
Wright State University Wright State University 

CORE Scholar CORE Scholar 

Browse all Theses and Dissertations Theses and Dissertations 

2014 

Multi-Finger MOSFET Low Noise Amplifier Performance Analysis Multi-Finger MOSFET Low Noise Amplifier Performance Analysis 

Xiaomeng Zhang 
Wright State University 

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all 

 Part of the Electrical and Computer Engineering Commons 

Repository Citation Repository Citation 
Zhang, Xiaomeng, "Multi-Finger MOSFET Low Noise Amplifier Performance Analysis" (2014). Browse all 
Theses and Dissertations. 1387. 
https://corescholar.libraries.wright.edu/etd_all/1387 

This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has 
been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE 
Scholar. For more information, please contact library-corescholar@wright.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CORE

https://core.ac.uk/display/45463135?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1387&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1387&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/1387?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F1387&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu


 
 

Multi-finger MOSFET Low 

Noise Amplifier Performance 

Analysis 

 
 

A thesis submitted in partial fulfillment  

of the requirements for the degree of  

Master of Science in Engineering 

 

 

By 

 

XIAOMENG ZHANG 

 

 

 

 

B.S., Dalian Jiaotong Universit, 2012 

 

 

 

 

 

 

 

 

 

2014 

WRIGHT STATE UNIVERSITY 



 
 

WRIGHT STATE UNIVERSITY 

GRADUATE SCHOOL 

 

Dec, 29, 2014 

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY 

SUPERVISION BY Xiaomeng Zhang ENTITLED “Multi-finger MOSFET Low Noise 

Amplifier Performance Analysis” BE ACCEPTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF Master of Science in Engineering 

 

 

 

___________________________ 

Saiyu Ren, Ph.D. 

Thesis Director 

 

___________________________ 

Brian D. Rigling Ph.D. 

Chair, Department of  

Electrical Engineering 

 

 

Committee on  

Final Examination 

 

_________________________________________ 

                 Saiyu Ren, Ph.D. 

 

_________________________________________ 

                 Ray Siferd, Ph.D. 

 

_________________________________________ 

                Yan Zhuang, Ph.D. 

 

_________________________________________ 

           Robert E. W. Fyffe, Ph.D. 

   Vice President for Research and 

       Dean of the Graduate School 



iii 
 

Abstract 
 

Zhang, Xiaomeng. M.S.Egr, Department of Electrical Engineering, Wright State 
University, 2014. “MULTI-FINGER MOSFET LOW NOISE AMPLIFIER PERFORMANCE 
ANALYSIS” 

 

Multi-finger layout technique has been extensively used in Nano-scale CMOS circuit 

design due to the increased circuit performance compared to a single finger layout. 

However choosing a finger width (𝑊𝑓) and number of fingers (𝑁𝑓) to optimize circuit 

performance is a challenging problem. In this thesis, the performances of 2.4GHz and 

6.0GHz single ended low noise amplifiers (LNA) with fixed total transistor widths in 

90nm CMOS technology are analyzed as function of number of fingers, bias voltage 

( 𝑉𝑏𝑖𝑎𝑠 ) and channel length (L). The results show that the drain to source current, 

transconductance and effective gate capacitance increase with increasing number of 

fingers. The effect of finger numbers, supply voltage and channel length on transistor 

cutoff frequency, low noise amplifier noise figure, voltage gain, center frequency, and 

impedance matching is presented. The simulation results show that the finger numbers 

affect the single ended cascode low noise amplifier slightly due to the inductors used. 

The bias voltage and channel length are the key parameters for this low noise amplifier 

design. A 200nm transistor length LNA has better gain and filter quality factor compared 

with 100nm for 2.4GHz and 6GHz cases in 90nm process. A higher bias voltage can 

decrease the noise figure, however, the trade-off is the power consumption is increased. 
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I. INTRODUCTION 

 

1.1 CMOS Technology 

 

Complementary metal oxide silicon (CMOS) has become a widely used technology 

in radio frequency application because of its low cost, low power, small size and high 

integration density features [1].  

Channel length is one of the key factors for CMOS technology. As CMOS 

technology gets more advanced as time goes on, transistor length (feature size) is getting 

smaller as shown in (Fig. 1.1), while transistor speed becomes faster, integration is bigger, 

and cost becomes less [2]. However, process variation, voltage variation and temperature 

variation are getting larger which become the key drawbacks for active components in 

CMOS nanotechnology. Analog circuit performance like center frequency, gain become 

more sensitive to process, temperature and voltage variation [3], which result the yield of 

fabrication down. 
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Fig. 1. 1 Feature size versus year plot [2] 

 
1.1.1 Multiple Finger Technology 

 

Multiple finger technique has been proved to have many advantages compared 

with single finger transistor. It can enhance the transconductance for a single 

transistor because of the lower gate resistance [4]. [5] It is widely used in industry. 

Usually, the transistor size in analog circuits is much larger than in digital circuits so 

it is necessary to divide the transistor into multiple fingers. However, the process 

variation for each finger is different. If all the fingers have decreasing trends or 

increasing trends for the transistor width, length, thickness or density, the total 

error will affect the transistor performance extremely. This is the worst case for a 

transistor with multi-finger. Most of the times, the random nature of the variations 

will cause the resulting error to be cancelled by each other [6].  
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1.2 Process, Voltage and Temperature Variation 

 

PVT stands for the process to create the chip, supply voltage of the circuit and 

environment temperature of the circuit，which are the three key factors for 

designing and fabricating a circuit. One of these three factors changes slightly will 

affect the performance of the whole circuit in microscopic world significantly [5]. 

 
1.2.1 Process Variation 

 

Process variations are due to the different environments of manufactory. The 

slightly difference of temperature, pressure, dopant concentration will changes the 

performance of the transistors. The condition of the manufactory will change the 

transistor width, length, diffusion depth, impurity or the concentration density and 

silicon dioxide thickness [3]. Even in the same wafer, it is still hard to keep all the 

transistors under the same condition. In this case, it is impossible to keep all the 

transistors having the same performance, and the process variation exists 

throughout the entire chip. 

 

1.2.2 Voltage Variation 

 

Voltage variation is due to the variation of the supply voltage. For the 

transistors, the speed is decided by the current, and the current is decided by the 

voltage. If the voltages throughout the circuit are different, then the speed will be 
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affected. When the transistors are working under the saturation region, the current 

follows the square law. Equation 1.1 [2]shows the relationship between gate voltage 

and current of the transistors, where Vgs and Vsg are the gate to source voltage for a 

NMOS and source to gate for a PMOS transistor, respectively. Vtn and Vtp are the 

threshold voltages for the nMOS and pMOS transistors respectively. Vds and Vsd are 

the drain to source voltage for nMOS and source to drain voltage for pMOS 

respectively. 𝜇𝑛 is electron mobility for NMOS and  𝜇𝑝 is hole mobility for PMOS. 𝐶𝑜𝑥 

is the capacitance per unit area of the gate oxide, which is decided by the 

permittivity of silicon dioxide and the thickness of the oxide. 𝜆 is the channel length 

modulation. W and L are the width and length for the transistors respectively. 

{
𝐼𝑑𝑠 =

𝜇𝑛𝐶𝑜𝑥

2
(

𝑊

𝐿
) (𝑉𝑔𝑠 − 𝑉𝑡𝑛)

2
(1 + 𝜆𝑉𝑑𝑠)        (𝑛𝑀𝑂𝑆)

𝐼𝑠𝑑 =
𝜇𝑝𝐶𝑜𝑥

2
(

𝑊

𝐿
) (𝑉𝑠𝑔 − |𝑉𝑡𝑝|)

2
(1 + 𝜆𝑉𝑠𝑑)     (𝑝𝑀𝑂𝑆)

     (1.1) 

The decrease of the supply voltage will decrease the current exponentially, and 

increase the propagation delay significantly. In order to keep all the transistors 

working under the same speed, designers should set up the correct width and length 

of the transistors, considering the supply voltage. However, it is hard to realize. 

Firstly, a constant voltage supply is hard to realize. Meanwhile, switching activities 

across the chip, resistance of the transmission wires and the diversity of the type of 

logic will lead to the uneven power distribution [5].  
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1.2.3 Temperature Variation 

 

With the dissipation of power, the temperature changes all the time throughout 

the chip. The mobility of the holes and electrons depends on the temperature. The 

mobility is inversely proportional to the temperature above -50℃ . Higher 

temperature will decrease the speed of the semiconductor. Meanwhile, the 

threshold voltage and the temperature have some relationships. The higher 

temperature will decrease the threshold voltage. Based on equation 1.1, the 

decreasing of the threshold voltage will increase the current and speed. In 

conclusion, it is a competition between the mobility and the threshold voltage. For 

most of times, the mobility factor wins. The temperature factor changes the 

performance of the circuit all the time, and it is an unavoidable factor for the every 

design [3]. 

 

1.2.4 Measurements for PVT variations 

 

The process, voltage and temperature variations are unavoidable in every 

semiconductor designs, which have a significant effect on the performance of the circuit. 

There is a long way for the designers to find some efficient ways to solve the problems. 

Corner analysis and Monte Carlo analysis are two ways to analyze process, temperature 

and voltage variation effects on semiconductors before the fabrication. They can be used 

to analyze/simulate all different scenarios of the fabrication. 

 



6 
 

1.3  CMOS Receiver System 

 
Receivers are widely used in electrical devices such as radar, GPS, cell phones 

etc.  Receiver chains are systems that are able to receive any signals from low 

frequency to high frequency, then convert the received signals to electrical signals 

by various sensors/detectors, such as heart beating detector, antenna etc. The 

received signals from sensors are usually weak and noisy, so a low noise amplifier 

(LNA) and a band pass filter are typically the first two components of a receiver 

after the sensor as shown in Fig. 1.2. Fig. 1.2 is a block diagram for an antenna 

receiver chain system [7] [8].  

LNA is an electrical amplifier, which amplifies the radio frequency weak signals 

and provides useful signals to next stage. 

The function of a band pass filter (BPF) is to filter out the signals whose 

frequency below the 𝑓𝐶 − 𝐵𝑊/2 and frequency above 𝑓𝐶 + 𝐵𝑊/2 where BW stands 

for bandwidth. Therefore, the desired signal can be passed to the next stage circuits, 

and the filter attenuates most unwanted signals outside the BW [9]. As shown in Fig. 

1.2, BPF 1 has the center frequency at radio frequency (𝑓𝑅𝐹) and BPF 2 has the 

center frequency at intermediate frequency (𝑓𝐼𝐹). 

The signals from antenna are usually in radio frequency (RF), which is too high 

for most signal and image processing. A down converter is used to convert the RF 

signal to intermediate frequency (IF) signal, which requires a local oscillator (LO) as 

shown in Fig. 1.2. The IF frequency after BPF 2 with center frequency of 𝑓𝐼𝐹 is shown 

in Eq. 1.2. 

𝑓𝐼𝐹 = 𝑓𝑅𝐹 − 𝑓𝐿𝑂     (1.2) 
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The following amplifier (AMP) is used to amplify the intermediate frequency 

signals to the desired strength for further processing. 

 

 

Fig. 1. 2 Receiver chain system [10] 

 

1.4 Low Noise Amplifier 

 

 
To increase the quality of signals, an LNA is needed to amplify signals at its 

center frequencies (𝑓𝐶) with certain bandwidth and less noise. In this case, a high 

gain, high filter quality factor (Q) and low noise LNA need to be designed to 

enhance the system performance. The gain (𝐴𝑉) and Q will affect the quality of the 

LNA output signals and the property of the entire system. Another key parameter 

for an LNA is noise figure (NF), which is used to measure how much noise is 

added by the amplifier to the input noise. [11]. In order to decrease the noise for 

the whole system, a low noise factor is required for LNA design. Typically, LNA 
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always be the first stage for a receiver chain system. As the first stage of on-chip 

component, impedance matching is also very important. A good impedance 

matching will decrease the signal reflection and increase the signal quality [12] 

[13]. 

 

1.4.1 LNA Architecture 

 

For LNA designs, numerous architectures have been proposed in every year. 

However, there is no single LNA topology that could satisfy all kinds of applications. 

In order to get optimum results in certain aspects, other properties must be 

sacrificed. Fig. 1.3 indicates the trade-offs among different types of LNA architecture 

[14] [15] [16].  

 

 

Fig. 1. 3 LNA Design Trade-offs 
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The architectures can be divided into two classes: single ended LNA and differential 

output LNA, which are shown in Fig. 1.4 (a) and (b), respectively [17]. 

 

Fig. 1.4(a) Single ended output LNA block diagram 

 

Fig. 1.4 (b) Differential output LNA block diagram 

Fig. 1. 4LNA topologies 

 
As the name indicated, single ended LNA has single output and differential has 

two differential outputs. The differential outputs can be generated by a balun or 

similar elements from single ended output [18]. 

Compared with differential output LNA, single ended LNA has the least 

transistors inside. Single ended LNA is the simplest topology for LNA design. Fig. 1.4 

shows five popular input circuits for single ended topologies: resistive common 

source, shunt series common source, common gate, inductive common source and 
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cascade inductor source degenerations. All of these input topologies can be used in 

differential output LNA designs [16] [17]. 

 

Fig 1. 5(a) Resistive Termination Common Source 

 

Fig 1. 5(b) Shunt-series Feedback Termination 
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Fig 1. 5(c) Common Gate  

 

Fig 1. 5(d) 1/𝑔𝑚 Termination 

 

Fig 1. 5(e) Inductive Degeneration 
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Fig 1. 5 (f) Cascode Inductor Source Degeneration 

Fig. 1. 5 Different LNA architectures 

 

Fig 1.4 (a) and (b) are using resistors to generate impedance matching circuit. 

The resistive components always have negative effects on noise performance. The 

LNA implemented in some reference paper [19] reported a relative high noise figure 

(6dB). Common gate circuit shown in Fig 1.4(c) has a much less gain among these 

designs, which is the trade-off for low power consumption. The disadvantage for 

1/𝑔𝑚 termination architecture is its noise figure, which can go to around 3 dB or 

larger theoretically. Fig 1.4(f) is one of the LNA architectures using inductors 

instead of resistors, which has the best noise performance [16]. 

Among these five architectures, cascode source degeneration topology has the 

best performance in input and output isolation, gain and noise factor. The cascode 

transistor can reduce the Miller Effect for input transistor. The gate and source 

inductors are used to match off-chip impedance, and the tank circuit consisted by 

drain inductor and output capacitance will resonate the circuit working at its center 
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frequency. However, since some off-chip inductors are used in this topology, the 

drawback of cascade design is the circuit size is much larger than other single ended 

designs. 

 

1.4.2 Single-Ended Cascode LNA 

 

Single-ended LNA with cascode inductor source degeneration architecture is 

used for this thesis. The cascode architecture has a good performance in isolation. 

The transistor connected to gate reduces Miller Effect capacitance connected 

between input and output. Due to the same transistor widths are used, the 

transconductances (𝑔𝑚) for these two transistors are similar, so that the Miller 

Effect capacitance is reduced because of the lower gain (-1) between the two 

transistors. Inductors are used instead of resistors because of the good performance 

for NF. The single ended tuned LNA is one of the popular LNA architectures and has 

been proved a good noise performance, high gain and high isolation in [13]. 

 

1.5 Thesis Objective 

 

For a single ended cascode LNA, there are several parameters that can affect 

the circuit properties, which are number of fingers, bias voltage and transistor 

channel length. In order to enhance the receiver chain system performance, a low 

noise amplifier must be well analyzed and properly chosen. The objective of this 

thesis is to 
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1. Investigate the effect of 𝑁𝑓 (number of fingers), 𝑉𝑏𝑖𝑎𝑠 and L (channel 

length) to a single transistor with fixed total width; 

2. Design a low noise amplifier based on the knowledge on objective 1; 

3. Study process variation effect to the LNA; 

4. Improve the performance of LNA based on the knowledge on the first 

three objectives .  

 

The rest of this thesis is organized as following. 

 Single transistor performance with considering finger numbers, gate and 

drain voltage, channel length is discussed in Chapter 2. 

 Chapter 3 analyzes a single ended cascode LNA design. 

 Chapter 4 demonstrates the LNA simulation results with different input 

parameters. 

 Conclusion and future work are included in chapter 5. 
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II Multiple Finger MOSFET Transistor Analysis 

 

For an analog circuit such as LNA, a large transistor size is needed to meet 

the center frequency requirement. Multiple finger technique is the most effective 

method to build a large size transistor since the lower gate resistance, lower RF 

noise and higher frequency performance, however, keep reducing the transistor 

finger width (Wf) or increasing number of fingers (𝑁𝑓) can result in the penalty of 

larger gate capacitance [20]. The multi-finger effect on single transistor is analyzed 

in this thesis. 

 

2.1 Active area and perimeter estimation of multiple finger transistors 

 

 
Fig. 2.1 indicates the multi-finger technique in a layout design. The example in 

this layout is an n-type MOSFET with four fingers. The wide width (W) transistor is 

broken into four shorter transistors with width of ¼  W for each single transistor. 

The four single transistors are combined to a four finger transistor by sharing the 

source and drain diffusion as shown in Fig. 2.1. The four fingers (in red) are shorted 

together to form the gate, three source diffusions and two drain diffusions are 

connected respectively to keep the transistor with four terminals and effective 

width of W.  
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Fig. 2. 1 Multiple finger transistor layout 

 

To analyze the relationship between finger numbers and transistor capacitance, 

a 3-D transistor diffusion view is show in Fig 2. 

 

Fig. 2. 2 3-D View of CMOS Transistor Diffusion [21] 

𝑊𝐷 is the diffusion width required by the fabrication. W is the width for a 

transistor. W value decreases with finger number increasing. The value for W can be 

considered as the finger width for a multi-finger case [21]. 
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Fig. 2.3 (a) is a single transistor with only one finger. Fig. 2.3 (b) and 2.3(c) are 

single transistors with two fingers and three fingers, which represent even and odd 

number of fingers, respectively. For a two-finger transistor, each finger width is half 

of the original width. The area of the drain and source are decreased by increasing 

the number of fingers. 

 

 

Fig. 2. 3 (a) One-finger single transistor 

 

 

Fig. 2.3(b) Two-finger single transistor 

 

 

 Fig. 2 .3(c) Three-finger single transistor 

Fig. 2. 3Single transistor with different 𝑁𝑓 
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According to Fig2.2 and Fig 2.3(a), the drain (source) area and perimeter for a 

single finger transistor is developed in Equation 2.1 and 2.2 respectively. For a two-

finger single transistor, the areas of drain (AD) and source (AS) are estimated in 

Equation 2.3 and 2.4, and the perimeters of drain (𝑃𝐷) and source (𝑃𝑆) in Equation 

2.5 and 2.6 [21] [22] [23]. 

𝐴𝐷1 = 𝐴𝑆1 = 𝑊 ∙ 𝑊𝐷     (2.1) 

𝑃𝐷1 = 𝑃𝑆1 = 𝑊 + 2𝑊𝐷     (2.2) 

𝐴𝐷 =
1

2
𝑊 ∙ 𝑊𝐷     (2.3) 

𝐴𝑆 =
1

2
𝑊 ∙ 𝑊𝐷 ∙ 2 = 𝑊 ∙ 𝑊𝐷     (2.4) 

𝑃𝐷 = 2 ∙ 𝑊𝐷 + 𝑊    (2.5) 

𝑃𝑆 = 2 ∙ (2𝑊𝐷 + 0.5𝑊) = 4𝑊𝐷 + 𝑊     (2.6) 

For a three-finger single transistor, the areas and perimeters of drain and 

source are estimated in Equation 2.7 to Equation 2.10 

𝐴𝐷 = 2 ∙
1

3
𝑊 ∙ 𝑊𝐷 =

2

3
𝑊 ∙ 𝑊𝐷     (2.7) 

𝐴𝑆 = 2 ∙
1

3
𝑊 ∙ 𝑊𝑆 =

2

3
𝑊 ∙ 𝑊𝑆 = 𝐴𝐷     (2.8) 

𝑃𝐷 = 2 ∙ 2𝑊𝐷 +
1

3
𝑊 = 4𝑊𝐷 +

1

3
𝑊     (2.9) 

PS = 2 ∙ 2WS +
1

3
W = 4WS +

1

3
W = PD   (2.10) 

Table 2.1 summarizes the derived area and perimeter of drain and source for 

number of fingers being one, odd numbers and even numbers. Given one finger 
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transistor drain area as 𝐴𝐷1, source area as 𝐴𝑆1, and drain perimeter as 𝑃𝐷1, source 

perimeter as 𝑃𝑆1.  

When 𝑁𝑓 is an even number 2K (K is an integer), the number of drain diffusion 

is K, and source diffusions change to be (K+1). Finger width  (𝑊𝑓) decreases to 

(W/2K). So the total area for drain diffusion can be simplified to (𝐾 ∙ 𝑊𝑓 ∙ 𝑊𝐷/(2𝐾)), 

which is half 𝐴𝐷1; and the perimeter of drain diffusion is (2𝑊𝐷 ∙ 𝐾), which is less 

than one finger transistor perimeter 𝑃𝐷1. The total area for source diffusion is ((𝐾 +

1)  ∙ 𝑊𝑓 ∙ 𝑊𝐷/(2𝐾)), and (2(K+1) 𝑊𝐷+2𝑊𝑓) for source diffusion perimeter. 

When the finger number is an odd number, which equal to (2K+1). The 

transistors are divided into same number of drain and source diffusion, and both of 

them equal to (K+1). Drain and source diffusions are in same area and perimeter, 

which is derived to be ((K+1) ∙ 𝑊 ∙ 𝑊𝐷/(2𝐾 + 1) ) and (2(K+1)  𝑊𝐷 + 𝑊𝑓 ) 

respectively. 

 

Table 2.  1 Drain and source area and perimeter equations. 

 

Finger Number AD AS PD PS 

1 AD1 =  𝑊 ∙ 𝑊𝐷 AS1 = 𝑊 ∙ 𝑊𝐷 PD1 = 𝑊 + 2𝑊𝐷 PS1= 𝑊 + 2𝑊𝐷 

2K 

 
1

2
AD1 

 

K + 1

2K
AS1 2K ∙ WD 2(K+1) 𝑊𝐷+2𝑊𝑓 

2K+1 
K + 1

2K + 1
AD1 

K + 1

2K + 1
AS1 2(K+1) 𝑊𝐷 + 𝑊𝑓  2(K+1) 𝑊𝐷 + 𝑊𝑓  
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For a large size single transistor, the multiple finger technology will decrease 

the drain and source diffusions size extremely. For example, a 100um total width 

transistor with single finger. The areas and perimeters of its diffusion are 100𝑊𝐷 

and (100+2𝑊𝐷). For the same transistor, if finger number changed to be 5, then the 

area will go down to 60𝑊𝐷 and perimeter will change to be (20+6𝑊𝐷). If 20 fingers 

are used to implement the transistor, then the drain area will become 50𝑊𝐷 and 

source area will go to 55𝑊𝐷 . The perimeter for drain and source diffusion are 20𝑊𝐷 

and (22𝑊𝐷 + 5) separately. For 90nm process technology, 𝑊𝐷 is about 0.4um, which 

is much smaller than 100um.  

In conclusion, multiple finger technology can enormously reduce the diffusion 

area and perimeter. 

 

Fig. 2. 4gate to diffusion capacitances and diffusion to body capacitances for a transistor [2] 
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Parallel plate capacitors can be implemented by two conductors in parallel with 

insulator between them. For a single transistor, different capacitors exist between 

different terminals. Fig. 2.4 shows the capacitors between diffusion and gate, and 

diffusion to body. 

The gate to diffusion capacitors (𝐶𝐺𝑆 𝑎𝑛𝑑 𝐶𝐺𝐷) are overlap capacitors. They are 

related to transistor total width. The diffusion capacitors CDB and CSB are parasitic 

capacitances, which depend on area and perimeter. Parasitic capacitance is decided 

by two parts, junction capacitance and sidewall capacitance. 2.11 is the equation for 

junction capacitance, where CJ is the junction capacitance at zero bias, PB is the 

built-in potential which related to the doping levels, MJ is the junction grading 

coefficient, 𝑉𝑑𝑏 drain to bulk voltage and 𝐴𝐷 is diffusion area [2] [24] [25]. It can be 

simplified to proportional to area. 

𝐶𝐷 =  𝐶𝐽 × 𝐴𝐷 × (1 +
𝑉𝑑𝑏

𝑃𝐵
)

−𝑀𝐽

= 𝐶𝐽′ ∙ 𝐴𝐷     (2.11) 

Another capacitance is sidewall capacitance (shown in Eq. 2.12). CJSW, PHP and 

MJSW are parameters similar to CJ, PB and MJSW, but with different coefficients. 

The sidewall capacitance can be simplified to be proportional to perimeter. All 

parameters can be found in the model files. 

𝐶𝑆 = 𝐶𝐽𝑆𝑊 × 𝑃𝐷 × (1 +
𝑉𝑑𝑏

𝑃𝐻𝑃
)

−𝑀𝐽𝑆𝑊

= 𝐶𝐽𝑆𝑊′ ∙ 𝑃𝐷     (2.12) 

For the source diffusion, all the parameters and coefficients are same, only 

change the drain area and perimeter to source area and perimeter. The diffusion 

capacitances equation can be simplified in Eq. 2.13 and 2.14: 
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𝐶𝐷𝐵 = 𝐶𝐽 × 𝐴𝐷 × (1 +
𝑉𝑑𝑏

𝑃𝐵
)

−𝑀𝐽

+ 𝐶𝐽𝑆𝑊 × 𝑃𝐷 × (1 +
𝑉𝑑𝑏

𝑃𝐻𝑃
)

−𝑀𝐽𝑆𝑊

 

=  𝐶𝐽′ ∙ 𝐴𝐷 +  𝐶𝐽𝑆𝑊′ ∙ 𝑃𝐷     (2.13) 

𝐶𝑆𝐵 = 𝐶𝐽 × 𝐴𝑆 × (1 +
𝑉𝑠𝑏

𝑃𝐵
)

−𝑀𝐽

+ 𝐶𝐽𝑆𝑊 × 𝑃𝑆 × (1 +
𝑉𝑠𝑏

𝑃𝐻𝑃
)

−𝑀𝐽𝑆𝑊

 

= 𝐶𝐽′ ∙ 𝐴𝐷𝑆 + 𝐶𝐽𝑆𝑊′ ∙ 𝑃𝑆          (2.14) 

Comparing the area and perimeters of Nf = 1 case with multiple fingers design 

cases, the AD and AS are nearly reduced by half, and the PD and PS are also decreased 

significantly if the total width is 100um and 𝑊𝐷 is about 0.4um. Twenty number of 

fingers will have a smaller diffusion capacitance than 5-finger number case. Only 

one finger case will have the largest area and perimeters among these three cases, 

and its diffusion capacitance will be much larger than others. 

 

2.2 Multiple finger effect on a single transistor 

 
 

A single transistor with 125um total width and 200nm channel length is tested 

in this section, and it will be used in the 2.4 GHz LNA design. 

Transconductance is one of the important factors for the performance of 

transistors, which is the ratio of the current variation at the output to the voltage 

variation at the input as given in Equation 2.15. 

𝑔𝑚 =
𝒾𝑜𝑢𝑡

𝓋𝑖𝑛
     (2.15) 

𝑓𝑇  is the cut-off frequency of the transistor, which is related to the 

transconductance and effective gate capacitance (𝐶𝑔𝑒𝑓𝑓) as shown in Equation 2.16. 
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Noise figure is a measurement of degradation of the signal to noise ratio, which 

introduced in section 1.4. A smaller NF means a better noise performance. Equation 

2.17 indicates the relationship between NF and 𝑓𝑇  [16]. 

𝑓𝑇 =
𝑔𝑚

2𝜋𝐶𝑔𝑒𝑓𝑓
     (2.16) 

𝑁𝐹 = 1 + 2.4 (
𝛾

𝛼
) (

𝑓𝐶

𝑓𝑇
)    (2.17) 

𝛾 and 𝛼 are channel thermal noise coefficient, 𝑓𝐶  is the center frequency of the 

circuit. It can be seen that increasing cut-off frequency will bring the benefit of a 

lower noise figure. 

As seen in (2.16) and (2.17), a higher 𝑔𝑚 and smaller 𝐶𝑔𝑒𝑓𝑓 are two ways to 

enhance the NF performance. In a single ended tuned LNA, three parameters, 𝑉𝐺𝑆, L 

and 𝑁𝑓 , affect the 𝑔𝑚 and smaller 𝐶𝑔𝑒𝑓𝑓. The effect by VGS, L and 𝑁𝑓 to a single 

transistor is discussed in section four. 

90 nm CMOS technology is used through the entire thesis. Fig. 2.5 shows the 

transconductance plot for different number of fingers under different 𝑉𝐺𝑆, 0.6V fixed 

𝑉𝐷𝑆 and 125um total width.  

As seen in Fig. 2.5, the transconductance in narrow width per finger is higher 

than the transconductance in wider width. Besides, the 𝑉𝐺𝑆 has a big effect on 𝑔𝑚. 

With 𝑉𝐺𝑆 increasing, gm gets larger until about 0.85V. After 0.85V, the plots become 

flat for all cases. 



24 
 

 

Fig. 2. 5 𝑔𝑚 𝑣𝑠. 𝑉𝐺𝑆 𝑎𝑛𝑑 𝑁𝑓  plot under 0.6V 𝑉𝐷𝑆, 200nm Length and 125um total width 

 

However, keep increasing the finger numbers does not have 𝑓𝑇  followed 

because of the increased gate capacitance. Fig. 2.6 indicates 𝑓𝑇  reaches the highest 

when 𝑁𝑓 is 20 compared with 1, 5 and 125. For clearity purpose, only three cases 

are shown in Fig. 2.6.  

From theory [25] [26], the effective gate capacitance is created by the gate 

sidewall fringing capacitances 𝐶𝑔𝐷𝑖𝑓𝑓 and 𝐶𝑔𝐶𝑇, and finger-end fringing capacitance 

𝐶𝑓(𝑝𝑜𝑙𝑦−𝑒𝑛𝑑). The 𝐶𝑔𝐷𝑖𝑓𝑓 and 𝐶𝑔𝐶𝑇 are linearly proportional to the total width, while 

the 𝐶𝑓(𝑝𝑜𝑙𝑦−𝑒𝑛𝑑) is independent of total width but decided by 𝑁𝑓 .  𝐶𝑔𝑒𝑓𝑓 can be 

simplified as equation 2.18 . 

Cgeff = (Cox × L + CgDiff + CgCT)WT + Cf(poly−end)Nf     (2.18) 

𝐶𝑜𝑥 is the capacitance per unit area of the gate oxide, L is the channel length of 

the gate. 𝐶𝑜𝑥 × 𝐿  is the intrinsic capacitance. 𝐶𝑔𝐷𝑖𝑓𝑓 + 𝐶𝑔𝐶𝑇  is the extrinsic 

capacitance. The intrinsic capacitances and extrinsic capacitances are linearly 

proportional with total width, while the 𝐶𝑓(𝑝𝑜𝑙𝑦−𝑒𝑛𝑑) is only proportional to 𝑁𝑓 . In 



25 
 

this case, the finger numbers should be considered in CMOS design. A larger number 

of fingers will add the gate capacitance significantly. 

The calculated effective gate capacitance by Equation 2.18 is plotted in Fig. 2.7 

with respect to 𝑁𝑓 . It can be seen 𝐶𝑔𝑒𝑓𝑓 increases following number of fingers 

increasing 

 

Fig. 2. 6 𝑓𝑇  𝑣𝑠. 𝑉𝐺𝑆 plot under different 𝑁𝑓, 0.6V 𝑉𝐷𝑆 and 200nm Length 

 
ft is low due to 200nm length.  May want to discuss a little why 200nm rather 

than 100nm. 

 

Fig. 2. 7 Calculated 𝐶𝑔𝑒𝑓𝑓 𝑣𝑠. 𝑁𝑓 plot with 200nm Length 
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2.3 Other factor effects on a single transistor 

 
 𝑉𝐷𝑆 and 𝑉𝐺𝑆 are two voltages that affect the performance of 𝑓𝑇 . Fig. 2.8 indicates 

the relationship between 𝑓𝑇  and the two voltages under the same transistor length, 

width and number of fingers. It can be seen that increasing 𝑉𝐺𝑆 will increase 𝑓𝑇  

monotonously if 𝑉𝐷𝑆 is greater than 0.5V. Also can be seen that 𝑓𝑇  plot has the same 

trend as transconductance versus 𝑉𝐺𝑆 plot because of proportional relationship 

between 𝑓𝑇  and 𝑔𝑚. Under the same 𝑉𝐷𝑆, cut-off frequency goes up between 𝑉𝐺𝑆 

equals to 0.5V to 0.8V, and then changes to be flat. The plot also indicates that the 

cut-off frequency may go down if keep increasing 𝑉𝐺𝑆. 

From Fig. 2.8, 𝑉𝐷𝑆 also affects the cut off frequency, but not as much as 𝑉𝐺𝑆. 

Under same 𝑉𝐺𝑆, a higher 𝑉𝐷𝑆 will increase 𝑓𝑇 . In this case, a higher 𝑉𝐺𝑆 with a higher 

𝑉𝐷𝑆 will enhance the performance of 𝑓𝑇 . The performance of LNA with varying bias 

voltage will be discussed in section 4. 

 

 

Fig. 2. 8 𝑓𝑇 vs. 𝑉𝐺𝑆 and 𝑉𝐷𝑆 plot under fixed width, length and Nf 
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Fig. 2. 9 𝑓𝑇 vs. L plot under same voltage, width and Nf 

 

The transistor length has a huge effect on the 𝑓𝑇  performance as shown in Fig. 

2.9. Smaller channel gives larger cutoff frequency. The testing environment is 

𝑉𝐷𝑆=1.2V and 𝑉𝐺𝑆=0.75. From the previous work, a higher voltage of the drain and 

gate terminals will enhance the  𝑓𝑇  performance of the transistor, so the drain and 

gate voltages are given as a relative high value.  

It can be concluded that the narrow length makes the transistor have high 

cutoff frequency. The cut-off frequency can reach about 160 GHz at 100nm length, 

while the 𝑓𝑇  can only go to several GHz at the 1um length.  

Equation 2.19 shows the relationship between transconductance and current: 

𝑔𝑚 = √2β𝐼𝐷𝑆(1 + λ𝑉𝐷𝑆)     (2.19) 

β = 𝜇𝑛𝐶𝑜𝑥 (
𝑊

𝐿
)      (2.20) 

β  and 𝐼𝐷𝑆  are inversely proportional to L, so that the  𝑔𝑚  is inversely 

proportional to L. To increase 𝑓𝑇 , a higher 𝑔𝑚 is needed, which can be implemented 

by increasing transistor width or decreasing transistor length or doing both.  
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However, narrow length transistors are more sensitive to PVT variations, 

which is shown in Fig.2.10. 100nm length and 200nm length NMOS transistors are 

employed to test the cut-off frequency with Monte Carlo Analysis. For 20 iteration 

cases and same testing environment for length effect on 𝑓𝑇 , 100nm length has a 

47.88GHz variation. Comparing the theoretical value for 𝑓𝑇 = 176.57𝐺𝐻𝑧, it has a -

9.9% to 17.21% error. So the total error is 27.12%.  

By contrast, the PVT variations performance of a 200nm length transistor is 

much better. The cut-off frequency varies from 58.51GHz to 70.13GHz, compared 

with 65.51GHz, which is an 11.62GHz variation. The error percentage range is from -

10.69% to 7.05%, and total error is 17.73%. In this case, both the 𝑓𝑇  performance 

and PVT variations should be considered in analog circuit design. 

Keep in mind that for analog circuit design, transistor length cannot be too 

small for ultra-deep submicron CMOS technologies in considering PVT variation 

effects. 
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Fig. 2.10(a) MonteCarlo Analysis for 100nm 𝑓𝑇 

 

Fig. 2.10(b) MonteCarlo Analysis for 200nm 𝑓𝑇 

Fig. 2. 10 100nm and 200nm Transistor 𝑓𝑇 Variation
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III Low noise amplifier analysis 

 

Based on the discussion in chapter 1, a single ended cascode LNA topology is 

chosen in this thesis. The purpose for this thesis is to find a combination between 

transistor length, bias voltage and finger number that can increase the LNA gain, 

Q and decrease the NF and power consumption. 

 

3.1 Single Ended Cascode Low Noise Amplifier 

 

Because of its high gain and high reserve isolation, Single Ended Cascode LNA is 

one of the most popular topology in Nano-scale CMOS industry [27] [13]. Fig. 3.1 is 

the schematic diagram of a cascade inductive degenerated LNA. Lg, Ls and Ld are 

gate inductor, source inductor and drain inductor respectively [28]. Cb is a big 

blocking capacitor to prevent DC current flowing into the system.  Typically, the 

output load of this circuit is a band-pass filter or a variable gain amplifier (VGA), 

which is the next stage of the LNA. The bias voltage (𝑉𝑏𝑖𝑎𝑠) can be implemented by 

an active resistor and a resistor as shown in Fig. 3.1. To connect the gate and the 

drain terminal together, the transistor can generate constant current. The resistance 

Rref is used to generate the voltage. Rbias is a high impedance resistor, which is 

regarded as open circuit. In this case, there is no current flowing to the gate of M1, 
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and the voltage generated by the M3 and Rref can provide M1 a stable gate voltage. 

However, the varying sizes of the transistors and active resistors will affect the 

process variation. For clarity, a DC voltage is directly given to the 𝑉𝑏𝑖𝑎𝑠 in Fig. 3.1 in 

order to test the gate effect and process variation effect on the circuit. 

 

Fig. 3. 1 Single ended tuned low noise amplifier 

 

3.1 Parameters Estimation for LNA 

 

From theory [16] [16], a reasonable transistor width for the LNA in Fig. 3.1 can 

be set based on center frequency and the process parameters in Equation 3.1 and 

3.2. 

𝐼𝑑𝑠1 = 𝐼𝑑𝑠2     (3.1) 
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𝑊𝑜𝑝𝑡 ≈
1

[3𝐶𝑜𝑥𝐿 + 4.5𝐶𝐺𝑆𝑂]𝜔0𝑅𝑆
     (3.2) 

𝐼𝑑𝑠1 and 𝐼𝑑𝑠2 are currents flowing through transistors, 𝑊𝑜𝑝𝑡 is the estimated 

optimal width for power constraint while keeping the noise figure near the optimal 

value. For 2.4GHz center frequency, 125um width, 200nm and 100nm length are 

chosen as the width and length for transistors. For 6GHz center frequency LNA, 90 

um total width, 100nm length and 48um total width, 200nm length are used. 

Fig. 3.2 is the small signal equivalent circuit for the input part of the LNA in Fig. 

3.1 without considering junction capacitance. 50Ω off-chip stable impedance (Rs) is 

considered as the input source impedance. The maximum power transmission or 

minimum signal reflection is obtained when the LNA input impedance matches the 

source impedance. Lg and  Ls are the key components for impedance matching of a 

cascode inductive degenerated LNA. gm1 is the transconductance of M1. 𝐶𝑏 is a big 

capacitor placed in front of gate. Cgs and Cgd are gate capacitances. Cgseq is the 

equivalent capacitance of  gate total capacitance. The input impedance equation can 

be given by Equation 3.3 to 3.7: 
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Fig. 3. 2 Small signal equivalent circuit of input circuit 

 

Assuming the gain for 𝑀1 transistor is -1 because it is easy to estimate the 

equivalent capacitance for the input circuit. 

𝐶𝑔𝑠𝑒𝑞 = 𝐶𝑔𝑠 + (1 − 𝐴𝑉)𝐶𝑔𝑑 ≈ 𝐶𝑔𝑠 + 2𝐶𝑔𝑑      (3.3) 

𝑣𝐼𝑁 = [𝑗𝜔𝐿𝑔 +
1

𝑗𝜔𝐶𝑏
+

1

𝑗𝜔𝐶𝑔𝑠𝑒𝑞
] 𝑖𝐼𝑁 + 𝑗𝜔𝐿𝑠[𝑖𝐼𝑁 + 𝑔𝑚1𝑉𝑔𝑠1]    (3.4) 

𝑉𝑔𝑠1 =
𝑖𝐼𝑁

𝑗𝜔𝐶𝑔𝑠𝑒𝑞
     (3.5) 

=>  𝑉𝐼𝑁 = [𝑗𝜔𝐿𝑔 +
1

𝑗𝜔𝐶𝑏
+

1

𝑗𝜔𝐶𝑔𝑠𝑒𝑞
] 𝑖𝐼𝑁 + 𝑗𝜔𝐿𝑠 [𝑖𝐼𝑁 + 𝑔𝑚1

𝑖𝐼𝑁

𝑗𝜔𝐶𝑔𝑠𝑒𝑞
]     (3.6) 

𝑍𝐼𝑁 =
𝑉𝐼𝑁

𝑖𝐼𝑁
= {[𝑗𝜔𝐿𝑔 +

1

𝑗𝜔𝐶𝑏
+

1

𝑗𝜔𝐶𝑔𝑠𝑒𝑞
] + 𝑗𝜔𝐿𝑠} +

𝑔𝑚1𝐿𝑠

𝐶𝑔𝑠𝑒𝑞
    (3.7) 

And the impedance matching equation is given by Equation 3.8 to 3.9: 

𝑅𝑠 =
𝑔𝑚1𝐿𝑠

𝐶𝑔𝑠𝑒𝑞
= 50𝛺      (3.8) 
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(𝐿𝑔 + 𝐿𝑠)𝜔0 =
1

𝜔0𝐶𝑏
+

1

𝜔0𝐶𝑔𝑠𝑒𝑞
≈

1

𝜔0𝐶𝑔𝑠𝑒𝑞
    (3.9) 

So the relationship between inductance, capacitance and impedance matching 

center frequency can be given as Equation 3.10. 

𝐿𝑔 + 𝐿𝑠 =
1

𝜔0
2𝐶𝑔𝑠𝑒𝑞

     (3.10) 

The gate, source inductors and the capacitors from M1 transistor affect the 

impedance matching center frequency together.  

Additionally, the tank circuit in Fig 3.3 will resonate the center frequency to the 

desired value. 

 

Fig. 3. 3 Tank Circuit in Single Ended LNA 

 

From Fig 3.3, drain inductor has a big effect on 𝑓𝐶 . The approximate small signal 

equivalent circuit of the LNA is given in Fig. 3.4. Ld and the total capacitance of 

output capacitance Cdb2 and CL are the key factors affect the tuned center frequency. 

The  𝑓𝐶  can be estimated using Equation 3.11 to 3.12. 
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𝑓𝐶 =
1

2𝜋√𝐿𝐷𝐶𝑇

     (3.11) 

𝐶𝑇 = 𝐶𝑑𝑏2 + 𝐶𝐿     (3.12) 

It can be found that 𝑓𝐶  is proportional to 
1

√LD
 and 

1

√CT
. To meet the high 

frequency requirement of the fC, a large size of the transistor width is used in this 

LNA design, and the finger numbers will affect the performance of the LNA. 

 

Fig. 3. 4 LNA small signal equivalent circuit
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IV Circuit Analysis 

 

The LNA in Fig. 3.1 is implemented in 90nm CMOS technology through Cadence 

tool. The schematic circuit is shown in Fig 4.1. A typical 1.2V power supply is used 

for this design. The variables can be classified into three groups: number of fingers, 

bias voltage and transistor channel length. 𝑓𝐶 , voltage gain (𝐴𝑉), quality factor (Q), 

impedance matching S-parameter (𝑆11), noise figure (NF), third-order intercept 

point (IIP3) and 1 dB compression point are tested under different variables. 

 

Fig. 4. 1 LNA circuit implemented by Cadence Software
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4.1 2.4GHz Low Noise Amplifier 

 

4.1.1 Number of Finger Effects on LNA 

 

To test the performance of multiple fingers, a 0.6V bias voltage and 200nm L 

are set up as the gate voltage and channel length, respectively. Table 4.1 

summarizes the LNA performances under different 𝑁𝑓 and 𝑊𝑓 with corner analysis.  

 

Table 4. 1 LNA performance with different Nf under 125um total width and 200nm 

length 

Nf Wf 

(um) 
Corner 

Analysis 
fc 

(GHz) 
Av 

(dB) 
Q S11 

(dB) 
NF 

(dB) 
IIP3 

(dBm) 
1dB 

compression 
(dBm) 

1 125 

tt 2.4 34.6 5.60 -41.02 1.79 -1.95 -11.39 

ss 2.392 34.12 5.73 -33.51 1.81 -2.98 -11.74 

ff 2.408 34.95 5.46 -52.59 1.77 -1.69 -11.05 

20 6.25 

tt 2.4 34.78 5.45 -46.43 1.78 -1.37 -10.84 

ss 2.392 34.37 5.57 -39.10 1.80 -2.11 -11.22 

ff 2.408 35.08 5.34 -35.41 1.77 -1.12 -10.39 

125 1 

tt 2.4 34.65 5.42 -44.30 1.77 -1.14 -10.59 

ss 2.4 34.25 5.58 -44.11 1.80 -1.90 -11.14 

ff 2.4 34.92 5.27 -36.81 1.75 -1.06 -10.05 

250 0.5 

tt 2.4 34.53 5.40 -37.63 1.75 -0.82 -9.99 

ss 2.4 34.15 5.57 -34.29 1.78 -1.42 -10.68 

ff 2.4 34.74 5.23 -35.06 1.73 -1.10 -9.73 

 

As seen in Table 4.1, for the given four different per finger width, the most 

stable 𝑓𝐶  is gotten when 𝑊𝑓 are 𝑊𝑓 = 1𝑢𝑚 and 𝑊𝑓 = 0.5𝑢𝑚, but quality factors vary 

a little bit more. Noise figure, NF, basically are the same because center frequency is 

too small compared with 𝑓𝑇  of four different 𝑁𝑓 , based on 𝑓𝑇  estimation Equation 

2.16. The highest IIP3 is -1.14dBm when 𝑊𝑓=0.5um. From the comparison, it 
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appears that 0.5um per finger width gives the LNA best performance with respect to 

process variation, noise figure and linearity, but the performance of 6.25um per 

finger width is almost as good. It has the best gain among these four finger numbers. 

The data in Table 4.1 shows the process variation does not affect the circuit 

performance much due to the large passive inductors used.  

 

4.1.2 Bias Voltage Effects on LNA 

 

A 6.25um fixed finger width is used to test the LNA performance at different 

𝑉𝑏𝑖𝑎𝑠 because of the moderate property in 𝑁𝑓 analysis, which can help to detect the 

dominant factor for a LNA. 

From section 2.3, it is concluded that a larger 𝑉𝐺𝑆 and 𝑉𝐷𝑆 value can lead to a 

higher 𝑓𝑇  value in a certain range. However, keep increasing the 𝑉𝑏𝑖𝑎𝑠 value cannot 

get a much higher 𝑓𝑇  in this circuit because of the decreased drain voltage. The 

relationship between Vg and Vd is given in Equation 4.1 and 4.2 [2]. The increment of 

VGS1 will break the balance of the two currents flowing through 𝑀1 and 𝑀2. If the 

diffusion voltage between two transistors is increased, than the current of 𝑀1 is 

increasing, while 𝑀2 current will be decreasing, this is not established. The diffusion 

voltage can only be decreased to keep the balance between these two transistors. 

1

2
β(VGS1 − VT1)2(1 + λVDS1) =

1

2
β(VGS2 − VT2)2(1 + λVDS2)    (4.1) 

VDS1 + VDS2 = 1.2V     (4.2) 
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For a 0.6V bias voltage and the drain voltage of 𝑀1, 𝑉𝐷1 is set to be 0.6V, then 

both of the transistors can get a 0.6V drain to source voltage. If increase M1 gate 

voltage to 0.85V, then drain voltage for M1 is only 0.4V, which cannot keep M1 work 

in saturation region. In this case, the bias voltage can not as high as wanted, there 

are some range for bias voltage to keep transistor working under saturation region, 

and 0.6V, 0.65V and 0.75V are chosen as the bias voltage. Table 4.2 summarizes the 

LNA simulation performance with respect to 𝑉𝑏𝑖𝑎𝑠. Based on noise figure estimation 

equation (2.17), noise figure will be reduced following 𝑉𝑏𝑖𝑎𝑠  increased. But 

simulation results show little change on the noise figure with bias voltage increasing 

from 0.6V to 0.75V since drain voltages are keep decreasing. 

From the corner analysis in Table 4.2, the variations affect the center frequency 

and gain less and less by increasing bias voltage. The center frequency has a 0.66% 

variation for 0.6V bias voltage case, 0.33% for 0.7V 𝑉𝑏𝑖𝑎𝑠 and 0% for 0.75V 𝑉𝑏𝑖𝑎𝑠. 

Considering gain for LNA, it varies 2% for 0.6V gate voltage, 1.27% for 0.65V and 

0.12% for 0.75V. All in all, the result of corner analysis is the PVT variations affect 

the LNA circuit slightly. 

As seen in table 4.2, the highest gain and quality factor are at Vbias of 0.6V with 

L=200nm. And the best linearity is when Vbias=0.65V. As expected, power consumes 

more as Vbias increases. 
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Table 4. 2 2.4GHz LNA performance with different Gate Voltage for 𝑊𝑓=125um 

L 
(nm) 

𝑊𝑇 
(um) 

𝑉𝑏𝑖𝑎𝑠 
(V) 

Power 
consumption 

(mW) 
Corner 

fc 
(GHz) 

Av 
(dB) 

Q 
S11 
(dB) 

NF 
(dB) 

IIP3 
(dBm) 

1dB 
compressi
on (dBm) 

200 125 

0.6 6.856 
tt 2.4 34.78 5.45 -46.43 1.78 -1.367 -10.84 
ss 2.392 34.37 5.57 -39.10 1.80 -2.11 -11.22 
ff 2.408 35.08 5.34 -35.41 1.77 -1.12 -10.39 

0.65 9.225 
tt 2.4 34.64 5.26 -46.60 1.77 -0.84 -10.1 
ss 2.4 34.38 5.39 -33.78 1.79 -0.94 -10.57 
ff 2.408 34.82 5.15 -46.57 1.76 -1.12 -9.89 

0.75 14.35 
tt 2.4 33.06 4.93 -36.41 1.77 -2.20 -9.29 
ss 2.4 33.03 5.06 -34.65 1.79 -1.79 -9.33 
ff 2.4 33.02 4.79 -36.75 1.76 -2.57 -9.33 

 

If higher gain, higher quality factor and lower power consumption are desired, 

a smaller bias voltage should be used. If considering process variation, a higher bias 

voltage is needed with the drawback of the power consumption. This is a trade-off 

of the LNA circuit design.  

Overall, a 0.65V bias voltage can be chosen as good performance of linearity, 

low power consumption, small NF and process variation. 

 

4.1.3 Channel Length Effects on LNA 

 

Table 4.3 summarizes two cases with 100nm transistor length of LNA design. 

The first one uses a 200nm length power constrained optimized width in Eq. (3.2), 

and the second one uses a 100nm length optimization width.  
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Table 4. 3 LNA performances with 100 nm transistor lengths  

Vbias 
L 

(nm) 

𝑊𝑇  

(um) 

Power 

consumption 

(mW) 

Corner 
fc 

(GHz) 

Av 
(dB) Q 

S11 

(dB) 

NF 

(dB) 

IIP3 

(dBm) 

1dB 

compression 

(dBm) 

0.75

V 

200 

125 

14.35 

tt 2.4 33.06 4.93 -36.41 1.773 -2.20 -9.29 

ss 2.4 33.03 5.06 -34.65 1.786 -1.79 -9.33 

ff 2.4 33.02 4.79 -36.75 1.763 -2.57 -9.33 

100 

7.583 

tt 2.4 30.39 4.41 -40.62 2.09 -0.27 -9.18 

ss 2.384 30.44 4.6 -39.30 2.11 -0.87 -9.76 

ff 2.416 30.21 4.21 -36.20 2.07 0.61 -8.71 

232 12.65 

tt 2.4 27.73 4.22 -40.97 1.72 2.55 -5.22 

ss 2.392 27.86 4.34 -28.25 1.74 2.20 -5.58 

ff 2.416 27.49 4.11 -33.98 1.71 2.76 -5.02 

 

 

Under the same Vbias voltage (Vbias = 0.75𝑉), the process variation fluctuates 

a lot comparing with 200nm length design. The NF of the 125um total width is 

larger than 2dB. The 102GHz high fT of 100nm cannot help the LNA have a good 

noise performance because of the mismatch of the width. To get a better NF, a larger 

transistor size is used, and it has been verified that the NF of 1.72dB is smaller than 

1.77dB in 200nm in table 4.2. AV and Q also are also worse after the 100nm is used. 

By contrast, the linearity in 100nm length is better than 200nm. The IIP3 even goes 

to positive value (4.48dBm) compared with -0.84dBm.  

Table 4.3 shows that the power consumption is reduced by using a smaller 

transistor length. A 100nm channel length LNA draws less current than the 200nm 

channel length LNA. From long channel theory, the current should be increased by 

reducing channel length. However, the current is decreased because the transistor 
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switching from long channel to short channel. Process gain, channel length 

modulation, threshold gate voltage are changed. And with a high 𝑉𝐺𝑆, the velocity 

saturation effect decreases the saturation voltage (𝑉𝐷𝑆𝐴𝑇) for short channel devices, 

so the 100nm length transistor goes to saturation before the 200nm length 

transistor [29]. In this case, the current flowing through the long channel transistor 

is higher than the short channel transistor. 

In order to optimize the NF, a larger width is employed in the LNA design. 

However, the increased total width adds more power to the circuit. 

 

4.2 6GHz Low Noise Amplifier 

 

4.2.3 Number of Finger Effects on 6GHz LNA 

 

A 6 GHz single ended cascode LNA is also designed in 90nm, 1.2V CMOS 

technology with 0.6V bias voltage. The transistor widths and lengths are 90 um and 

100 nm respectively. Three different number of fingers are tested, which are 𝑁𝑓=1 

(𝑊𝑓 = 90𝑢𝑚), 𝑁𝑓=20 (𝑊𝑓 = 4.5𝑢𝑚) and 𝑁𝑓=90 (𝑊𝑓 = 1𝑢𝑚). The simulation results 

are given in table 4.4. 

From table 4.4, it can be seen that 20-finger case has the best performance of 

process variation, gain and quality factors. The impedance matches well for this case 

under different corner analysis. By varying the finger width, NF decrease with the 

number of finger increasing, because of the increased cut-off frequency, however, it 

still affects the NF performance slightly because of the high center frequency value. 
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Table 4. 4 6 GHz LNA performances with different Nf under 90um total width and 

100nm length 

Nf 
Wf 

(um) 
Corner 

Analysis 
fc 

(GHz) 
Av 

(dB) 
Q S11 (dB) 

NF 
(dB) 

1 dB 
(dBm) 

1 90 

tt 6.00 26.97 6.97 -21.89 2.34 -2.61 

ff 5.99 29.08 7.60 -26.24 2.15 -5.95 

ss 6.05 24.07 6.17 -15.60 2.67 1.12 

20 4.5 

tt 6.00 28.19 7.23 -50.81 2.24 -4.12 

ff 6.00 29.89 7.68 -31.56 2.10 -7.00 

ss 6.04 25.71 6.49 -23.43 2.48 -0.69 

90 1 

tt 6.03 27.88 6.82 -33.22 2.21 -4.35 

ff 6.01 29.55 7.25 -27.37 2.07 -6.85 

ss 6.08 25.39 6.12 -26.58 2.46 -0.98 

 

4.2.4 Bias Voltage Effects on 6GHz LNA 

 

As discussed in the 2.4 GHz LNA designs, bias voltage has a big effect on the 

LNA performance. A lower gate voltage will increase the gain, quality factor with 

less power consumption. The 0.6V, 0.65V and 0.75V also used in 6 GHz LNA to test 

the properties.  Table 4.5 shows the simulation results. The testing environment is 

1.2V power supply, 90um total transistor width with 20 multiple fingers (𝑊𝑓 =

4.5𝑢𝑚) and 100nm channel length. 

Table 4. 5 6.0 GHz LNA performance with different Gate Voltage 

L 
(nm) 

WT 
(um) 

Vbi
as  

(V) 

Power 
consumption 

(mW) 

Corner fc 
(GHz

) 

Av  
(dB) 

Q S11 
(dB) 

NF 
(dB) 

1 
dB(dBm) 

100 90 

0.6 
2.15 

tt 6.00 28.19 7.23 -50.81 2.24 -4.12 
ff 6.00 29.89 7.68 -31.56 2.10 -7.00 
ss 6.04 25.71 6.49 -23.43 2.48 -0.69 

0.6
5 2.76 

tt 6.01 29.19 7.05 -34.11 2.07 -2.61 
ff 6.02 30.23 7.30 -21.34 2.00 -5.95 
ss 6.02 27.59 6.55 -23.89 2.19 -1.12 
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0.7
5 4.46 

tt 6.00 29.82 6.64 -32.47 1.94 -8.37 
ff 6.04 30.21 6.81 -19.00 1.92 -7.71 
ss 5.98 29.16 6.39 -18.59 1.98 -8.73 

 

The center frequency slightly changes for each case, and 0.65V case is the 

most stable one among these three. Voltage gains are increasing with bias voltage 

increasing.  Noise figurers are decreasing with the gate voltage going up. It goes 

down to 2 dB for 𝑉𝑏𝑖𝑎𝑠=0.75V. Power consumption is the key factor affected by the 

bias voltage. For 0.6V and 0.65V bias voltage, the power consumption is nearly the 

same, however, when gate voltage changes to be 0.75V the power consumption is 

doubled. 

 

4.2.5 Channel Length Effects on LNA 

 

A 200 nm length and 48 um total width transistor is also used to design the 6 

GHz LNA. The simulation results are shown in table 6.6. 1.2V power supply and 0.6V 

bias voltage are employed in this design. It can be seen that there is no process 

variation effect in the 200nm length case in corner analysis. The voltage gain has an 

approximate 20% enhancement compared with 100nm transistor length, and the 

quality factor goes up as well. The NF and 1 dB compression point have a little bit 

improvement compared with 100nm transistor width case. The only disadvantage 

of the 200nm case is the power consumption is higher than the 100nm case. 

Compared with the other parameters, the performance of the 200nm length is 

better than the 100nm. Meanwhile, even though the transistor length is doubled, the 

total widths of the transistors are decreased based on Eq. (3.2). At the same time, 
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the total area for different designs is very small compared with the inductors. In this 

case, the changes of the width and length affect the area slightly. The performance is 

much more important compared with the size. 

 

Table 4. 6 6.0GHz LNA performances with different Length 

L 
(nm) 

WT 
(um) 

Nf 
Vbias 

(V) 

Power 
consumption 

(mW) 
Corner 

fc 
(GHz) 

Av 
(dB) 

Q 
S11 
(dB) 

NF 
(dB) 

1dB 
(dBm) 

100 90 
 
 

20 

 
0.6 

2.15 
tt 6.00 28.19 7.23 -50.81 2.24 -4.12 
ff 6.00 29.89 7.68 -31.56 2.10 -7.00 
ss 6.04 25.71 6.49 -23.43 2.48 -0.69 

 
200 

 
48 

 
0.6 

2.69 
tt 6.00 33.69 8 -30.38 2.12 -2.87 
ff 6.00 34.70 8.15 -27.76 2.09 -6.90 
ss 6.00 32.53 7.86 -33.38 2.16 0.76 
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V Conclusion and Future Work 

 

The focus of this thesis is to study the performance variation caused by 

transistor number of fingers, bias voltage and channel length, which is detailed as 

following. 

 Using Cadence tool, a single NMOS transistor with fixed total width is 

employed to evaluate the performance at different finger numbers, gate to 

source voltage and channel length. In order to obtain the best performance 

for 𝑓𝑇 , 𝑔𝑚, the combination of 𝑁𝑓 , 𝑉𝑏𝑖𝑎𝑠 and L are analyzed. 

 Implement a single ended cascode LNA, which works at 2.4GHz and 6GHz 

separately. Based on receiver system requirement, the LNA needs low 

noise, low power, high gain, high Q, good impedance matching and linearity.  

 Different 𝑁𝑓 , 𝑉𝑏𝑖𝑎𝑠 and L are applied for the LNA design in order to test 

different performances in different situations. 

  Find the best combination among 𝑁𝑓 , 𝑉𝑏𝑖𝑎𝑠 and L that can maintain the 

circuit performs high gain, low power, low noise when process variation 

happens. 
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5.1 Conclusion 

 

6GHz and 2.4GHz LNAs are designed using 90nm CMOS technology with 

focusing on performance improvement with regarding to finger numbers, bias 

voltages and channel lengths.  

 200nm channel length can increase the gain and quality factor for an LNA design 

compared with 100nm length. Meanwhile, the power-optimized width is 

decreased with increasing the channel length in 90nm process. However, the 

decreased width does not decrease the power consumption. For the same center 

frequency LNA design, 200nm length consumes more power than 100nm length 

under the same bias voltage. Seems the NF is better for 100nm length. 

 Process variation affects the single ended LNA slightly due to the three passive 

inductors used. Passive components have much larger size compared with active 

component, and they are much more stable than the active transistors. It is hard 

to point out the variations affected by the finger numbers for this LNA circuit. 

The finger number effect can be ignored under the same bias voltage and 

channel length in LNA design. For single transistor analysis, under the same 

terminal voltages and total width with same 𝑁𝑓 , the PVT variations affected by 

channel length cannot be ignored, 100nm length is more sensitive even though 

its 𝑓𝑇  is much larger than wider channels. 

 Bias voltages have a big effect on the power consumptions. When the gate 

voltage changing from 0.6V to 0.75V, the powers are nearly doubled. Noise figure 

decreases a little bit due to the enhanced performance of 𝑓𝑇 . However, 2.4GHz 
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and 6GHz are relatively low frequencies compared with 60GHz, the cut-off 

frequency.  

 

5.2 Future Work 

 

Future work includes: 

1） Study process variation effects on other blocks of a receiver chain system. 

2）  Explore some other solutions, such as variation detection to mitigate process 

variation effect 

3） Finish layout of the studied LNAs and see how process variation affects the 

layout performance.
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