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ABSTRACT

Purohit, Hemant. Ph.D., Department of Computer Science and Engineering, Wright State Univer-
sity, 2015. Mining Behavior of Citizen Sensor Communities to Improve Cooperation with Organi-
zational Actors.

Web 2.0 (social media) provides a natural platform for dynamic emergence of citizen (as)

sensor communities, where the citizens generate content for sharing information and en-

gaging in discussions. Such a citizen sensor community (CSC) has stated or implied goals

that are helpful in the work of formal organizations, such as an emergency management

unit, for prioritizing their response needs. This research addresses questions related to

design of a cooperative system of organizations and citizens in CSC. Prior research by so-

cial scientists in a limited offline and online environment has provided a foundation for

research on cooperative behavior challenges, including ‘articulation’ and ‘awareness’, but

Web 2.0 supported CSC offers new challenges as well as opportunities. A CSC presents

information overload for the organizational actors, especially in finding reliable informa-

tion providers (for awareness), and finding actionable information from the data generated

by citizens (for articulation). Also, we note three data level challenges–ambiguity in in-

terpreting unconstrained natural language text, sparsity of user behaviors, and diversity of

user demographics. Interdisciplinary research involving social and computer sciences is

essential to address these socio-technical issues.

I present a novel web information-processing framework, called the Identify-Match-

Engage (IME) framework. IME allows operationalizing computation in design problems of

awareness and articulation of the cooperative system between citizens and organizations,

by addressing data problems of group engagement modeling and intent mining. The IME

framework includes: a.) Identification of cooperation-assistive intent (seeking-offering)

from short, unstructured messages using a classification model with declarative, social and

contrast pattern knowledge, b.) Facilitation of coordination modeling using bipartite match-

ing of complementary intent (seeking-offering), and c.) Identification of user groups to
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prioritize for engagement by defining a content-driven measure of group discussion diver-

gence.

The use of prior knowledge and interplay of features of users, content, and network

structures efficiently captures context for computing cooperation-assistive behavior (intent

and engagement) from unstructured social data in the online socio-technical systems. Our

evaluation of a use-case of the crisis response domain shows improvement in performance

for both intent classification and group engagement prioritization. Real world applica-

tions of this work include use of the engagement interface tool during various recent crises

including the 2014 Jammu and Kashmir floods, and intent classification as a service inte-

grated by the crisis mapping pioneer Ushahidi’s CrisisNET project for broader impact.
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List of Definitions
• Formal Organization. An organization or institution that has a defined structure of

communication, roles, and work, e.g., city emergency management unit (EMU).

• Organizational actor. A member of the formal organization who understands and
acts for the organizational tasks, processes and workflows, e.g., first responders.

• Citizen sensor. A user of social media platform, who participates in discussions on
topics related to real world events by generating and sharing information. Roles of
citizen sensors and organizational actors are assumed mutually exclusive.

• Citizen sensor community (CSC). A group of citizen sensors on social media who
participate in discussing various topics. No prior structure is assumed in a CSC.

• Goal-oriented CSC. A type of CSC where users have various intents to serve a goal,
e.g., a voluntary group during crisis response, a group discussing insights on brand
features, etc.

• Crisis. An escalated emergency event that may be specific, unexpected, and non-
routine event or a series of events. It creates high levels of uncertainty and threat to
an organization’s high priority goals and its capacity.

• Behavior. A response to a stimulus environment, e.g., acts of offering help in a
crisis.

• Intent. An aim/plan for (future) action, e.g., wish to donate clothes for help in a
crisis.

• Engagement. A degree of involvement in discussions of a CSC, by participation in
generating and sharing information.

• Coordination. Managing dependencies between tasks in an organizational workflow
by deliberate joint actions. e.g., during crisis, a team of organizational actors of EMU
collects information for resource needs from many sources, and processes collected
information to achieve the goal of prioritizing responses.

• Cooperation. A voluntary joint action to help other actors achieve their goal—a con-
trast to coordination, which is deliberate due to managing the interdependent tasks of
a defined workflow. Cooperation facilitates organizational coordination, e.g., during
crisis, when organizational actors of EMU with defined roles are coordinating (de-
liberately) to collect information on resource needs, CSC members cooperate (vol-
untarily) with them to help mine data on urgent needs.

• Awareness for Cooperation. A challenge of facilitating shared knowledge among
participating actors of cooperation, e.g., what-where-when-who during crisis response.
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• Articulation for Cooperation. A challenge of managing task divisions and assem-
bling various subtasks and sequences. In order to allow cooperation with citizens,
organizational actors identify information needs specific to their task divisions, e.g.,
during crisis, seeking and offering resources are key information needs for clearly di-
vided tasks of resource scarcity and availability information collection, which helps
improve decision making of prioritization of response.
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Chapter 1: Introduction

The emergence of online communication platforms in the Web 2.0 era and the growing

adoption of social media have revolutionized how citizens now interact with information.

Unlike face-to-face communication, citizens now participate (act as sensors) in generating

information instead of merely consuming information [109]. Consequently, online citizen

sensor communities (CSCs) have emerged to share and engage in discussion surrounding

real world events, for stated or implied goals, generating massive amounts of data in the

process. Such citizen sensing, sharing, and participation provide a vehicle for organiza-

tions to interact and engage with citizens where there are likely interdependencies for or-

ganizational tasks, such as the prioritization of resource needs during crisis response when

organizational capacity to respond exhausts [106, 4, 93]. Another scenario is the prioriti-

zation of customer concerns in the context of brand relationship management. However,

CSCs supported by Web 2.0 social media platforms pose new challenges in the design of

cooperative information system between citizens and organizational actors, and demand an

interdisciplinary research approach.

This research lies at the intersection of computer and social sciences in the broad

areas of computer-supported cooperative work (CSCW) and information science. Specifi-

cally, its contribution falls in the last two of the three paradigms of computer science [22]

– theory, abstraction (modeling), and design. We have addressed the design problems of

‘awareness’ and ‘articulation’ for a cooperative web information system between citizens

and organizational actors facilitated by a CSC on a Web 2.0 social platform. We have ad-
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Figure 1.1: Transforming parts of the design level problems of awareness and articulation
for a cooperative information system into computationally tractable data level problems in
an online socio-technical environment.

dressed the design problems by operationalizing parts of them into two computationally

tractable data problems (see Figure 1.1). First is the intent mining problem that accommo-

dates articulation of organizational tasks to address the question “what types of organiza-

tional information needs exist in the citizen-generated data”. Second is the engagement

modeling problem that informs awareness for organizational actors to address the question

“whom to prioritize to engage among citizens”. In modeling intent using a priori knowl-

edge, this work addresses the challenges of ambiguity in interpreting unconstrained natural

language (e.g., “wanna help” appearing in opposing intentional content of seeking-offering

help), and sparsity of user behaviors (e.g., lack of expression of specific type of intent such

as offering help during crisis). In modeling engagement, this work addresses the challenge

of diversity of user demographics (e.g., medical or technical professional) in the groups,

using group representation guided by social identity and cohesion theories. We summarize

the advantage of our fusion approach of top-down and bottom-up processing methods to
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Figure 1.2: Improving representation of context in the data for learning intent, by fusing
top-down and bottom-up processing approaches via a variety of knowledge sources (Details
in Chapter 3).

address the data problems using various knowledge sources in Figure 1.2.

The following sections describe the emergence of goal-oriented CSCs, and the chal-

lenges of understanding cooperative behavior in such communities, followed by a novel

approach to addressing those challenges via intent and engagement modeling.

1.1 Online Citizen Sensor Community (CSC) and Goal-

orientation

Below we discuss the key component of the online citizen sensor communities–citizen

sensors, followed by the existence of goals in CSC. We introduce the role of computational

social science that has emerged to investigate new complexities of individual and group

behavior.
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• Citizen Sensors

Online social media has enabled citizens in unprecedented ways, letting them express

and share their experiences and opinions, helping them propagate information from other

sources, and allowing them to report observations about their surroundings—enabling a

form of sensing. Sheth [109] termed this citizen sensing. This differs from the prior

technology-mediated communication age, where citizens were merely recipients of infor-

mation from the authoritative channels of organizations.

• Goal Orientation of Citizen Sensors and Organizations in CSC

Modern online platforms for social interaction facilitate the formation of communities of

interest surrounding a goal—explicit or implicit—such as volunteering during times of cri-

sis [116]. Growing citizen sensor participation and networked engagement forms online

communities around discussions of real world events. For instance, ‘Digital Humanitari-

ans’ as Meier [73] notes, played a key role in the unprecedented donation and relief co-

ordination efforts after the Haiti earthquake in 2010. This exemplifies Clay Shirky’s com-

mentary on the social media technology in the formation of self-organizing groups. In the

chapter “It Takes a Village to Find a Phone” from Shirky’s book “Here comes everybody:

The Power of Organizing Without Organizations” [112], he notes the emergence of groups

and implicit goals regardless of any provided incentives or functional structures of tradi-

tional grouping characteristics. The existence of goal-oriented community behavior opens

the potential to leverage CSC to improve cooperation between citizens and organizational

actors. However, the stated or implied goals of a CSC drive a variety of specific individual

or group intents. The persisting variety of intent challenges any sensemaking of the data.

• Emergence of Computational Social Science

Online citizens generate data on an unprecedented scale relative to face-to-face interac-

tions. The resulting challenges include scale and speed of user-generated data, diversity
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of user demographics beyond geographical constraints, varied intentions of engagement,

and sparsity of behavior across the corpus. The emergence of the new interdisciplinary

research field of computational social science [61] acknowledges this opportunity to study

the behavior of individuals and groups in the society with the help of computing. Within

the scope of computational social science, we focus on a cooperative web information sys-

tem design for citizens and organizational actors in CSC that can assist coordination of

organizational tasks by mining the social media data during events such as crisis response.

A key limitation of the state-of-the-art methods within organizations for this purpose is use

of manually intensive efforts in the process of collection, filtering, and management of the

information. For example, the registration of requests for needs and offers via platforms

such as Recovers.org and AidMatrix.org during crisis response coordination. Computa-

tional approaches to overcoming the limitations in manual analysis require advances in

understanding cooperative behaviors of citizen sensors in CSC.

1.2 Challenges for Cooperation of Citizens and Organiza-

tions: Articulation and Awareness

The emerging opportunity to study the human interaction data in the CSC promises to

improve cooperation between citizens and organizational actors. Citizen sensing alone

cannot ensure coordinated actions in the communities efficiently, by time and effort. We

discuss the general challenges of coordination and cooperation first, and then place the

present work in the context of the CSCW matrix.

• Coordination and Cooperation

Social scientists and computer scientists in the area of CSCW have been investigating the

challenges of community behavior, self-organization, cooperation (behavior of voluntary
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joint action) and coordination (behavior of deliberate joint action) in both offline and online

environments for several decades. The CSCW literature clarifies the challenges of cooper-

ative work in general, and allows us to reflect on the potential roles and responsibilities of

the formal (institutionalized) organizational actors, and the informal citizen sensor commu-

nities in cooperative online socio-technical environment, such as crisis response. However

large-scale online social platforms test the validity of existing theories of cooperative be-

havior in the new medium and inform the need for new theories.

Malone and Crowston [71] defined coordination as managing dependencies between

activities. On the other hand, cooperation is defined as a voluntary joint action for shared

goals and therefore, assisting in managing dependencies. Cooperation provides a founda-

tion for improving coordination. Participants engage in cooperative work when they are

mutually dependent in the completion of their work (e.g., regarding decision making and

task sequencing, etc.) [104]. Cooperating workers must articulate (divide, allocate, co-

ordinate, schedule, mesh, interrelate) their distributed activities. Dividing the work, often

between personnel units with specialized skills, distributes task interdependencies among

those units [70]. One unit’s effort to ameliorate the situation inevitably changes it, and each

unit must track these intentional changes. In established organizations, pre-defined agree-

ment on roles and responsibilities facilitates tracking and provides the shared understanding

essential to cooperative work [53, 19]. But the decomposition of a complex problem can

never fully avoid unanticipated interaction [113]. As a result, members of a cooperative

system must be able to monitor the conduct of the interactive working parts [46]. That is,

each unit requires information in order to maintain mutual awareness of activity that affects

the others [104]. For instance, personnel who are co-located talk out loud to render their

activities visible to other members of the cooperative system [46]. But when cooperative

work occurs in a dynamic and distributed environment of remote interactions, unanticipated

changes place further demand on maintaining awareness. Furthermore, these challenges of

articulation and awareness are highly context dependent, as is the complex cooperative
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Figure 1.3: Summary of CSCW research matrix [56, 8]. Focus of this dissertation lies in
mining citizen-sensed data to address challenges of articulation and awareness for coop-
erative behavior in the context of the bottom two quadrants of this matrix. The ultimate
objective is to assist coordination of organizational workflow via cooperation between cit-
izen sensors and organizational actors. (Image Credit: Wikipedia)

web information system of citizens and organizational actors.

• The CSCW Matrix

The CSCW literature identifies two dimensions to characterize work domains: time and

space. This dissertation focuses on addressing issues of CSCW for domains that involves

remote and potentially asynchronous interactions between cooperative actors from both

CSCs and organizations. Therefore, we focus on the challenges in the bottom two quad-

rants of the CSCW matrix [56, 8] shown in Figure 1.3. These challenges require a sys-

tematic conceptual framework to develop computational methods that can address issues

of awareness for and articulation of remote participation.

1.3 Identify-Match-Engage (IME) Framework for address-

ing Cooperation Challenges

An effective, goal-oriented CSC, such as with goal-orientation to help prioritize crisis re-

sponse requires a framework for semantically abstracting the geographically unconstrained
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citizen sensed data into higher-level knowledge suitable for organizational actors. We pro-

pose an Identify-Match-Engage (IME) framework as shown in Figure 1.4 to structure the

conceptual solution to the above-mentioned two issues of cooperation—awareness and ar-

ticulation.

In the IME framework, the IDENTIFY function (m1 in Figure 1.4) guides data min-

ing for citizen sensed data in CSC for “what is the information behavior (e.g., seeking help

intent) and information type (e.g., medical resource during crisis)”, aligned with organi-

zational workflow tasks to meet articulation with efficient representation of information.

The MATCH and ENGAGE functions support other information facets (who-where-when)

from the data that guide formal organizational awareness regarding “whom to prioritize

to communicate/engage in CSC” (m3 in Figure 1.4), and “where and when to prioritize

resources based on matching interdependent seeking-offering behavioral actors” (m4 in

Figure 1.4).

Dealing with the massive citizen-sensed data creates information overload for recip-

ient organizational actors. The explicit representation of implicit attributes of behavioral

data (e.g., seeking intent) in an annotated semi-structured information repository (m2 in

Figure 1.4) serves as knowledge base to support cooperation with better access to infor-

mation generated by CSC for the organizational actors, such as via visual exploration and

semantic search of seeking-offering resource information (m5 in Figure 1.4).

1.4 Intent Mining and Engagement Modeling in IME Frame-

work

Modeling the intent under the IDENTIFY function helps understand user expressions of

the citizen sensors in the CSC that affect interdependencies in the organizational workflow

tasks, and therefore, it is used to address the articulation issue of cooperation. For instance,
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Figure 1.4: Summary of IME (Identify-Match-Engage) framework to design a cooperative
web information system for users in CSC as well as organizational actors. Identify function
(Intent Mining) is used to address the challenge of mining data for articulation of organi-
zational needs, and the Engage function is used for addressing the challenge of awareness
for organizational actors.

intent of seeking and offering help during a crisis response constitutes critical information

for organizational workflow to prioritize resource allocation. On the other hand, modeling

user and group engagement under the ENGAGE function addresses the awareness issue

of information from prioritized set of individuals and groups in the CSC that can improve

cooperation.

Addressing the challenge of cooperative web information system design for citizens

and organizational actors via a unique approach of intent mining and engagement modeling

in CSC faces the following challenges:

• Ambiguity, Sparsity and Diversity Challenges

The citizen sensor generated content in the CSC presents a variety of challenges to in-

tent mining, specifically the highly varied ambiguity in user expressions. Furthermore, the

specific intent behaviors are often sparse despite the importance of such behaviors for coop-

eration. For instance, the intent behavior related to offering to help during crisis response
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was observed extremely low compared to seeking help during our analysis of hurricane

Sandy in 2012 (class imbalance ratio of nearly 1:8, refer Chapter 3). The diversity in user

demographics, exacerbated by the global nature of the CSC, also influences the modeling

of engagement behavior. For example, the engagement of someone with a humanitarian

background may differ from another type of user. Also, analytical models must deal with

massive amounts of user-generated data in the CSC. Hence, the modeling also demands

computational scalability.

We address these specific data challenges in the intent and engagement modeling by

infusing knowledge from the Web resources (e.g., Wikipedia) and theories of behavior

(e.g., social identity) into statistical methods of text mining and machine learning. Unlike

traditional behavioral computing restricted to one of the three fundamental dimensions of

social networks—user, content, and network—the techniques presented here combine all

three dimensions in addition to prior knowledge for improving the data representation of

subjective context, and compensate for the lack of features to model learning of latent

(hidden) predictor relationships from the data.

1.5 Thesis Questions and Contributions

The Identify-Match-Engage (IME) framework focuses on actors and actions of coopera-

tion. It fuses top-down (prior knowledge-driven) and bottom-up (data-driven) processing

approaches in modeling intent and engagement for addressing cooperation challenges be-

tween citizens and organizational actors in a cooperative web information system. Corre-

spondingly, the specific thesis statement is:

The use of prior knowledge, and interplay of features of users, content, and net-

work structures efficiently capture context for computing cooperation-assistive behavior

(intent and engagement) from unstructured social data in the online socio-technical sys-

tems.
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Modeling intent and engagement prioritization in the citizen sensor community helps

address macro level design challenges of articulation and awareness for cooperation be-

tween citizens and organizations.

From the social science viewpoint, the research questions we address focus on organi-

zational sensemaking and cooperation between actors of the cooperative web information

system, comprising of institutionalized formal organizations, and the citizens of informal

CSC. Specifically-

R1. Can general theories of offline conversation be applied in the online context [Chapter

2]?

R2. Can we model abstract behaviors (such as intentions) among interdependent actors

to inform organizational workflows using goal-oriented semantic cues [Chapter 3]?

R3. Can we incorporate the social theories that shape group dynamics (e.g., Identity and

Cohesion) in the modeling and analysis of online user-group behavior to address

cooperation between CSC and formal organizational actors [Chapter 4]?

From the computer science viewpoint, our research questions focus on design and

modeling of a cooperative web information system that is built on user intent and engage-

ment modeling. It focuses on mining of content with intent behavior from citizen sensor

generated data that meets articulation of workflow tasks of the formal organizational com-

munity, and model the prioritized user groups to engage for enhancing awareness. The

proposed Identify-Match-Engage framework to improve cooperation between the formal

organizational actors and the citizens in the CSC raises the following specific research

questions–the first related to actions, the next related to actors of cooperation-

R4. How to identify relevant intentions from ambiguous, unconstrained natural language

text of social media (e.g., ‘seeking help’ intention) [Chapter 3]?
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R5. Can we better understand dynamics of group engagement to prioritize groups by

complementing existing methods of structural measures with a content-driven mea-

sure of group discussion divergence over time [Chapter 4]?

Prior works in intent mining have not explored the fusion of modeling declarative, and

social behavioral knowledge with statistically mined contrast pattern knowledge to address

imbalance and class dependence relationships in the document-level intent classification.

On the other hand, the earlier work on user engagement modeling was limited to structural

connections that are sparse in certain domains such as crisis response.

The key contributions driven by the thesis statement while addressing the aforemen-

tioned research questions are the following:

1. Transforming the design challenges of awareness and articulation into data level

problems, by addressing parts of them into two computationally tractable problems,

and building a computational IME framework to accommodate the cooperative sys-

tem design that can scale.

2. Classification of cooperation-assistive intentions from short, unstructured text doc-

uments using fusion of top-down and bottom-up approaches to improve context for

learning in the binary and multiclass classification framework.

3. Modeling engagement of actors (individuals and groups) to prioritize via a novel

measure of group discussion divergence, and predicting its trend using features of

users, their generated content, and their dynamic network connections in the user

interaction networks.

1.6 Use-case of Crisis Response Domain and Applications

In the context of crisis domain, reliance on both the formal (professional) and informal

(citizen-based/initiated/coordinated) response communities is a well-recognized require-
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ment for effective crisis management [93, 81]. Citizen sensed data flow via social media

potentially amplifies the influence of the informal community, both by expanding the ge-

ographic region that participates in emergency response from onsite to remote, and by

extensively distributing information and requests. Yet despite a seemingly viable role for

citizens in emergency response, and recent initiatives by the formal response community,

such as the U.S. Federal Emergency Management Agency (FEMA), command and con-

trol models from the formal response organizations do not easily accommodate the social

media data that the informal community has so readily adopted [82, 117, 127].

Applications of cooperation among various actors in the CSC and organizations can

be invaluable; for example, collecting data from social media communities to change prior-

ities of specific resource needs during crisis response by the organizational actors, who are

tasked to collect and filter relevant information (e.g., seeking-offering resources). This was

evident from our participation during an exercise of local emergency management organi-

zations [44]. One of the key lessons from the post-exercise review with formal organiza-

tional responders to effectively assist them was the need for better alignment of information

filtering and data mining with the organizational actor needs. Therefore, our approach to

mine intent for addressing specific articulation problems in the IME framework (module

m2 in Figure 1.4) attempts to address this issue. Similarly, exemplary applications in other

problem spaces include prioritizing the concerns about the brand to manage an organiza-

tional reputation by engaging with brand communities, and executing team tasks such as the

red balloon search by DARPA in 20091 by identifying potentially high engaging sources

in the discussion community. Figure 1.5 shows an example of demand-supply matching

application to assist organizational task coordination for donation resource management

and volunteering services during an Oklahoma (USA) tornado in May of 2013, based on

intent mining of seeking and offering help (modules m2 and m4 in the IME Framework,

Figure 1.4). This work has been published in [87]. If proper cooperation and engagement

1http://www.engadget.com/2009/12/06/mit-based-team-wins-darpas-red-balloon-challenge-
demonstrates/
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Figure 1.5: Application of assisting task coordination of emergency response organizations
via identifying and matching seeking (demand) offering (supply) intent related information
on social media, during a tornado in Oklahoma (USA), May 2013. [87]

with the social media community is lacking, responders may face a second disaster, such

as reported by NPR about managing all the unnecessary and unused clothes donated after

hurricane Sandy in 20122.

1.7 Dissertation Organization

The following chapters describe our inter-disciplinary approach to address research ques-

tions discussed above to provide a solution via the IME framework using intent and en-

gagement modeling in CSC. A summary of the organization of chapters discussed is as

follows.

Chapter 2 describes insights about verification of offline human behavior of language

usage in the online conversations with the help of offline theory guided features in conver-

sational classification tasks, and presents a case to leverage knowledge of social behavioral

theories in analyzing online social data.

Chapter 3 discusses techniques for identifying intent (classes are guided by the articu-

2http://www.npr.org/2013/01/09/168946170/thanks-but-no-thanks-when-post-disaster-donations-
overwhelm
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lation of organizational tasks) from citizen sensor generated data for binary and multiclass

problems by fusing bottom-up and top-down processing. Mining Intent would eventually

transform raw unstructured social media messages into a structured form that can enrich

the annotated information repository with seeking and offering behavior metadata.

Chapter 4 discusses a technique based on improving context via modeling social the-

ories for characterizing user engagement dynamics by group discussion divergence based

on content generated in the groups, in contrast to prior work on network structure-based

measures.

Chapter 5 provides an overview of real-world engagements, and lessons learned that

influenced our research, while also applying this research in the use-case of various crisis

responses.

Chapter 6 discusses the improvements, limitations, and future work directions. Fi-

nally, we conclude with a summary of this dissertation.

15



Chapter 2: Verifying Existence of

Offline Human Behavior in Online

Conversations

One of the a priori knowledge sources to support modeling intent and engagement behavior

from the user-generated content concerns offline conversational behavior. Our motivation

is to assess if offline conversation theories can provide knowledge to enrich feature design

in the online social data analysis. As we detail below, conversation itself entails linguistic

coordination, and is fundamental to cooperative behavior. Therefore, the detection of con-

versation identifies the intent to cooperate within a CSC. The specific aim of this chapter

is to understand the role of offline conversational behavior, in particular the theory-based

indicators of conversation, to guide the analysis of the conversational behavior on online

social platforms.

Conversation, defined as an exchange of sentiments, observations, opinions, or ideas

(cf. Merriam Webster Dictionary), is a well-studied phenomenon in social sciences and

linguistics. Language is a medium of expression for participants of the conversational ex-

change in a context. Various theories identify the specific linguistic constructs employed

during (generally face-to-face) conversational coordination. We hypothesize the presence

of these linguistic constructs in online conversations in CSC. Using simple linguistic indi-
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cators drawn from offline conversation analysis in social science, we create classification

models for the on-line (mediated) conversations. We show that domain-independent, of-

fline theory-guided linguistic cues distinguish likely conversation from non-conversation

in mediated online communication. This work was published in [91]. In the following,

we first discuss insights from the related offline theories for conversational coordination,

followed by a presentation of conversational forms in CSC on social media, and the design

of theory-guided features to create conversation classifiers.

2.1 Insights from Offline Theories of Linguistic Coordi-

nation

The present research aims to exploit domain-independent linguistic features of coordination

in off-line conversation [20, 39, 72]. These studies claim that general processes of social

interaction lead to the coordination of human conduct. The characterization of human

conduct will guide the analysis of online conversational behavior in CSC.

Goodwin and Heritage [39] observed that conversations reveal an underlying social

organization, which reflects an institutionalized communication of interactional rules, pro-

cedures, and conventions. Clark and Wilkes-Gibbs [20] showed that users follow certain

linguistic patterns for coordinated behavior in conversations. Properties of an exchange,

including opening and closing phrases, anaphora, and deixis, reveal the existence of co-

ordination between conversational actors. For example, Chafe [17] noted that the use of

determiners, (“a” versus “the”) distinguishes between previously established and new top-

ics in a conversation reflecting the presence of shared context for coordination. Clarke [21]

observed behavior of backchanneling in verbal exchange, where the listener confirms con-

tinued attention and comprehension with action that supports conversational coordination.

Similarly, Mark [72] illustrated communication conventions in the collaborative environ-
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ment.

These insights provide a principled foundation for the verification of conversational

cues in the online environment. However, the online socio-technical environment presents a

variety of conversational types, with different characteristics and involving different degree

of participating actors.

2.2 Types of Online Conversations Facilitated by Social

Platforms

Here we employ the Twitter social media platform as our experimental data source. Our

analysis promotes the view that Twitter supports conversational exchange in CSC with

inherent coordination properties.

2.2.1 About Twitter Social Medium

Twitter is a microblogging service (or platform) started in 2007 that provides an online

social network structure and a medium for information flow, where citizen sensors post

updates and subscribe to (referred to as ’following’) other citizen sensors to receive updates

(microblogs). A subscribed user is called ’follower’ of the subscription user, ’followee’.

Key definitions and functions include:

• Tweet: A short message/post/status/microblog from a user on Twitter, spanning a

maximum of 140 characters. Tweets include updates about user activities, share

useful information, forward other users’ statuses, converse with others, etc. The 140

character limit influences expression.

• Hashtag: Denoted by a word with preceding ‘#’ symbol (e.g., #JapanEarthquake),

the hashtag is a platform convention for user-defined topics, invented to identify a
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topic of communication using minimal characters. It is also an important tool for

grouping conversations by topic.

• Short URLs: Tweets may contain links to web-pages, blogs, etc. To avoid lengthy

URLs, Twitter users employ condensed versions of those URLs, shortened by exter-

nal services (e.g., http://bit.ly/IyBgIO).

• Reply: Reply is a platform-provided function to communicate with a tweet author

by clicking on Twitter’s ‘Reply’ button in response to a tweet. For example, user

hemant pt tweets “today’s discussion on linguistic coordination was just brilliant!”,

while user U uses the built-in Reply button to indicate “@hemant pt I was excited too

about today’s discussion”. The Reply syntax automatically inserts the originator’s

user name.

• Retweet: Retweet forwards a tweet from users to their followers, similar to e-mail

forwarding. In so doing, the writer credits the source using the built-in ‘Retweet’

function resulting in ‘RT @USER NAME’. For example, “RT @hemant pt: it is not

enough to depend on platform provided indicators for conversations #coordination

#psycholinguistic”. Here a new user retweeted a tweet from hemant pt.

• Mention: Mention acknowledges a user with the symbolic ‘@’ sign, but without

using the ‘Reply’ platform function. For example, “Thanks @hemant pt, we hope to

see you in next year’s conference too for further discussion on #coordination”.

2.2.2 Twitter Conversations

Danescu-Niculescu-Mizil, Gamon, and Dumais [24] showed that Twitter exchanges re-

flect the psycholinguistic concept of communication accommodation, where participants

in conversations tend to converge to one another’s communicative behavior. They coor-

dinate using a variety of dimensions including choice of words, syntax, utterance length,
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pitch and gestures. Gouws, Metzler, Cai, and Hovy [40] analyzed the effects of user de-

mographics, context and modes of information sources (web vs. mobile clients) on lexical

usage in the Twitter medium. Their study showed a convergence in the adoption of un-

usual vocabulary terms, another indicator of coordination. Further, the authors found that

contextual indicators, including geographic location, account for lexical variants relative to

the standard English language. This phenomenon of lexical accommodation supports our

conceptualization of some Twitter exchanges as a kind of conversation.

To identify the diagnostic features for a classification model of online conversation,

we require positive instances of messages that likely reflect conversation. Most of the rel-

evant work on Twitter focused on a data corpus based on the ‘Reply’ platform function.

However, this is unnecessarily restrictive, and potentially misleading . Therefore, we ex-

amine ‘Reply’, ‘Retweet’, and ‘Mention’ platform functions of Twitter in this study for

establishing the existence of offline conversation cues in a variety of online conversations,

potentially reflecting a range of conversation-like behavior. Figure 2.1, Figure 2.2 and Fig-

ure 2.3 below provide examples for each function, illustrating both positive and negative

examples of conversation. The negative examples support our claim that platform functions

alone do not assure conversation (see Figure 2.4).

Focusing exclusively on postings with Reply function, Ritter, Cherry, and Dolan [99]

analyzed content dependent and language dependent vocabulary in a computationally in-

tensive model of structuring conversation element sequences and disentangling dialogues

on Twitter. While their distinction between content and language dependent vocabulary

is similar to our distinction between domain dependent and independent analyses, we ad-

vocate reliance on the domain independent cues as a computationally inexpensive way of

screening the Twitter corpus prior to domain dependent analysis.

While Twitter’s Retweet function usage seems like a means simply to disseminate in-

formation, it also potentially functions as a type of conversation where multiple recipients
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Figure 2.1: ‘Reply’ feature based conversation

Figure 2.2: ‘RT’ feature based conversation

Figure 2.3: ‘Mention’ feature based conversation

comprise listeners for the original author. Three observations support our claim for concep-

tualizing Retweet function based exchange as conversation. In their extensive study of the

Retweet function, Boyd, Golder, and Lotan [11] noted distribution across a non-cohesive

network in which the recipients of each message change depending on the sender. While

such exchanges need not include conversational properties. Figure 2.2 demonstrates that

users in the Retweet diffusion chain sometimes prefix their opinion to the forwarded mes-

sage. This represents a localized conversation between the followee and her immediate

followers based on the action of the follower. Finally, the action of retweeting bears some

21



Figure 2.4: Online social platform functions do not ensure coherent conversation.

similarity to backchanneling in verbal exchange, in which the listener confirms continued

attention and comprehension with action [21].

Similarly, Mention-based tweeting can form a conversation, where one user addresses

another user rather than simply referring to him (e.g., “@user1 it’s not enough 2 depend on

Twitter indicators for conversations leading to #coordination #psycholinguistics”) without

using the Reply function of Twitter. Honeycutt and Herring [50] focused on the coherence

of exchanges involving the ‘@’ sign. They observed a surprising degree of conversational-

ity using lexical patterns particularly when using ’@’ as a marker of addressivity. It reflects

potential for facilitating conversations within an event context by utilizing the Mention plat-

form function.

• Assumptions for conversation classification

We identify two implications of our focus on platform function-driven (e.g., Retweet mes-

sages) subsets of data as linked to conversation. First, each subset is more likely to exhibit

coordination indicative features relative to the remainder tweets. Everything else is less

likely to be a conversation. Therefore we should see relatively more coordination indica-

tors in the platform function-driven subsets than the remainder. Second, the prevalence of

coordination language may decline with the type of platform function. Reply should have

the most coordination indicative linguistic features, as it is the most explicit indicator of

conversational intent.

We specifically deny the stronger claim that platform functions alone determine coor-

dination. For example, using the Reply function may simply reflect a convenient way to
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distribute a message. Blind retweeting to a broader network need not reflect concurrence

or endorsement consistent with a kind of conversation. And including the name of another

Twitter user in a message need not invoke a response.

Just as platform functions do not guarantee conversation, the absence of platform func-

tions does not guarantee the absence of conversation. We are particularly concerned with

messages that contain hidden conversation, without platform functions, e.g., “what’s going

on with that city? How many people escaped? Please tell me!” by a user @JT800.

We do claim that platform functions, relative to the remaining subset of tweets, are

more likely to reflect the properties of conversational coordination. By identifying a reli-

able set of theoretically based indicators of conversational coordination for selecting fea-

tures, we obtain a bootstrapped model for classifying any message as reflecting linguistic

coordination and we can potentially identify the features that reflect coordinated effort

in any individual posting, independent of platform functions. A final justification of the

search for conversational coordination indicators independent of platform functions is that

compliance with artificial convention often fails under stressful circumstances of disaster.

We suspect that recommendations for coordination that hinge on imposing low-level com-

munication templates on informal social media communities will fail under stressful and

non-standard circumstances [25]. Therefore, the ability to mine conversation provides a

robust alternative to brittle user compliance.

We provide the conversation classification problem statement as the following:

• Problem Statement p2.a: Given a community of citizen sensors uv as CSC = {uv

|v ε N} formed around discussion of a real world event E, with tweet messages mi

generated by uv as a corpus A = {mi |i ε N}. Classify a set of messages {mi} for a

platform function based conversation class c versus the non-conversation class NC,

where c ε {Reply,Retweet,Mention}, andNC =A\{Retweet,Reply,Mention}.
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2.3 Offline Theory-guided Features as Social Knowledge

for Classifying Conversations

Table 2.1 presents the linguistic-based coordination features that represent social knowl-

edge to examine tweet text for conversation. The examination of articles (h1 and h2) fol-

lows [17], who asserted that “the” assumes a previously established topic. A set of dialogue

management items (h9) captures the typical conversational openings and closings and re-

quests for clarification. The preponderance of hypotheses related to pronouns captures

anaphora (reference to a previous exchange) and deixis (grounding in a physical setting).

We anticipate more of these words when participants share common ground established

outside the observed exchange. We identified separate hypotheses by grammatical part

of speech and person. First and second person pronouns should appear in a coordinated

exchange. However, first person pronouns also appear in the personal status reports that

pervade Twitter, and may therefore not diagnose conversation. Other pronoun forms (pos-

sessives, relatives, reflexives) could obtain grounding within the message itself, rather than

a previous message. We now identify our hypotheses related questions to refine research

question R1 of this dissertation as discussed in Chapter 1. Our specific hypotheses are:

H2.1. Linguistic coordination features (heuristics in Table 2.1) distinguish Reply, Retweet

and Mention from other tweets.

H2.2. Linguistic coordination features correlate with information density.

These hypotheses leads to questions of assessing consistency between the degree of

success in separating Reply (RP), Retweet (RT) and Mention-based (M) conversations from

non-conversations (NC) and the degree to which these platform functions behave as con-

versation. Furthermore, we explore dependence between the degree of success in separat-

ing these platform function based conversations from non-conversations and the extent to

which the surrounding event context promotes coordination. Finally, we investigate if the
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diagnostic linguistic coordination features of conversation transcend the platform functions

of conversation.

We discuss our approach to the classification of online conversations in the next sec-

tion, using datasets from a variety of real world events.

Table 2.1: Linguistic coordination features as social knowledge for identifying conversa-
tion

2.4 Classification of Conversations in CSC: Experiments

and Results

We first describe the data collection method for this study, followed by our approach for

testing the hypotheses mentioned above via conversational corpus categorization, extrac-

tion of linguistic coordination features, and modeling conversation classification.

• Data collection
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The Twitter Streaming API provides real-time tweet collection. Alternatively, the Twitter

Search API provides keyword based search query, returning the 1500 most recent tweets

in one response and excluding tweets from users who opt for privacy. The query provides

tweet text and metadata, such as timestamp, location, and author information (such as

profile description, profile location, number of followers and followees, etc.).

Table 2.2: Statistics about the event-centric data sets and for various conversational
corpuses Reply (RP), Retweet (RT), Mention (M) and Non-conversation (NC)

To study tweets generated by citizen sensors in CSC related to conversations of real

world events, we created a crawler using the Twitris v1 system [77] that queried the Twitter

Search API every 30 seconds for event-related keywords (e.g., “hurricane irene” for the

event “Hurricane Irene storm 2011”) for the duration of the event period. We initiated

the keyword set with seed keywords and hashtags. We then expanded the initial set by

extracting its top key phrases and adding them to the crawler while maintaining human

oversight for keyword selection to maintain relevance to the event context. We collected

tweets for six different events. To reflect language behavior in response to a crisis type of

events, we examined the Haitian 2010 and Japanese 2011 earthquakes and hurricane Irene

2011. For the purposes of comparison with non-crisis type of events, we examined the debt

ceiling debate of 2011, the Skype Microsoft deal in 2011, and the Glenn Beck rally in 2010

(described in the Table 2.2).

• Algorithm to construct data corpuses for conversation types

As described above in Section 2.2, Twitter provides three functions Reply, Retweet and

Mention that potentially enable conversation. We constructed our separate corpuses using
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Algorithm 1 Platform Conversational Corpus Construction Algorithm

Algorithm 1.

• Classification Model

We created a classification model to establish the degree of conversationality for a message

set {mi} sample, each one characterized as a feature vector of linguistic coordination in-

dicative features (heuristics) shown in Table 2.1, including variants of the heuristic words

in the social media space to compensate for informalism (e.g., ‘you’ as ‘u’). The variants

were inspired from a popular slang words knowledge base–Urban Dictionary, and screened

through manual inspection. We used the Supervised Machine Learning techniques of Deci-

sion Tree classifiers [101] for our analysis. This provides an interpretable classification tree

with a series of nodes consisting of linguistic indicator features, ending with a leaf node

comprising a decision for the class.

We created training sets (to learn from the data) and separate testing sets (to test on

the new data and make a more robust classifier) of the data samples. We created balanced

(equal number of positive and negative class samples) training sets and test sets using data

samples corresponding to each of the conversation type classes (RP, RT or M) and non-

conversation class (NC). We used the established Weka Data Mining tool [43] to perform

modeling and experimentation.
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• Assessing Performance of Offline-theory Guided Features

Using a chi-squared test we ranked the linguistic coordination features that reflected signif-

icant alignment with the conversation class suggested by any of RP, RT or M corpuses as

compared to NC without these platform function properties. In a separate analysis that ex-

amined only correctly classified tweet segments (hits and correct rejections) we confirmed

the direction of the relationship between linguistic features and a class.

• Evaluation Method

We use a 10-fold cross validation [43] to assess the unbiased accuracy of conversation

classifiers. This allows computation of robust statistics for classification ability across the

ten repetitions such as the area under the Receiver Operating Characteristic (ROC) curve,

True Positive (TP) Rate, False Positive (FP) Rate, Accuracy, Precision, Recall, and also a

measure d’ in the perspective of signal detection theory [131].

• Experiments and results

We collected a set of six diverse events for analyzing conversation characteristics spanning

different time periods of different length and covering varied social significance. We de-

fined the end of the event period when the volume of information flow dropped steeply.

Table 2.2 shows a summary of the corpus. The first three events in Table 2.2 draw on

the disaster situation, which is likely to correlate with higher coordination due to poten-

tial goal-orientation of citizen sensor conversations in CSC. The remaining three events are

more generic. The choice of events allows us to demonstrate generalized usage of linguistic

cues for conversation conducted via social media.

Table 2.3 summarizes the results for learned models of conversation classifiers. The

table includes accuracy for the classifier (ability to distinguish between the platform func-

tion based conversation-RP/RT/M and NC) for each of the platform functions as well as
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Table 2.3: Classification performance for various types of online platform function
based conversations, using the offline-theory guided linguistic coordination features

other statistics, including dand ROC area values in the subsequent columns. Higher accu-

racy, dand ROC area values indicate a better classifier.

Each row in the Table 2.3 shows the classification ability for a dataset of an event (or

a mixture of events, denoted as common or mixed), with accuracy and ROC measures in

addition to the True Positive (TP) Rate, False Positive (FP) Rate and d’ value for each of

the three platform function based classes (Reply, Retweet and Mention). Accuracy mea-

sures range from 62% to 78%. ROC measures range from 0.63 to 0.84. These measures

suggest fair to good accuracy in general, with relatively superior scores for the case of

disaster events relative to the non-disasters events, Reply relative to Retweet and Retweet

relative to Mention. Across all events, the ROC area values are 0.8, 0.77 and 0.69 for dis-

tinguishing RP, RT, and M from NC using a common dataset based model. Moreover, the
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conversation classifier suggests the elimination of 23 percent of the Reply, 30 percent of the

Retweet and 33 percent of the Mention-based conversational tweets, despite the presence

of platform functions. However, the conversation classifier also promotes an average of 31

percent of the tweets that are not marked with these platform functions as exemplifying the

characteristics of conversation.

• Discriminability of Offline-theory Guided Features for Online Conversation

The features we use to classify conversation are not equally useful. Table 2.4 shows the

features in the models ranked from left (best) to right column (worst) for classification, for

each of the event datasets and for each of the conversation type corpuses RP (Reply), RT

(Retweet), M (Mention). As in Table 2.3, the last rows in Table 2.4 provide results for the

comprehensive (mixture of all events) dataset, and specific to all disaster and non-disaster

events dataset. Figure 2.5, Figure 2.6 and Figure 2.7 provide graphical summaries for the

top four heuristics features from our Table 2.1, omitting the highly influential heuristic

“you” [h12] to preserve a readable effectiveness scale on the remaining heuristics. In gen-

eral, pronouns (h3, h4 and h12) and dialogue management (h9) appear in the top 5 features

across the platform function based conversation classes and types of events. Retweet-based

and Mention-based exchanges are identified by word count (h10) and determiners (h1) fea-

tures as well.

• Correlation study for linguistic features in the correctly classified samples

Table 2.5 shows the correlation coefficients for correctly classified data samples only.

While the magnitude is meaningless because of the restricted sample space, the direction of

the relationship is always positive for the most highly ranked features. Thus, the presence

of the offline-theory guided linguistic coordination features under assessment discriminate

between positive and negative instances of online conversation samples. It supports our

hypothesis H2.1.
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Figure 2.5: Top linguistic coordination features within the Reply-based conversations

Figure 2.6: Top linguistic coordination features within the RT-based conversations

Figure 2.7: Top linguistic coordination features within the Mention-based conversa-
tions
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Table 2.4: Ranking of linguistic coordination features (heuristics in Table 2.1) for
performance in the classification for online conversation types for real world events

• Information density

According to our hypotheses, conversation indicates coordination. Coordination in turn

implies a higher degree of substantive information, or information density. A domain-

dependent analysis of tweet information content is beyond the scope of the present chapter.

However, we provide a generic indication of tweet information density using the well-

known Pennebaker’s Linguistic Inquiry Word Count (LIWC) software [85] (http://

www.liwc.net/). LIWC provides percentages for the presence of various pre-defined

categories of words. Here we report analyses using predefined LIWC measures of commu-

nication, sensed experience, and social interaction. Measures of communication include

130 words such as “call”, “speak”, and “listen”. Measures of sensed experience include

112 words, such as “drink”, “eat”, and “look”. Measures of social interaction include 325

words such as “rumor”, “secret”, and “aunt”. Although LIWC provides separate values

for these measures, we note some degree of content overlap. For example, the word “ask”
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Table 2.5: Correlation of linguistic features with predicted conversation class c in the posi-
tively classified samples, for different conversation types and for the case of common/mixed
dataset for disaster events

appears in the LIWC dictionaries for all three measures. However we edited the social

interaction measure to exclude the words we used to build our conversation classifiers.

Table 2.6 presents analyzed data for over 850,000 tweets. The left third (horizontal

segment 1) contains analysis data for Reply-based tweets. The middle third (segment 2)

contains data for Retweet-based tweets. The right third (segment 3) contains analysis data

for Mention-based tweets. In the vertical organization, the top quarter (e.g., 1a) of the table

presents data for the number of tweets analyzed. The second quarter (b) of the table presents

data for the social measure. The third quarter (c) presents data for the senses measure.

The bottom quarter (d) presents data for the communication measure. The combination

of conversation models (Reply, Retweet and Mention-based) with three different LIWC

analysis measures defines nine different analyses (sub-tables under 1b-1d, 2b-2d, and 3b-

3d). In each case we have a separate two by two sub-table (e.g., 2b), with existence of

platform-based functions of conversation serving as a ground truth defining the rows with

respect to noise, and our conversation classifier defining the columns. Values inside the

cells of a two by two analysis sub-table correspond to the LIWC rating per 1000 words for

the measure in question. We also provide row and column LIWC ratings.
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Table 2.6: Three LIWC analysis measures social interaction, senses, and communi-
cation, for three tweet conversation classification models (Reply, Retweet, Mention).
[Light gray for non-significant effects - refer details under subsection ‘Information
Density’])

The number of tweets in each small cell of Table 2.6 is large, but not equal (see

sub-tables marked with a in the top quarter, e.g., 1a). To conduct a statistical analysis,

we divided the contents of each cell into 20 equal subsets, and submitted each subset to

LIWC analysis. Thus, while the total number of tweets differed among cells, the number

of scores (subsets) in the statistical analysis did not. We conducted a two-by-two analysis

of variance on the four combinations of ground truth and conversational classification, and

followed up with t-tests as needed. We assumed a fixed effects model, as the two levels of

each (ground-truth row, and conversation-classifier column) variable exhaust the possible

range of values. The general pattern of findings is significant main effects demonstrating

increased information density for tweets classified as conversation. The rare significant

interaction contrast in the factorial design is not theoretically interesting. Non-significant

effects appear in Table 2.6 with light gray labels.

The ground-truth (row) main effect is significant for two measures of the Reply tweets

(Social, F (1, 76) = 1.05, p > .10; Senses, F (1, 76) = 42.43, p < .01; Communication, F
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(1, 76) = 76.35, p < .01). The ground-truth main effect is significant for all three measures

of the Retweet-based conversation tweets (Social, F (1, 76) = 4.40, p < .05; Senses, F (1,

76) = 13.12, p < .01; Communication, F(1, 76) = 14.31, p < .01). The ground-truth main

effect is significant for two measures of the Mention-based tweets (Social, F (1, 76) = 9.20,

p < .01; Senses, F (1, 76) = 3.37, p > .05; Communication, F (1, 76) = 12.25, p < .01).

The conversation-classifier (column) main effect is significant for all three measures

of the Reply tweets (Social, F(1, 76) = 19.51, p < .01; Senses, F (1, 76) = 77.88, p < .01;

Communication, F (1, 76) = 82.72, p < .01). The conversation-classifier main effect is

significant for two measures of the Retweet-based conversation tweets (Social, F (1, 76)

= 12.97, p < .01; Senses, F (1, 76) = 2.83, p > .10; Communication, F (1, 76) = 4.99,

p < .05). The conversation-classifier main effect is significant for two measures of the

Mention-based tweets (Social, F (1, 76) = 18.97, p < .01; Senses, F(1, 76) = 1.61, p > .10;

Communication, F (1, 76) = 7.67, p < .01). For the two cases of missing conversation ef-

fects we examined contrasts between the (Noise, Non-Classified-Conversation) cell and the

remaining three cells combined in an analysis sub-table. These contrasts were significant

with a one-tailed test at p < .025, t (76) = 3.25 and t (76) = 2.23 for Retweet and Mention

respectively. Thus, we demonstrate that our conversation-based classification for tweets

correlates with higher densities of information content to support the hypothesis H2.2.

2.5 Discussion and Hypotheses: Reviewing the Usability

of Offline Social Knowledge for Understanding Online

Social Data

Our goal was to separate the online conversations on Twitter data stream into subsets more

and less likely to contain citizen coordination revealed in conversation by analyzing offline-
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theory guided linguistic properties of the content. We modeled linguistic coordination

features in conversation classifiers for Twitter datasets, including three types of platform

function-based messages (Reply, Retweet, Mention) assumed to contain a high propor-

tion of conversation. Using simple heuristic features of linguistic coordination, based on

pronouns, dialogue management, and word count, we demonstrated the ability to classify

tweet messages sets that are instances of Reply, Retweet, and Mention based conversation

versus none of these with accuracy up to 78% and ROC area values up to 0.84. These

generally good performance values support H2.1, and address our research question R1 of

this dissertation as mentioned in the Chapter 1. The linguistic coordination indicative fea-

tures guided by offline theories distinguish online messages (tweets) containing platform

functions of conversation from other non-conversation tweets. Thus, our contribution adds

insights to existing knowledge of conversational behavior online on Twitter [24, 40] for

additional dimensions of conversational indicators in citizen sensor communities.

Consistent with our question assumption for hypothesis H2.1, our ability to classify

conversation declines with the type of Twitter exchange, but in an interpretable fashion.

We do best at classifying Reply-based conversations, which should rely most heavily on

coordination indicators because the intended purpose of Reply is conversation. The accu-

racy pattern is also consistent with Honeycutt and Herring [50] who noted a high degree

of conversationality using lexical patterns while using ‘@’ sign of addressivity. However,

in contrast to Ritter et al. [99], we also classify a large percentage of Reply, as well as

Retweet and Mention as non-conversation. Consistent with our assumption on effect of

event content, we do better with the disaster event corpus than the non-disaster corpus

as shown in Table 2.3. This supports a potential association between linguistic features

of coordination and the potential of actual coordination that the disaster invokes, and the

corresponding conversations around it. Despite relative success in distinguishing different

types of tweets from non-conversation, our discrimination statistics are not perfect. This is

in part due to the expected contamination of Reply, Retweet, and Mention function usage
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with non-conversation. As Boyd, Golder, and Lotan [11] explained, various motivations

apart from conversation drive retweeting behavior. Alternatively, we assert the presence of

otherwise undetected conversation in the non-conversation subset.

• Psycholinguistic Theory

We know of no other studies that attempt to test an account of conversation against a control

corpus, in part because of the challenge of defining such a corpus. The bulk of linguistic

theory hinges on the analysis of positive instances of conversation. Thus, we had not pre-

viously been able to test the diagnosticity of conversation indicators.

Consistent with H2.1, the models generally depend on a common set of effective

heuristic features, across individual events, types of events, and types of conversation. The

superior features overall included subject pronouns and dialogue management indicators.

The utility of pronouns reflects the prior common grounding of important entities (agents

and objects) in previous exchange. Less effective features include the relative, possessive

and reflexive pronouns. Those pronouns may readily obtain grounding within the message

posting itself (i.e., anaphora) and are therefore potentially less dependent upon the collab-

orative establishment of common ground, consistent with [20]. However, the classification

of Retweet and Mention-based conversations also relies upon the determiner “the” and

word count. Crediting the original source and adding opinion prefixes necessarily extend

the length of tweets, unless already at the 140 character limit. Thus the length heuristic fea-

ture is likely an artifact of the Twitter medium. Nevertheless, space-driven unconventional

English and new writing conventions such as hashtags did not eliminate the tacit concern

for coordination in ordinary conversation. Even the Retweet reflects some conversational

coordination.

In addition to demonstrating the diagnosticity of conversational indicators relative to

a control condition of non-conversation, we also have demonstrated a greater density of

information content in tweets that reflect conversation, consistent with H2.2. The Twitter

data stream that does not get classified as conversation appears to have less content. This
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theoretically relevant association between linguistic coordination features of conversations

and content has practical merit. We cannot assume that all platform-marked conversation

(via function of Reply, Retweet, Mention), is actually information rich conversation, pro-

viding a basis for trimming an otherwise unwieldy volume of message traffic in online

social platforms.

• Limitations and Future Direction

Alternative machine learning approaches such as boosting and bagging could improve the

performance of the conversation classifier. However, our goal here is to present an existence

proof for a domain-independent conversation classifier as the foundation for the use of

existing social knowledge of offline conversation behavior in detection of coordination in

online conversations. Although linguistic theory assumes a universal need for cooperation

in conversation, our heuristic features are limited to English and could require revision as

we extend them to other languages.

We relied on generic semantic metrics (for communication, sensed experience, and

social interaction) simply to demonstrate the potential information gain in the conversa-

tional subsets detected using help of offline-theory guided features. Although encouraging,

this is no substitute for the semantic analysis that identifies actionable nuggets.

There is a need to focus on the semantic abstraction model, both domain independent

and domain specific, to further mine, sort, and aggregate actionable content from CSC for

addressing cooperation challenges of awareness and articulation for organizational actors.

We, therefore, discuss our approach of intent mining to meet the articulation of organiza-

tion’s actionable information needs in the next chapter.
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Chapter 3: Identify function: Intent

Classification to Meet Articulation of

Organizational Needs

Intent is defined as an aim or plan for action. We observe this behavior every day, for

instance, when a user queries on a search engine in order to buy a laptop, or when a user

participates in a conversation to inform. We assess the intent of user expressions in the

context of cooperation in goal-oriented CSC. Specifically, organizational tasks have infor-

mation needs, and require mining of information related to those tasks from user-generated

messages in CSC. We focus on mining information specific to relevant intent classes that

meet the need of an articulated organization and enable cooperation between citizens and

organizational actors. Much prior work in intent mining addresses the challenge of under-

standing queries on search engines by modeling search logs (e.g., query terms, click graphs,

action sequences) in the problem space of Information Retrieval. Intent during search is a

specific behavior of finding navigational, informational and transactional information in-

stead of social communication. However, the objective of our study is to model intent in

user-generated content of CSC for understanding human expressions in online social plat-

forms for cooperation, and not search queries. We contrast our objective with different

types of intent mining research in the related work section. We denote citizen sensor gen-
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erated messages as short-text documents to better situate the mining problem in the related

context of text mining. Our research question is “How to identify relevant intent from an

ambiguous, unconstrained natural language text document?” We first discuss the issues in

interpreting the intent of a short-text document, then formalize our problem as a classifica-

tion problem, noting gaps in the related work, and then presenting our knowledge-guided

approach to fuse top-down and bottom-up processing paradigms for efficiently mining in-

tent.

3.1 Addressing the Challenge of Multiple Intent as a Clas-

sification Problem

Citizen sensors often express a variety of intents within single short-text document as they

try to capture the specifics of information concisely in the small space constrained by the

online social platform. For instance, in the use-case of crisis, recent studies showed citizens

on- and off-site using Twitter to share information on situational updates, asking for help

as well as offering help [127, 125]. Table 3.1 shows examples of some of these short-text

documents and associated potential intent from a crisis event dataset of hurricane Sandy in

US in the year 2012. Note the informal language (e.g., wanna, thx, etc.) characteristic of

short-text documents (see Section 2.2).

Multiple potential intent classes complicate natural language interpretation. A variety

of factors affect an individual’s expression of intentionality [3, 69, 114]. In fact, natural

language understanding is an AI-Complete problem [108]. Therefore, to make the intent

identification problem computationally tractable, we exploit top-down processing, and de-

fine a classification form of this problem for mining specific intent classes.

We define a general form of intent classification as a multi-label classification problem

[96], with the special case of one label per document as a multi-class classification prob-
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Table 3.1: Examples of short-text documents and associated potential intent

lem [36]. The scope of this chapter is focused on multi-class classification. Our specific

problem statement is:

• Problem Statement p3.a: Given a community of citizen sensors (users) ui as CSC

= {uv |v ε N} formed around discussion of a real world event E, with short-text

documents mi generated by uv creating a document corpus A = {mi |i ε N}, and a

set of K intent classes, c ε {C1, C2,..,CK}; predict an intent class c for each mi ε A.

3.2 Related Work and the Challenges of Ambiguity in In-

terpretation, and Sparsity of Intent

Work related to problem p3.a crosses multiple issues. We describe each of them in the

following:

• Data and Domain Variant Characteristics of Intent Mining

For search engine data, researchers designed approaches to mining intent in user queries

using data from user search logs, including clicks, click sequence graphs and query terms,

with broadly identified content categories such as navigational, informational and trans-

actional types [13, 28, 5, 16, 118]. A major limitation of this approach for our problem
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context is the dependence on (an unavailable) large data set of user behavior. Furthermore,

the variety of intent classes prohibits bottom up search.

For well-formed text data, prior intent mining work spans varying problem areas in-

cluding analysis of presidential speeches [59], and product reviews [94, 133, 18]. In con-

trast with the short-text document content of social platforms (e.g., Twitter), such reviews

and large text documents provide more explicit information about the applicable context,

and typically comply with formal language usage and syntactic structure that enables es-

tablished methods of Natural Language Processing.

Within social platforms data, earlier research has mainly focused on mining transac-

tion related intent due to practical commercial merits [49, 15, 18]. The limited action

motives pertain to the transactional intent of buying and selling, and therefore, the nature

and interplay of other kinds of complex intent requires more investigation, such as helping

(a broad intent class). Researchers have also modeled cultural differences in the expression

of user intent via signals of goals, perceptions of control, and rewards using a hashtags

based approach [121], however, hashtags have limited ability to capture the variety of in-

tent expressions. Past work has also dealt with the identification of problems or aid report

recognition during a crisis event [125], which closely relates to intent identification of seek-

ing and offering help in our context. However, a report may not capture the expression of

future actions, such as the intent of donation offering.

• Problem Variant Characteristics of Text Classification

Problem p3.a is a form of text classification [45]. However, there are subtle differences

in the type of text classification problem under investigation here. In the literature, re-

searchers have studied topic classification [129], opinion or sentiment or emotion classifi-

cation [129, 83], as well as intent classification [49, 18]. Consistent with the observation

of Kröll and Strohmaier [59], topic classification is focused on the subject matter of the

document while opinion classification is focused on the current state of affairs. In contrast,

intent classification is focused on the future state of affairs. For example, “I wanna watch
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awesome Fast & Furious 7. Yh, Vin Disel is COOLESt!!!”. In this example, topic classi-

fication of the message focuses on the noun, the movie ‘fast & furious 7’; sentiment and

emotion classification is focused on the positive feeling of the author’s message expressed

with the adjective awesome. In contrast, intent classification concerns the author’s future

action of going to watch the movie, the action expressed via the verb phrase wanna watch.

Furthermore, topic classification would typically ignore stopwords such as ‘the’ (Deter-

miner) or a verb, which as shown in Chapter 2 on conversation classification, can be quite

important features for indicating a context. Therefore, the data representation in feature

vector space, algorithms for modeling, and their performance measures in these various

forms of the text classification problem have a different focus than ours [129].

• Classification Approach Variant Characteristics

Prior research work on intent classification has mainly focused on binary classification

methods due to the complexity of intent prediction from the natural language, and given

that the multiclass classification is a hard-to-predict problem. Also, for multiclass classi-

fication, increasing the number of classes further increases complexity. It is still an open

problem for the best method to employ depending on the data and problem domain. Re-

searchers have studied, therefore, different learning schemes under mainly two areas of the

learning methods, a.) A standalone multiclass learner, and b.) Binarization by dividing the

problem into multiple binary (base) learners, followed by combining them [36, 107]. In the

multiclass learner, the higher complexity of learning the decision boundaries for the clas-

sification due to number of classes is a major challenge. The binarization method has the

benefit of simplified learning due to only two-class problems for the base learners. Bina-

rization also takes advantage of and leverages well-studied binary classification algorithms

for the base learners, and can be parallelized for addressing scalability. The most popular

schemes for the binarization framework are decomposition based one-vs-one (OVO), and

one-vs-all (OVA). Furthermore, binarization techniques include the fusion of results of the

binary classifiers. Therefore, aggregation based approaches such as error-correcting-codes
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(ECOC) have been studied. Although these approaches have been mainly investigated on

the UCI gold standard datasets [36, 37], within the context of a more challenging intent

classification problem these schemes are yet to be tested. There is an additional challenge

of imbalance and class dependence relationships in expressing intent in our problem con-

text, such as the higher likelihood of complementary existence of both intent classes of

seeking-offering in a message.

• Challenges of Ambiguity and Sparsity

Informal language usage creates ambiguity in interpreting a document. Ambiguity here

refers to the existence of overlapping characteristics corresponding to multiple intent classes

within a single document, causing the weak learning of predictor-class relationships for that

document. Sparsity of behaviors of specific intent classes in the corpus creates imbalance

issues.

In the current objective of this chapter, the mining of intent classes is focused in the

social setting (in contrast to the more narrow search intent such as transactional), where a

user expresses intent in the short-text document to be socially communicative with other

users, specifically to promote cooperation. This focus opens an opportunity to explore so-

cial behavior as a context for improving intent mining performance. We focus on three

intent classes in this work, relevant to the articulation of organizational tasks for our coop-

erative system design: {Seeking, Offering, None (Neither Seeking nor Offering)}.

We now identify the following hypotheses related to the broader research questions

R2 and R4 in Chapter 1, on the potential of exploiting psycholinguistic research for mining

the relevant intent from unstructured, ambiguous short-text documents:

H2.1. Psycholinguistic research can inform semantic and syntactic feature design to im-

prove expressivity of data representation for the intent classification of user-generated

content in CSC.
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H2.2. Intent classification can be improved by fusing top-down knowledge-guided and

bottom-up statistical learning approaches to address the imbalance and label depen-

dence of intent classes in user-generated content.

H2.3. Performance for intent classification by fusing top-down knowledge-guided and bottom-

up approaches improves both popular frameworks of multiclass classification using

binarization – one-vs-one (OVO) and one-vs-all (OVA).

We discuss our intent classification approaches to address the ambiguity and sparsity

challenges in three forms: bottom-up processing (v1), top-down processing (v2), and a

fusion approach of top-down and bottom-up paradigms (v3).

We summarize the key lessons of our approach, and the organization of this chapter’s

logic in Figure 3.1. Approach v1 of bottom-up processing exploits the implicit semantics

of the local content achievable by statistical processing of the training data alone. On

the other hand, approach v2 of top-down processing exploits the semantics of the content

using features guided by declarative knowledge and social behavioral patterns, acquired

outside the context of the given training data. Finally, approach v3 reflects a powerful

form of exploiting semantics with richer representation of data by combining top-down and

bottom-up approaches, and learning intent with the knowledge-enhanced representation

of the training data. The knowledge-guided features inform the expressivity in the data

representation for efficient machine learning to solve a hard-to-predict intent classification

problem.
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Figure 3.1: A knowledge-guided approach can improve representation of context in the
feature space for training an intent classifier, by employing guidance from a variety of
knowledge sources in designing features.

3.3 Approach v1: Learning with a Bottom-Up Approach

of Local Content-driven Features

The prior literature for both binary and multiclass classification has employed a basic ap-

proach to text classification problems by learning local text features contained within the

document [49, 125, 129]. Therefore, we first perform such content-based feature extrac-

tion.

The bag of tokens model is a well-known content exploitation approach in text mining.

Each short-text document mi can be represented as,

mi = { (wi, f(wi)) |wi ε W , f(wi) ε [0,1]}, where wi is a n-gram token, and f(wi) is

a function for choice of the feature design, such as n-gram token frequency.

We create features using a dictionary W of n-gram tokens wi that is acquired using a

tokenization process (e.g., single-space delimiter for uni-gram tokens) on the documents of
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corpus A, and employ term frequency (tf ) function as f(wi) for each n-gram token feature.

The learning process derives patterns in this token-based feature space. We hypoth-

esize this simple but effective approach to text classification as applicable in our problem

context. We further explore role of knowledge about human behavior in the next section as

our approach v2 to address the challenge of exploring further improvements in expressivity

of data in representation.

3.4 Approach v2: Learning with a Top-Down Approach of

Global Knowledge-driven Features: Declarative, So-

cial, and Contrast Patterns

We note the challenge of semantics in understanding of implicit relationships between fea-

tures in a bag-of-tokens model, as in approach v1 to interpret intent. A learning algorithm

can identify several relationships between features, and derive patterns of such relationships

that correlate with the learning objective classes. However, mining of such relationships

is limited to the provided training data locally. Also, it can be highly complex and time

consuming, given that textual data can generate a large dictionary of n-gram features.

Human beings often find relationships between two objects by connecting them via a

reference lookup, or compare and contrast with their prior experience. Similarly, our goal

is to acquire such a knowledge source that can assist finding relationships between items in

the feature space of the intent learning task. We present three kinds of knowledge sources

for informing intent classification in the settings of an online socio-technical system as

follows: Declarative, Social, and Contrast Patterns.

• (DK) Declarative Knowledge: Interplay of Semantics and Syntax

Declarative knowledge includes facts, and in this context, knowledge about the expression
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of different intent classes. We rely on domain experts, who can provide rules for specific

lexical patterns based on experience. Another approach is to rely on studies of human

expression from linguistics, natural language understanding in Artificial Intelligence, and

psychology, which inform the design of ontological rules of domain independent intent

expression.

Conceptual Dependency Theory. Taking inspiration from conceptual dependency the-

ory by Schank [103], we rationalize our design of a psycholinguistic rule base. Conceptual

dependency theory supports the concept abstraction for establishing meaning independent

of specific word occurrences in the document so as to represent two documents with similar

meaning by a conceptual class representation.

Semantics for Intent. Linguistic syntactic classes such as verbs or adjectives also con-

vey semantic content when they associate with a context-specific meaning. Concept classes

specific to a domain (such as ‘shelter’ in a crisis response) are higher-level abstractions

[74] for domain specific information needs. Including the semantics of the textual con-

stituents establishes relationships at an abstract level, and therefore, captures multiple data

instances containing different textual constituents within a specific sense of intent. We rely

on a lexicon for the psycholinguistic class of verbs, to design a foundational rule base for

distinguishing between intent classes, given that verbs imply a plan for action. While it

is possible to express a human need without a verb to express an intent class, for exam-

ple by stating the noun in question, such formulations are potentially ambiguous and our

objective is to create meaningful intent representations. Levin’s analysis of verbs [62] is

well grounded in the scholarly literature, and provides a resource for selecting the verbs of

specific intent expressions.

Syntax for Intent. Apart from syntactic classes such as verbs corresponding to seman-

tic content, specific syntactic constructions have implications for intent. For example, a

subject with the main verb “have” and any noun suggests an Offering intent expression.

However, the same text preceded by the auxiliary verb “do” and the pronoun “you” sug-
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gests a Seeking intent expression because the combination of syntax and pronoun reverses

the illocutionary force through an interrogative structure. However, the abbreviated and

unconstrained Twitter medium prevents reliance on punctuation for the identification of in-

terrogatives. Pronouns and word order assist in the complementary intent class expressions

associated with interrogatives, e.g., “Can you send water?” (Seeking) and “I can send wa-

ter” (Offering). Similarly, word order (e.g. verb-subject positions) also plays a crucial role

in the intent expression, and provides stark contrast to the unordered bag-of-tokens model

for data representation.

Semantic Classes for Relevant Intent Categories in the Context of Cooperation. Given

our focus on the relevant intent classes for meeting articulation of organizational needs

as Seeking and Offering, we focus primarily on verbs corresponding to Schank’s P-Trans

primitive [103], reflecting the transfer of property. Our lexicon of Seeking-Offering verbs

includes the Levin categories of: give, future having, send, slide, carry, sending/carrying,

put, removing, exerting force, change of possession, hold/keep, contact, combining/attach-

ing, creation/transformation, perception, communication. We exploit the semantic classes

of auxiliary verbs (‘be’, ‘do’, ‘have’), the modals (‘can’, ‘could’, ‘may’, ‘might’, ‘would’,

etc.), consistent with exploration by [94], question words (‘wh’-words and ‘how’) and the

conditional (‘if’).

Supporting Study. We performed a preliminary study of the psycholinguistic knowl-

edge based approach on the hurricane Sandy event that occurred in the US in 2012, as

discussed in Section 2.4. We processed a dataset of 4.9 million tweets collected using the

Twitter Streaming API from October 27 to November 7, through a domain independent

conversation classifier created using a mixed event dataset, as discussed in the Chapter 2.

We applied the rules in Table 3.2 to classify the tweets suggesting conversation, and se-

lected a sample of 2,000 tweets for validating with two native English-speaking annotators,

for Seeking help versus Offering help intent classes. On the subsample with strict agree-

ment of both the annotators for a class with Cohen’s Kappa being “moderate”, we observed
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Table 3.2: Psycholinguistics based semantic and syntactic rules to identify Seeking and
Offering intent classes. (x = yes) is a binary function to check presence of the feature x
in the document. The lowercase word x implies literal usage, e.g., ‘need/want’ implies
presence of either of ‘need’ or ‘want’ word. A capitalized word implies presence of any
of the class of word types, e.g., ‘Adjective’ for adjectives and ‘Things’ for resources from
domain ontology (our design of crisis domain ontology is discussed in the Appendix)

F-1 score of 0.78 and AUC as 0.79. This supports the investigation of psycholinguistic re-

search for further improving intent classification. Detailed analysis of this study appears in

[90].

We noted that an exhaustive list of such limited rules is still subject to error, largely due

to the phenomenon of indirect speech acts, which rely on shared background knowledge

to reinterpret apparently factual information [105]. Accordingly, asserting a problem is a

classic approach to expressing a need, e.g., “it is hot in here” means “I need air” and/or

“open the window”. Similarly, “The Red Cross can provide housing” provides a supplier

fact. However, “I bet the darn governor can provide housing” could imply a disgruntled

seeker employing an indirect speech act, because unlike the Red Cross, the governor does

not directly offer housing. Moreover, we cannot yet identify the implicit interrogative in

“Sam thought that Beth had water”, which calls into question whether Beth in fact had

water [47]. The factual statement could also imply that Beth is seeking water, Sam is
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seeking water, or the speaker is seeking water, none of which is actually asserted. In this

regard, we hypothesize two further types of knowledge that can help enrich context.

• (SK) Social Knowledge: Offline-theory Guidance

Intent classification in the online socio-technical environment for cooperative behavior can

leverage the contextual features of conversations, as the conversations are foundation for

cooperation. In online socio-technical systems, citizen sensors will generate intentional

content in the expectation of a cooperative listening audience. This differs from user actions

that may or may not have a motive for social interaction (e.g., search intent). Exploiting

such a social aspect of conversational behavior as a knowledge source can improve the

context of intent classification. We considered linguistic coordination indicators discussed

in Chapter 2 as a potential source for this type of knowledge (e.g., Dialogue Management,

Determiner, etc.).

• (CPK, CTK) Contrast Pattern Knowledge: Exploiting Power of Data Mining

In the declarative knowledge provided by domain experts and social knowledge, there is

likely a possibility of missing relationships due to the challenge of creating an exhaustive

rule set for that knowledge. Therefore, our goal is to incorporate the power of data min-

ing to discover contrasting patterns for each of the intent classes as a priori knowledge for

the learning process. Such patterns can boost data representation for learning predictor-

response relationships [27]. The patterns should be sequential due to the importance of

token (word) order in intent expressions as noted earlier. There has been work in the liter-

ature to observe the importance of sequential pattern-aided text classification for topic as

well as sentiment and opinion mining [98, 54, 51, 55].

The typical sequential pattern mining [31] is unsupervised and oriented to discover-

ing patterns in a temporal transactional database to glean knowledge of interesting patterns

with no supervision in the core process, unlike declarative knowledge. However, this ap-
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proach generates a huge number of patterns based on the chosen parameter for minimum

frequency, and requires pruning in a post-processing step.

Our objective is, first, to mine sequential patterns within a labeled dataset of an in-

tent class to observe any interesting class-wise frequent patterns [55]; this is followed by

contrasting such class-wise pattern sets against each other to derive interesting, and novel

emerging patterns [26, 66] for classes as described in the following. Incorporating this

technique in our knowledge guidance framework can therefore help address challenges of

efficiently capturing context for some of the imbalanced intent classes, as well as provide

the contrasting features as a means to boost the discriminative power of the representation

of data in the feature space for learning.

Formally, adopting basic definitions from [66] in our problem context, we define a

measure to select contrasting patterns, Sparse-Contrast-Strength(P ,Cj) for a pattern P and

intent class Cj:

1. A dataset, a corpus A in problem definition p3.a, is defined upon a set of k features

(also referred as dimensions) {F1,F2,...,Fk} for mining patterns. For every feature

Fi, the domain of its values (or items) is denoted by dom(Fi). Let I be the aggregate

of the domains across all the features, i.e. I = ∪i=1,..,k dom(Fi).

2. An itemset is a subset of I . Let P and Q be two itemsets. We say P contains Q if

Q ⊂ P . A dataset is a collection of transactions corresponding to each short-text

documents mi ε A. Each transaction T is a set of feature values, i.e. T ⊂ I . The

number of transactions in A is denoted by |A|.

3. The support of an itemset P in dataset A, denoted by support(P,A):

support(P,A) = |Tp|/|A|, where Tp = {T |P ⊂ T}, and 0 ≤ support(P,A) ≤ 1

(3.1)

4. Assume two candidate classes in dataset A, namely C1 and C2. The support ratio of
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an itemset P between two classes, termed as growth rate (gr):

gr(P,C1, C2) = support(P,C1)/support(P,C2) (3.2)

5. Each itemset is associated with a discriminating power (or contrasting strength):

strength(P,C1, C2) = support(P,A)∗gr(P,C1, C2)/(1+gr(P,C1, C2)) (3.3)

6. An Emerging Pattern (EP) is a simple contrast pattern, defined as an itemset P , s.t.

support(P,C2) ≤ β (i.e. infrequent in C2), and support(P,C1) ≥ α (i.e.

frequent in C1). Moreover, P is a minimal emerging pattern if it does not contain

other emerging patterns. A Jumping Emerging Pattern (JEP) is an EP that has an

infinite growth rate.

7. We compute contrast emerging patterns within a dataset of an intent class from an

imbalanced class set, where sparsity creates a challenge to identify any meaning-

ful patterns from a minority class using frequent pattern mining, favoring majority

class. Therefore, we bias to compute per class frequent patterns with varying support

thresholds STj for an intent class Cj . After computing frequent patterns, we prune

for minimal patterns in each Cj , and then find contrast measure. We define contrast

measure of a pattern P for class Cj as,

Sparse− Contrast− Strength(P,Cj) =

support(P,Cj) ∗ Contrast−Growth(P,Cj, Ck)

(3.4)
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where,

Contrast−Growth(P,Cj, Ck) =

1/(|Cj| − 1)
∑

Ck,k=/=j

gr(P,Cj, Ck)/(1 + gr(P,Cj, Ck))
(3.5)

and, Contrast−Growth(P,Cj, Ck) = 1 if gr(P,Cj, Ck) is infinite (a case of jump-

ing emerging pattern).

8. We use a ranking method for pattern selection per class using a parameter X% for

top-k, based on the measure of Sparse− Contrast− Strength(P,Cj).

We hypothesize that the selected contrast patterns further leverage knowledge to im-

prove context in the data representation, and improve the learning performance. We denote

the feature set CTK when items are the text tokens, and CPK for the case when items are

part of speech (POS) tags of the text documents.

3.5 Approach v3: Learning with an Integrated Approach

of Global Knowledge- and Local Content-driven Fea-

tures

Our knowledge-guided classification framework merges the bottom-up processing of ap-

proach v1, and top-down processing of approach v2 to address these challenges by improv-

ing expressivity of data representation. By merging the top-down approach v2 in our hybrid

approach, we exploit a priori knowledge external to the training data available for learning,

saving on the amount of time to statistically learn expressive and diverse predictor-class re-

lationships by complex processing in the feature space.
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Table 3.3: Levels of improving learning performance for intent classification

The specific challenge of ambiguity in interpreting an intent class for a short-text doc-

ument containing unconstrained natural language also presents a problem of class depen-

dence relationships during the learning process (e.g., Seeking may be positively associated

with Acknowledging, while negatively associated with Offering in majority of the docu-

ments, although using similar strong features such as ‘wanna help’). On the other hand, the

challenge of the sparsity of specific intent classes in the data leads to an imbalance problem

in machine learning. These challenges weaken the learning of strong predictor-class rela-

tions by exploiting the feature space, especially when approached by only frequency-based

techniques of bottom-up processing, likewise approach v1.

There are three levels in our view to address imbalance and class dependence problems

for intent classification described in Table 3.3. We focus on improving the expressivity by

generating a rich feature space using algorithm 2 based on both bottom-up and top-down

approaches. We address the challenge of class dependence relationships via psycholin-

guistic knowledge of various intent expressions, as well as imbalance via the infusion of

contrast pattern knowledge. For the algorithmic choice for learning, we use the ensemble

approach for base learners of a binarization framework to address the challenge of better

learning with imbalance distributions for a multiclass classification problem.

We aim to first investigate the role of improving data representation for a binary clas-

sification task, followed by multiclass classification. For our experimental design to assess

performance of the three approaches, we experiment within the two popular multiclass

classification approaches, one-vs-one (OVO), and one-vs-all (OVA), as discussed in the
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Algorithm 2 Representation Improvement Algorithm

 
 

INPUT:  
A = Corpus of labeled short-text documents mi with intent class Cj⋹C, {Cj, j⋹[1,K]}  
STj = Support threshold for frequent patterns of text items for Cj (STj_pos, in case of POS tag items) 
Xj = Contrasting pattern selection threshold for text items (Xj_pos in case of POS tag items) 
n = N-gram size to represent an item in the bag-of-tokens model representation 
 

OUTPUT: Feature Vectors for Classification 
1. T= ∅     # Bag-of-words (n-grams) Feature Set 
2. DK = ∅   # Declarative Knowledge Pattern Feature Set  
3. SK = ∅  # Social Knowledge Pattern Feature Set 
4. CTK = ∅  # Contrast Emerging Pattern Feature Set for text document corpus A  
5. CPK = ∅  # Contrast Emerging Pattern Feature Set for POS tagged document corpus A 
 

PROCEDURE: 
### Compute Document-specific Features 

1. Wn =  ∅  # Dictionary of cleaned tokens (n-grams of size n) 
2. Cln_A = ∅ # Corpus A with cleaned text documents    
3. A_pos =  ∅  # Corpus A with Part of Speech tagged documents   
4. for mi ⋹ A do 

a.  mi_cln = TEXT-CLEANER (mi)  # Preprocessing for cleaning informal text 
b.  Wn = Wn ⊔ N-GRAM-TOKENIZER(mi_cln, n)  
c.  Cln_A = Cln_A ⊔ mi_cln  
d.  A_pos = A_pos ⊔ POS-TAGGER(mi)  
e.  DK = DK ⊔ DECLARATIVE-KNOWLEDGE-PATTERN-MINER(mi, mi_pos)  
f.  SK = SK  ⊔ SOCIAL-KNOWLEDGE-PATTERN-MINER(mi) 

5. end for  
 

### Compute Corpus-specific Features  
## Extract feature on Bag-of-words (n-grams) 
6. F = VECTORIZE(Wn) # create feature vector of token dictionary 
7. for mi ⋹ A do  

a.  T = T ⊔ FREQUENCY-VECTORIZER(F, mi) # frequency based vectors 
8. end for  
 

## Mine Contrast Patterns from itemsets in Text and POS tagged document corpuses  
 

# Frequent Pattern Mining 
9. FP(Cj) = ∅  # Frequent sequential patterns for text documents of A, for Cj    
10. FP_pos(Cj) = ∅  # for POS tagged documents of A, for Cj  
11. for Cj ⋹ C do  

a.  FP(Cj) = SEQUENTIAL-PATTERN-MINER(Cln_A, STj)  # Find Support 
b.  FP_pos(Cj) = SEQUENTIAL-PATTERN-MINER(A_pos, STj_pos) 

12. end for  
 

# Contrast Computation for Sparse-Contrast-Strength(P,Cj) 
13. CP = ∅  # Set of (patterns, contrast measure values)  
14. CP_pos = ∅  
15. for P ⋹  ( ⊔ Cj⋹C  FP(Cj) )  do  

a.  CP = CP ⊔ (P,CONTRAST(P,Cj))      
16. end for  
17. for P_pos ⋹  ( ⊔ Cj⋹C  FP_pos(Cj) ) do  

a.  CP_pos =CP_pos ⊔ (P,CONTRAST(P,Cj))  
18. end for 
 

# Pattern Selection  
19. for Cj ⋹ C do  

a.  CTK = SELECT-X(CP, Xj) # Top X% by contrast strength & support for Cj 
b.  CSK = SELECT-X(CP_pos, Xj_pos)     

20. end for 
# MINE THE FEATURE SPACE FOR CLASSIFICATION   
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introduction and related work of this chapter.

3.6 Experimental Design and Implementation

We experimented with the three approaches discussed above; using the Representation

Improvement Algorithm 2 by assessing the performance contribution for the alternative

approaches. We experiment on two real world datasets created from Twitter social media

platform, to observe the value of employing knowledge in the computation of intent in

documents generated by users of CSC on Twitter. Our datasets represent a different socio-

cultural environment for the participating demographics, due to the nature of real world

events. This allows us to assess the role of linguistic and social knowledge from offline

theories in understanding human expressions online.

• Data Collection

Using the data collection method of keyword-based crawling approach described in the

Section 2.4 of the Chapter 2, we collected a set of short-text documents as tweets from

Twitter Streaming API. The keyword-based crawling approach is the most popular ap-

proach in the prior studies on Twitter platform. We collected two crisis event datasets:

1. Dataset-1: 4.9 million tweets for hurricane Sandy in the US in 2012 for a period of

10 days (October 27 to November 7), and

2. Dataset-2: nearly 2 million tweets for typhoon Yolanda in the Philippines in 2013 for

a period of 10 days (November 7 to 17).

• Sampling for Labeling Cooperation-assistive Intent Classes: Setting Prior Con-

text for Goal-orientation

Before we label the datasets for acquiring annotations for intent classes in these datasets, we

begin with the context of cooperation-assistive intent expressions in the data, for a broader
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goal of relief donation coordination for the crisis domain datasets. Also, there is a sparsity

of some of the intent classes in social networks and the context itself. For example, Imran

et al. [52] observed only 16% of the data related to donation of goods and services on a

dataset of the Joplin tornado event. The sparsity of behavior in the data also challenges

crowdsourcing for labeling at scale, given the limited budget for the crowdsourcing tasks.

Therefore, we first created a classifier of donation-related messages to provide context for

labeling specific intent classes. We rationalize the choice of restricting context to donation

related messages in goal-oriented CSC based on the real-world goal of achieving relief

donation coordination—one of the major challenges of crisis response domain. We sampled

dataset-1 for labeling the donation class.

Donation Labeling: A multiple-choice question was asked to crowdsourcing workers

(assessors) on Crowdflower platform (http://www.crowdflower.com/). “Choose

one of the following options to determine the type of a tweet”:

a. Donation - a person/group/organization is asking or offering help with a resource

such as money, blood/medical supplies, volunteer work, or other goods or services.

b. No donation - there is no offering or asking for any type of donations, goods or

services.

c. Cannot judge - the tweet is not in English or cannot be judged.

The options were worded to encourage assessors to understand “donation” in a broad

sense, otherwise (as we observed in an initial test) they tend to understand “donations” to

mean exclusively donations of money. Given our limited budget for the crowdsourcing

task and the relatively small prevalence of donation-related tweets in the data, we intro-

duced some bias in the sample of tweets to be labeled. We selected 1,500 unique tweets

by uniform random sampling, and 1,500 unique tweets from the output of a conditional

random field (CRF) based donation-related information extractor borrowed from the work
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of [52]. The two sets of tweets were merged and randomly shuffled before they were given

to the assessors.

We asked for three labels per tweet and obtained 2,673 instances labeled with a con-

fidence value of 0.6 or more (the range is 0 to 1). This confidence value was provided by

the crowdsourcing platform and it is based on inter-assessor agreement and the assessor

agreement with a subset of 100 tweets for which we provided labels. Our labeled dataset

contained 29% of tweets of the ‘donation-related’ class.

Donation Classifier Learning: We experimented with a number of standard machine

learning schemes. For this task, we obtained good performance by using attribute (feature)

selection using a chi-squared test, considering the top 600 features, and applying a nave

Bayes classifier [132]. To reduce the number of false positives, we used asymmetric mis-

classification costs. That is, we considered a non-donation classified tweet as donation as

15 times more costly than the case of a donation classified as non-donation.

After 10-fold cross-validation, for the donation class we achieved a precision of 92.5%

and 47.4% of recall. The area under the ROC curve (AUC) is 0.85, which implies good

classification ability. We used this donation classifier to get contextually related tweets to

acquire more labeled data for intent classes via crowdsourcing task. We extracted donation-

related tweets from dataset-1 using the donation classifier, and randomly sampled 4,000

unique tweets classified as donation-related for labeling intent classes.

• Labeling Intent Classes

We asked for three labels per tweet. The supervision of tweets for classes is obtained by

crowdsourcing on the Crowdflower platform. A multiple-choice question was asked to

crowdsourcing workers, asking to classify a tweet into one of the following categories for

expressing intent:

a. Request to get - when a person/group/organization needs to get some resource or

service such as money
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b. Offer to give - when a person/group/organization offers/wants to give/donate some

resource goods or provide a service

c. Both request and offer

d. Report of past donations of certain resources, not offering explicitly to give some-

thing that can be utilized by someone

e. None of the above

f. Cannot judge

Having three labels per tweet, we obtained tweets labeled with a confidence value of

0.6 or more (the range is 0 to 1) which is based on minimum two judges and confidence

value based on inter-assessor agreement.

We merged the labels to design the class set {Seeking, Offering, None (Neither Seek-

ing nor Offering)} for exclusive intent classes to align with the multiclass problem format

and also to account for a lack of enough labeled data for multiple intent labels for a tweet.

Hence, we exclude ‘Both request and offer’, and ‘Cannot judge’ labeled tweets in this

design, such that ‘Request to get’ presents Seeking intent class, ‘Offer to give’ presents

Offering intent class, and ‘Report of past donations, None of the above’ presents None

class.

Dataset-1: This labeling task on the sample of 4,000 tweets resulted in total 3,135

unique labeled tweets with the confidence (explained above) greater than or equal to 0.6.

It comprised of 52% exclusively request to get (Seeking intent), 6% as exclusively offer to

give (Offering intent), and the remaining 42% in the other categories (None).

Dataset-2: Given sparsity in the data for both donation and intent classes, we created

a bias sample for labeling intent classes in dataset-2. We selected 2,000 unique tweets with

four diverse random samples of 500 tweets from corpuses of: all the tweets in dataset-

2, donation classified tweets, Seeking classified and Offering classified tweets, where we
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CLASS Dataset-1 Dataset-2
Seeking 1,626 (52%) 197 (26%)
Offering 183 (6%) 91 (12%)

None 1,326 (42%) 475 (62%)

Table 3.4: Labeled datasets from Twitter for two different types of real world events

created binary classifiers of Seeking and Offering on the labeled data of dataset-1 discussed

in the following under preliminary study with binary classifiers (Our prior study contains

extensive details of those classifiers [87]). We used the classified tweets to bias sampling

of data for getting more human judged labels on intent classes, and therefore, we used the

strict criterion of ‘all agree’ for the three human judges. The resulting labeled data included

26% Seeking, 12% Offering, and 62% None. The label distribution shows a similar pattern

(Seeking intent more prevalent than Offering intent) across the datasets, reported in Table

3.4.

• Feature Generation

We used our Representation Improvement Algorithm 2 for this purpose. We process datasets

with the following choices of parameters and techniques to create our diverse features sets.

1. T - Text Tokens: We generalize the bag-of-words model to consider N-gram as to-

kens owing to known superior performance [129]. Tweets are represented as vectors

of features, each feature being a word N-gram after pre-processing. We apply text

pre-processing operations to clean up informal language usage, and for the purpose

of abstracting tokens to a higher-level concept. We use the interactional properties of

the platform (RT and Mention/Reply) to represent such abstraction given their impor-

tance discussed in the Chapter 2, as well as numeric and external links that represent

specific details while sharing information [78]. We used bi-, and tri-grams to cap-

ture potential intent representative tokens, and employed normalized term frequency

function to create numerical features. Preprocessing includes the following steps:
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• Removing non-ASCII characters.

• Separating text into tokens (words), removing stop-words and stemming (to

reduce to root words, such as ‘helping’ to ‘help’) using Porter’s stemmer and

string to word vectorization filter in WEKA [43].

• Generalizing some tokens by replacing numbers by the token NUM , hyper-

links by the token URL , retweets (“RT @user name”) by the token RT and

lastly, user mentions in the tweets (@user name) by the token MENTION .

2. DK - Declarative Knowledge Patterns: We create antecedents of a priori knowledge

rules using approach v2, and add 29 regular-expression patterns as features express-

ing knowledge guidance from outside the corpus of training documents. We choose

to use regular expressions to represent a feature to enable uniform presentation for

declarative knowledge of both domain expert guided rules and psycholinguistic class

based rules. A feature function value is determined by binary values, the tweet

matching the regular expression, implying 1; or not matching, 0.

These rules were informed via manual data mining of messages by experts at the

American Red Cross, in addition to the linguistic rules mentioned in the Table 3.2.

We created an exhaustive representation of linguistic classes whenever possible (e.g.,

modals, verbs), by initiating with a seed token (e.g., I), and employing the Levin

Verbs knowledge base [62], and WordNet knowledge base [32] to gather similar

words. An example of a pattern of seed tokens provided for exhaustive representation

looks like the following (we provide the list of seed patterns for the 29 features in the

appendix): \b(I|we|they|he|she)\b. ∗ \b(like|want|likes|wants)\b. ∗ \b(to)\b. ∗

\b(LEV IN − V ERBSET − FOR− give− CLASS)\b

3. CTK, CPK - Contrast Emerging Patterns: We employed a sequential pattern mining

algorithm SPADE [134] on the corpus of cleaned text corpus A following the text

preprocessing steps described above with assumption of each uni-gram token as an
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item. We also employed sequential pattern mining on the part-of-speech (POS) tags

per document of the corpus A. POS tags for each tweet document were extracted

using the ARK-NLP tool provided by CMU [38], which has been trained especially

for processing Twitter text.

We used minimum support thresholds for each class Seeking, Offering, and None as

10% equally to derive frequent itemset patterns per class. Often, the support thresh-

old parameter is chosen around 50% in the transactional databases of a large corpus

to derive associations that are interesting (frequent enough); however, in processing

text of a highly noisy nature and of informal English language, to increase coverage

we had to reduce down to the 10% level (total 783 patterns for the three classes). We

came up with this parameter choice by testing on dataset-1 for various thresholds,

ranging from 50% (on average, 10 patterns for a class) to 2% (on average, 6,000 pat-

terns for a class). In the case of POS tags as transactions, we used minimum support

thresholds of 50% for each class; again, based on observations of different choices of

thresholds from 50% to 2%. Here, the higher support threshold 50% works because

the POS tags represent an abstraction level of the syntactic classes (e.g., Adjective)

and are highly frequent across multiple itemsets.

We compute the measure of Sparse-Contrast-Strength from equation 3.4, for each

minimal frequent pattern per class, and rank them. We select the top-k patterns for

final feature set creation based on the percentage parameter X. We used X=100%

for the three classes after observing the majority of jumping emerging patterns per

class. We transform each of the final selected contrast patterns into regex expression

for creating binary features. The features from text-based corpus are CTK, and POS

tag-based corpus are CPK.

4. SK - Social Knowledge Patterns: We used the features from Table 2.1 defined in the

previous Chapter 2, for incorporating the offline theory-guided knowledge of social
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interactions.

• Learning the classification

We performed two experimental studies for an intent classification task. First, we used

binary classification to observe the challenges, and also create a baseline with a closely

related work on the crisis dataset [125]. Second, we used multiclass classification to an-

alyze influence of knowledge-guided features in a more rigorous setting; however, we do

not have any baseline to compare against in the crisis domain, and therefore, we consider

the feature representation T corresponding to the bottom-up approach v1 as baseline.

Preliminary study on Binary Classifiers: We performed a preliminary study using

a sequential binary classifier approach, where we created two classifiers in a sequence:

a.) Seeking vs. Not Seeking (i.e. {Offering, None}), and b.) Offering vs. None. We

created a chain approach to first train classifier for Seeking as a target class, and then used

the prediction probabilities from this classifier as an additional feature in the following

subsequent classifier design targeted for the Offering class. In this experimental setting,

we wanted to observe if the additional knowledge of the class probability (Seeking) helps

in the learning of another class (Offering) better, due to complementary dependency of

intent classes. This study was performed much earlier than the following experiments

on multiclass classification, and therefore, it was limited to the types of knowledge sources

exploited. Extensive details related to this preliminary study is part of the prior publication,

[87].

We used two types of feature sets, local content-based, T, and the declarative knowledge-

based, DK, which was acquired by 18 regular expression patterns using expert searches of

the American Red Cross collaborators. We used all the labeled tweet set of the dataset-1

source. We used feature selection using Chi-squared test for 500 features (parameters cho-

sen after a number of repetitions), and ensemble approach using Random Forest with 10

trees and 100 features with cost-sensitive learning, to improve the learning performance

at the algorithmic level. We consider the baseline as [125], which created classifiers for
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Classifier Learning Scheme Precision (%) F-1 score (%) Training Distribution
Seeking RF (CR=50:1) 98 (*79) 46 (*56) 56% Seeking
Offering RF (CR=9:2) 90 (*65) 44 (*58) 13% Offering

Table 3.5: 10-fold CV results for binary classification with Precision-oriented design.
Learning scheme abbreviation RF refers to Random Forest, and CR indicates asymmetric
false-alarm Cost Ratios. All classifiers used top 500 features. Precision and F-1 measures
are for the positive class. * indicates performance in a closely related baseline work.

identifying problems (closely related to ’Seeking help’ intent), and aid (closely related to

’Offering help’ intent) messages on the 2011 Japan earthquake crisis dataset. We report

the results in Table 3.5. We noted better performance by our fusion approach of T and DK

knowledge-guided features for high precision design. During crisis, a precise identifica-

tion of the intent is essential as compared to higher recall but with poor precision, due to

time-critical nature of the high consequence domain. Organizational actors would not have

time to go over larger volume of messages with low confidence in contrast to the inverse

situation. Therefore, despite our F-1 score was lower than the baseline prior work due to

lower recall, the knowledge-guided approach is able to achieve higher precision for both

cases of Seeking, and Offering intent classifiers.

Study on Multiclass Classifiers: We experimented with the combination of all the

above-mentioned feature sets (T, DK, SK, CTK, CPK) to design OVO and OVA based

multiclass classifiers in the binarization framework. We used Random Forest algorithm

[132] for base learners, and address the challenge of imbalance classes by ensemble learn-

ing at the algorithmic level to improve performance. We evaluated the performance using

10-fold cross-validation, and used the performance measures of accuracy and F-1 mea-

sures, in consistence with other prior work on multiclass classification. These measures are

suitable for our experimental settings given the imbalance and potential label dependence

issues in intent classification problem. Accuracy and F-1 scores help reflect improvement

across the classes including minority classes. In total, there were 1405 features created for

3135 instances for the dataset-1, and 2843 features for 763 instances for the dataset-2. We
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report the results in Table 3.6.

3.7 Results and Discussion

Observing Table 3.6 for results of 10-fold cross validation, we noted a performance gain

in both the accuracy and F-1 scores for every addition of a knowledge-guided feature set

with the bottom-up approach’s feature set (T). Therefore, we performed statistical signifi-

cance test using t-test with two tails (for stricter condition than one tail), between scores of

the bottom-up approach v1 (T), and the combined v3 approach encompassing knowledge-

guided feature sets (T, DK, CTK, CPK, SK). The p value to reject null hypothesis of no

significant gain was rejected with p value < 0.02.

Table 3.6: 10-fold CV results for two measures (F1, Accuracy) for different multiclass
learning frameworks on two datasets represented by varying level of rich feature sets (T,
DK, CTK, CPK and SK). Algorithm: Random Forest Tree with 10 trees, 100 features
and depth level 5 nodes per tree. Gain from the baseline bottom-up approach (v1) to the
integrated approach (v3) is statistically significant (p < 0.02).

The results show the utility of a generalized Representation Improvement Algorithm
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2 in providing a framework for fusing top-down and bottom-up approaches for the intent

classification problem. Results support our hypotheses H3.1, H3.2 and H3.3, and we dis-

cuss fine-grained rationale in the following:

• Discriminative Power of Combined Feature Sets and Role of Social Context

We ranked features in both the datasets using a Chi-squared test. The top 1% features

included more than 50% of the knowledge-guided features. It shows the value of fusing

the knowledge guidance in the learning feature space, which can help learning algorithms

focus on learning newer and better statistical predictor-class relationships between features

and an intent class. Combined with the results of accuracy and F-1 score improvements, it

supports our hypothesis H3.2 and H3.1. Among the top discriminative features observed by

the Chi-squared test, Dialog Management and Subject Pronouns based features are present.

It shows the significance of taking offline-theory guidance from linguistic coordination in-

dicators to help improve context for intent classification in the social setting. It is important

to acknowledge that a social conversational context of intent expression does not exist in

other problem domains, such as user intent in search.

• Performance in the Popular Multiclass Classification Frameworks

We observed significant improvement in both F-1 and accuracy scores in both classification

frameworks, one-vs-all and one-vs-one. Interestingly the gain observed in both the cases

in significant, where it is a known problem that OVA suffers from imbalance created by

the framework design itself, and OVO suffers from the label dependence issue owing to

the design of pairwise classification. It supports our hypothesis H3.2 that intent classifica-

tion performance improves in both the popular multiclass classification frameworks using

approach v3.

• Limitations
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We note various limitations of our work, and would address them in the near future:

We have shown the importance of contrast patterns for equal values of class-wise

thresholds STj , however, we shall explore effects of class-wise selection of thresholds in

the future work. Given the subjective task of selecting the thresholds, we would explore

approaches to influence selection of thresholds guided by knowledge-driven features not

constrained to a corpus, such as those derived from the a priori knowledge sources.

Although we performed feature selection test using Chi-squared test, we do not show

results for attribute selection-based learning, given it can be subjective and we want to first

answer questions of data representation improvement in a generalized setting for a learning

space. We shall explore various algorithmic tuning settings, such as cost-sensitive learning

combined with the ensemble framework in future work.

We did not capture the interplay of various types of subjectivity in the offline-theory

guided social knowledge, and declarative knowledge features, such as emotion expression

with intent. We suspect a relationship in/between the subjective behaviors, and would

address them in the near future for efficient learning of intent.

Also, we note the limitation and scope of further work in the document intent clas-

sification problem. There can be multiple intent expressions within a message—a setting

of multi (intent) label classification problem. We also note another form coming from the

behavioral perspective in defining the problem such that instead of answering the question

of ‘what is the intent of a document,’ via classification problem, we need to explore the an-

swer to the questions of actor—‘who has intent, and of what type.’ That is an actor-specific

intent association problem. We plan to address these problems in the near future.
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Chapter 4: Engage function: User and

Group Engagement Modeling for

Addressing Awareness

The challenge of awareness for cooperation between citizens and organizational actors re-

quires a means for the organizational actors to engage and interact with the citizens in the

goal-oriented CSC. The major question is ‘who to engage first in the dynamic CSC, and

how to address such an engagement prioritization’. Our approach addresses this challenge

via identifying prioritized or reliable groups of citizens. Engagement with a prioritized

group of citizens would allow organizational actors better coordinate tasks, for example,

when emergency coordinators want to collect and verify more specific information for en-

hanced awareness. However, given the scale of the CSC and the diversity of participating

citizen demographics, it is difficult to model a prioritized group based on the dynamics of

its engagement.

Engagement is defined as the degree of involvement, and in the case of CSC, it is the

degree of involvement in discussions for both individual users and groups. Prior studies

on user group engagement have focused on structural properties in the networks to model

dynamics of engagement via group formation, and evolution, which limits the explanation

to the perspective of network structure. We focus on content and user properties addi-
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tionally to model the dynamics of group engagement. We define collective behavior of a

group via a measure of divergence in content of discussions generated by members of the

group. This provides additional context for explaining the dynamics of group engagement

and helps identify high priority groups. We define a reliable, high priority group as the one

that shows a smaller change in the collective behavior across time phases, i.e. consistently

lesser divergence in the topic of discussions of the group members.

Such techniques can be highly valuable in scenarios like natural disasters, given the

surge of ‘digital humanitarians’ [73] as volunteer and technical communities that support

humanitarian response. A small number of less diverging, focused groups (sharing re-

source or information requests and offerings) must be identified efficiently, so in order to

effectively leverage their input to improve awareness of organizational actors. This phe-

nomenon of self-organizing small groups is not limited to disasters but also includes CSC

for other real-world events that also have goal-orientation, as discussed in the Chapter 1.

We discuss social theories of group engagement and specific research questions in the first

section, followed by modeling collective behavior in content generation. Work discussed

in this chapter has been published in [92].

4.1 Finding Prioritized Groups to Engage by Modeling

Discussion Divergence

The prevalence of online social networks in the last decade has enabled computational

social scientists to answer various questions of group dynamics that reveal user group en-

gagement, such as group formation, participation and evolution [7, 97, 111, 30, 57, 41].

Most studies, however, investigate implications of the network structure alone in character-

izing group dynamics, and they lack the insights regarding the dynamics of user-generated

content.
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Some social scientists have defined groups based on various common user character-

istics and interactions [123]. We define a group as the set of users interacting in discussions

about a real-world event. We refer to group discussion divergence as collectively behav-

ior of divergence in user-generated discussion topics in CSC. In this study, we focus on

Twitter users’ discussions related with two types of real-world events: natural disasters and

social activism. Particularly, we ask the following specific research questions to validate

the role of prior knowledge of social behavior theories, and the interplay of user, content

and network features to model group engagement:

- Related to question R3 of the dissertation, outlined in Chapter 1:

R4.1. Do two existing theories of social group behavior, namely, social cohesion and social

identity, have implications on the evolution of group’s diverging behavior?

R4.2. How can we model offline theories of social identity and cohesion in the online plat-

forms?

- Related to question R5 of the dissertation, outlined in Chapter 1:

R4.3. Can we model the divergence of user discussion in a group that change over time,

within and across different phases of events?

Answers to the above questions can aid in understanding which factors contribute

more in facilitating cohesion (lower divergence) in the group discussions in CSC. They

also enable us to predict the change of group discussion divergence, which in turn al-

lows the rapid identification of groups whose voices are showing fewer divergence shifts.

However, there is a challenge of modeling diversity of users in the groups, quantitatively

defining group discussion divergence, and learning to predict the divergence shift (increase

or decrease) over time. We present the study for the shift between a real world event’s

three phases: pre-, during-, and post-event (however, our analysis approach is applicable in

general beyond the three phases of interests here). Specifically:
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• Problem Statement p4.a. Given a real-world event E, a collection of N Twitter

users in a CSC formed around discussion of E, an assignment of them into K non-

overlapping user groups gi(1 ≥ i ≤ K) based on interactions, and a measure of

group discussion divergence JS(gi); predict the change of each group’s discussion

divergence JS(gi) between two consecutive event phases (that is, from pre-event to

during-event or from during-event to post-event).

We first describe discuss the related work, and then formally describe the group dis-

cussion divergence measure, and other preliminaries of our approach including data col-

lection for event-based discussions, group identification, and specification of the prediction

task. Feature design, experiments, results and analyses are presented in subsequent sec-

tions.

4.2 Related work: Challenge of Diversity in Groups of CSC

First, we briefly introduce two theories proposed by social psychologists to explain the

dynamics of traditional face-to-face social groups and their behaviors, and their rationale

of emphasizing on diversity of group members, such as few common social identities. We

envision that their roles in shaping user engagement in groups [29] will contribute to our

understanding of group discussion divergence. Then we describe related work on online

social group bonding and dynamics.

• Social Psychological Theories

Conventional/legacy social group theory includes two closely related parts: social identity

[120] and self-categorization [124]. Tajfel et al. [120] defines the concept of social iden-

tity as “the individual’s knowledge that he belongs to certain social groups together with

some emotional and value significance to him of this group membership”. Therefore, group

membership is the result of “shared self-identification” rather than “cohesive interpersonal
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relationship”, and such shared identity leads to cohesiveness and uniformity, among other

features [123]. One commonly cited piece of evidence for social identity theory is team

sports [12], where teammates are representing the same organization (a school, a club, or

a country) and they are well aware of the desire to sustain the reputation of their asso-

ciated identity. In contrast, social cohesion theory views social groups from a different

perspective. The necessary and sufficient condition for individuals to work as a group is

a cohesive social relationships between individuals. We adopt the definition by [67] that

interprets cohesiveness as mutual attraction between individuals, which is slightly different

from that used in [34]. In accordance with this definition, the positive correlation between

group cohesion and performance has been reported in various types of groups [76, 9]. A

social cohesion example will attribute the inter-personal friendship between teammates of

a sports club as the foundation for group performance and its evolution.

• User-Group Bonding

One study relevant to our work is by Grabowicz et al. [41], where the authors translate

common identity and common bond theories for group attachment into general metrics ap-

plicable to large social graphs. They also devised a method to predict whether a group is

social (formation dependent on interpersonal bonds) or topical (formation based on per-

ception of role). Prior to that, Ren, Kraut, and Kiesler [97] presented a similar study,

focusing on the implications of the two theories of group attachment and link these theo-

ries with design decisions for online communities. Our differing objective here is rather

to analyze the role of identity and cohesion features in characterizing a group’s discussion

divergence behavior, instead of predicting group type or evaluating community design deci-

sions. In a similar spirit, Farzan et al. [30] studied group commitment on Facebook within

a controlled environment and observed that designs that encourage relationships among

members or emphasize the community as an entity, increase both the commitment and re-

tention of players. Budak and Agrawal [14] utilized data analytics and user surveys to

study factors that drive group chats on Twitter, and found that social inclusion contributes
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most to user retention. Our objective here is slightly different, in that it focuses on the ef-

fects of group commitment in discussion divergence in the communities emerging around

real-world events.

• Group Dynamics

Most prior work on group dynamics has focused on structural dynamics. Notably, Back-

strom et al. [7] proposed a structure-centric model for network membership, growth and

evolution by analyzing DBLP and LiveJournal social networks. Their findings show how

individuals join communities and how communities grow depending on the underlying net-

work structure, which supports cohesion-based structural features of our study, discussed

in the following section. Taking more a user-centric approach, Shi et al. [111] studied the

user behavior of joining communities on online forums. Among other features, the authors

studied the similarity between users and the similarity’s relation with community overlap.

They found that user similarity defined by the frequency of communication or number of

common friends was inadequate to predict grouping behavior, but adding node/user-level

features could improve the model fitting. Kairam, Wang, and Leskovec [57] analyzed the

long-term dynamics of communities and modeled future community growth rate. They

found that growth rate is correlated with the current size and age of a group and the size

of the largest clique is the best feature for indicating community sustainability. Relevant

efforts on understanding and modeling individual user-level characteristics include a study

by Rao et al. [95], where authors presented an approach for automatic creation of ethnic

profiling of users, focusing on names as the key factor. Pennacchiotti and Popescu [84]

also proposed a machine learning approach for user classification on Twitter by analyzing

a user’s friends, user posts and profile information.

These studies of group and individual characteristics provide a base for modeling user

and structural features for incorporating prior social behavior in the characterization of

group discussion divergence, which we discuss in the following.
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4.3 Quantification of Group Discussion Divergence

We use Jensen-Shannon divergence (JS-divergence) to quantify the divergence of group

discussions. Compared with other information-theoretic measures such as Kullback-Leibler

divergence, JS-divergence is always bounded, symmetric, and can be generalized to more

than two distributions [65]. JS-divergence has long been employed in computational lin-

guistics [64, 68], though its usage in analytics of online social platforms has been limited.

In order to calculate JS-divergence, we first construct a dynamic topic model [10],

and infer the topics of discussion. Input into the topic model is a collection of vocabulary

vectors, each of which represents one event-related tweet and is indexed by discrete time-

stamps. The vocabulary includes words and phrases pertaining to the event, as well as

hashtags with the leading ‘#’ symbol stripped. The dynamic topic model has the advantage

of modeling a systematic topic shift (due to the event’s progress) automatically, which

allows us to investigate the true difference of an individual member’s topic distribution to

the corresponding group’s topic distribution at any given time.

The inference process of the topic model returns a latent topic distribution for each

tweet t, denoted as βt. A group g’s mean topic distribution at phase s over all its users’

tweets (T s
g ) can then be calculated as:

βs
g(i) =

∑
t∈T s

g
βt(i)

|T s
g |

,∀i = 1, · · · , number of topics (4.1)

and g’s JS-divergence at phase s is defined as

JS(gs) = H(βs
g)−

∑
t∈T s

g
H(βt)

|T s
g |

(4.2)

whereH(•) is the Shannon entropy function (with log base 2) [65]. Intuitively, JS-divergence

here gauges the divergence among topic distributions of a group’s tweets. The greater the

JS value, the larger the difference and the stronger indication of a group lacking
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conformity in discussion.

4.4 Group Identification via Community Detection in In-

teraction Network

Social groups can be defined in many ways. Our focus here lies on those groups of people

who interact (and potentially emerge) in times of evolving real-world events. For example,

the users who emerge as volunteer groups in times of crisis response may not have prior

follower-followee connections on Twitter. However, they start interacting for the cause of

assistance.

Therefore, it is necessary to identify appropriate social groups on which quantitative

analyses will be performed to understand the dynamics of group discussion divergence.

Resultant social groups should reflect online interaction among users that is beyond simply

using the same word in their tweets. Moreover, the grouping criterion needs to be indepen-

dent of any feature of social structure and user characteristics due to some of our features

being based on social cohesion and identity theories (defined in the following sections), so

that the results are not biased.

To that end, we propose an approach of clustering users based on their interactions,

which can be either retweet, reply or mention. An interaction graph is created to rep-

resent those relationships during each phase of the event, where vertices stand for users

and edges indicate at least one interaction between two users through the phase. We ap-

ply Markov clustering [102], a commonly used community detection algorithm to identify

social groups.
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4.5 Group Representation Features: Quantification of So-

cial Identity and Cohesion Theories

In this section, we describe the feature design driven by social psychology theories for the

problem of predicting a shift in the group discussion divergence over event phases.

4.5.1 User Features: Regional, Expertise and Online Identities

To quantify the social identity-based features, we employ a user’s profile information as

well as activity, as we note that social behavior tends to associate the user with established

identities (regional, organizational, etc.) via self-representation and with incentive-based

identity via user actions in the cyber-world. For example, ‘New Yorker’ in a user’s profile

is a signal of his location-based identity, and a profile containing ‘professional NBA player’

or ‘Emergency Management’ is highly suggestive of the user’s occupational expertise. A

user’s action of adding such indicative terms into the profile suggests his identity percep-

tion. Moreover, recently emerged social analytics services indicate the online identities of

users such as ‘celebrity’ on Klout, ‘Mayor of a place’ on Foursquare, etc., and users tend

to identify with them [23]. In today’s world, therefore, we possess social identities in both

our physical as well as cyber world. In the case of Twitter platform, user profiles contain

location and description metadata in addition to action metadata (status updates, retweets,

etc.), to assist the extraction of social identities. Each identity type is modeled as a dis-

crete feature, and for each social group under this study, we compute the class distribution

entropy for each identity and provide them as user features for the analysis. The range of

identity features is from 0 to ln(C), where C is the number of unique classes in an identity

type.

• Regional Identity feature

Using the location information in user profiles, we map users to regional classes

77



that are sometimes used to represent self-identification in our daily lives – state-

based (e.g., ‘Ohio’ for Ohioans) and nation-based (e.g., ‘Brazil’ for Brazilians). For

creating feature values, we choose a user’s state identity if it belongs to the host

nation of an event (e.g., user from Buffalo will have ‘NY’ as the identity value in

the OWS event), otherwise, we choose the user’s national identity (e.g., user from

London will have ‘UK’ as the identity value in the OWS event). We use the Google

Maps API to convert user profile locations into latitude-longitude, and then state and

nation identity. We note that this simple model of two regional levels (state and

nation) for self-identity can be expanded further.

• Expertise Identity feature

Users generally write their interests, expertise and affiliations in the description on

Twitter user profiles. This is an example of self-representation of social identity (e.g.,

artist, researcher, etc.). Therefore, we derive expertise classes in 2 steps: a) collect

occupation categories and titles from trusted knowledge sources — Wikipedia and

the US department of Labor Statistics reports, and b) classify the resulting occupation

lexicon into ten broad classes, inspired by news websites and the higher level of

analysis on the class tree:

{ACADEMICS, BUSINESS, POLITICS, TECHNOLOGY, BLOGGING, JOURNAL-

ISM, ART, SPORTS, MEDICAL, OTHERS}

For user expertise identity, we first create N-grams from the description metadata in

the profile by tokenizing on punctuations, and filter out those missing the occupation

lexicon terms. From the remaining N-gram set, each N-gram is associated with one

of the ten classes, and its weight is determined by its position in the description text.

This is because self-identity perception guides users to place terms that are more

socially identifying and important to them at the beginning.
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Figure 4.1: Online Identity based on three action measures (Activity, Influence, Diffusion)

• Online Identity feature

Based on user behavior with the platform (Twitter here), we use three measures con-

sistent with expertise presentation work in our prior study [89], modeling influence

and passivity (as in [100], which contribute to building a user’s incentive-based iden-

tity (e.g., ‘Celebrity’ on Twitter) in the cyber-world—an online identity in contrast

to real-world identities by capturing user activity, influence and diffusion strength.

We model the activity measure by number of posts of the user, influence metric by

number of mentions of the user, and diffusion strength by number of retweets of

the user’s posts in the data for an event. We compute scores on each of the three

measures for all users and then consider the basic 50th percentile threshold to cre-

ate two levels on each of the dimensions, yielding 8 user classes as shown in Figure

4.1. The computation on number of mentions, number of retweets, and number of

posts here is different from the step of identifying social groups in the interaction

network, because here user node-centric features (a local viewpoint) are taken for

identity measure, and not the connection-centric feature set, (a global viewpoint),

which is the basis of clustering.

In contrast with regional and expertise identities, which are meaningful in the physical

world, online identities exclusively define behavior in the cyber realm. To our knowledge,

few attempts have been made to study the impact of both online and offline identities in the
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study of user group engagement in online social platforms.

4.5.2 Structural Features: Reciprocity Types in Friendship Network

for Reflecting Cohesion

To study the structural features driven by the cohesion of social groups in a quantitative

manner, we extract information from the social platforms’ friendship network. In case of

Twitter, the users’ follower-followee network is used. For each social group, we construct

its corresponding node-induced sub-graph from the follower network. Because the follower

relation is directional, there are three groups of features in this category:

• Reciprocal:

An undirected edge will be created between two users only when both of them are

following each other. This choice directly reflects the assumption of mutual inter-

personal attraction in the social cohesion theory. Features here include density, tran-

sitivity1, average clustering coefficient2, and maximum average length of pairwise

shortest paths over all connected components (short-named “average shortest path

length”).

• Undirected:

An undirected edge will be created between two users if either of them is follow-

ing the other. The underlying assumption is that one-way interpersonal attraction is

sufficient to keep the social group sustained. The same group of features as in the

reciprocal sub-graph are computed.

• Directed:
1transitivity = 3×number of triangles

number of connected triples of vertices
2clustering coefficient of node i = 2×number of triangles in i’s neighborhood

degree(i)×(degree(i)−1)
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We also compute density and transitivity on the directed sub-graph for each social

group, without converting it to an undirected graph.

The range for all cohesion features is [0, 1], except for the average shortest path length.

Note that in existing sociology literature [75, 130] the term “structural cohesion” is a spe-

cific measure, defined as the minimum number of nodes one needs to remove from a graph

to disconnect it. We do not include this feature as we find that almost all (more than 97%

of total) social groups contain at least one fringe node (whose degree is one) or singleton,

meaning that the value of this feature for most social groups will be at most one.

From the assumptions of social cohesion and social identity theories, we hypothesize

the following:

H4.1. A more structurally cohesive social group has less diverse discussion. Therefore,

groups with features values of higher density, transitivity, clustering coefficient, or

lower shortest path length are expected to have lower group discussion divergence.

H4.2. Groups whose members are similar in identities (i.e., groups having lower entropy

for identity features) are speculated to have low group discussion divergence, as mo-

tivated by the social identity theory.

4.6 Experimental Design and Implementation

In this section, we present the data collection approach and datasets statistics, characteris-

tics of structural and user features described in the previous section on our dataset and their

correlation with group discussion divergence. It rationalizes the choice of features for the

prediction task discussed in the next section.

• Data Collection for Event-oriented CSC
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Event Name Type Duration #Tweets #Users Type
Irene Disaster (D) 08/24-09/19, 2011 183K 77K Transient
Sandy Disaster (D) 10/27-11/07, 2012 4.9M 1.8M Transient
IAC Civil Protest (P) 11/05-12/02, 2011 100K 21K Lasting

OWS Civil Protest (P) 11/05-12/02, 2011 2.1M 331K Lasting

Table 4.1: Twitter data statistics centered on diverse set of evolving events

We focus on user-generated content on Twitter and discussions based on particular

real-world events. Thus, proper filtering of the generic content stream is required.

We implemented a Twitter Streaming API-based method to collect event-related data

using the keyword-based approach as discussed in the Section 2.4 of Chapter 2, and create

an event-oriented CSC of users who posted relevant keywords about the event. In addition

to tweet content, and its metadata, we also stored metadata associated with tweet authors for

their profile information–the author’s location, followers/friends, and profile description.

We crawled a follower network of each of the users in the interaction network after the

event time period at the time of our study, albeit that the dataset size creates a challenge

to collect data of follower network for all users under a very low API limit for crawling

requests.

In this study, we choose four events for data collection (two for social activism driven

civil protests (P) and two for natural disasters (D))—India Anti-Corruption protests 2011

(IAC), Occupy Wall Street protests 2011 (OWS), hurricane Irene 2011 (Irene), and hur-

ricane Sandy 2012 (Sandy). Table 4.1 summarizes basic information about each dataset.

We note that events possess varying characteristics on the dimensions of activity, social

significance, participant types, etc. In Table 4.1, we specifically show temporal feature val-

ues as ‘Lasting’ and ‘Transient’ that denotes how enduring an event is. For example, the

Occupy Wall Street movement was highlighted in social media discussion for a long time

frame, while Twitter users’ attention to hurricane Sandy quickly decreased significantly in

the volume after it dissipated.
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To enable temporal analysis and reasoning, tweets are grouped into three phases (pre-,

during-, and post-event). Our categorization of phases for each event is aligned with its

real-world timeline, and Table 4.2 shows the occurrences leading to division of phases.

Event # Groups # Users Average Group Size
Irene 137 22,068 161
Sandy 4,947 284,062 57
IAC 76 7,907 104

OWS 6,202 296,279 48

Table 4.3: Characteristics of identified groups

• Group Identification and Characteristics

We applied the community detection approach on the user interaction network for differ-

ent phases of an event as described in Section 4.4 above. Our experimental design used

only groups that have at least 10 members and are active (that is, at least one member

posts a relevant tweet by mentioning event-related keyword(s)) for at least two days are

retained. Again, while there exist other choices of identifying latent online user groups

without ground truth labels, we believe our simple approach can effectively capture online

interactions and yield meaningful groupings of users. Table 4.3 summarizes the informa-

tion of each dataset’s social groups.

For group discussion divergence computation, we use the dtm package (available at

https://code.google.com/p/princeton-statistical-learning/) with

default parameters for topic inference in the groups. We evaluated results from 2 to 5 latent

topics, and found that topics become similar and redundant after 3. For expository simplic-

ity we use 3 as the default number of topics and report the top vocabulary in the different

event phases for two events (hurricane Sandy and Occupy Wall Street) in Table 4.4.
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hurricane Sandy
Pre-event During-event Post-event

Topic 1

tropical storm red cross red cross
east coast jersey shore staten island

canada caused mexico
path staten island caused

Topic 2

new york new york new york
state new jersey new jersey

google hurricane katrina states
android media hurricane katrina

Topic 3

frankenstorm frankenstorm frankenstorm
halloween fema knicks
east coast halloween fema
atlantic mitt romney nyc

Occupy Wall Street
Pre-event During-event Post-event

Topic 1

occupy occupy occupy
protest n17 oo

movement nypd occupyla
occupytogether brooklyn bridge movement

Topic 2

movement nypd nypd
us movement movement

bahrain protest anonymous
occupy movement time protest

Topic 3

occupy occupy p2
oo p2 tcot
p2 tcot republican
tcot oo teaparty

Table 4.4: Top vocabulary representing the latent topics of discussions at each event phase
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4.6.1 User and Structural Feature Characteristics

In Table 4.5 we summarize the basic statistical information for each of the features related

to social cohesion and identity. The upper bounds of entropy values for user features are

included in brackets. We identify several interesting trends in the results reported in the

table.

In general the entropy values are higher for the Occupy Wall Street (OWS) and India

Anti-Corruption (IAC) events, the two on-the-ground social activism events. It is possible

that online social identity features do not capture the offline interactions heavily involved in

those events. Such distinction is most pronounced when comparing online identity entropy

values of those two events with respect to the other two events. The social groups in these

two events tend to revolve around opinion leaders who often help direct and orchestrate the

movement (such individuals likely will have high online identity values). Therefore social

groups formed in those events generally have more diverse online identity composition,

reflecting the presence of opinion leaders as well as followers in groups. Another finding

from Table 4.5 is that groups have great divergence in terms of their memberships from

different regions reflected by the regional entropy. This may simply be a reflection of the

times and the fact that online social networks are bringing people closer together and almost

all events have had significant media attention.

Lastly, we point out that the average directed transitivity (global clustering coefficient)

is at least 82% higher than that of the whole follower network (not shown in the table), and

results based on the reciprocal and undirected definitions are similar, indicating that there

is likely a community structure embedded in the social groups we have identified.

• Correlation Between Features and group discussion divergence

To investigate the relation between structural/user features and group discussion diver-

gence, we first compute their statistical correlation. Particularly, we use a bootstrap method

(sampling with replacement) to construct the 95% confidence interval of correlation co-
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efficients. In Table 4.6, we report a subgroup of features whose correlation with group

discussion divergence is considered significant.

User features statistics: We note in Table 4.6 that user features (especially regional

identity entropy and online identity entropy) have a moderate to high positive correlation

with group discussion divergence, for the first three events. This finding agrees with our

hypothesis H4.2 that group discussion divergence increases when group members’ identi-

ties become less distinctive, reflected by higher identity entropy values. On the other hand,

correlation values for Occupy Wall Street are less significant.

For social groups with a stronger regional concentration, in-group discussions tend to

be more location-specific and consistent, leading to a smaller degree of member-wise dis-

cussion divergence, compared with groups whose members’ locations are more dispersed.

Similarly, the presence of users with similar expertise or interest domain in a social group

tends to keep the scope of discussions more focused.

For the online identity feature, we note that it is reflective of user actions. There-

fore, we speculate that for the sake of maintaining their incentive-based action identity via

reduced change in their actions, users are likely to maintain a pattern of focused topical

discussions in the groups.

Structural features statistics: For structural features, we find that patterns of correla-

tion with group discussion divergence can be categorized into following types:

Density features have a moderate negative correlation with group discussion diver-

gence for hurricane Irene and hurricane Sandy, indicating that a better-connected social

group tends to have a more cohesive discussion. We can ask an event-type specific ques-

tion: Why is the correlation weaker for Occupy Wall Street and the India anti-corruption

movements? As mentioned earlier, both of them are long-lasting events accompanied by an

arguably more engaged offline component, whose information is not captured in cohesion

features. Therefore, the density of online social groups is low (see Table 4.5), indicative of

high divergence for those two events.
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Average shortest path length (especially the undirected version) shows consistency

in its positive correlation with group discussion divergence, which also agrees with our

hypothesis H4.1. Compared with other structural features that reflect the tightness of a

social group, average shortest path length shows clearer dispersion in values, making the

result from its correlation analysis more meaningful.

When comparing correlation strengths for reciprocal features and undirected features,

we find that they are often comparable. In fact, a one-sided binomial test rejects the alter-

native hypothesis that “reciprocal features have stronger correlation with group discussion

divergence than undirected features” with a p-value of 0.89. This finding is particularly

interesting as the key premise of reciprocal structural features is mutual interpersonal at-

tractions (social cohesion theory), an assumption that undirected structural features do not

make. This leads to the question of whether mutual attraction is still a necessary condition

for online communities to form and last. We believe this requires more research attention

in the future.

Contrasting High and Low Divergent Groups: We performed a case study of the

10 highest and lowest divergent groups in each event, to check for a contrast between the

content practices. Specifically, we compared the frequency of using hashtags, retweets

(RT), mentions, URL links, and emoticons in the content of candidate group members. In

fact, some of the least divergent groups use the RT heavily, while the most divergent groups

use hashtags heavily, indicating diverging nature of user-classified topics. Therefore, we

suspect content practices also play a role in predicting trend of divergence.

Effects of Event Characteristics: From Table 4.6 we note that transient events (hurri-

cane Irene and hurricane Sandy) have stronger correlations for user features than for struc-

tural features. We conjecture this is due to the fact that groups in such volatile events form

in an ad-hoc setting, where groups are less likely to have existing cohesively connected

users, undermining the effects of structural features. Therefore, discussions can be highly

dependent on the idiosyncratic characteristics of participants of the group, their personal
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Figure 4.2: Average discussion divergence of groups in each of the phases for various
events.

behavior and identities.

Furthermore, Figure 4.2 shows the general pattern of lower topical divergence in the

pre-event phase, while increasing in the during-event phase and then again decreasing to

lower value in the post-event phase. OWS is an outlier here likely due to high number of

incidents even prior to the pre-event phase of the event in our dataset.

4.6.2 Prediction of Trend for group discussion divergence

In this section, we present the methods and results for our main task in problem p4.a,

i.e., to predict the trend of group discussion divergence. We will leverage observations

from previous sections, including 1) statistical correlations between features and group

discussion divergence, and 2) disparities of a subgroup of feature values between groups of

high versus low group discussion divergence.

More precisely, our goal is to solve a learning problem where the label is whether
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(a) SVM (b) Logistic Regression

Figure 4.3: AUC and F-1 score of prediction for SVM and logistic regression, orga-
nized by feature set and sorted by AUC. D=Divergence, U’=Userall, S=Structuresub,
S’=Structureall, C=Contentsub, C’=Contentall.

the discussion divergence of a group of users will increase or decrease over time. Since

each event is divided into three phases, there are two transitions: pre-event to during-event,

during-event to post-event. Feature selection is guided by the statistical analyses and case

studies in previous sections.

Feature Sets and Learning Instances: We consider three main categories of fea-

tures to use in the prediction problem. First, structural features focus on the cohesion and

connectivity of each group’s follower network. Second, user features emphasize the con-

formity of group users’ offline and online identities. We have defined a family of those

features in previous sections, and we noted that their significance varies in terms of cor-

relation with the group discussion divergence. Lastly, content features capture the content

practices of user-generated content. Based on the analyses in previous sections, we select

different subsets of features from all of them, in order to reduce redundancy and improve

prediction performance. The subsets are as follows:

• Divergence: Discussion divergence of the group at the current phase.

• Structuresub: Directed density, reciprocal density, undirected density, reciprocal av-

erage shortest path length, undirected average shortest path length.
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• Structureall: All structural features described in the Feature Design section.

• Userall: Location entropy, occupation entropy, and online entropy.

• Contentsub: Average numbers of retweets and hashtags.

• Contentall: Contentsub and average numbers of mentions, URLs and emoticons.

For each event, we identify pairs of social groups that are overlapping (Jaccard simi-

larity3 is above 0.5) before and after transition between two phases. There are 69 instances

of group pairs meeting this criterion, and for 35 pairs their group discussion divergence

values increase. We assign a label of ‘increase’ or ‘decrease’ to each group pair, depending

on the change of its group discussion divergence value.

Experiment Setup: For each pair of social groups of consideration, we use its features

before the transition for the prediction task. Both SVM4 (SVM) and logistic regression

(logistic) are used.

We also create another baseline method (referred to as baseline), which relies its clas-

sification on the current phase. In the preliminary analysis of content divergence above, it

is observed that groups’ content divergence in general increases from pre-event to during-

event, and decreases from during-event to post-event. Therefore, baseline always predicts

a group’s discussion divergence to ‘increase’ if it is currently in the pre-event phase, and

‘decrease’ if it belongs to the during-event phase.

Learning performance: To evaluate the performance of group discussion divergence

prediction, we perform a five-fold cross validation on SVM and logistic. For baseline, we

directly compute its F-1 score (0.54). Figure 4.3 shows the performance of various feature

sets and learning models, measured by area under the curve (AUC) and F-1 score.

3The Jaccard similarity between two sets A and B is |A∩B||A∪B| .
4RBF kernel with γ value set to 0.5.

93



4.7 Results and Discussion

We noted the following observations to help us answer our research questions R4.1 to R4.3.

• Performance

It is demonstrated from Figure 4.3 that classification based on features described in previ-

ous sections are significantly more accurate than the baseline method (F-1 of SVM using

structural and user features is 0.75, a 39% improvement), addressing R4.1 and R4.3. Fur-

thermore, the performance of classifiers varies according to the selection of features to

use. While user features have shown high correlation with static group discussion diver-

gence, our results suggest that structural features contribute most to accurately predicting

the dynamic change of group discussion divergence. Using structural features only, SVM

achieves the best AUC (0.83) and F-1 score (0.76).

• Content Characteristics and Social context

We performed qualitative study on the content of the overlapping groups by transition

of phase (e.g., mid to post), and the divergence shift (e.g., decrease) using the Linguis-

tic Inquiry Word Count (LIWC) software (http://www.liwc.net). We observe that

groups who tend to diverge in their discussions write more of general reporting type content

based on past incidents. While the groups with decreasing diverging behavior write more

social and future action related content, likely due to users being organized to inform the

fellow group members about updates on the any goal-oriented situation for cooperation,

such as volunteering during crisis response. For example, we found in the overlapping

candidate groups of hurricane Sandy event that a group with decreasing diverging behav-

ior was highly focused on the updates of flight statuses of different airlines, first delays and

cancellation, and later on the resuming parts. Such focused and active topic-specific groups

will be valuable to engage with by the response coordinators.

• Limitations
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Summarizing limitations about our study, we note that other group formation methods can

be used and evaluated. We also limit ourselves to three phases in the prediction model

experiment, namely pre-, during- and post-event, based on the real-world incidents on the

event timeline. However, more phases may be considered for longer events, as they could

also possess long-term impact. We acknowledge the need for study across more events of

diverse types in the future to validate the work’s generalizability in a variety of context.

We also did not consider other types of group behaviors for this first effort in analyzing

event-oriented group discussion for collective behavior.

For our future work, we plan to extend our features of social identity and cohesion, in-

cluding ethnic and religious social relationships, and structural properties from Twitter List

subscriptions. We shall also validate models into other social networks, such as Facebook,

Google+, LinkedIn, and the DBLP co-authorship network, to see if they show a similar so-

cial phenomenon of group dynamics. Finally, we are also interested in detecting transition

point of group discussion divergence over time, which may corresponds to a phase change

from storming to norming in the group developmental sequence theory.

To summarize, we can identify groups of audience that are active and concerned about

specific issues, and prioritize such reliable groups to engage for the organizational actors

for enhancing their awareness. In the massive social media community after crisis, iden-

tifying reliable sources for engagement to cooperate about specific needs is a daunting

task. Another application of the proposed approach is for deciphering the self-organizing

behavior of groups by learning the collective diverging trends.

Revisiting our main contribution, we present an approach to understand factors (driven

by offline social theories) that improve context for predicting and explaining, the shift of

collective behavior to diverge in the group discussion, and help model prioritized (reliable)

groups to engage. We illustrate by a prediction model to show that these factors can help

track the behavior of group discussion divergence, addressing our research question R4.3

and dissertation question R5 outlined in Chapter 1.
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Chapter 5: Real World Engagements,

Outcomes, and Impact

We often observe challenges with coordination when it is lacking in an environment [71],

rather than when the activities of a cooperative system functions smoothly. Therefore,

we discuss here challenges and lessons experienced during volunteering participation in

the real world crisis responses, to help position the role of technology and need for intent

and engagement modeling in CSC. We discuss application areas first, and then describe

real world experiences, that helped inform our research about coordination challenges and

designing applications for addressing them.

5.1 Applications of Intent and Engagement Modeling for

a Cooperative System

The challenge of coordination appears in all aspects of real world cooperative group. There-

fore, intent mining research to address issues for cooperation–articulation and awareness

in CSC has applicability across the domains. We discuss two applications of this research

below.

• Crisis Response

96



Formal (professional) crisis response communities face the challenge of better coordina-

tion within teams, and citizens [35, 82, 73]. However, they also experience informa-

tion overload from the massive online data generated by citizens on the new online so-

cial platforms [81, 48]. One approach is labor-intensive manual filtering. Another is

crowdsourcing-based information filtering such as rephrasing the message using a syn-

tax template such as tweak-the-tweet [117], and micro-tasking via MicroMappers platform

(http://micromappers.org). The application of automatically mining intent for

user-generated CSC content can help quickly filter data that requires human oversight us-

ing platforms like MicroMappers, and Verily (http://veri.ly), such as for requests

to help. Mining the requests and offers of help can aid task workflow coordinators and help

update priorities for resource allocation decision making.

Furthermore, Figure 1.5 in Chapter 1 shows an example of a seeking-offering match-

ing application to assist coordination for donation of resources and volunteering services in

the community. It could serve future emergency coordinators both formal and local com-

munity leaders to help manage need priorities via social media matchmaking, as well as

improve the existing community based matchmaking systems like Recovers.org. Complete

automation of coordination is challenging due to multiple socio-cultural factors. For exam-

ple clothing of only a specific kind might be acceptable by an affected community women

in the context of a crisis response (From the experience in volunteering for the North India

flood response in Meghalaya and Assam, 2014). Therefore, this research attempts to assist

coordinators by mining the critical information to enable engagement with prioritized ac-

tors in CSC. As Asmolov [6] (who experienced operations of the Ushahidi platform based

Help Map during 2010 Russian wildfires, and Ryanda.org) notes “even if the algorithm

is good, it might not be good enough. In some cases, people need help but do not know

what resources they need and who potentially can help them–they only know that they are

generally in need.”
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Figure 5.1: Engagement interface components to assist organizational task coordination.
Its prototype has been integrated into Twitris tool (http://twitris.knoesis.org).
This engagement interface application (SoMeC), was winner of UN ICT agency ITU’s 2014
Young Innovators Challenge on Open Source Technology for Disaster Management.

If proper coordination and engagement with the citizens is not facilitated, responders

can face a second disaster, leading to additional overhead to an already stressed coordina-

tion environment.

• Brand page community

Brands want to manage and maintain reputation online. Brand-oriented CSC requires the

identification and prioritization of users with whom to engage. The earlier identification of

help seeking customers, and addressing their concerns helps manage customer retention for

the brand. Furthermore, identifying groups with specific potential collective behavior can

detect emerging groups of customers with concerns, and experts unknown to coordinators

earlier.
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5.2 Real world Crises, and Role of Technology: Lessons

Learned

We have participated in various volunteering efforts in citizen-led crisis responses for crisis

mapping to aid awareness about the situation. These experiences to participate for vol-

unteering, and sharing the technology with the volunteering community have taught us

important design applications lessons. We list two of them here.

• JKFloodRelief.org – Proactive citizen engagement prevents relief-donation mis-

management

During the Jammu & Kashmir floods in India in September 2014, along with few citi-

zens, we helped launch a website JKFloodRelief.org (now InCrisisRelief.org) to inform

the general public about prioritized resource needs, based on a cooperation with the local

on-ground organization working for relief. This real world cooperative information system

was supported by on- and off-line coordination between this team, response organizations

and citizens [88]. The team quickly bridged a gap to express information needs of local

organizational actors to remote citizens for ensuring donation needs are not mismatched,

and avoid the second disaster. The group facilitated the largest international citizen-led

response drive for relief coordination in the early days of the floods, involving 25 organiza-

tions and setup of 28 collection centers across India. The key lesson from this experience

was the need for the design of systems that efficiently help in mining information that can

meet articulation of task-coordination needs, and ensuring awareness by distributing infor-

mation to citizens. The volunteer group coordinated with citizens by using the engagement

interface platform in Figure 5.1 to identify important users in the community to engage for

spreading critical information about prioritized needs (e.g., medical needs) proactively, as

well as verify information by engaging with right set of prioritized citizen actors. In this

socio-technical environment, coordination can be assisted by technology, but not replaced.
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Volunteers used this engagement interface platform for engagement with citizens during

North India floods in 2014, as well as Nepal Earthquake in 2015.

• Phailin and Uttarakhand Crisis Mapping – Organizational response requires

articulation

Our digital volunteering initiative in collaboration with Google Crisis Response team led

to creation of crisis maps for the two major crisis events in India in the year 2013. The

volunteering team was monitoring, collecting, filtering, and enriching the information in

collaborative Google spreadsheets. The spreadsheets were fed to a crisis-mapping tool for

a visual interface. In this process, the end users of the crisis map, the response organiza-

tional actors, were not clear on how to use the mapping tool, but more important, what

types of information they could gain from such maps or how could it help their task prior-

ities. The Digital Humanitarian Network [73] provides a better interface for collaboration

between formal response organizations and volunteer communities. A key lesson from this

experience was the need for the identification of organizational needs, and goal-driven data

mining for those specific information needs from citizen generated data.

5.3 Interface for Organizational Actors to Cooperate with

Citizens

We discuss a user engagement interface for assisting coordination of organizational tasks

by facilitating efficient cooperation between organizational actors and citizens. This inter-

face is integrated as a prototype into Twitris social analytics tool (http://twitris.

knoesis.org) [110]. It was a global winner of the UN ICT agency ITU’s Young Inno-

vators challenge on Open Source Technology for Disaster Management1.

1 ITU YIC Blog: https://ideas.itu.int/blog/post/60076
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We employ crisis response as a use case to illustrate an application of this interface.

We note three approaches to identify citizens to engage for an organizational actor: first,

using the prioritized group members as modeled in the Chapter 4; second, by identifying

key on-site informants [115]; and third, a more generalized way for on- or off-site cover-

age in the absence of on-site informants. We describe the third approach in the following

discussion (this work has been published in [86]. Our interface extracts important resource-

related content via influential users. These influential users can act as both sources and dis-

seminators of important information and hence, contribute as emerging virtual responders

to assist organizational task coordination. Given the sparse follower network among users

in the CSC for crisis event oriented discussions, as noted in the Chapter 4, our method ex-

ploits the network of user interactions (who talks to whom) to identify emerging influencers

based on the content of social media exchanges.

Engaging with filtered layers of users serves two purposes. First, it acknowledges

the information content that makes users influential, and that may be useful for situational

updates. Second, important users serve as nodes in the network to direct crucial time-

sensitive information effectively. For example, rumors can be controlled by channeling

correct information via these influential nodes. Resource donations could better reflect the

priorities of responders, to avoid the second disaster of managing unsolicited resources.

For instance, while clothing donations actually impeded the response to hurricane Sandy

[33], more power batteries would have helped greatly.

• Whom to Engage: Influential User Identification

Alternative methods for identifying the influential user can rely on on-ground twitter users

[115], centrality measures based community representatives [42], and whom-to-follow set

based on a user’s topical affinity [60], etc. However, because we acknowledge the evolv-

ing nature of the CSC on social media formed around a disaster event, we exploit user

interactions to capture the dynamics of influence, specific to need types (e.g., clothing,

food, etc.) This is similar in spirit to previous research for identifying influential users in
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brand-page communities [89]. Our method analyzes user interactions about specific needs

(e.g., food, clothing, medical, etc.) for a given time window. We create a network of users

as nodes and directed edges based on the interactions, such that the edge is created from

USER-A to USER-B if ‘USER-A interacts with (retweets/mentions/replies to) USER-B’.

The weight of the edge is equal to the number of interactions. We then apply the popular

algorithm, PageRank [80] on the resulting network to identify key influential user nodes.

The algorithm iteratively assigns a weight of importance to a user USER-B by aggregating

the importance of all such users USER-A who have incoming edge to the USER-B. This

way, a user accrues importance based on various factors; such as if other influential nodes

interact with (e.g., retweet) her, a greater number of users interact with her, etc.

To identify the set of user interactions pertaining to specific needs, we created a bag-

of-words model based lexicon sets for describing needs and used it to filter the correspond-

ing tweet set; however, more sophisticated approaches beyond bag-of-words are possible

such as a topic model [128]. For example, a clothing need can be represented by a bag

of ‘cloth, blanket, jacket’. Certainly better methods can be utilized to find the subset of

data relevant to specific needs. In any case, the required method must be independent of

pre-established need types to allow response coordination to prioritize based on emerging

requirements. We also note that the subsets of tweets related to needs are not mutually

exclusive, for example, “Thanks for supporting #1000bearhugs, pls help other #reliefPH

efforts too; food, clothing, & meds are most needed now http://goo.gl/MkgP8D” will be

present in both clothing and food type subsets.

• How to engage: User Profession Categorization

Domain familiarity influences both the crafting and sharing of a message. Thus slicing

and dicing access paths to information potentially helps coordination. In this step, we cat-

egorize the influential users based on profession, such as those related to humanitarian,

journalism, or medical. We first created ten popular user profession domains and then cre-
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KEYWORD-BASED FILTERING
K1. [Clothing] Donated clothes for the victims of Yolanda. I hope it helps. #ReliefPH

K2. [Clothing] I won’t believe it’s a true disaster until Anderson Cooper heads to the Philippines
wearing his typhoon flak jacket and poncho. Oh, wait! ??

K3. [Medical] Typhoon #Haiyan: Doctors of the World sends medical teams to worst-affected
areas — DOTW http://t.co/2X4c0Csjva via @USERK1

K4. [Volunteer] RT @USERK2: @USERK3 RT please Not in the Philippines but want to help for
relief efforts? Details: #PrayForThePhilippines
INFLUENTIAL USER-BASED FILTERING

I1. [Clothing→ Humanitarian→@USERI1] Thanks for supporting #1000bearhugs, pls help
other #reliefPH efforts too; food, clothing, & meds are most needed now http://goo.gl/MkgP8D

I2. [Clothing→ Journalism→@USERI2] #Ormoc urgently needs food, water, medicines,
blankets. Barge is headed from Cebu to Ormoc tomorrow , please spread @USERI3 #ReliefPH

I3. [Medical→ Humanitarian→@USERI4] #ReliefPH @USERI5 sent team of 15 to #Tacloban
with medical kits supplied by @USERI6 http://bit.ly/19Swygc #hmrd

I4. [Volunteer→ Humanitarian→@USERI7] Interested in volunteering with our #SuperTyhpoon
#Haiyan response? Let us know here: http://bit.ly/19W3k4X #volunteer #YolandaPH

Table 5.1: Examples of tweets randomly selected from the keyword-based content filtering
on top, and the influential user generated content filtering on the bottom. Example K2
shows the limitation of keyword-based approach due to lack of semantics of relevance.
Dataset: Philippines typhoon event, Twitter data of 24 hrs. on Nov 11, 2013. User handles
are anonymized.

ated a lexicon using identifiers from Wikipedia and the U.S. Department of Labor statistics,

borrowing from the occupation-based method of our previous research on user interest pre-

sentation [89]. We noted this as occupational user identity in Chapter 4. The set was then

expanded manually to capture general terms. For example, the lexicon for the humanitar-

ian profession domain contains words such as ‘humanitarian’, ‘emergency’, ‘disaster’, etc.

The final step is to perform entity spotting of the lexicon terms in the user’s description

metadata of his or her Twitter profile. We acknowledge that alternative methods can be em-

ployed. Our objective is to support the key functionality at the interface to enable faceted

engagement for coordination.

Tables 5.1 show how filtering based on influential users reduces the information over-

load by identifying tweets with unique and useful information of greater relevance to aid

awareness about the situation, for example, I1 and I2 in Table 4.1 indicates prioritized

needs [86]. Keyword based filtering, on the other hand, does not address the issue of infor-

mation overload due to the mere syntactic approach of filtering without context. Influential
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users become so via attribution from community members and therefore, are likely to be

sources of important information. We anticipate that coordinators will be able to locate

useful sources more easily with this indication of information reliability. Figure 5.1 shows

our interface.

Figure 5.2: Prototype for visual interface to explore the intent classified information at a
varying level of abstraction by thematic, spatial and temporal dimensions for helping task
coordination.
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5.4 Intent Classification-as-a-Service: Ushahidi CrisisNET

Integration

We provide intent classification as a web service with POST request mechanism for classi-

fying text messages (test page is available at: http://knoesis-twit.cs.wright.

edu/CrisisComputingAPI/. The service currently provides intent classes relevant

for the cooperative system design in a use-case of crisis response, but is generic to adopt

any other application domain.

• CrisisNET

It is a project by Ushahidi, the crisis mapping pioneer. CrisisNET is considered as a firehose

of global crisis data (http://crisis.net), providing rich metadata of crisis datasets.

The intent classifiers from our research for Seeking and Offering intent classes (details in

Chapter 3) for a crisis response use-case have been integrated by the CrisisNET project for

broader impact. A study using this service on UK Floods is available at: http://blog.

crisis.net/who-helps-when-crisis-hits/

• Visualization Interface

We explored the visualization (refer Figure 5.2) of classified information for various intent

categories (seeker, offering/supplying) using an initial prototype built on Twitris tool [110]

to learn the challenges in interfacing with the actionable information. In this interface,

an organizational actor can see information at a varying level of abstraction by thematic

(anchored tags in the word cloud), spatial (geographical map) and temporal dimensions

(date widget).
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Chapter 6: Discussion, Limitations, and

Future Work

Based on the previous five chapters, we have validated the role of prior knowledge, and

interplay of user, content and network features in efficiently modeling intent classification,

and evolution of engagement of user groups to prioritize in CSC, and therefore, helping

the design of a cooperation system between citizens and organizations. We discuss the

improvements to the state-of-the-art and refer back our research questions outlined in the

Chapter 1, followed by limitations and scope of our current and future direction of research.

6.1 Lessons on Improvements

We note several observations on how to address the problem of analyzing data in CSC that

serves the design of cooperative web information system for citizens and organizational

actors. We organize these points in the following topics:
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6.1.1 Operationalizing Computation in the Cooperative System De-

sign

We demonstrated how to operationalize the design problems of a cooperative system be-

tween citizens and organizations into data problems by accommodating articulation in in-

tent mining, and enriching awareness by engagement modeling. We showed a modeling

approach to mine intents expressed in the user-generated content of CSC articulated by the

organizational workflow tasks (Information collection on resource scarcity-availability) and

addressed our research question R2. Our efficient mining approach renders the implicit in-

formation in the user-generated content explicit. This improves knowledge representation

of the noisy data for providing better information access to organizational actors as shown

in the Figure 1.b. We also showed an approach to better understanding the user engagement

of groups, and their divergence over time to efficiently detect groups with focus–the reli-

able/prioritized groups. Modeling group engagement helped address the research questions

R3 and R5. Providing access to such identified reliable groups in CSC helps organizational

actors address the awareness challenge by engaging with such group members for sourcing

more information timely.

In the context of crisis response, during a post-exercise review of our local emergency

management organizations, one of the key lessons for researchers to effectively assist or-

ganizational actors was the need for better alignment of data mining outputs for improving

cooperation between citizens and formal response organizational actors. Our approach to

mining a cooperation-assistive intent addresses the concerns of emergency managers for

such goal-driven data mining of content. It complements the earlier work on leveraging the

power of crowdsourcing [73] to mining information needs for the collaborating organiza-

tions during crisis response, when there is a massive amounts of data being generated.
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6.1.2 Data Representation Improvement for Intent and Engagement

Models

We demonstrated a performance improvement for the hard-to-predict problem of intent

multiclass classification via data representation. In Chapter 3, we contrasted the work on

intent mining highly focused on Search logs with limited applicability to socio-technical

system due to lack of user action logs, as well as the context of social conversation. We dis-

tinguished intent classification from topic classification in text mining, specifically because

of the social conversational context. A key lesson from our research is that an efficient

representation of what is being computed (capturing context) is as important as how to

compute a given dataset for intent classification. In Chapter 4, we showed the interpretabil-

ity of factors that affect group engagement and its divergence over time could be efficiently

modeled using offline social theories. The measure of content-driven group discussion

divergence complements the existing work on network structured based modeling for the

evolution of group engagement.

6.1.3 Fusing Top-down and Bottom-Up Approaches to Address Ambi-

guity, Sparsity, and Diversity

We showed in Chapter 3 that modeling the fusion of top-down and bottom-up approaches

helps in efficient data representation to learn intent from the natural language text doc-

uments, especially for the short, user-generated text on social media. We addressed the

dissertation research question R4 in this work. Top-down, knowledge-based features assist

in improving learning space by boosting statistical processing to mine predictor-class rela-

tionships. This better addresses the issues of interpreting ambiguous natural language text,

and sparsely available intent classes in user-generated content on online social platforms,

consisting of a diverse set of user demographics.
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6.1.4 Importance of Social Behavioral Knowledge in Analyzing On-

line Social Data

We note the influence of knowledge-guided features based on social behavior from the of-

fline world in online communication platforms. Human behavior from the offline world is

apparent in the conversations of online mediated communication. Based on extensive anal-

ysis in the Chapter 2, we address the dissertation research question R1 for the existence of

offline behavior in online conversations. This can be used to improve context in computing

data on the online social platforms. We used this knowledge in computing intent from the

natural language text. We also used prior knowledge in modeling diversity of group mem-

bers using social cohesion and identity theories, which provided a better explanation for

the dynamics of group engagement, and the prediction of group discussion divergence. It

addressed our dissertation research question R3.

6.2 Assumptions and Limitations

Likewise any computing research investigations, this research also has certain limitations,

and we list them under the following categories:

6.2.1 Domain Dependence: Context in CSCW Applications

The CSCW literature shows that coordination and cooperation are highly dependent on the

domain of application. Coordination and cooperation requires capturing various nuances

of the domain characteristics. We have addressed the use-case for crisis response coordina-

tion; however, investigation in other domains would be helpful to observe if different intent

expressions are of significance for mining user-generated data.
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6.2.2 Knowledge Sources

We used the declarative knowledge from domain experts and linguistic theory. We ac-

knowledge further potential to leverage dedicated knowledge bases designed for the do-

main, such as Humanitarian Exchange Language (HXL) [58] for crisis response domain.

We have also developed a preliminary ontology (accessible at http://knoesis.org/

projects/socs) for the domain of crisis response coordination to further enrich declar-

ative knowledge modeling in the computational process (discussed in Appendix).

6.2.3 Intent Classes

We experimented with a limited set of intent class to provide a first step towards modeling

cooperation-assistive intent. However, there exists other type of intent in user-generated

content during emerging events on online social platforms that need further investigation,

such as relationships between acknowledging and seeking help during crisis events. Our

Representation Improvement Algorithm although provides a framework for facilitating this

exploration, using a variety of knowledge sources for differing intent.

6.2.4 Consideration of Temporal Drift in the Intent

We assumed that ways of expressing intent do not change over time, and considered a static

distribution of the intent related data while learning the intent classification. However, there

is a possibility of intent expressions being changed over time as a real world event evolves,

such as during a crisis where seeking intent for resources can be dynamic in nature based

on resource need types (e.g., medical, shelter).
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6.2.5 Group Behaviors in Engagement Modeling

We only modeled social cohesion and identity theories for group behavior. However, other

theories of group formation and evolution suggest alternative, systematic explanations

for social groups, e.g., modeling the roles of leadership consistent with [122] forming-

storming-norming-performing. Although more complex to model, such approaches would

inform the explanation of group engagement over time.

6.2.6 Non-Twitter Social Data

Our dataset is based on one social network, Twitter microblogging service due to its impor-

tance during events of crises in the recent years. However, investigation is needed to apply

the developed models on different datasets to identify model transfer challenges across

datasets of different social networking platforms, such as Facebook, and Google+.

6.2.7 Interplay of Offline and Online Environments

We acknowledge that interaction effects of offline and online actions of users and groups

are not captured in the analysis presented. It is challenging to validate the actual effects on

potential offline actions expressed via the intentional expressions in the online social data,

due to variety of reasons such as the scale of user communities, and the ground truth. We

consider it as a key limitation to online social data analysis, and also a good opportunity to

address in the future work.

6.2.8 Correlation but not Causality for Action

The group engagement modeling based on social theories is dependent on the correlation

between specific features guided by identity and cohesion theories and the collective be-

havior of divergence in topical discussions. As correlation does not imply causation, and
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therefore, we acknowledge that the identified prioritized groups would not always be ac-

tionable.

6.3 Future Work

Besides addressing the limitations noted above, the future work should also consider the

following directions extending this work:

6.3.1 Multilabel Classification

Intent interpretation is a challenging hard-to-predict problem. Modeling multiple intents

within a document would improve understanding of natural language text when ambigu-

ity of interpretation challenges a human reader. We have often observed the expression of

intent with another intent class; for example, intent of asking for help in a message dur-

ing crisis response exists with the acknowledgement also. We shall explore the classifier

chain approach for address the problem in an ensemble-learning framework. We shall also

investigate multitask learning to explore the idea of jointly learning the multiple objec-

tives together, such as for the presence of intent for asking for help occurring with specific

resource class (e.g., shelter, food) during crises.

6.3.2 Parameter-free Algorithm for Top-down and Bottom-Up Fusion

We also note a possible extension of the Representation Improvement Algorithm for cre-

ating a parameter-free approach to fuse the top-down and bottom-up processing. We shall

address the problem of modeling the parameters of contrast pattern mining for discovering

knowledge by using the declarative knowledge, which is guided by specialized domain ex-

pert knowledge sources, such as extensions of Humanitarian Exchange Language ontology.
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6.3.3 Actor-specific Intent Mining

We note another form of intent mining problem in the user-generated content of CSC,

from a pragmatic perspective. Instead of answering simple question ‘what is the intent

of a document’ as a classification problem, we should consider the actor-specific intent

association problem, i.e., who has the intent, and of what type’. Understanding such fine-

grained details of the intent behavior would allow precise and efficient organization of

user-generated content. Also, the fine-grained intent would allow the efficient matching

models for coordination as explained next.

6.3.4 Matching Algorithms for Coordination Modeling

We identify a bipartite matching problem for a graph containing two sets of complemen-

tary intentions, such as demand or seeking intent versus supply or offering intent, which

could help the coordination of resources and information. In this, we have multiple prob-

lems involving uncertainty of nodes, and edges in the bipartite graph, which specifically

contains the sub-problems of intent classification for document nodes, user resolution for

nodes, and faster graph matching. Our on-going work is exploring the challenge of graph-

matching problem using partitioning based method to reduce time and space complexity in

the weighted bipartite matching.

6.3.5 Visualization for Assisting Coordination

We also note an important challenge of computer human interaction to make the technolo-

gies accessible and usable for end users. We must test the existing interface as discussed in

the Chapter 5 and examine better information visualization and search interfaces to facili-

tate human decision-making.
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CONCLUSION

We have presented a novel approach to transform the design level cooperative system chal-

lenges of articulation and awareness into computationally tractable problems, for cooper-

ation between citizens and organizational actors in the online citizen sensor communities

(CSC). We model specific intent types expressed in the user-generated content in CSC that

align data mining with the articulation of organizational workflow tasks (e.g., seeking-

offering resources to assist response prioritization during a crisis). We model user engage-

ment in groups of CSC to address awareness challenge of cooperation to determine whom

to prioritize in CSC for engagement with organizational actors for coordination.

We have demonstrated a hybrid approach of fusing top-down and bottom-up process-

ing to efficiently model user intent and engagement in CSC. In the hybrid approach, the

interplay of prior knowledge from a variety of sources (declarative, offline social behavior

and contrast patterns) in combination with user, content and network features improve data

representation and address the challenges of ambiguity in interpretation, sparsity of specific

behaviors, and diversity of user demographics. Better-represented data improves modeling

efficiency for user intent mining via multiclass classification and group engagement evolu-

tion using a novel content-driven measure of group discussion divergence. Our approach

provides an interpretation of the structure of highly noisy data generated in CSC.

Throughout this dissertation research, we had opportunities to collect and work with

real-world crisis data as well as participate in rescue or relief coordination efforts. This

informed our research by providing real world requirements, as well as provided interim

opportunities to apply our research. We have described applications of addressing coop-

eration issues in the online socio-technical system, and provided intent classification as a

service in the crisis response domain, which has been integrated by Ushahidi CrisisNET

project for broader impact of the research outcome. Resulting techniques from this research

has potential impact on the conduct of emergency response coordination, by enhancing

awareness in the formal response community to focus on patterns of need and assisting ar-
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ticulation by clarifying available resources. Future work will expand the domain analysis,

assess the contributions of existing organizational processes, and increase and evaluate so-

cial data analysis capability to support the decision making of formal organizations. Also,

we plan to explore deeper intent mining approaches using multilabel and multitask learning

to better understand human expressions in the online social medium.
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Appendix A

Crisis Coordination Ontology

We extend the concepts of domain knowledge-driven models for the crisis response use-

case, MOAC–Management Of A Crisis ontology [63], and UNOCHA’s HXL–Humanitarian

Exchange Language [58] ontology. Using these models, we created an extended ontology,

named as ‘SOCS Ontology for Crisis Coordination’ with required but missing concepts for

organizing data during crisis response for seeker (seeking intent) and supplier (offering in-

tent) behavior, and indicators of resource needs using a lexicon. For example, the ‘shelter’

class contains words ‘emergency center,’ ‘tent,’ and ‘shelter,’ along with lexical alterna-

tives. For the initial demonstration, we focus on three resource categories: food, shelter

and medical needs. Thus, we endeavor to exploit a minimum, but always expandable

subset that provides the maximum coverage while controlling false alarms. For creating

lexicons of indicator words for concepts, we relied on various documents collected via in-

teractions with domain experts [35], our Community Emergency Response Team (CERT)

training, Rural Domestic Preparedness Consortium training, and publically available ref-

erences [1, 2, 126]. Using a first aid handbook [119], we created an extensive ‘medical’

subset of emergency indicators, where we identified words which pertained specifically to

first aid or injuries and included those words along with variations in tense (i.e., breath,

breathing, breathes) and common abbreviations (i.e. mouth to mouth, mouth 2 mouth,

CPR). A local expert with FEMA experience augmented the model with additional indi-

cators and provided anecdotal context. The current model with food, medical, and shel-
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ter resource indicators contain 43 concepts and 45 relationships. We created this domain

model in the OWL language using the Protégé ontology editor [79]. Each type of disas-

ter is listed as an entity type with indicators for that disaster listed as individuals under a

corresponding indicator entity. Therefore a relationship is declared stating that a particular

disaster concept, say Flood, relates by property ‘has a positive indicator’, with ‘Flood i’

indicator entity, that includes all relevant words. Each disaster has a declared negative

relationship with the negative indicator list (e.g., ‘erotic’ under sexual words indicators)

under the entity name Negative Indicator i. Finally resources are declared as individuals

under the appropriate entity in the same way, but relationships are not explicitly stated

with any disaster in order to provide flexibility. The description of how to leverage this

ontology for computation is available in [90], and it is accessible from our project website:

http://www.knoesis.org/projects/socs
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Appendix B

Declarative Knowledge Patterns

In reference to section 3.6, for experiments to classify intent, we crafted the following seed

patterns for declarative knowledge with the help of expert guidance, which were further

expanded using WordNet and Levin Verbs knowledge bases, as discussed earlier. The prefix

(‘OFFERING=’ or ‘SEEKING=’) denotes the potential class association of the pattern, and

the ‘ REQ ’ and ‘ OFR ’ in the pattern string are just indicators for explaining a potential

intender for Seeking and Offering intent classes. For example, consider the first pattern,

a message ‘I am donating to Red Cross’ would fit in this case, and the intent of message

author is Offering, who is donating to ‘Red Cross’, a Seeking intender. These patterns were

used to generate binary features.
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OFFERING=\b(I|we)\b.*\b(m|am|are|r|will be|shall be)\b.*\b(bringing|giving|helping|raising|donating|auctioning)\b _REQ_ 
 
OFFERING=\b(I'm|we're|they're|we'r|they'r)\b.*\b(bringing|giving|helping|raising|donating|auctioning)\b _REQ_ 
 
OFFERING=\b(I|we|they|it)\b.*\b(ll|will|shall|would|wud|would like to|wud like to|wd like 
to)\b.*\b(bring|give|help|raise|donate|auction|work|volunteer|assist)\b _REQ_ 
 
OFFERING=\b(I'll|we'll|they'll|he'll|she'll|it'll|I'd|we'd|they'd|he'd|she'd|it'd)\b.*\b(bring|give|help|raise|donate|auction)\b _REQ_ 
 
OFFERING=\b(I|we)\b.*\b(ready|prepared)\b.*\b(bring|give|help|raise|donate|auction)\b _REQ_ 
 
OFFERING=\b(where|how)\b.*\b(can|could|cud|cd|may|might|would|wud|wd)\b.*\b(I|we|he|she|it|they)\b.*\b(bring|give|help|raise|donate|work|v
olunteer|assist)\b _REQ_ 
 
OFFERING=\b(I|we)\b.*\b(like|want)\b.*\bto\b.*\b(bring|give|help|raise|donate|work|volunteer|assist)\b _REQ_ 
 
OFFERING=\b(can|could|cud|cd|may)\b.*\b(I|we|he|she|it|they)\b.*\b(bring|give|help|raise|donate|work|volunteer|assist)\b _REQ_ 
 
OFFERING=_OFR_ \b(is|are|will be|shall be)\b.*\b(bringing|giving|helping|raising|donating|volunteering|assisting|working)\b _REQ_ 
 
OFFERING=\b(I|we|he|she|they|it)\b.*\b(can|cn|could|cud|would|wud|should|may|might)\b.*\b(feed|give|lease|lend|loan|pass|pay|refund|render|re
nt|serve|trade|assign|award|extend|grant|issue|leave|offer|send|ship|slip|sneak)\b.*\b(a|an|the)\b _REQ_ 
 
OFFERING=\b(I|we|he|she|they|it)\b.*\b(may|might|must|can|cn|could|cud|would|wd|wud)\b.*\b(help|assist|aid|lend a hand|volunteer)\b _REQ_ 
 
OFFERING=\b(I|we|he|she|they|it)\b.*\b(shall|will)\b.*\b(feed|give|lease|lend|loan|pass|pay|refund|render|rent|serve|trade|assign|award|extend|gra
nt|issue|leave|offer|send|ship|slip|sneak)\b _REQ_ 
 
OFFERING=\b(I'll|we'll|he'll|she'll|they'll|it'll)\b.*\b(feed|give|lease|lend|loan|pass|pay|refund|render|rent|serve|trade|assign|award|extend|grant|issu
e|leave|offer|send|ship|slip|sneak)\b _REQ_ 
 
OFFERING=\b(shall|will|should|would|can|could|cud|wud|shud|may)\b.*\b(I|we|he|she|they|it)\b.*\b(feed|give|lease|lend|loan|pass|pay|refund|ren
der|rent|serve|trade|assign|award|extend|grant|issue|leave|offer|send|ship|slip|sneak)\b _REQ_ 
 
OFFERING=_OFR_ \b(like|want|likes|wants)\b[^?]*\b(to)\b[^?]*\b(bring|give|help|raise|donate|work|volunteer|assist|support)\b(?!.*\?)\b _REQ_ 
 
SEEKING=\b(like|want)\b.*\b(to)\b.*\b(give|help|raise|donate|work|volunteer|assist|support)\b _REQ_ 
 
SEEKING=\b(you|u)\b.*\b(can|could|should|want to)\b.*\b(bring|give|help|raise|donate|text)\b _REQ_ 
 
SEEKING=\b(can|could|cud|would|wud|should)\b.*\b(you|u)\b.*\b(bring|give|help|raise|donate)\b _REQ_ 
 
SEEKING=\b(I|we|he|she|they|it|I'll|we'll|he'll|she'll|they'll|it'll)\b.*\b(need|needs|needing)\b 
 
SEEKING=\b(please|plz|pls)\b.*\b(bring|give|help|raise|donate|work|volunteer|assist|feed|give|lease|lend|loan|pass|pay|refund|render|rent|serve|tra
de|assign|award|extend|grant|issue|leave|offer|send|ship|slip|sneak)\b _REQ_ 
 
SEEKING=\b(who)\b.*\b(has|had|have|hv)\b.*\b(a|an|the)\b _REQ_ 
 
SEEKING=\b(what)\b.*\b(can|could|cn|cld)\b.*\b(you|u)\b.*\b(do)\b _REQ_ 
 
SEEKING=\b(shall|will)\b.*\b(you|u)\b.*\b(bring|give|help|raise|donate|work|volunteer|assist|feed|give|lease|lend|loan|pass|pay|refund|render|rent|
serve|trade|assign|award|extend|grant|issue|leave|offer|send|ship|slip|sneak)\b _REQ_ 
 
SEEKING=\b(do|does|did)\b.*\b(you|u|he|she|they|it)\b.*\b(have|hv|has|had)\b _REQ_ 
 
SEEKING=\b(donate|bring|give|raise|text|work|volunteer)\b.*\b(to)\b.*\b(help|support|assist)\b _REQ_ 
 
SEEKING=\b(like|want|likes|wants)\b.*\b(to)\b.*\b(bring|give|help|raise|donate|work|volunteer|assist|support)\b.*(\?).*\b _REQ_ 
 
SEEKING=\b(like|want|likes|wants)\b.*\b(to)\b.*\b(bring|give|help|raise|donate|work|volunteer|assist|support)\b.*(check|chk|go to).*\b _REQ_ 
 
SEEKING=_REQ_ \b(who|you|u)\b.*\b(like|want|likes|wants)\b.*\b(to)\b.*\b(bring|give|help|raise|donate|work|volunteer|assist|support)\b 
_REQ_ 
 
SEEKING=_REQ_ \b(need|needing)\b.*\b(help|support)\b _REQ_ 

Figure B.1: Pattern set for declarative knowledge.
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