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REFINEMENTS IN COMPUTERIZED 
ITEM SERIATION 

by 

WILLIAM BERT CRAYTOR 
and 

LEROY JoHNSON, JR, 

INTRODUCTION 

Our purpose in this paper is to refine certain 
aspects of computerized matrix seriation so as 
to provide a more precise and efficient auto­
matic technique for determining and display­
ing interrelationships between compared items. 
A new program for matrix analysis, called 
PROGRAM SERIATE, is presented and explained. 

The writing of a computer program for seri­
ation was originally undertaken by the senior 
author in order to seriate archaeological col­
lections chronologically by the Brainerd-Rob­
inson method ( Brainerd 1951, Robinson 
1951), using as a model the program descrip­
tion published by Kuzara et al. ( 1966). Dis­
satisfaction with important aspects of previous 
work led, however, to the formulation of a bet­
ter method for comparing trial orderings of 
matrix similarity scores, and to the writing of 
an improved seriation program. 

Nonsystematic procedures of multiple-item 
analysis often lack rigor and efficiency, and 
need to be replaced with increasingly more 
efficient and systematic methods of comparison 
which have the advantages of replicability and, 
to a degree, objectivity in determining item re­
lations. It is possible for analysts to make more 
nearly identical estimates of relationships of 
affinity within the same corpus of data, and 
reach agreement about the kind and degree of 
item relations, if they use effective automatic 
techniques. With such advantages in mind, we 
hope that the refinements on matrix seriation 
presented in the following pages will be useful 

for comparative analyses and will have rele­
vance for the topics of chronological seriation, 
as in archaeology, and cluster analysis, as in 
biological taxonomy, cultural typology, and 
related studies. 

The computer time necessary to develop 
PROGRAM SERIATE was kindly provided by the 
Statistical Laboratory and Computing Center 
of the University of Oregon, Fred C. Andrews, 
Director. Laurence R. Kittleman, Museum of 
Natural History, and Joseph G. Jorgensen, De­
partment of Anthropology, U. 0., read a draft 
of the present paper and made appreciated 
suggestions for changes in form and content. 

MATRIX SERIATION 

The present paper is concerned with a meth­
od of analysis which can be applied to a set of 
individuals scored on a set of characters. Both 
Q-technique and R-technique studies are al­
lowed ( Stephenson 1953). The former consid­
ers the correlations of pairs of individuals 
present in a population in terms of their char­
acters, while the latter considers the correla­
tion of pairs of characters present in a popula­
tion. Seriation is the placement of items, 
whether individuals or characters, in a series, 
and as such is one form of scale analysis. Once 
properly seriated, however, items may further 
be tested for clustering. 

Seriation arranges, as well as possible, a 
number of items into a vector array such that 
each item pair ( except the outermost) is sur­
rounded by less similar or equally similar item 
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pairs. The scores ( measures of similarity) for 
all item pairs are placed in a matrix table and 
then analyzed. If we let n represent the num­
ber of items, there are n ( n-1) / 2 different 
similarity scores for the (f) pairs of items. (It 
is common, however, to represent the matrix 
graphically in its double, or symmetric, form.) 
Analysis of the matrix scores can be a long 
and involved process beginning with an over­
all study of the matrix and, then when needed, 
perhaps ending with an analysis of particular 
subsets of scores within the matrix. 

Suppose the items of the vector array (A, 
B, C, D, E) are perfectly seriated. Letting Sx,Y 

symbolize the similarity between items X and 
Y, one could then say, for example, that 
SA,n~SA,c, and Sn,D~SA,E. However, nothing 
could be said about the difference between the 
similarities of such item pairs as AB and CE. 
The inequalities between the adjoining simi­
larity scores for this item array are dia­
grammed in Fig. 1, and a possible similarity 
matrix for the five items is shown in Fig. 2. 

Figure 1. Diagram of the Inequalities between the 
Similarity Scores for Items of the Array 
(A,B,C,D,E) 

ITEMS A B c D E 

A 27 25 21 8 
B 31 24 11 

c 25 12 
D 14 
E 

Figure 2. Hypothetical Similarity Matrix for Items 
A, B, C, D, and E. 

Notice, however, that many inequalities be­
sides those for adjoining similarity scores are 
implicitly specified. If we let Si,i represent the 
similarity score between items i and j, and 
Sk,z the score between items k and l ( where the 
subscripts denote the position of the item in 
the vector array), the inequalities requisite 
for the perfect seriation of any group of n 
items are the following: 

for j=2,3, ... , n 
i=l,2, ... , j-1 
k=l,2, ... , i 
l=i,i+l, ... , n. 

The number of these inequalities, excluding 
the identity scores for items with themselves, 
can be determined by inspection of a matrix 
of similarity scores for a set of n items ( e.g., 
Fig. 1) to be the sum 

n-1 i 

l (n-i) l j 
i=2 i=2 

which is equal to 

n4+2n3-l3n2+1on 
24 

( derivation: 
Appendix 1.1) 

Thus an immense number of inequalities 
must be satisfied by a perfectly seriated group, 
even by one of only moderate size. For exam­
ple, 269,500 inequalities must be satisfied by 
a perfectly seriated group of 50 items. For a 
group of 250 items, 164,091,205 inequalities 
must be satisfied for perfect seriation. 

Seriating an item group requires arranging 
the items so that their similarity scores will 
satisfy, as nearly as possible, all the component 
inequalities requisite for perfect seriation. Sev­
eral criteria, called ordering coefficients, have 
been proposed to differentiate the better from 
the less well seriated permutations of an item 
group, but they are only approximate meas­
ures of seriation and will not be discussed 
here. The following are two possible ordering 
coefficients: 

Let n represent the number of items, 
S'.i represent the similarity score between the 
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item in row i and the item in column j in 
the similarity matrix, 1 and 

S; represent the similarity score between the 
item in row k and the item in column l; 

1) The number of inequalities which should 
be met for per/ ect seriation and are not 
met; namely, the number of negative re­
sults obtained from the subtractions 

for j=2, 3, ... , n 
i=l, 2, ... , j-l 
k=l, 2, ... , i 
l=j, i+l, ... , n; 

2) the sum of all the coefficient differences 
( which should be positive or equal to zero 
for complete seriation}, that is 

n j-1 n 

H= l l l l s~ - s; · 
i=2 i=l k=I l=i 

In the process of seriating an item group, 
the first coefficient would be minimized or the 
second coefficient would be maximized. The 
difference between the two coefficients is that 
the second takes account of the magnitude of 
the similarity score differences whereas the 
first does not. If scores could be considered 
precise measures of similarity between items, 
the first ordering coefficient would perhaps be 
the more appropriate for item seriation. The 
degree, however, to which inequalities are sat­
isfied is important, since similarity scores are 
seldom precise. Small differences between them 
are often statistically insignificant and may be 
due to sampling error. 

Another advantage of the second ordering 
coefficient over the first is that its value can be 
acquired by a more efficient method. As shown 
in Appendix I.2, the sum of the coefficient dif­
ferences is acquired without separately testing 
each of the score inequalities, as is required in 
the computation of the first coefficient. Thus 
the second ordering coefficient, termed Coeffi­
cient H, is used here. 

1 Si,i is equivalent to s; except that the former is the simi­
larity score between items in a vector array, while the latter 
is the similarity score between items in the similarity matrix. 

Coefficient His effective for comparing trial 
seriations of the same set of items, but its val­
ues are not comparable between different sets 
of items. In order to establish a somewhat 
more general criterion for determining the de­
gree of seriation in different item sets, the or­
dering coefficient is standardized into a general 
seriation coefficient, traditionally called a ma­
trix coefficient. Two such coefficients are al­
ready in use, termed Matrix Coefficient A and 
Matrix Coefficient B (Robinson 1951, Kuzara 
et al. 1966) . Both are strongly biased measures 
of seriation. Our standardized matrix coeffi­
cient is termed Matrix Coefficient C, and is cal­
culated by dividing Coefficient H by the number 
of inequalities tested, that is, by (n4+2n3

-

13n2 + lOn) / 24, to get the average inequality 
difference, and then dividing by the standard 
deviation of the n( n-l) / 2 similarity scores. 

Matrix Coefficient Chas an approximate val­
ue of zero for a randomly arranged set of items, 
but in general the value of C becomes larger 
as the matrix is more perfectly seriated. It has 
been empirically determined that a C value of 
approximately 2 is indicative of excellent seri­
ation; viz., 2 is approached as the requisite 
inequalities are satisfied. 

ITEM MANIPULATION 

Since successful seriation requires arrang­
ing the items so that their similarity scores will 
satisfy, as nearly as possible, all the component 
inequalities necessary for perfect seriation, 
permutations of items in a set must be tested by 
Coefficient H. The only way that one can be 
certain of finding the best seriated permuta­
tion of a set of items is to examine all essen­
tially different permutations and select the one 
with the highest H value. Such an examination 
is not feasible because of the prohibitive 
amount of time which would be required in 
computing the ordering coefficients for the n!/ 2 
essentially different permutations for an item 
set,2 even with a high-speed digital computer. 

2 Of the n ! permutations, those that are the reverse of the 
others represent the same item sequences; this is to say, the 
direction of the permutation is unimportant. 
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For example, a set of only 9 items involves 
181,440 essentially different item permuta­
tions. 

To solve this problem, it is first necessary 
to consider the relations between the ordering 
coefficients and their successive permutations. 
Fig. 3 is a graph of a hypothetical group of 
item permutations plotted against their re­
spective ordering coefficients. The permuta­
tions are ordered along the horizontal axis on 
the basis of similarity of successive arrays to 
all others.3 In this example there are three 
groups of relatively well seriated item permu­
tations corresponding to three local modes or 
maxima represented by points A, B, and C. 
Point B is the absolute maximum correspond­
ing to the best seriated permutation of the 
item group, and represents the kind of ordering 
sought after by archaeologists wishing to seri­
ate artifact collections chronologically. For 
purposes of cluster analysis, as in numerical 
taxonomy, one would not only desire the item 
permutation corresponding to B, but also the 
permutations corresponding to the local max­
ima A and C, since these permutations might 

3 In Fig. 3, the vertical axis is an axis of real values, while 
the horizontal axis consists of equally spaced points repre­
senting the n! I 2 essentially different permutations seriated on 
the basis of the intersimilarities of their item ranks. Although 
there is no standard index of similarity between series corre­
sponding to the rank-order correlation coefficients, the simi­
larities between the permutations can be measured as the 
complements to their interpoint Eucildean distances in a 
space defined by the n positions in the series compared. Let 
s,,y represent the item for position y in some permutation x; 
let D(ij) represent the Euclidean distance between two 
points, i and j, on the basis of the positions of the items in 
their permutations; and let c represent any real number. 
Thus the Euclidean distance between two permutations (sn, 
si2• . . . , sin) and (s;1, s;2, ... ,s;n) is 

D(ij)= V '.£ (si!-s; z)2 
l= l 

and the similarity of the series consequently is some constant 
c minus D (ij), that is 

s: =c-D(ij). 

Since all n! / 2 essentially different permutations cannot be 
tested except for very small items sets, a certain number would 
have to be randomly selected from the above population of 
permutations, compared, seriated, and then plotted against 
their corresponding H values. 

H 
\la lu es 

ord e re d seque nce o f 

permutatio ns 

Figure 3. Ordered Sequence of Essentially Differ­
ent Permutations for a Set of Imaginary 
Items. 

enable one to hypothesize further on the nature 
of the item group under consideration. 

The ideal procedure would be to generate 
a random sequence of the items and then ma­
nipulate the items by changing their positions 
in the item series until the permutation cor­
responding to the closest local maximum had 
been found. Essential to such a procedure 
would be the use of some criterion to determine 
if a permutation corresponded to a local maxi­
mum. 

No ideal criterion has been established to 
enable an accurate determination of the per­
mutations corresponding to local maxima. Nev­
ertheless, Richard Kuzara (Kuzara et al. 
1966) has described an item manipulation 
technique which provides the needed criterion 
for determining if an item permutation is in 
the close vicinity of a local maximum. This 
will therefore be called Kuzara' s Criterion. 
Importantly, the criterion can be effectively 
approached and satisfied on a digital com­
puter ( see Appendix I.3 and Appendix III), 
and thus the problem of not being able to test 
all essentially different item permutations, 
mentioned above, can be solved. 

Kuzara's Criterion is the following. An item 
permutation whose Coefficient H is in the close 
vicinity of a local maximum possesses an H 
value greater than, or equal to, any other 
Coefficient H corresponding to permutations 
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which might be formed by shifting any item, 
but only one item at a time, through the posi­
tions of the item permutation being considered. 

In a computer analysis, seriation based on 
Kuzara's Criterion proceeds in the following 
manner. A randomly generated item sequence 
is stored in a static array, an array in which the 
components are never interchanged, only re­
ferred to. The similarity matrix for the static 
array is formed. The similarity matrix is a 
nonstatic array in which every row-column is 
eventually interchanged with every other to 
produce a seriated item sequence. Evolution 
of the item sequence in the similarity matrix 
commences with the testing of the first item 
from the static array in the first, second, ... , 
and nth positions of the similarity matrix, that 
is, row-columns 1, 2, ... , and n, respectively. 
The shifted item is then returned to the position 
corresponding to the highest ordering coeffi­
cient. In the same manner, the second, third, 
... , and nth items from the static array are 
subsequently tested in each position of the 
evolving similarity matrix and then returned 
to their most favorable location. This proce­
dure, termed as one pass, is repeated at least 
once by replacing the contents of the static 
array with the item sequence produced in the 
manipulation of the similarity matrix, and then 
testing continues as above. Kuzara's Criterion 
for reaching the vicinity of the highest local 
degree of seriation is fulfilled by repeating 
these passes until the ordering coefficient for 
the item permutation produced by one pass is 
equal to the ordering coefficient for the item 
permutation produced by the pass previous to 
it. 

Each seriation of a randomly generated item 
sequence may be referred to as an ordering. 
Whether or not there is more than one local 
maximum for an item group can usually be 
determined in one ordering. If an ordering 
produces a nearly perfectly seriated item per­
mutation ( as would be indicated by a value of 
approximately 2 for Matrix Coefficient C), 
then there is very little chance of getting dif-

ferent or dissimilar permutations from more 
orderings. But a poorly seriated item permu­
tation indicates an inherent instability within 
the item set, viz., the presence of complex 
multidimensional relationships between the 
items. In such cases several local maxima may 
occur for the degrees of seriation of the dif­
ferent permutations. 

THE BASIC SERIATION ALGORITHM 

The notation used in the algorithm is taken 
largely from K. E. Iverson's A Programming 
Language ( 1962) because of its conciseness 
and relative simplicity. Unless otherwise in­
dicated by the branch instructions described 
below, the instructions of the algorithm are 
executed sequentially from the first to the last 
step. The notation used is briefly described as 
follows: 

"a~b" means that a accepts the value of b 
and b retains its value. 

"aBb" means that the values of variables a 
and b are interchanged. 

"yi(x1,x2 , ••• ,x.n)" means that the values 
of the variables in the vector are rotated to the 
right by y positions. (Similarly, "j" signifies 
a left rotation.) For instance, 1J(7, 6, 5, 4) 
= (4, 7,6,5) and2H4,2,3) = (2,3,4). 

"qRb, ~m" means that after the instruction 
qRb is executed, directly branch to step m. 

"a:c, (>,=) ~ (l, m)"meansthatif a>c 
then branch to step l; if a=c then branch to 
step m; otherwise proceed to the following step, 

"a~xiy" means that the rank of the values 
of y in x are placed in a. For instance, if x= ( 3, 
9, 10) and y=(lO, 3, 9), then a=(3, 1, 2)= 
xiy, and a=l=xir2. 

"Lx(y) ", termed the interval vector with ori­
gin x and lengthy, is a vector of y integers pro­
gressing from left to right, beginning with in­
teger x. For example L0 (5)=(0, 1, 2, 3, 4) and 
L5(3)=(5, 6, 7). 
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The algorithmic procedure begins at a point 
indicated by the entry arrow, and terminates 
wherever indicated by an exit arrow. 

Verbal instructions are inserted where sim­
ple functions would otherwise require complex 
algorithmic instructions unnecessary for the 
understanding of the method. 

In order to construct an algorithm for seria-
tion it is simplest to redefine S so that 

Si-+1 ~ S' . 
S ~s i=(n, n-1, n-2, ... , 1) 

;+1 i 

and place an interval vector of integers to iden­
tify the items in the input similarity matrix in 
the first row-column of S as follows: 

S1~L0(n+l) and S1 ~ S1
• 

The follow{ ng algorithm is supplied to give 
a simple description of the method of seriating 
a set of items used in PROGRAM SERIATE (Ap­
pendix III). Although the algorithm could be 
applied for the purpose of seriation, it would 
be much too inefficient to use on more than a 
dozen items. As with the development of nearly 
any mechanism, complexity increases with ef­
ficiency and flexibility; this is the case in the 
development of PROGRAM SERIATE from the 
Basic Seriation Algorithm ( see Appendix 1.3). 
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THE ALGORITHM 

1 ~ Read S, n , w 
2 Print S (labeled "Data l\'.latrix") 
3 Randomly interchange the row-columns of S 
4 b~S1 

5 c~Coef. H 
6 i~l 
7 i~i+l 
8 i:n+l, ( >) ~(25) 
9 a~S1ibi 

10 (S2, sa, ... , Sa) ~l.J,(S2, sa, ... , Sa) 
11 (S2, Sa, ... , Sa)~ l.J, (S2, Sa, ... , Sa) 
12 d~Coef.H 
13 z~2 
14 j~l 
15 j~j+l 
16 j:n+l, (>)~(23) 
17 Si~Si+ 1 

13 si~s;+1 
19 h~Coef. H 
20 h:d, (~) ~(15) 
21 d~h 
22 l~j+l,~15 
23 (S1, S1+1, ... , 5n+l) ~l.J, (S1, S1+1, .. 

. 'sn+l) 
24 (Sz, S1+1, ... , Sn+d ~l.J,(Sz, S1+1, .. 

. , Sn+d ,~ (7) 
25 d:c, (>)~(4) 
26 Print S (labeled "Ordered l\'.latrix") 
27 w~w-1 
28 w:O, (>)~(3) 
29 Print execution time 

n+l i-1 i n+l 
Coef. H= ~ ~ ~ ~ s;-s~ 

i = a i= 2 k = 2 l = i 

n-the no. of items 
S-the similarity matrix 
w-the no. of orderings to be executed 
S"'-row x of S 
S,,--column x of S 

Legend 
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APPENDIX I 

COMPUTATIONAL Ams AND REFINEMENTS 

1. The derivation of the final expression for 
the sum of the inequalities is 

n-1 i 

l (n-i) l j 
i=2 i=2 

n-1 

= 1h l (n-i) (i2+i-2) 
i=l 

n-1 

=1/2 l [-i3+(n-l)i2 

i=l 

+(n+2)i-2n] 

(n-l)n (n-1) 
2 [- -4-n 

(n-1) (2n-l) + (n+2) ] 
+ 6 2 - 2 

(n-l)n 
48 

(14n2+6n-20) 

n4 + 2n3- l3n2 + 1on 
24 

2. For purposes of computation, Coefficient H 
( as its notation is changed on p. 19), can 
be simplified as follows: 

n+I j-1 n+I 

H= l l l l s;-s; 
i=3 i=2 k=2 l=j 

n+l j-1 

= l l [ (i-1) (n+2-j) S\ 
i=3 i==2 

n+I 

- l l s;J 
k=2 l=j 

n+1 i - 1 . [-j2+j-i2+i(2n+5) 
= l ls: 

i=3 i=2 2 

-2(n+2)]. 

The factors ( that is, the elements which 
form a product when multiplied together) for 
the components of S are constant for different 
permutations of an item group. Therefore, 
previous to ordering an item group, these fac­
tors can be calculated and placed in a model 
matrix with the same structure ( no. of row-

columns) as the similarity matrix. All that is 
then required in calculating Coefficient H for 
some item permutation is to multiply the simi­
larity scores above the primary diagonal of 
the similarity matrix by the corresponding fac­
tors from the model matrix. If we let M repre­
sent the model matrix, this can be formulated 
as 

M'= -j2+j-i'2+i(2n+S)-2(n+2) 
I 2 

for j=3, 4, ... , n+l 
i=2, 3, ... , j-1. 

Consequently, Coefficient H is reduced to the 
following: 

n+I j - 1 

H= l l S~ M\. 
j=3 i=2 

3. Development of PROGRAM SERIATE 

No matter how theoretically sound any al­
gorithm may be, it is useless if it cannot be op­
erationalized within the financial means of the 
user and the limitations of the computer avail­
able to him. If an algorithm can be modified 
for computational purposes so that it becomes 
more efficient and flexible, then the scope of its 
application is usefully expanded. 

For the following reasons the Basic Seriation 
Algorithm is rather inflexible and almost in­
tolerably inefficient for computer calculation: 
( 1 ) the entire similarity matrix of ( n + 1) 2 ele­
ments must be stored, while the symmetry of 
thematrixrequiresthatonly (n+2) (n+l) / 2 
essential elements be stored; ( 2) the elements 
of the row-columns of S must be interchanged, 
requiring a relatively large amount of com­
puter time; ( 3) the ordering coefficient must 
be computed for every item permutation tested 
whereas, in actuality, only the changes in the 
ordering coefficients need to be computed; ( 4) 
the calculation of the ordering coefficient by 
actually computing the score differences de­
mands an impossible amount of labor; and ( 5) 
subsets of an item set cannot be seriated with­
out repunching the similarity scores for each 
subset on separate sets of data cards. 
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PROGRAM SERIATE improves on the Basic 
Seriation Algorithm in respect to ·all five fore­
going points. A step by step explanation of the 
program is not necessary, but the techniques 
and short cuts which make the program func­
tion efficiently and give it a degree of flexibility 
not possessed by the Basic Seriation Algorithm 
are discussed below. In appropriate places, 
cross-reference is made to the specific subrou­
tines of PROGRAM SERIATE listed in Appendix 
III. 

General Refinements 

(a) Compression of the Similarity Matrix into 
an Array: In PROGRAM SERIAT_E the elements of 
the upper right section of the similarity matrix 
S are stored column-wise in vector a in a se­
quential manner from the first to the last col­
umn, that is 

a [ i+iik ] =S~ ( i~j). 
k=O 

The summations in the subscript for vector a 
are constant, and are calculated as S is read 
and placed in a vector q, that is 

j - 1 

qi= l k (i=l, 2, ... , n, n+l). 
k=O 

Therefore, any element SJ of S 1s 

a[m;n(i,i)+q ('')] 
max i ,J • 

The two principal advantages of this type of 
storage compression are ( 1) that the amount 
of storage required for the similarity matrix 
is nearly halved, and (2) that the computer 
time required to reference similarity scores is 
minimized. 

(b) Eliminating the Manipulation of Similar­
ity Scores within Storage: In the Basic Seria­
tion Algorithm, the row-columns of S were 
interchanged in order to calculate the order­
ing coefficient for a particular item sequence 
( which was correspondingly formed in the 
first row-column of S). In PROGRAM SERIATE, 

neither the item identification numbers ( which 
are ai+qi=i-l for an item in row-column i of 

S as punched on the data cards) nor the simi­
larity scores are interchanged. Instead, the 
components of the item sequence vector m to 
be tested are used as the subscripts of vector a 
as if the similarity matrix corresponding to 
vector a had its row-columns arranged accord­
ing to the sequence in vector m. The connection 
between S, m, and a is as follows: 

a =Sm, 
[ min(m ,,mJ)+q ( )] mi 

max m1,m1 

where initially mi=i=ai+qi + 1 if the entire 
similarity matrix is to be seriated. However, 
as will be mentioned below, the initial com­
ponents of m may be optionally specified by 
the user. 

As a consequence of the introduction of the 
item sequence vector m, only the components 
of mare interchanged in PROGRAM SERIATE. It 
might appear that the computation of the sub­
script for vector a would offset any other ad­
vantages of the notation presented, but in the 
end the total reference to vector a in the pro­
gram is relatively infrequent. 
(c) Symbols Used to Deal with Subsets of S: 
The input similarity matrix punched on cards 
is labeled S. In certain cases the user may de­
sire to seriate only a specific number of the n 
items of an item set, rather than the whole set. 
Any similarity matrix formed from a subset of 
the items in S shall be referred to as iS for the 
ith specified subset of S in the input sequence 
for PROGRAM SERIATE. Correspondingly, the 
number of items in S shall be referred to as n, 
the number of items in iS as ni, and the item se­
quence vector for iS as mi. The number of sub­
sets of S to be seriated in one execution of the 
program will be symbolized by N. If the entire 
item set S is to be seriated in one execution, 
then N equals zero since, in this case, S need 
not be specified as a subset of itself. ( If, how­
ever, the user desires to have the similarity 
matrix and corresponding coefficients printed 
for some particular sequence of all the items of 
S that is different from the original punched 
sequence, then N is set equal to 1 and the com­
bination to be printed is specified as indicated 
in Appendix 11.4.) 

, .. 

, .. 
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Calculation of H 

In Appendix 1.2 the calculation of Coefficient 
H was refined by the introduction of a model 
matrix M. Although the calculation of H using 
M requires the least amount of computer time, 
M requires as much storage as S. Therefore, to 
avoid storing M another method is used in PRO­

GRAM SERIATE to calculate H, one which in­
volves the storage of only one vector g=M2

• 

Calculation of H progresses columnwise by 
multiplying similarity scores in the second row 
of column i by g;, then sequentially multiplying 
the scores in the third, fourth, ... , and 
( i-1) th rows by factors which are calculated 
as accumulations of changes based on the value 
g; for the column. The changes are simply 
M7-M7+1=n+2-k between any two appro­
priate rows k and k+ 1 for column i. The fol­
lowing is the algorithmic procedure used in 
PROGRAM SERIATE, whose FORTRAN IV version 
appears as subroutine MCOEF. 

1~ H+-0 
2 i+-2 
3 i+-i+l 
4 j+-n+l 
5 k+-g;-(n+l) 
6 p+-1 
7 p+-p+l 
8 k+-k+i 
9 j+-j-1 . 

10 H+-H+kxs; 
11 p:i-1,(<)~(7) 
12 i:n+l,(<)~(3) 

Changes in Coefficient H and 
Their Accumulation 

It will be noted by the reader that in steps 
12 through 20 of the Basic Seriation Algorithm, 
the second row-column of S is shifted through 
row-columns 3, 4, ... , and ( n+ 1) of S with 
H being calculated after each shift. However, 
to determine the best position for the item, it 
is only necessary that the changes in H, pro­
duced by the row-column shifts, be recorded 
into a vector and then accumulated. The proper 

calculation of the changes in Hand their accu­
mulation, as shown below, is a great short cut 
in item seriation. 

Suppose the index groups of row-columns k 
and k+ 1 are interchanged within S. Symbol­
izing the corresponding change in H by ele­
ment m"+1 of vector m, the change is formu­
lated as directed by the following derivation: 

k---1 

mH1= l (S~-S~+1 ) (M~-M~1 ) 
i=2 

[for k>2J 

k-1 

=kl (S~-S%+1 ) [for k>2] 
i=2 

k- 1 k-1 

=k ( l Sl- l S!+1 ) [for k>2] 
i=2 i=2 

[for k<n]. 

Several preliminary steps are necessary be­
fore computing the ( n-1) changes in H. The 
row and column sums of the similarity scores 
above the primary diagonal and below the sec­
ond row in Sare placed in two separate arrays 
vl and V2 according to corresponding row or 
column positions; scores from the second row­
column are placed into an array V3 

( corre­
sponding to their positions in S2

); and the sum 
of the smiliarity scores from the second row 
( excluding S~) is assigned to two variables, x 
and y. These quantities can be written as 

(i=3,4, ... , n) 

i-1 

V~= l S; (i=4,5, ... , n+l) 
k=3 

(i=3,4, ... , n+l) 
n+l 

x=y= l S!. 
k=3 

r, 
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The ( n-l) changes in H are then computed 
in the following manner: V1 is transformed so 
that it contains the changes in H effected by 
the shifting of row elements; V2 is transformed 
into a vector of changes in the value of H 
wrought by column manipulations; the changes 
in V2 are added onto the changes in V1

; then 
the changes are accumulated in V1, simulta­
neously placing in variable r the position of 
maximum change, and in variable j the maxi­
mum change up to each accumulation. This 
may be stated algorithmically as follows: 

l~ 
2 
3 

4 

5 
6 

7 

8 

9 
10 
11 
12 
13 
14 

15 

16 
17 

18 

i~2 
i~i+I 
i:n, ( >) ~(9) 

x~x-Vf 

v!~(x-V!) (n+3-i) 
k~n+4-i 

3 y~y-V1c 
2 2 V1c~(V1c-y) (k-1) .~(2) 

v!~o 
r~2 
j~O 
i~2 
i~i+I 
i:n+I, (>)~(19) 

1 1 1 2 
v .~v.+v ,-1+v . 

v!:j, (~)~(13) 
r~i 

j~V~,~(13) 

corresponds to statements 
910+2 through 252 in 
subroutine PLACE 

~ 

It can be verified by the reader that after 
the above procedure is executed, V! equals 
the change in H that would result if row­
column 2 were rotated to any row-column i 
(where i>l). 

The statements of the above algorithmic 
procedure are incorporated within subroutine 
PLACE in equivalent FORTRAN IV statements. 

However, as will be described in the next para­
graph, the procedure of summing the row and 
column scores into vectors need be executed 
only once as one of the initial steps in the order­
ing of an item set, since the changes in the sums 
caused by shifting an item to row-column r by 
the above algorithmic procedure can be speed­
ily calculated after each shift. 

Vector Storage of Row and Column Sums 

Two sets of vectors are required for the 
storage of the row and column sums of S since 
the elements of V1 and V2 are transformed into 
other values. Thus two vectors /1 and /2 are set 
aside for the sole purpose of storing the row 
and column sums. In PROGRAM SERIATE, sub­
routine LASR places the initial row and column 
sums for an ordering into vectors /1 and /2, re­
spectively, and subroutine PLACE transfers the 
contents of /1 and /2 into V1 and V2, respectively, 
initial to the execution of the algorithm for 
finding the best position r for the row-column 
l being tested. Once r has been determined, a 
subset of the row-columns of S and the corre­
sponding columns of I are rotated left or right 
depending on whether l is to left or right of r. 
Then the following modifications are made on 
the shifted elements of I so that they equal the 
new row and column sums of S. The elements of 
V3 are either added to, or subtracted from, the 
elements in the corresponding columns of I, de­
pending on the sign of d=l-r and on the par­
ticular row of I for a given element in/, except 
for column Ir in which the quantity 

max(!,r) 

q=(sgn d) ~ v3 . 
i=min (!, r)+1 

must be added to / ~ and subtracted from I!. The 
algorithmic procedure for rotating row-column 
l to r and modifying I follows. 

l~ d:O, (=,>) ~(16,5) ~ 

2 (S.-,Sr+l, •·•,Si) ~l t (Sr,Sr+I, ... , Si) 
3 (Sr,sr+ 1, ... 'S1) ~it (S'·,s r+ 1, . .. 'S1) 
4 (/r,Jr+ l, • · ·, ]z) ~It (/, ,Jr+ i, · • 

.,li),~(8) 
5 (S,.,S,+1, ... , S1) ~It (Sr,S,-+ 1, . .. , S1) 
6 (S',S'+ 1, ... , S1) ~it(Sr,S'+1, ... , S1) 

7 (],,I,+ 1, ... , Ii)~ lJ (],,I,.+ 1, . . . , / 1) 

r. 

' 
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8 
9 

10 
11 

12 

13 

14 

15 

i+---0 
i+---i+l 
i:d, (>)~(14) 
j+---l+l-i 

1 1 3 
I ;+-I;- (sgn d) XV; 

1:+---1:+(sgnd) xvt~(9) 
1 1 

I r+---1 r-(sgn d) Xq 
2 2 

I r+---1 r+ (sgn d) X q 

corresponds to statements 

888 through 521 +3 in 
subroutine PLACE 

Immediately after Ji~Vi(i=l, 2) the ele­
ments of V1 and V2 are manipulated so that 
they equal the appropriate row and column 
sums which would result if row-column l, the 
row-column being tested, were moved to the 
second row-column. Also, the elements of row­
column l are placed in V3 as if they occupied 
the second row-column of S. The algorithmic 
statement of this procedure of subroutine 
PLACE is 

1 ~ l :2, ( =) ~ ( 4) 

2 
3 

4 

5 
6 
7 

8 
9 

10 
11 
12 
13 

14 
15 
16 
17 
18 

19 
20 

3 3 3 2 3 1-1 
(V3 ,V4, ... ,Vi)+---(S1,S1, . .. ,S1 ) 
l:n+l, (=) ~(5) 

3 3 3 51 I (V1+1,V1+2, ... , Vn+d +---( 1+1,51+2, •. 

I 
.,Sn+1) 

x+---1; 
y+---x 
l:2, (~)~(15) 

1 2 
x+---11+I I 
y+---x 
i+---2 
i+---i+ 1 
i:l, (>)~(15) 
j+---1+3-i 

V I 1 Va ;+---V;- 1- ;,~(11) 
l: n, ( > ) ~ ( 20) 
i+---l 
i+---i+l 
i:n+l, (>)~(20) 

21 

22 

23 

2 2 2 2 2 2 
( V 4, V 5, .•• , VI) +---lJ ( V 4, V 5, ..• , VI) 

corresponds to statements 

. 

668+ 7 through 910+ 1 · ·· 
in subroutine PLACE 

Flow Chart for PROGRAM SERIATE 

An abbreviated flow chart for PROGRAM SERI· 

ATE is given in Fig. 4. The numbered steps of 
the flow chart are described as follows: 

( 1) n, w, and N are read from the header 
card, as well as other values of minor impor­
tance described in Appendix 11.1. 

(2) Subroutine MATIN reads S. 

( 3) If the last item combination has been 
read, then the execution of the program is 
ended. 

( 4) Subroutine INPUT reads the ith item 
combination specification mi in the input se­
quence. The presence of errors in mi sets an 
indicator variable to a particular value which 
causes a branch to step 3 from step 5 and, as a 
consequence, the seriation of mi is skipped. 

( 5) If errors are discoverd in the specifica­
tion of m\ then a branch to step 3 is executed. 

( 6) Subroutine IFORM prints either ;S for 
m' or merely mi ( as specified by the user on 
the header card) together with the correpsond­
ing ordering and the matrix coefficients. 

( 7) At this point the program tests whether 
or not w orderings of m' have been executed. 
If not, a branch to step 8 occurs; otherwise, step 
3 follows in order of execution. 

(8) Subroutine RANDGN randomly inter­
changes the items in mi prior to each ordering. 

( 9) Prior to each ordering, subroutine LASR 

calculates the values of /, that is, the row and 
column sums of the scores above the primary 
diagonal of is. 

. 

:. 
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St art 

No 

Subroutine 
RANDGN 

Subroutine 
LASR 

Subroutine 
PLACE 

15 

Subroutine 
MCOEF 

Read 
Header 
Card 

Subroutine 
'><:'------< I FORM 

d~H 

Subroutine 
M'------1 

FND 

10 

Subroutine 
INPUT 

11 

No 

Stop 

No.10 

Yes 
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( 10) Prior to each pass, the value of Coeffi­
cient H for m' is stored in d for comparison ( in 
step 17) with the H value calculated ( in step 
15) for m• after the pass. 

( 11) Since the elements of m• are inter­
changed during each pass, their initial order 
must be retained in another vector b in order 
that the same item will not be tested more than 
once during the pass. 

(12) The items b2,b3 , ••• , and bn+i are se­
quentially tested; therefore, if b n+i has been 
tested the pass is completed. 

( 13) Subroutine FND finds the rank l of 
item bi in m' (j=2,3, ... , n+ 1 within the 
pass). 

( 14) Subroutine PLACE finds the position r 
of m\ in m' where H is maximum, rotates item 
m~ to m',, and correspondingly modifiies /. 

( 15) Subroutine MCOEF calculates Coeffi­
cient H. 

( 16) At least two passes are required per 
ordering. 

( 17) If the last pass has produced no change 
in the ordering coefficient, then the ordering is 
ended; otherwise, another pass is executed. 

APPENDIX II 
INPUT FORMAT FOR PROGRAM SERIATE 

1. Header Card 
Cols. 1-3 No. of items ( n) in the input 

similarity matrix 
(nmax =250). 

Cols. 4-5 No. of orderings ( w) for 
each combination ( max. 99). 

Cols. 6-10 A five digit odd integer sup­
plied to the random number 
generator. 

Cols. 11-13 Lowest index value to be un­
derlined in the matrix print­
outs. 4 

Cols. 14-16 No. of printout copies.5 

Figure 4. Abbreviated Flow Chart for PROGRAM 

'SE RIA TE. 

Cols. 17-19 
Cols. 20-22 
Cols. 23-24 

Cols. 25-26 

Three under lines. 
Three blanks. 
Either 1 or 2: 1 to print the 
similarity matrices, 2 to print 
only the item sequences. 
Zero, if all the items in the 
input similarity matrix are to 
be seriated; otherwise the 
number of combinations of 
items from the input similar­
ity matrix to be seriated (N). 

2. Format Card for the Input Similarity Ma-
trix 
Cols. 1-80 The format by which the rows 

of the upper right half of the 
symmetric similarity matrix 
are read; the format ( 2X, 
2613) is standard. 

3. Similarity Matrix ( assuming use of above 
standard format) 
Only the similarity scores of the upper right 
portion of the input similarity matrix are 
punched. Begin on each row with the diag­
onal identity score and continue to the right 
through the similarity score in the last ma­
trix column in 26 three-column, right-justi­
fied fields from col. 3 through col. 80 for 
each data card ( see Fig. 5). The scores for 
each item should begin on a new data card. 
Consequently, all the scores for the first row 
of the input matrix will be punched in the 
first data card ( s) and only the diagonal 
identity score of the last row will be punched 
in the last data card ( in cols. 3-5). The 

4 The user has the option of underlining similarity scores 
greater than, or equal to, a specified similarity value. This 
procedure may, for example, help delineate clusters (as in tax­
onomic studies) of similarity scores along the primary diag­
onal having a desired range of probability and/ or strength. 
The computer time required to underline the index values is 
equal to the time required to print the indices; therefore, 
neglecting to underline decreases the time required to print 
out martices by as much as 50 per cent. For large matrices 
(i.e., matrices with more than 80 items) this might be im­
portant from a financial point of view. Underlining can be 
avoided if so desired, by specifying an integer larger than 
any within the similarity matrix. 

5 The number specified increases the printout time by the 
same factor. 
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Item Scores 
ITEMS 1 2 3 4 5 

1 Si s: s! Si s~ 
2 s; s; s; s: 
3 s: s! s: 
4 s! s: 
5 s; 

Card Cols. 
ITEMS 1 2 3 4 5 

card 1: 1 3-5 6-8 9-11 12-14 15-17 

card 2: 2 3.5 6-8 9-11 12-14 

card 3: 3 3-5 6-8 9-11 

card 4: 4 3-5 6-8 
card 5: 5 3-5 

Figure 5. Example Input Matrix with Column Po­
sitions for Scores on Data Cards. 

similarity scores must be integers between 
-99 and 999. 

4. Specification of Item Combinations to Be 
Seriated from the Input Similarity Matrix. 
N subsets of the items of the input similarity 
matrix may be seriated if specified on the 
header card. If the ith combination of ni 

items to be seriated contains any repetitions 
of item identification numbers, the repeated 
items will be listed as errors and the seria­
tion of the combination will be skipped. The 
format for combination specifications fol­
lows. 

Cols. 1-4 No. of items in combination 
(n1). 

Cols. 5-8 
Cols. 9-12 

The numeric positions of the 
items in the input similarity 
matrix constituting the com-
bination to be seriated. The 
position numbers are contin­
ued m successive four-col-

Cols. 77-80 umn fields through as many 

J 

cards as are required. Each 
combination specification, 
however, must begin on a new 
card . 

Cols. 1-4 n N 
Cols. 5-8 

APPEND IX III 

Listing of PROGRAM SERIATE, 

Estimation of Run Time 

1. PROGRAM SERIATE is written in FORTAN IV 

programming language for the IBM 360 Model 
50 computer. A copy of the program deck may 
be purchased from the Museum of Natural 
History, University of Oregon, Eugene 97403. 
2. An estimation of run time for PROGRAM 

SERIATE is given in Fig. 6. The estimates are 
for time involved when ( 1) the similarity ma­
trix is printed, or (2) only the seriated item 
sequence is printed. Two orderings are as­
sumed for each set of data, with two passes per 
ordering. Use of the IBM 360/ 50 computer 
and an IBM 1403 printer is assumed. 

3-

M 2-
1 
N 
u 
T 
E 
s 

I-

-----

r\n\~d _____ _ 

cnuc o c4:. £.--
· \ e rt\ ".:.1---

-----
50 

__ o;'~-'----

l 
IOO 

NO, OF ITEM S 

150 
I 

200 

--

250 

Figure 6. Estimated Minimum Computmion Time 
per Ordering ( assuming 2 passes/ order­
ing) in Minutes on the IBM 360/ 50 com­
puter with an IBM 1403 Printer. 
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C MAIN PROGRAM 
WRITE (3,24) 
INTEGER*2 A(327611,SQ,B,ISQ(256) 

15 

COMMON /CANL/IMS(256) ,IMT(2561,MSH(256),ICF(256),ISVM,N,NP1 
COMMON A/EXTRA/SQ(256l ,8(256) ,COEFB,OTZ123,KE,KEE,KET,NVAL, INOS, I, 

1J,IUTR,BLNK,UNOLN~P,KEM3,KEP1,KEP3,KEP2,NCOM,JNCOM 
278 FORMAT ( lHO,'PROCESSING TIME:',F8.3,' MINUTES') 

24 FORMAT ( 1 1 1 ,T3, 1 1TEM SERIATION',/' ',T3, 1 W.B. CRAYTOR',/' ',T3, 
!'UNIVERSITY OF OREGON') 
CALL TIMER (Y3l 
COMMON /XX/FMT(l8) 

l FORMAT (I3,12,15,213,2A3,2I2l 
5 FORMAT ( 18A41 

JNCOM=O 
READ (1,1) N,NNN,IY,NVAL,INOS,UNDLN,BLNK,ISVM,NCUM 
READ (1,5) FMT 
CALL MATIN 

900 CALL INPUT 
GO TO ( 3 02) , I 

300 CALL IFORM (ll 
301 DO 131 IUTR=l,NNN 

CALL RANDGN ( I Yl 
MNl=O 
CALL LASR 

95 Ol=COEFB 
98 DO 81 LC2=2,KI: 
81 B(LC2l=MSH{LC2) 

DO 935 LIO =2,KE 
777 CALL FND{LIO,LIM) 
935 CALL PLACE (LIM) 

MNl==MNl+l 
CALL MCOEF 
GO TO (95l,MN1 
IF (Dl-COEFB)95,131,131 

131 CALL IFORM {3) 
302 IF(NCOM-JNCOM)ll44,1144,900 

1144 CALL TIMER (Y2l 
T=(Y2-Y3)/60. 
WR I TE ( 3 , 2 7 8 ) T 

7771 STOP 
END 
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SUBKO UT I NE MATIN 
INTEGER*2 A(32761l,SQ,B,ISQ(256) 
COMMON /XX/FMT(l8) 

No.10 

COMMON /CANL/IMS(2561,IMT(256),MSH(256),ICF(256l,ISVM,N,NP1 
COMMON A/EXTRA/SQ(256l,8(256l,COEFB,OTZ123,KE,KEE,KET,NVAL,INOS, l, 

lJ~lUTR,BLNK,UNDLN,CP,KEM3,KEPl,KEP3,KEP2 
NPl=N+l 
I MMX=O 
DO 794 IMX=l,NPl 
A ( l MMX+ l) =I MX-1 
SQ( lMXl=IMMX 

794 IMMX=IMMX+IMX 
DO 2 3 3 I A= 2 , NP l 

233 READ 11,FMT) (A(lA+SQ(JBll,IB=IA,NPll 
RETURN 

ENO 

SUBROUTINE INPUT 
INTEGER*2 A(3276ll,SQ,B,ISQ(256l 
COMMON /CANL/IMS(256l,IMT(256l,MSH(256l,ICF(256l,ISMN,N 
COMMON A/EXTRA/SQ(256l ,B(256l ,COEFB,OTZ123,KE,KEE,KET,NV.6L, INDS, I, 

lJ,IUTR,BLNK,UNDLN,CP,KEM3,KEPl,KEP3,KEP2,NCOM,JNCOM 
21 FORMAT (T20,'ERROR - RELATIVE 1 ,13,' REPEATED IN COMBINATION 1 ,13) 

890 FORMAT (2014) 
JNCOM=JNCOM+l 
I -=2 
IF(NCOM-0)901,901,900 

901 NCOM=l 
KEE=N 

KET=KH-l 
KE=KEE+l 
DO 950 ISL=l,KE 

950 MSH(ISLl=ISL 
GO TO 902 

900 READ (1,890) KEE,(ISQ(IRS},IRS=l,KEE) 
KET=KEE-1 
DO 29 IT=l,KET 
ITP l=I T+ l 
DO 9 IS=ITPl,KEE 
IF ( I SQ ( I T)- I SQ ( I S)) 9 ,10, 9 

10 WRITE (3,21) ISQ(IT),JNCOM 
I=l 
GO TO 29 

9 CONTINUE 
29 CONTINUE 

GO TO ( 400 l , I 
00 794 IMX=2,KE 

794 MSH(IMXl=ISQ(IMX-1)+1 
MSH( ll=l 

qo2 KE=KEE+l 
KEM3=KE-3 
KEPl=Kl:+l 

KEP3=KE+3 
KE1>2=KE+2 
TEK=KE T 
EEE=KEE 
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OTZ 123=( ( ( EEE+-2.) *E EE-13.) *EEE+lO. >*EEE/24. 
EY=(KEE*KEE-KEE)/2 
SUM=O 
SUMSQ=O 
DO 97 I X=.3, KE 
IXS=SQ(IX} 
lXl=IX-1 
DO 97 lY=2,lXl 
INT S=A ( I Y+ I XS) 

SUM=SUM+INTS 
97 SUMSQ=SUMSQ+INTS*INTS 

STDV=SQRT(ABS((SUMSQ-SUM*SUM/EY 1/( EY 
OTZ123=0TZ123*STDV 
KE l=KE+ 1 
KE2=2*KEE+5 
KE4=4*KEE+ 6 
00 399 I X=.3,KE 

399 ICF( IX)=( IX-IX*I X+KE4)/2-KEl 
400 RETURN 

END 

SUBROUTINE RANDGN(IY) 
INTEGER*2 A(32761),SQ,B,ISQ(256) 

-1.0))) 

COMMON /CANL/IMS(256) ,IMT(256),MSH(256),ICF(256) 
COMMON A/EXTRA/SQ(256) ,Bl2561,COEFB,OTZ123,KE,KEE,KET,NVAL, INOS,I, 

1J,IUTR,BLNK,UNOLN,CP,KEM3,KEP1,KEP3,KEP2 
EK=KE 
DO 5 l =2, KE 

4 IX= I Y 
CALL RANOU (IX,IY,OYF) 
J=OYF*EK+l. 

3 I F ( J- 1 ) 4 , 4 , 7 
7 IH=MSH(I) 

MSH( I )=MSH(J) 
5 MSH( J l=IH 

RETURN 
END 

SUBROUTINE LASR 
INTEGER*2 A(32761),SQ,B,ISQ(256) 
COMMON /CANL/IMS(2561 ,IMT(256),MSH(256),ICF(256) 
COMMON A/EXTRA/SQ(256),B(256),COEFB,OTZ123,KE,KEE,KET,NVAL,INOS, I, 

1J,IUTR,BLNK,UNDLN,CP,KEM3,KEP1,KEP3,KEP2 
IMT(2)=0 
IMS( KEJ=O 

303 DO 247 IA=2,KEE 
IAl=IA+l 
IQ=O 
KR=MSH( IA) 
DO 244 IB=IAl,KE 
KC=MSH( IB) 
IF(KR-KC)S00,500,510 

500 ML=KR 
MG=KC 

17 
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GO TO 244 
510 ML=KC 

MG=KR 
244 IQ=IQ+A(ML+SQ(MG>) 
245 IMS(IA)=IQ 

IB= IA+l 
IQ=O 
KC=MSH( IB) 
DO 248 IAR=2,IA 
KR=MSH(IAR) 
IF(KR-KCl600,600,610 

600 Ml=KR 
MG=KC 
GO TO 248 

610 ML=KC 
MG=KR 

248 IQ=IQ+A(Ml+SQ(MG)) 
247 IHT(lB)=lQ 

RETURN 
END 

SUBROUTINE FND (LID,LIM) 
INTEGER*2 A(32761),SQ,B,ISQ(256l 

No.10 

COMMON /CANL/IMS(256),1MT(2561,MSH(256),ICF(256) 
COMMON A/EXTRA/SQ(2561,B(256),COEFB,OTZ123,KE,KEE,KET,NV•L,INOS,I, 

lJ,IUTR,8lNK,UNDLN,CP,KEM3,KEP1,KEP3,KEP2 
DO 1 LAFF=2, KE 
IF{B(LIO)-MSH(LAFF) 11,2,1 

2 LIM=LAFF 
GO TO 7 

l CONT l NUE 
7 RETURN 

F.ND 

SURROUTINE PLACE (LIM) 
INTEGER*2 A( 32761) ,SQ,B,ISQ(2561 
COMMON /CANL/l·MS(256) ,IMTl2561,MSH(256),lCFl256) 
COMMON A/EXTRA/SQl256),B(2561,COEFB,OTZl23,KE,KEE,KET,NVAL,INOS,I, 

1J,IUTR,BLNK,UNOLN,CP,KEM3,KEP1,KEP3,KEP2 
INTEGER*4 MS(2561,MT{256) 
DO 507 lX=2,KE 
MS( lX)=IMSl IXI 

507 MT(lX)=IMT(lX) 
668 COEFB=O 

LIMl,>3=UM+3 
LlMMl=LIM-1 
LIMPl=lIM+l 
l IMP4=ll M+4 
I SQM=SQ(LIMI 
IQ=l 
KF=MSH(LIM) 
00 63 I X=3, KE 

70 IQ=IQ+l 
KV=MSH(IQ) 
IF(KV-KF)61,70,62 
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KL=KV 
KG=KF 
GO TO 63 
KL=KF 
KG=KV 
1 SQ( I X)=AI Kl+SQ( KG)) 
MXX=IMSl2) 
MMX=MXX 
IF ILIM-2)932,932,901 
MXX=MTILIM)+MS(LIM) 
MMX=MXX 
DO 779 IMR=3,LIM 
I TS=ll MP3-I MR 

779 MS(ITS)=MS(ITS-1) -ISQ(ITS) 
932 If(LIM-KEE)qo3,9c3,933 
903 DO 905 LZE=LIMPl,KE 
905 MT(LZE)=MT(LZE)-ISQ(LZEI 
933 IF ILIM-4l910,92C,920 
920 DO 906 JIK=4,LIM 

I W=ll MP4-JI K 
906 MT(IWl=MT(IW-1) 
910 MS(KE)=O 

MT( 3)=0 
DO 246 ILC=3,KEE 
MXX=MXX-1 SQ( I LC) 
MS( ILC)={MS( ILCl-MXXl*(KEP2 -ILC) 
KE4=KEP3-ILC 
MMX=MMX-I SQ( KE4l 

246 MT(KE4)=(MMX-MTIKE4))*(KE4-l) 
MS( 2)=COEFB 
IR IC4=2 
MSL=MS( 21 
DO 252 ILC=3,KE 

251 MS(ILC)=MS(ILC)+MSIILC-1) +MT<ILC) 
IF(MSI ILCI-MSU253,252,2 .52 

253 TRIC4=ILC 
MSL=MS ( ILC l 

252 CONTINUE 
CDEFB=MSL 

888 IF( IRIC4-UM)500,7,501 
501 ll=LIM 

IG= IR IC 4 
GO TO 502 

500 ll=IRIC4 
IG=LIM 

502 lGP l=IG+l 
IGMl=IG-1 
ILPl=IL+l 
IQ=O 
DO 588 IXS=ILPl,IG 

588 IQ=IQ+ISQ(IXS) 
IAS=IMS(LIMl 
IAT=IMHLIM) 
IF (LIM-IRJC4)520,520,530 

530 LGD=IG-IL 
I H= M SH ( l I M ) 
DO 531 IX= 1, LGO 
lMR=IGPl-1 X 
IRL=IMR-1 
MSHI IMRl=MSH(IRL) 

19 



20 BULLETIN, MUSEUM OF NATURAL HISTORY, UNIVERSITY OF OREGON 

IR ·=ISQ( IMRI 
IMSIIMR)=IMS(IRLI-IR 

531 IMH IMR l=I MT{ I Rl I +IR 
M SH ( I U: I H 
IMT( IL )=IA T-1 Q 
IMS( IL )=IAS+I Q 

GO TO 7 
520 I H=MSHt UM I 

DO 521 IX:IL,IGMl 
I XP l=I X+l 
M SH( IX l=MSH ( I XPll 
IXT=ISQI IXPll 
IMS(IX)=IMS(IXPll+IXT 

521 IMT( IX)=IMT(IXPll-I XT 
M SH I I G) = I H 
IMH IGl=lAT+IO 
I MS ( I G ) = I AS- I Q 

7 IMT(2l=O 
I M.S( KE )=O 
RETURN 
END 

SUBROUTINE MCOEF 

No.10 

COMMON /CANL/1MSl256l ,IMTl256),MSH(256),ICF(256) 
INTEGER*2 A(32761),SQ,B,ISQ(256l 
COMMON A/EXTRA/SQl256) ,8(2561 ,COEFB,OTZ123,KE.KEE,KET,NVl'!L, INDS, 1, 

lJ,IUTR,BLNK,UNDLN,CP,KEM3,KEPl,KEP3,KEP2 
COEFB=O 
DO 740 L=3,KE 
LB=KE 
LR=ICF( L )-KE 
KC=MSH(L) 
LMl=L-1 
DO 740 MC=2,LM1 
KR=MSH(MC) 
IF(KR-KC)60,60,61 

60 KL=KR 
KG=KC 
GO TO 74 

61 KL=KC 
KG=KR 

74 LR=LR+LB 
LB=LB- l 

740 COEFtl=CDEFB+A(KL+SQ(KG))*LR 
RETURN 
ENO 

SUBROUTINE IFORM (IC) 
INTEGER*2 A( 327611 ,SQ,B,NA (256) 
COMMON /CANL/IMS(256),IMT(256),MSH(256l,ICF(2561,ISVM 
COMMON A/EXTRA/SQ(256) ,B(256),COEF8,0Tll23,KE,KEE,KET,NVl'!L,INOS, 1, 

lJ,IUTR,BLNK,UNDLN,CP,KcM3,KEPl,KEP3,KEP2,NCOM,JNCOM 
DIMENSION Cl80) 

87 FORMAT (Tl0,30(lX,A3)) 
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14 FORMAT (lH+,Tl0,3014) 
66 FORMAT(T52,'0 AT A MATRIX ',2X/1H+,T52,' __ _ 

l_', 
67 FORMAT (152,'I NP UT MATRIX' ,12/lH+,T52,• ____ _ 

l_ - - - - • ) 
68 FORMAT (152,'0 RD ERE O MATRIX ',12/1H+,T52,' ___ _ 

l_ - - - - - ., 
79 FORMAT (T5,4X,1Hl,A3,30(1X,A3)) 
89 FORMAT IT10,41A3) 
23 FORMAT (' ',T46,'0RDERING COEFFICIENT =',El2.5t 
22 FORMAT I lH , T46, 'MATRIX COEFFICIENT C=• ,El3.6) 
24 FORMAT (1H0,5X,'REL.') 
10 FORMAT (5H+REL.,13,3114) 
25 FORMAT (1Hl,3X) 
11 fORMAT ( 1H+,3X,3214) 

21 

568 FORMAT (T52,'C O MB I NAT ION ',12/1H+,T52,' ________ _ 
1 - - _., 
CALL MCOEF 
CO=COEFB/OTZ 123 

511 FORMAT (' •,T46,'SERIATED RELATIVE SEQUENCE N0. 1 ,14) 
512 FORMAT ( • 1 ,2515) 

GO TO ( 500) ,I SVM 
WRITEl3,568IJNCOM 
WR I TE ( 3 , 5 l 1) I U TR 
WRITE t3,23l COEFB 
WRITE 13,22) CG 
DO 520 INT=2,KE 

520 NA IINT)=MSH(INT)-1 
WRITE 13,512) (NA IINTl,INT=2,KE) 
GO TO 4444 

500 00 4 1111=1,INOS 
I 76=0 
IG3Z=O 
K2N=l 
190=0 

3 191=190+1 
190=190+30 
I 66=30 
IG3Z=41 
IF( 190-KE)9,13,13 

9 WR IT E ( 3 , 2 5 ) 
WR I TE ( 3 , 5 6 8 l J NC OM 
GO TO (60,61,62) ,IC 

60 WRITE (3,661 
GO TO 400 

61 WRITE (3,67) IUTR 
GO TO 400 

62 WRITE (3,68) IUTR 
400 WRITE 13,23) COEFB 

WRITE ( 3,22) CO 
WRITE t 3 ,24) 
DO 82 L99=1,IG3Z 

82 CIL99)=UNOLN 
WRITE 13,89) (C( IOI ,IO=l,IG3Z) 
DO 800 IR1=191,l90 

800 NA(IRll=MSH(IRll -1 
GO TO (30),191 
WRITE (3,14) (NA(IZ13l,IZ13=19l,190) 
GO TO 31 

30 WRITE (3,101 (NA(IZll ,IZ1=191,190, 
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31 DO 7 16=2,KE 
Ml6=MSH( 16) 
DO 804 IR2=l91,190 
MIR2=MSH(IR2) 
IF(Ml6-MIR2)803,803,802 

802 U l=MIR2 
LI2=MI6 
GD TO 804 

803 Lll=MI6 
Ll2=MIR2 

804 NA(IR2)=A(Lll+SQ(LI21) 
ILINOF=O 
DO 19 lllN=I91,190 
I LI NOF =I LI NOF+ 1 
IF (NA{ILIN I -NVAL)17,l8,18 

17 ClllINOFl=BLNK 
GO TO 19 

18 C(ILINOF)=UNDLN 
19 CONTINUE 

I 76=1 76+1 
GO TO 1381 ,I 91 

39 WRITE (3,871 IC(IFC),IFC=l,1661 
WRITE ( 3, 14 l ( NA ( LI l , LI = I 91 , I 90 l 
GO TO 902 

38 WRITE l3,79l (Cl IFC l ,IFC=2,190l 
WRITE (3,lll (NA(lll,LI=I91,l901 

902 IF( 176/50-17617,901 ,7 
901 WRITE {3,251 

7 CONTINUE 
WR I TE ( 3, 2 5) 
GO TO ( 3, 41 , K2 N 

l3 K2N=2 
IF (KE-1901 243,245,4 

243 l66=KE-KE/30*30 
1G3l=l66*4/3 

245 I 90=KE 
GO TO 9 

4 CONT I NUf: 
4444 RETURN 

ENO 

-----~--

No.10 
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