggling
IGNEOF will change this to simply report the occurence
of an end-of-file. Note that control-D from the key-
board is equivalent to an end-of-file.

system symbol
Used in fopen, divert, and undivert to indicate that
the file mode is for reading.

system symbol

Used to denote the integer functions to the TRACE com-
mand. The individual functions cannot be traced, but
(TRACE INTHEGERS) will report each use of any integer
function.

SUER (intp object) => boolean
Returns T if the object is an integer. Note that if
the object is real (e.g. 23.0) it is not considered an

-20-

([
/
))

\
}

|
)
‘

o
ct

label

lambda

last

length

lessp

:] S H :
integzer 2van i i%3 Zracticnal rart is zere.

PCER (it (p! s1) (2 32) ...
An equivalent name for cond.

FPSUER (label fcnname S-expr) => object

Associates fcnname with the S-expr on the alist. In
this way, the S-expr can reference itself. Usually it
is better just to use defun and associate fonname with
the S—expr globally.

primitive (lambda (p! p2 ...) S-expr) (argl arg2 ...)
=> object

The object returned is the value obtained by evaluating
J-expr with all occurences of pi replaced with the
corresponding argi.

SURR (last list) => list
Returns a list which has as its single element the last
element of the argument list.

SURR (length list) => integer
Returns the number of elements in the list.

i (length '(a b (c d)))

-

LSURR (2 lessp exp! exp2 exp3 ...) => boolean
Returns 7 if expl < exp2 < exp} cee e <" is a
synonym.

FSURR (let par-list stmt! stmt2 ...) => object
where par-list is of the form

((symboll object!) (symbol2 object2) ...)

All objects are evaluated in the current environment.
Then the symbols are associated with the respective
values and added to the environment. Then the state-
ments are evaluated. This is Navlisp'’s form of a local
block. The let statement returns the result of the
last evaluated statement as its value.

{ (setq x '(a b c))
(adbe)

éd(let ((x '(d e £))) (print x CR))

x
abe)

~21=

ZTEE

LLEIN

list

mapcar

=en symbol

y"b ol “ro“erty svecilying *rat <his symbel 2as -
iser iefined S~expression to ve 2valuated when the sym-
bol appears as the first element of a list. The argu-
ments to an LEXPR function are evaluated before they
are vassed %o the function for processing. An L:EXPR
function does not receive the individual arguments, but
rather a list of the arguments. An LEXPR function can,
therefore, have 2 variable number of evaluated arcu-
nents. Assume £ is an Z=PR function. Then

l‘ 4!

{(D

/)

(setq x 1 y2 z3) N
(fxyz)

will ve invoked with a single argument
(123)

IEXPRs are defined by

(defun LEXPR fcnname {parm) { ... body ...)

system symbol
whose VALUE is the currently executing command stored

as a list.
.
ISUER {list object object ...) => list
Returns a new list containlng the objects as its ele-
nents:

{ (setq x '"(abc))
(abe)

{ (list 'x x '(d e £) (plus 3 5))
(x (abc) (def)8)

gystem symbol -

A proverty of symbols ¢that are Navlisp primitives.

ISUBR functions expect one argument: a list of the

evaluated arguments. If f is an ILSUER primitive. Then
(seta x1 y2 z3)
(fxyz)

will invoke f with the single argument
(1 23)

-
O

ISUER (mepear fon 1list! list2 ... listn) => list
I# 1isti = (elil eli2 eli® ... elim) then mapcar
returns ’

o

menber

‘EMCRY

f1list (fen el1l e121 .. elnt)
(fon el12 el22 .. eln2)

(fen ellm el2n .. elnm))
“tviously, fon must be an n-argument Juncticn. I <he
lengths 0% the lists are unequal, ‘he sncriest 1ist
ietermines *he number of 2l=ments in %the returned list
{and +herefore the number of evaluations of Zcn,;. The
fcn used in mapcar should probably not be an FSUBR or
TEXPR as the results may be unexpected.

SUPR (max exp exp ...) => number
Returns the value of the expression with the maximum
value.

JURR (member object list) => list

If the object is in the list then the remainder of the
list starting with object is returned. I the object
is not a member of list, then nil is returned. Zote
that the equality comparison is made by equal.

(member 'x '(abmr x z)) = (x z)
(mermeer 'x '(a b {x z) 2)) => nil
‘member '(x z) "la{xz)bv2) = {{(x2z)b2)

SUER (MEMCRY integer! integer2 integer? integer4, =>
nething

Increases the memory allocations for the various tTypes
of memory spaces. Navlisp memory is divided into char-
acter {(or string) space, integer space, real number
(floating point) space, and list cell space. There are
actually more spaces (file buffer space, garbage col-
lection space, and miscellaneous space) but the user
does not have control over these. By using the MEMCRY
command the user can increase (see SCRUNCH for decreas-
ing) the amount of memory available for characters,
integers, reals, and lists. That order corresponds to
integer1, integer2, integer?, and integer4 in the com-
mand 1list. The integers must be positive and small
enough to nct overflow memory. MEMORY does not return
a value: it does not return! Calling MEMORY resets the
interpreter to prompting at the command 1level. The
following example should help make this clear:

{ (&)
(2 ?224 500) (93 200) (100 100) (3224 5000)
(0 0) 27800)

shows that two garbage collections have taken place so

-23-

memq

ninus

ninusp

mkatom

ncenc

Taw seq= chapa ars D70 Fea

v
- ey seat s LT = ——r -7 .

e Y
characters max Ter 2eil. cut o ZUC, 2T Iree integer
cells out of 20C, 21l 120 real number cells are ‘ree,
3224 list cells are free ocut of 5000, there are no file
uffers allocated, and <he high water mark in memory is
27800. Iow allocate TOOO more character cells allowing
up to 220CC hytes of characser sTtorage:

\H [}1)

fa », | SR Ta Vol AN
STCRY TCCC 2 T

()
%4 77224 750C) (93 200) 1100 ‘00) (2224 5000)
20 -9736)

{ {MEMCRY 100C 2 2 0)
aAdimem: * Insufficient system memory *

SUZR (memg object list) => list
Jare as member abcve except that the 2quality compari-
zon is made ©y eq instead of equal.

— D e ———

{memq 'x '{fabarxz)) = (x z}
‘memq 'x '(a b {x z) 2)) => nil
(memq '(x z) '"(a (x 2)b2)) =>nil

Z3UBR {min exp exp exp ..., => numker
eturns the ninimum value of *the expressions.

SUER [minus exp) => -exp
Jegates the value of exp.

SUBR (minusp number) => boolean
Returns T if the number is less than zero (negative).

SUBR (mkatom string) => symbol

If there exists an object on the oblist whose print
name is string, then that object is returned. Other-
wise, a new object with the name string is added to the
oblist. Note that it 1is possible %o defire objects
this way that are very difficult to access:

{ (mkatom "a d")
ab

{ (remob "a b")
"a b" aRemob: * Not a symbolic atom *

{ (remob (mkatom "a b"))
nil

SUBR ‘nconc list] 1list2) => list!
List2 is appended to list! (via rplacd) and +he new
(modified) 1listl! is returned. .his is distinquished

~24~

ncons

nil

not

null

numberp

OELIST

it ea

Zrom o tne a2tvend functicn in <has accne changes izt e
croduce the new list.

{ (append (2 bc) '(d e))
(abcde)

{ /setq x '"fa b ¢))

fab e

{ (eq {aprend x '(d &)} X
nil
{ (eq {nconc x '(d 2)) x)

m
~

{ (nconc x x)
fabecabecabe ...)

will produce a circular list which will put the grint
routine in an infinite loop. However,

{ {append x x)
(abcabe)

doee not.

IUBR (ncons object) => list
Zquivalent to {cons object nil’.

system symbol

™e empty list, sometimes written (). Used by boolean
functions to indicate false. Also used to indicate the
end of a list: every list ends with an empty sub-list.

SUER (not object) => boolean
Negates the boolean value represented by the object.
Equivalent to the null function.

SUBR (null object) => boolean
Returns T if the paremeter is nil, otherwise returns
nil.

SUBR (numberp object) => boolean
Returns T if the object is an integer or a real.

SUBR (OBLIST) => oblist
The current oblist is returned. The following function
will display each object on the cblist:

or

output

pair

dlist

dlusp

PNAME

print

ccond . .null ptr) oreax)
{7 (print (plist (car ptr)) CR)
(setq ptr (cdr ptr))
repeat

JC3R (oddr number) => toolsan
Returns T if the number {or i*s integral vars' is <dd;
otherwise returns nil.

FSUER /or object! object2 ...) => object

The objects are evaluated from left to right until one
evaluates to something other +than 7, at which point
evaluation ceases and that non-nil value 1is returned.
If all values are nil, then nil is returned.

system symbol
Used in fopen, divert, and undivert to indicate that
the file mode is for writing.

SUBR (pair list! list2) => list3

Each element of list! is matched up with each element
of 1list2; each list must have the same number of ele-
ments. Note that the LISP 1.5 implementation (ang,
*herefore, this one) reverses the order of the lists.

} (pair "(abe) '(1273))
le.3){(6.2) {a. 1))

SUBR (plist symbol) => list
Returns the plist for the atomic symbol symbol. If the
argument is not an atomic symbcl an error results.

LSUBR (plus exp exp ...) => number
Returns the sum of the exp's. '+' is a synonym.

SUER (plusp number) => boolean
Returns T if the number is greater than zero, otherwise
returns nil.

system symbol
The print name property of symbols.

LSUBR (print object object ...) => object

The objects are written onto the standard output
separated by blanks (there is no blank after the last
object). The last object printed is returned as the
value. Note that string atoms are swrrounded by quotes
when using print. (cf. printf, fprint, fprintf

i, T

e
srints

outerop

QUIT

quote

quotient

reada

readc

reads

realp

LITER ‘prinsT aTom atcm ... =2 oasom
The atoms \or xpressions which avalua‘te 0 atoms. are
written on the standard output. The atoms are not
separated by blanks. Strings are not swurrounded by
double quotes. The last ator printed is returned as
the value of printf. (cf. print, fprint, Zprintf)

SUZR {pusrrop 3ymool value prog: => value

The proverty prop ‘which should te a symbolic atem® i3
added to the plist of the symbolic atom symbol and is
given the value value, which is returned as the value
of putprop.

SUER (2UIT) => nothing
Returns the user to the process that invoked Navlisp
(presumably the shell) without saving the workspace.

FSUBR (quote object) => object

This function simply returns its argument, whatever it
may be. This is a convenient way to delay evaluation
of a list or object. For convenience, the apostrophe
is used as a shorthand for the quote function. That
is, 'a is equivalent to (quote a); and '(a b) is
equivalent to (quote (a b)); etec.

2 {cons (+ 1 2) 9)
3

. 5)
é (cons '(+1 2) 5)
(+12) .5)

LSURR (quotient expt exp2 exp3 ...) => number
Returns (... ((expt / exp2) / exp3) ...). '/' is a
synonym.

SURR (reada) => atom

Returns as its value a single atom read from the stan-
dard input. The function returns the atomic symbol EOF
when end of file is reached. (cf. freada)

SUER (readc) => string
The value of this expression is a one character string
read from the standard input file. The function
returns the atomic symbol EOF when end of file is
reached. (cf. freadc)

SUBR (reads) => object

The value of this expression is the S-expression read
from the standard input. The atomic symbol EOF is
returned at end of file. (cf. freads)

SUER (realp object) => boolean
Returns T if the object is a real number; otherwise

27—

remainder

TEernob

remprop

repeat

rest

RESTCRE

reverse

rplaca

rplacd

SAVE

b
nis.

SUBR (remminder number! number2) => integer

Returns mumber! modulo mumber2. If <the numbers are
reals, they are truncated to integers before the opera-
tion.

SUER (remob symbol) => nil

Removes all vroverties (except PNAME) for the symbolic
atom symbol from the oblist. Use the (gctwa) function
0 remove these 'truly worthless atoums'.

SURR (remprop symbol prop) => list

Removes the property prop from the plist for symbol.
The 1list returned IS the rest of the property %15?,
beginning with the removed prop.

system symbol
Used in cond (q.v.) to implement Parnas' it-ti con-
struct.

SUBR (rest (object! . object2)) => object2

Iquivalent to cdr. Returns all but the first element
of the 1list.” If the parameter is not a list, rest
reports an error.

LSUBR (RESTCRE) => nothing

Throws away the current zemory-resident workspace and
reads the workspace stored in the current workspace
file. A planned enhancement is the ability to specify
the £ile from which to read the new workspace. The
function is useful only at the command level, as
RESTCRE resets the interpreter.

SUER (reverse list) => list
Reverses the order of the elements in the 1list. Does

not modify the argument.

SUBR (rplaca object! object2) => objectt
A dangerous function +to physically alter memory in
Navlisp. It replaces (car object!) with object2.

SURR (rplacd object! object2) => objecti
A dangerous function to physically alter memory in
Navlisp. It replaces (cdr object!) with object2.

LSUBR (SAVE) => nothing :

Writes out the user's workspace. Currently, always
uses the default workspace (either .navlisp in the
current directory, or the file specified on the invoca-
tion 1line). A planned enhancement is to allow SAVE to
accept another filename into which the workspace is
written. The function is useful only at the command

SCRUNCH

set

setq

stdin

stdout

string

VAT

level, as JAVZ rese%ts tne interdreter.

LSUBR (SCRUNCH) => nothing

The only way the user has of returning unneeded free
space is by using SCRUNCH. This function will reduce
ALL free lists and memory allocation to the minimum
required to run. The user will then need %o use MEMCRY
to increase the size cf those free lists needed. The
function is wuseful only 2t the command level, as
SCRUIICH resets the interpreter.

SUER (set symbol object) => object

The atomic symbol symbol is updated on the alist to be
associated with object. If the symbol is not on the
alist, then the property VALUE on the symbol's plist is
added/modified to have the value object.

FSURR (setq symbol object [symbol object ...]) =
object

The same as set except that symbol is not evaluated:
this sometimes saves typing quote marks at the key-
board. Setq is also set up to accept a list of symbols
and objects, each symbol receiving the value object.
The last object in the list is the returned ue of
setq.

system symbol

The value of the FILE attribute of this symbol is the
UNIX file descriptor for the standard input file asso-
ciated with the Navlisp process.

system symbol

The value of the FILE attribute of this symbol is the
UNIX file descriptor for the standard output file asso-
ciated with the Navlisp process.

SUER (string atom) => string
Returns the string form of the atom. If the atom is a

string it is returned unchanged

mumber the value is converted into a string of ascii
characters

symbol the print name (PNAME) is returned

stringlength SUBR (stringlength atom) => integer

stringp

Returns the length of the string form of the atom.
Stringlength measures the length of the string returned
by (string atom).

SUBR (stringp object) => boolean
Return T if the object is a string; otherwise returns

-20-

subt

[¢)
4

subst

symbolp

terpri

then

times

TRACE

nil.
SUER (subl exp) => number
Subtracts one from the value of the mweric expression

exp.

system symbol

A property of symbols that are lavlisp oprimitives.
SUBR functions =are passed the resul®s of evaluating
2sach of the arguments. Assume that £ is a UBR primi-
tive. Then

(setqgx1 y2 z3)

(fxy z)
will invoke the function f with the three arguments 1,
2, and 3.

SUER (subst object! object2 list) => list

A new object is created from list in which all
occurrences of object2 in the list (and its sub~lists)
are replaced with objectl. lote that the eg function
is used for the equality test.

{ (subst 'a 'b '(a b (abec)))
(aa(aac))

SUBR (symbolp object) => boolean

Returns T if the object is on the oblist (i.e., is a
symbol, not a list or number, or string); otherwise
returns nil.

system symbol
The symbol whose interpretation is 'true': nil is
interpreted to be 'false'.

SUER (terpri) => CR
Prints a new=-line character on the standard output.

system symbol
A ‘'pretty' symbol that is optional in cond. It helps
to meke the code more visible and is ignored:

else q x 2) then (fon ..) (fen ...))
else

)

LSUBR (times exp exp ...) => number
Returns the product of the exp's.

FSUBER (TRACE symbolt (symbol2 ...]) => (symbol! ...)
Places a TRACE property on the plists for the indicated

(cond §§Zq X y) then Efcn o) gfcn eed))

=30~

undivert

UNTRACE

VALUE

zZerop

symbols. if there is an Z{PR, FEXPR, LIX{PR, IUZR,
L3CER, or ISUBR defined for the symbol in guestion,
then during evaluation a trace will be printed showing
the name of the function and the parameters being
passed to it.

LSUBR (undivert [which]) => T
Which must evaluate to one of the atoms inout, output,

or aprend. If elided, both the input and output #illi

be reset to the standard input and output. THIS FIC-
TICN DCES NOT CLOSE THE UNDIVERTED FILES! (see fclose)

(divert 'output 'outf)
(undivert 'output)

PSUBR (UNTRACE [symbol! symbol2 ...]) => (symboll ...)
Removes the TRACE property from the indicated symbols.
If no symbols are specified, then the TRACE property is
removed from ALL symbols on the oblist.

system symbol
The property which holds the value of the symbol.

SUBR (zerop number) => boolean

Returns 7 if the number's value is gzero. Otherwise,
returns nil.

~31a

e e oy e

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Dudley Knox Library

Code 0142

Naval Postgraduate School
Monterey, CA 93940

Office of Research Administration
Code 012A

Naval Postgraduate School
Monterey, CA 93940

Chairman, Code 52Bz

Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

A. Dain Samples, Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

Professor Bruce J. Maclennan, Code 52M1
Department of Computer Science

Naval Postgraduate School

Monterey, CA 93940

Professor Douglas R. Smith, Code 52Sc
Department of Computer Science

Naval Postgraduate School

Monterey, CA 93940

Professor David Parnas
12503 Davan Drive
Silver Spring, MD 20904

Chief of Naval Research
Arlington, Va 22217

-32-

40

12

