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ABSTRACT 

 

Vijwani, Hema. Ph.D., Department of Mechanical and Materials Science Engineering, 

Engineering Ph.D. Program, Wright State University, 2015. Title: Hierarchical Porous 

Structures with Aligned Carbon Nanotubes as Efficient Adsorbents and Metal-Catalyst 

Supports. 

 

The overall goal of this study is two-fold:  synthesis of multiscale nanostructures 

by growing aligned carbon nanotubes on porous foam substrates and investigation of 

their applicability as adsorbents and catalyst supports for environmental remediation 

applications. High purity, vertically-aligned arrays of carbon nanotubes (CNT) are grown 

on open-cell interconnected porous carbon foams by pre-activating them with an oxide 

buffer layer followed by chemical vapor deposition (CVD). This type of hierarchical 

morphology provides the capability of increasing surface area by several orders of 

magnitude, while tuning its morphology for targeted applications. Analytical models are 

also proposed in this study for specific surface area calculations, those agree well with 

the experimental measurements. These hierarchical carbon materials are seen to be 

powerful adsorbents of aqueous pollutants such as methylene blue dye. Their monolayer 

adsorption capacities correlate very well with the total CNT surface area determined from 

analytical models and with BET measurements, indicating full utilization of the nanotube 

surfaces.  

The hierarchical structures can also serve as base supports for attachment of metal 

nanoparticle catalysts. The catalysts investigated in this study are metallic palladium 

(Pd), oxidized palladium (PdO), and silver-palladium (Ag-Pd) nanoparticles combination. 

These are suitable for a variety of industrial applications such as hydrocarbon conversion, 

hydrogen storage, fuel cell electrodes and pollutant degradation. The current architecture 
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allows synthesis of highly active catalyst structures utilizing very small quantities of 

precious metal that make the catalyst component significantly lighter and more compact 

than conventional systems. Detailed characterization of structure and surface chemical 

states of these nano-catalysts have been performed and their catalytic activities are tested 

by measuring the degradation kinetics of organic contaminants via bench-scale 

experiments. Catalytic degradation of atrazine, an emerging problematic contaminant, 

was quantified using high-performance liquid chromatography. Among Pd, PdO, and Ag-

Pd nanoparticles, PdO in the presence of hydrogen was seen to provide the most rapid 

reaction rate. These nanocatalysts also enable rapid degradation of chlorinated 

hydrocarbons such as trichloroethylene and trichloroethane quantified using head-space 

gas chromatography, with PdO providing the fastest kinetic route. 

Durability tests indicated that the nano-particles and nanotubes are robust, and 

remain attached to the base support after long periods of rapid rotation in water. These 

results imply that such materials can provide compact and powerful surface active 

materials in future applications such as adsorbents, catalysts, porous electrodes, and 

energy storage devices. 
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1. Chapter 1: Introduction and Background  

1.1 Importance of Surface Area  

The characteristic behavior of solid materials is determined not only by their 

chemical nature but also by their physical properties such as surface morphology, 

specific surface area, density, and porosity. The surface of a solid material is the 

region by which it interacts with the surroundings, which may consist of gas, liquid 

and other solid materials. Mechanisms controlled by the surface interactions include 

chemical reactions, atomic diffusion, energy transport, absorption, adsorption, 

desorption, and separation. The rates of such interactions are influenced by the 

interfacial contact between two interacting phases, which is determined by the amount 

of material on the surface. The surface morphology and specific surface areas of a 

solid material are therefore critical to the effectiveness of any system involved and 

can significantly influence its performance characteristics. The performance of 

applications can be enhanced by the use of materials having high surface area. 

Specific surface area (SSA) is the measure of surface area per unit volume or 

mass of a material. The SSA of a material can be increased either by granulating a 

large solid into smaller fragments (e.g. coarse/fine powders) or by synthesizing 

materials at very small dimensions that have high-aspect ratios (surface-to-volume 

ratios), for example nano-tubes. Besides reducing the size of the material, the true 

surface area of materials can also be enhanced by altering their geometric shape. The 

irregular shapes of many solids account for the increase in the surface area, which is 

useful for various functionalities. Similarly, the surface area of a material can be 

increased by inducing porosity to the solid. The pores or voids within a porous 

material account for an increase in the specific surface area as the exposed pores 
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provide additional surfaces and the voids (empty space) account for reduction in the 

weight of the material. Porous materials are a step towards obtaining high SSA 

materials [1], [2]. Materials in the form of powders, particles, porous materials or 

nano-materials have received significant interest for various applications requiring 

high surface area such as catalysis, adsorption/absorption, filtration, and thermal 

applications. 

1.2 Porous Materials  

Materials containing pores, spaces, or voids within are known as porous 

materials. Many different classifications of the porous materials have been proposed 

depending on the pore-geometry (size, porosity), pore-structure (closed pore or open 

pore structures), pore-arrangement (random or ordered pore arrangements), and 

material composition (metal, oxide, or carbon) [3], [4]. The physical attributes such as 

surface area of a porous material are often characterized by its pore size and porosity. 

Porous materials that have small pores and high pore-densities exhibit very high SSA 

and vice versa [4].  

Open-pore structured (open-cell or interconnected) porous materials, owing to 

their high accessible surface area, are widely known for their outstanding heat/mass 

capture and transfer properties. They possess a wide range of applications and are 

adapted as catalysts supports, water filters, heat exchangers, absorbers and many more 

[1]. However, the increase in surface area of the porous material is restricted by the 

porosity that compromises the structural integrity. Therefore, there has been an ever-

rising demand to increase the surface area as much as possible. This can be achieved 

by using nature-inspired multi-scale hybrid structures that address the limitations of 

porous materials. 
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1.3 Hierarchical (Multi-Scale) Materials  

A hierarchical material consists of assemblies of structures or components 

having multi-scale dimensions. The hierarchical nature of such structures is known for 

its remarkably unique characteristics, which plays an important role in the 

enhancement of available surface area. The concept of multi-level architectures is 

derived from our very own nature, which has been widely accepted for the 

functionality of many living entities.  

1.3.1 Nature Inspired Hierarchical Materials 

Hierarchy in materials naturally exists in many aspects of the environment 

such as in biological living systems. Some examples include wood, leaves, roots, 

bone, tendon, and glass sponges [5], [6]. The multi-level architecture of these 

materials exhibit components on more than one length scale in hierarchical pattern so 

as to accommodate nature’s underlying challenges. Natural hierarchical materials are 

the perfect known hierarchical materials that have ambient growth conditions and 

possess self-organization mechanisms at all levels in the hierarchy. Such 

characteristics have been the root of inspiration for imitating nature’s own trait to 

make synthetic hierarchical structures [7]. It is significantly challenging to replicate 

nature’s intellect and develop microscopic hierarchical structures suitable for practical 

applications.  

1.3.2 Emerging Hierarchical Materials 

Hierarchy in synthetic materials has been studied and developed in various 

forms including, (1) hierarchical porous structures that have multi-level porous 

systems (macro/meso/micro- pores) within the material [8], (2) nano-structures on 

fibrous materials, and (3) nano-structures on flat supports. Some examples of the 
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emerging hierarchical structures include carbon nanotubes (CNT) grafted on free 

standing fibers or weaved fibers and nanoparticles supported on free standing CNT or 

fibers [9]–[11]. 

Another kind of approach to hierarchy, can be obtained by incorporation of 

fibrous nanostructures (nanotubes) on porous materials (foams). CNT have been 

reportedly grown on simple geometries like flat surfaces and fibers [12], but research 

on complex geometries like interconnected porous structures is relatively new and has 

been mostly restricted to oxide or metallic foams due to their growth requirements 

and conditions [13] [14]. The hierarchical structure used in this study is a hybrid 

material obtained by direct growth of carbon nanotubes onto microcellular carbon 

porous foam having interconnected open-pore structure [15]. This hybrid structure is 

robust in nature and holds the capability of tuning the surface area, which can be 

increased by several orders of magnitude without adding any significant weight to the 

material. Such a phenomenal hierarchical rigid support can be adapted for a wide 

range of applications ranging from novel catalyst supports to water filters [16]–[18].  

1.4 Current Trends in Water Treatment Applications 

Materials having high specific surface area are desirable for the effectiveness 

of a system as the interfacial surface area is the limiting factor that plays an important 

role in many emerging technologies. One of the important applications is in water 

treatment technology and that has been studied in this research. 

1.4.1 Water Contamination and Purification Issues 

The contamination of water bodies (aquifers, groundwater, lakes, rivers, and 

oceans) is a significant and ever-growing problem worldwide. The levels of water 

pollution have become progressively complex to a point that the problem appears 
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intractable. The pollution of water by a multitude of contaminants has harmful impact 

on the ecosystem resulting in an unprecedented crisis and affecting all the living 

entities. A wide variety of contaminants are from industrial chemical wastes that are 

discharged into the environment without proper treatment, these contaminants include 

inorganic and organic compounds such as heavy metals (e.g. lead, chromium), 

chemical toxins (e.g. halogenated hydrocarbons, dyes, aromatic compounds), 

petroleum products, and microorganisms (e.g. bacteria, fungi). Chemical compounds 

such as halogenated hydrocarbons, aromatic compounds are of great concern 

worldwide because they exhibit toxicity to the receptors [19]. Two major reasons for 

their existence are due to their (1) widespread use in industrial applications, and (2) 

high resistance to biological degradation. Other major concern is due to the newly 

emerging contaminants known as contaminants of emerging concern (CECs) such as 

fertilizers, herbicides, pesticides, pharmaceuticals, plasticizers, detergents, and 

antimicrobial agents. The demand for clean water is rapidly increasing and there has 

been emphasis on developing efficient methods for purification of water and 

wastewater. The removal of pollutant from water can be carried out by capturing the 

pollutants onto materials (adsorbing) and/or degrading (e.g. using catalyst metal 

nanoparticles) by reducing/breaking the toxic compound into less or non-toxic smaller 

compounds. For such surface specific applications, materials having high specific 

surface area are desirable.  

1.4.2 Nanomaterials used in Water Purification 

Carbon-based materials with a high specific surface area such as activated 

carbon, carbon fibers, and nanostructures of carbon are well-suited for water 

treatment applications. Recently, nanostructures of carbon including graphene, carbon 

nanotubes, and bucky-balls have been considered as materials for removal of 
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pollutants from water. Among them, CNT have proven to be a promising material for 

the removal of many environmental pollutants due to their high aspect ratio, fibrous 

mesoporous structure, and large specific surface area. For similar reasons, CNT have 

also been considered as an attractive support for anchoring metal nanoparticles [20]. 

However, these structures are mostly in the isolated or free-standing form, which for 

water treatment applications can pose a significant challenge [21]. As the 

nanomaterial can get dispersed into the surrounding medium during use and their 

recovery from the treated water can be difficult, which may result in material loss as 

well as posses health and environmental hazards [21], [22].  

The hierarchical carbon structures used in this study address the above issue 

by introducing carbon nano-structures that are attached to porous supports so as to 

facilitate easy loading and unloading of the material in the liquid environments [17], 

[18]. Micro-porous carbon supports with strongly attached high surface area carbon 

nanotubes can surpass the other types of currently available porous materials in 

robustness, ease of handling, and structural integrity. 
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1.5 Research Objectives 

The main objectives of this research are:  

1. To investigate efficient approaches to fabrication and optimization of novel 

hierarchical porous structures having tailorable surface areas for targeted catalytic 

activities. 

2. To investigate the key growth parameters that influences the CNT morphology 

and permeation through porous foam structures (into the deeper pores).  

3. To develop analytical models for predicting specific surface area (SSA) using 

structural properties such as nanotube density, CNT morphology, length 

distribution through different levels of porosity, and total surface area of the CNT. 

4. To investigate the surface adsorption activity and kinetics of these materials for 

selected reactions related to removal of contaminants from water. 

5. To synthesis and characterize mono/bi - metallic nanoparticles (Pd, Ag/Pd) as well 

as oxidized palladium nanoparticles (PdO) on these structures and demonstrate 

their suitability for environmental remediation and catalytic applications.  

6. Investigate the catalytic activity of the Pd and Ag-Pd based hierarchical structures 

for treating select chlorinated and emerging contaminants in water.  

1.6 Dissertation Outline 

This dissertation is structured as nine broad chapters followed by summary and 

future works sections.  Chapter 1 provides the background for high surface area and 

hierarchical architecture materials and also provides motivation to the current 

research. The goals and objectives of this research are outlined in this chapter.  

Chapter 2 describes the chemical and materials used in this study. It includes 

the description of various porous materials used in this study. The details of 
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fabrication and characterization methods used in this research are given in this 

chapter.  

Chapter 3 focuses on fabrication of hierarchical structures obtained by growing 

aligned carbon nanotubes (CNT) on porous structures using chemical vapor 

deposition. Key process parameters for growth and permeation of CNT through the 

porous structures are identified.   

Chapter 4 describes the approaches to tune the surface area of porous structures 

by varying the morphology of CNT arrays. This chapter includes proposed analytical 

models and experimental approaches of predicting specific surface area (SSA) of 

CNT-foam hybrid structures. Three different approaches have been used: calculation 

from microstructural features, weight gain data as well as direct BET analysis. Their 

predictions are seen to be in reasonable agreement, indicating that the entire surface 

would be available for future applications. 

Chapter 5 focuses on the adsorption application of the hierarchical structures for 

removal of a model contaminant: methylene blue from water. Detailed kinetics and 

isotherm analysis to determine maximum adsorption capacity of the CNT is shown 

here. 

Chapter 6 focuses on fabrication and characterization of palladium (Pd) and 

palladium oxide (PdO) nanoparticles on these hierarchical structures. Detailed surface 

chemical analysis of the Pd and PdO is shown in this chapter. 

Chapter 7 focuses on fabrication and characterization of silver and palladium 

(Ag-Pd) bimetallic nanoparticles on these hierarchical structures. Surface chemical 

analysis of Ag-Pd nanoparticles is shown in this chapter.  
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Chapter 8 demonstrates the suitability of the Pd-based catalysts (Pd and PdO) 

on hierarchical structures for environmental remediation applications. This includes 

investigation of the activity of these catalysts for treating chlorinated contaminants 

such as trichloroethylene and trichloroethane. The dechlorination mechanisms using 

palladium-hydrogen systems and surface chemical states of the spent catalysts are 

discussed in this chapter. 

Chapter 9 focuses on the investigation of the catalytic activity of the three Pd-

based catalysts (Pd, PdO and Pd-Ag) structures for treating select emerging 

contaminants: atrazine in water. The dechlorination mechanisms and surface chemical 

analysis after reactions are shown. 

Chapter 10 summarizes the dissertation in the whole and Chapter 11 provides 

insight to useful potential applications and future research work requirements. 
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2 Chapter 2: Materials and Methods 

2.1 Chemicals 

All the reagents used in this study were of analytical grade and used without 

further purification. These include Hexamethyl-di-siloxane (99.5%, HMDSO, 

(CH3)6Si2O, Sigma-Aldrich chemicals), Ferrocene (99%, C10H10Fe, Alfa-Aesar Ltd), 

Xylene (C6H4C2H6, PTI Process Chemicals), Tetraamine Palladium (II) Nitrate 

solution (99.9% TAPN, Pd(NO3)2
.
4NH3, 0.375M, 5% Pd, Alfa- Aesar Ltd), and 

methanol. Other materials were de-ionized water (DI water) and laboratory grade 

gases that include oxygen, argon, and hydrogen. The microcellular carbon foam used 

in this study was obtained from Koppers© Inc., and the reticulated vitreous carbon 

foams were obtained from Ultramet© Inc. 

2.2 Porous Materials used in this Study 

In this study, two types of carbon foams were employed as base supports for 

creating hierarchical structures: (1) Cellular carbon (Ce) foam, and (2) Reticulated 

vitreous carbon (RVC) foam.  The RVC foams have various pore densities ranging 

from 10 to 500 pores per inch (ppi). In this study, we used 80 ppi and 45 ppi. Figure 

2.1 shows the SEM images for microstructure of (a) cellular foam, (b) RVC-80 ppi, 

and (c) RVC-45 ppi. Standard material properties for these foams are provided in the 

Table 2.1, those were obtained from respective providers.  

2.2.1 Micro-Cellular Carbon Foam (Ce-Foam) 

Micro-cellular carbon foams that were used in this study are open cell porous 

structures with interconnected seamless pores that are ordered three dimensionally. 

The foams are rigid, lightweight, permeable, thermally conductive, and have high 
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porosities ranging from 68% to 94% [15]. Carbon foam structures are known for high 

specific strength, chemical stability, lower coefficient of thermal expansion, good 

thermal and electrical properties, and have potential aerospace and thermal 

applications.  

The microcellular carbon foam samples were obtained as large blocks from 

Koppers© Inc. The cellular foam used in this study is ‘L1a’ grade foam that has 

approximately 80% porosity. The specific surface area of this foam was estimated to 

be approximately 6.2 ×10
3
 m

2
 m

−3
 [15]. Figure 2.1a shows the low magnification 

SEM image of cellular carbon foam used in this study.  

2.2.2 Reticulated Vitreous Carbon Foam (RVC-Foam) 

Reticulated vitreous carbon (RVC) foams are highly porous, open cell, low 

density carbon foam structures that have unique physical, thermal, and electric 

properties. The porosities of RVC foams can range from 90% to 97% with varying 

pore densities ranging from 10 ppi to as high as 500 ppi. The specific surface area 

increases with decreasing pore sizes and increasing pore densities.   

RVC foams used in this study were obtained from Ultramet Inc., having 97% 

open porosity and 80 ppi. Preliminary experiments were also carried out using RVC 

foam having 97% porosity and 45 ppi. Considering the open porosity and their three-

dimensional cellular structure they have very low pressure drops. The skeletal 

structure of RVC is brittle compared to cellular carbon foams. RVC foam structures 

have a wide range of applications including filters, high temperature insulation, 

electrodes, energy storage devices, biological scaffolding, and catalysis [23].  
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Figure 2.1 Scanning Electron Microscopy (SEM) low magnification images showing 

microstructure of (a) Cellular foam - L1a, (b) Reticulated vitreous carbon RVC - 80 

ppi and (c) RVC - 45 ppi foam 

 

 

Table 2.1 Standard material properties of cellular (Ce) carbon foam and 

reticulated vitreous carbon (RVC) Foam 

Standard Properties 
Cellular (Ce) Carbon 

Foam 

RVC Foam 

(45, 80 ppi ) 

Average Pore Volume, Porosity (%) 78 97 

Average Pore Size (µm) 500 ~ 500, 300 

Bulk density (g/cm
3
) 0.38 0.045 

Compressive Strength at 20 °C (Mpa) 1.7 0.763 

Electrical conductivity (S/cm) 24.51 1.33 

Thermal conductivity at 200C (W/m.k) 55 0.085 

 

  

a b c 
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2.3 Experimental Methods 

This section presents the experimental procedures developed in this research. 

Details of the fabrication of carbon nanotubes on advanced porous structures to obtain 

hierarchical structures and the details of the synthesis of palladium nanoparticles on 

such advanced hierarchical porous structures are discussed in this section. 

2.3.1 Fabrication of Carbon Nanotubes on Porous Structures 

In this study, vertically aligned carbon nanotubes were fabricated on porous 

foam structures using a two-step coating process adapted from earlier research [15] 

that includes plasma enhanced deposition of a nano-layer of silica on the porous 

structures followed by carbon nanotubes coating using thermal chemical vapor 

deposition (CVD) technique. Carbon nanotubes (CNT) were grown on cellular carbon 

foam and reticulated vitreous carbon foam structures. This section describes the 

standard optimized process developed in this study for fabrication of CNT on various 

porous structures using a three-zone CVD furnace. CNT on porous samples were 

grown using the standard process of CVD described in this section (unless specified 

otherwise). 

Support Details: 

Circular disc shaped foam structures of diameter fitting the CVD tube diameter 

(Ø ~70 mm) were used for this study. The thickness of the sample varied for different 

porous structure depending on their open pore structure. The thickness of cellular 

foams was uniformly maintained at 2.5 ±0.1 mm, whereas the thickness for RVC 

foams having substantial open porosity was selected to be 5.0 ± 0.1 mm.  

As mentioned above, the fabrication process has two steps described as follows: 
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Plasma-Enhanced Silicon Oxide (SiOx) Coating: 

In the first step for synthesizing CNT on foams, the foam supports were pre-

coated with a nano-layer of silica (SiOx) by a gas-phase plasma technique. The oxide 

coating of silicon was carried out using a plasma assisted microwave reactor (V15GL 

manufactured by PlasmaTech Inc.). The silica deposition technique used in this study 

was studied and designed by [15], [24]. A slightly modified silica process suitable for 

this study has been developed here.  

The foam supports were placed on a wire mesh holder while securely sealing 

the ends of the holder with a saran wrap ensuring that all the gases in the microwave 

chamber pass through the porous foam. The silica was deposited using gas phase 

precursors in the microwave (MW) plasma reactor in several cycles, where each cycle 

is a different and a multiple sub-step process. The gas-precursors used were hexa-

methyl di-siloxane (HMDSO) and oxygen gas. The sub-steps in silica coating process 

can be defined as following:  

1. Etching: Plasma etching in the presence of O2 for 180 s at high MW power.  

2. Coating: Plasma coating using a mixture of HMDSO and O2 for 300 s at high 

MW power. This step determines the time of silica deposition.  

3. Stabilizing: running plasma O2 for 60 s at low power for stabilization purposes.  

One coating cycle of silica deposition includes the above-mentioned steps 

carried out in the following order; 1. etching, 2. coating (300 s), 3. stabilizing, 2. 

coating (300 s), and 3. stabilizing steps. Therefore, one coating cycle is termed as 10 

minutes of silica coating. In this study, both sides of the disc shape supports were 

coated with silica. One surface of the porous disc support was coated with one cycle 

of silica referred as front (surface facing the CVD flow direction) surface. And, the 
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other side surface of the disc (back side) foam was coated by flipping the support in 

the microwave chamber with two successive coating cycles of silica i.e. for 20 mins.  

Chemical Vapor Deposition – Fabrication of Aligned Carbon Nanotubes: 

Carbon nanotubes were fabricated using chemical vapor deposition (CVD) 

technique adapted from earlier research [15]. In this study, the floating catalyst CVD 

technique was carried out in a three-zone furnace (MTI Corporation LTD.) consisting 

of a quartz tube (Ø 80OD x Ø 72ID x 1400L mm
3
) with stainless-steel end caps that 

has openings for inlet for gas flows as well as for catalyst and carbon precursors, and 

outlet for exhaust. The catalyst and precursor mixture was injected using a syringe 

and a pump (MTI©). Figure 2.2 shows the image of the three-zone furnace used in 

this study.  

The three zones of this furnace were referred as left, center, and right zones as 

shown in Figure 2.2. The left and the center zones are called growth zones, and the 

right zone is known as the pre-heat/catalyst zone. The circular disc support (D: 

~70mm) was kept at 90° angle in the quartz tube, i.e. perpendicular to the gas flow 

direction with the aid of the graphite ring. It was placed in the center zone close to the 

left zone. Once samples were positioned in the reactor, the furnace was heated in the 

flow of Argon (Ar). The growth zones were maintained at 700 ºC. To start the growth 

process, a measured amount of ferrocene (0.1 g) dissolved in xylene (10 mL) solution 

was injected at 12.5 ml/hr using a syringe-pump, into pre-heat zone that was 

maintained at 380 ºC. The reactions were allowed to take place at 700 ºC for a 

specific length of time in an Ar/H2 environment to facilitate the growth of CNT. The 

flow rate of Ar/H2 was 1200/240 cc/min.   
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Figure 2.2 Three-zone chemical vapor deposition (CVD) system used for fabrication 

of carbon nanotubes (a-b) furnace images, and (c) schematics showing CVD furnace 

zones. 
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A reaction time of 30 minutes (unless specified otherwise) was carried out to grow 

CNT on the carbon supports used in this study. The furnace was allowed to cool down 

to room temperature in a reduced flow of Ar. The CVD process described here is the 

standard optimized process for growing CNT on the different porous supports and the 

optimized process was used in this study (unless specified otherwise).  

2.3.2 Synthesis of Supported Palladium Nano-Particles 

In this study, palladium nanoparticles on the CNT coated cellular (Ce) and 

reticulated vitreous carbon (RVC) foam supports were fabricated by the liquid-phase 

synthesis technique combined with thermal reduction process. The process used in 

this study was developed earlier [16], [18]. 

Support Preparations 

The size of C-foam support used was Ø 8 mm x 2.5 mm, weighing ~100 mg 

whereas the RVC-foam support used was Ø 8 mm x 5 mm, weighing ~25 mg each. 

All the supports were rinsed with methanol and water prior to palladium deposition.  

Precursor Equilibrium-Adsorption – Stage I 

Tetraamine palladium (II) nitrate (TAPN) of known concentration (62.5 mM 

TAPN) was used as the metal precursor solution. The rinsed carbon supports were 

immersed in an aqueous precursor solution of TAPN for specified length of time i.e. 

30 minutes for Ce-foams and 120 minutes for RVC-foams. The solid supports were 

recovered from the TAPN solution and the excess (non-interacting) solution on the 

sample was washed-off by briefly dipping the support in methanol.  

Thermal Treatment and Reduction – Stage II 

The thermal reduction is carried out in a quartz tube (length 1400 mm, inner 

diameter 70 mm) closed with stainless steel end-caps in a heating furnace. The 
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precursor coated samples were placed on a ceramic boat that was placed in the tube at 

the center of the heating furnace. The ends of the quartz tube were closed with 

stainless steel end caps that have openings for inlet and exhaust gas flows.  

The thermal treatment consists of three individual steps known as drying, 

calcining, and reducing. In the drying step, the precursor infiltrated samples were 

dried at 100 ºC for 12 hrs. Calcination, often referred to as heat treatment or pyrolysis 

step, was carried out at 400 ºC for 2 hrs. The furnace was heated at a ramp rate of 10 

°C/min. Calcination step was done in oxygen rich atmosphere (air) for foam samples, 

and oxygen deficient inert atmosphere (Ar) for CNT attached hierarchical samples. In 

this step the amines and nitrates groups of TAPN decompose thermally forming Pd 

oxide. The samples were subsequently reduced at 450 ºC (ramp rate - 10 ºC/min) for 2 

hrs using hydrogen as the reducing gas and Ar as the carrier gas (reduction step). The 

furnace was allowed to cool down to room temperature in the reduced flow of H2 and 

Ar.  

For additional metal loading, the immersing, drying and calcining steps can be 

repeated multiple times (multiple coating cycles of Pd) prior to the reduction step 

until desired amount of Pd is obtained. In this study, one, two, and/or three coating 

cycles of Pd were used suitable to the hierarchical porous structure.  

2.4 Characterization Techniques 

In this study the following characterization techniques were used. 

2.4.1 Scanning Electron Microscopy (SEM) 

Surface morphology of the Carbon nanotube hierarchical architectures and 

metal nanoparticles were observed using JEOL 7401F Field Emission Scanning 

Electron Microscope (FE-SEM). The SEM analysis on the samples was carried out 
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using secondary mode and a mixture of secondary and backscattered modes. 

Quantitative analysis was carried out on SEM images using Scandium© SEM 

imaging software provided by JEOL 7401F for FESEM. 

2.4.2 Energy Dispersive X-Ray Spectroscopy (EDS) 

Energy dispersive X-ray spectroscopy (EDS) using Ametek Inc. EDAX 

system, which is coupled with JEOL FE-SEM, was performed for elemental data 

analysis. It is capable of providing qualitative elemental analysis of elements present 

in a sample for up to a surface depth of several microns. In addition to identifying the 

elements present in a sample, it also quantifies their chemical ratio. The intensity of 

the characteristic x-rays allows the elemental composition of the sample to be 

measured.  

2.4.3 X-Ray Photoelectron Spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS) was performed using Kratos (Axis 

Ultra) system with mono-chromatized Al Kα (1486.6 eV) source in ultra-high vacuum 

environment (UHV∼10
−9 

Torr). The X-ray source with a 10mA emission current at a 

power of 120W was used. Spectra were taken in the analyzer mode of pass energy 

20eV. The survey scans (BE: 1000 - 0 eV) were taken in the retarding sweep modes 

and similarly high resolution fine scans of respective elements were also collected. A 

charge neutralizer was used to neutralize the charge in the sample. Any static charge 

built on the samples was corrected by assigning a value of 284.4 eV to C 1s spectrum, 

which is a known binding energy value of carbon in graphite [25]. The XPS spectra 

processing and peak quantification was done using CasaXPS© software provided for 

Windows© PC. The peak positions determined the elemental characteristics whereas 
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the peak intensities were converted using predefined relative sensitivity factors (RSF) 

for atomic percentages of respective elements given by CasaXPS© Library. 

2.4.4 X-Ray Diffraction (XRD) 

X-ray diffraction (XRD) patterns were obtained by X-ray minidiffractometer, 

MD-10, using a monochromotized Cu Kα radiation (λ= 1.5418 Å) at 25 kV and 0.4 

mA. XRD data was collected in the range of 20° < 2Θ < 90° diffraction angle. The 

interplanar distance, dL was calculated from first order Bragg’s reflection. 

2.4.5 UV-Vis Spectrophotometry (UV-Vis) 

The absorbance peaks of methylene blue dye solution were obtained by UV-

vis spectrophotometry technique, using a Cary 50 UV-Visible Spectrophotometer. 

The spectrophotometer was set to absorbance range (Y-axis) of -0.5 to 1.0. The 

spectral range (X-axis) was set to 200-800 nm with a scan rate of ~ 4,100 nm/min. A 

baseline correction was performed using high-quality DI water.  ~1.5 mL solution was 

transferred to a disposable polystyrene cuvette of width 1 cm for analyzing the 

absorbance peaks. 

2.4.6 Brunauer-Emmett-Teller Surface Area Analysis (BET) 

Brunauer-Emmett-Teller (BET) was done on Micromeritics TriStar II 3000 

using N2 gas adsorption isothermal analysis by stabilizing at liquid nitrogen 

temperatures. Surface area is calculated from the volume of gas adsorbed onto the 

sample surface as a function of relative partial pressure. 

2.4.7 Gas Chromatography – Mass Spectrometry (GC-MS) 

Headspace sample analysis was done on an HP 6890 gas chromatographic 

system, equipped with a HP 5973 mass selective detector (MSD).  The column used 
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in GC is DB-5MS of dimensions as length 30 m, diameter 0.25 mm and the film 

thickness of 0.25 µm. 100 μL of gaseous sample was manually injected at the 

injection port using front injector that was maintained at temperature 150 °C. A 

splitless mode of injection was used. High purity ‘He’ gas was used as a carrier gas 

with a flow rate of 1 mL/min. MSD transfer line was maintained at auxiliary 

temperature of 250 °C. The oven method used is described as follows. 

S.No Rate, °C/min Final Temp, °C Hold time, mins Final Time, mins 

1 Initial 35 3 3 

2 10 40 0 3.5 

3 30 105 0 5.67 

 

The peak area values of analytes from gas chromatography were transformed 

into their respective amount at equilibrium using laboratory calibration curves. 

2.4.8 Liquid Chromatography – Mass Spectrometry (LC-MS)  

High Performance Liquid Chromatography (HPLC) was carried out on Waters 

Micromass Quattro Micro equipped with a mass spectrometer for liquid 

chromatography (LC-MS). The HPLC column is a Restek Biphenyl Column - 

Pinnacle DB Biphenyl Column of dimensions 100 x 2.1 mm
2
 (1.9 µm). The HPLC 

solvents were; (A) 90% Water 10% Methanol with 2 mM Acetic acid (NH4OAc) and 

(B) 100% Methanol 2 mM Acetic acid (NH4OAc). Injection sample size is 20 µL and 

at flow rate of 0.3 mL/min. Each HPLC run was programmed for analysis of 24 

minutes as shown in the method below: 

Time Solvent A, % Solvent B, % 

0 50 50 

2 50 50 

18 0 100 

22 0 100 

24 50 50 
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3 Chapter 3: Fabrication of Vertically Aligned Carbon 

Nanotubes through the Porous Materials 

3.1 Introduction 

Engineered materials with hierarchical nano-scale architecture offer large 

available surface area as well as good interfacial contact and they present great 

potential to explore functionalities in wide-spread applications including catalysis, 

separation, bio-filters, energy storage, and sensors [9]–[11], [26], [27].The possibility 

of varying physical or chemical properties of the components at different levels 

allows fine tuning the performance of the hybrid material [27][28]. A considerable 

amount of research is focused on developing hierarchical materials consisting of 

graphitic nanostructures such as carbon nanotubes for surface related interactions  

[29]–[31]. 

Carbon nanotubes (CNT) are nanoscale structures that have unique physico-

chemical, mechanical, optical, and electrical properties, which make them fascinating 

materials for wide range of applications including sensors, filters, energy storage, and 

catalyst supports [32][33]. The CNT are often integrated with larger solids to create 

macroscopic structures for practical applications. Few of the most common attempts 

that make use of CNT in hierarchical structures to improve their functionality include 

(i) CNT incorporated in polymers as composites [34], [35], (ii) yarns or buckypapers 

consisting of CNT and fibers [26], (iii) CNT or CNT-graphene sponge structures [31], 

[36] or and (iv) direct growth of CNT on fibers or flat substrates [10]. Another 

possible approach to improve the existing hierarchical architecture would be to 

introduce an open porous structure as the base substrate for direct growth of CNT. 

Compared to many flat substrates, the three-dimensional solid open porous structure 
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offers large surface areas critical for various applications. Most studies for growing 

CNT on such porous structures have been limited to metal or oxide foams [13], [14]. 

Wenmakers et.al. has reported hairy foam structures demonstrating synthesis of 

carbon nanofibers on nickel coated carbon foam structures [37]. Moreover, in a 

published study [15] that reports the direct growth of CNT on carbon foams using a 

chemical vapor deposition (CVD) technique. Where, an oxide layer (silica in this 

case) is coated to aid the growth of CNT on carbon. CVD is the most commonly 

reported technique for growing CNT as it is the most scalable and versatile method as 

well as widely suitable for the direct growth of CNT on a substrate [38]–[40]. 

Numerous studies have been reported in the literature for the influence of process 

parameters on the growth of CNT [39]. It is well known that an oxide layer is required 

to synthesize CNT on non-oxide substrates like graphitic carbon [15], [24]. In this 

study, such a method has been adapted from previous studies to grow high purity 

CNT of controlled morphology on advanced porous carbon structures. The porous 

structures studied here are micro-cellular carbon foams, which have 80% porosity and 

reticulated vitreous carbon foams that have 97% porosity.     

CNT in various forms including single walled nanotubes (SWNT), 

multiwalled CNT (MWCNT), and vertically aligned multiwalled CNT (VACNT) 

have received significant interest for many applications [32], [39], [41], [42]. 

Recently, vertically aligned CNT forests due to their vertical architectures have been 

considered as most distinguished form of CNT in the development of new material 

structures for applications involving interactions at surfaces and interfaces [42]–[44]. 

Vertical aligned CNT can be very long as high as few cms in length [43]. The growth 

of vertically-aligned CNT on flat substrates like silicon (with oxide layer) or flakes of 
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quartz has been studied extensively [44][45], whereas the growth of vertically-aligned 

CNT on porous structure have received minimal attention (if not none).  

In this study, we report vertically-aligned CNT grown on carbon porous 

structures using a floating catalyst chemical vapor deposition (CVD) technique. High 

purity aligned CNT that grow vertical to foam surfaces in the form of CNT arrays 

were synthesized in a three-zone thermal CVD system. This work is built up on 

earlier developed process, where multi-walled CNT were grown on silica coated 

cellular foams [15]. Growing carbon nanotubes on the complex geometries like 

interconnected porous structures is significantly challenging as CNT permeation 

through the porous materials requires controlled process parameters. Detailed 

characterization on the influence of parameters for CNT growth on carbon foams has 

been reported in the earlier publications [15], however, there hasn’t been enough 

focus on study of the influence of such parameters for the permeation of CNT through 

porous structure.  

Various key parameters that influence the growth and permeation of CNT 

through the porous structures were investigated in this study. The parameters studied 

are CVD run time, gas composition and flow rates, catalyst and source flow rates, 

furnace temperatures (pre-catalyst and CNT-growth zone), silica coating thickness, 

substrate geometry, and unidentified run-run variations. Statistical studies reported by 

Oliver et.al., shows the variations due to system factors and provide recommendations 

for consistent growth of CNT [46]. We also report, the influence of such parameters 

on growth rate, morphology, height and density of CNT arrays.  
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3.1.1 Chemical Vapor Deposition 

Carbon nanotubes can be synthesized using different techniques that include 

electric arc discharge, flame synthesis, high pressure carbon monoxide, laser ablation, 

spray pyrolysis, and chemical vapor deposition techniques. Among these techniques 

chemical vapor deposition is known to be the most versatile process for growing CNT 

as it provides the ability to control the nanotube growth rates, growth time, nanotubes 

diameter and length [38][47]–[51] . It provides the capability of growing individual 

(free-standing) nanotubes as well as CNT on a support material. A standard CVD 

technique requires a carbon precursor (source for carbon) and metal nanoparticles (to 

catalyze the reactions) in reducing environment, at high temperature, and inert 

atmospheric conditions [39]. The metal catalyst can be pre-coated on the support 

surface i.e. in an immobilized form known as coated catalyst or the metal precursor 

can be injected into the furnace where it evaporates and is carried with the aid of gas 

flow onto the sample, known as a floating catalyst method [40].  

This work focuses on growing CNT on porous structures using a floating 

catalyst thermal chemical vapor deposition technique. The technique is reproduced 

from a two-zone home-built system with a 30mm mullite tube to a large scale three-

zone system with an 80 mm quartz tube. Although, CNT growth with CVD technique 

has been perfected by numerous researches ever-since it was established, it may vary 

significantly for a system (or a support).  Replicating the technique from one CVD 

system to another as well as on different surface geometries needs careful re-

evaluation. Therefore, in this study the synthesis of CNT using pre-developed CVD 

process was recalibrated and optimized suitable to various porous structures using a 

new deposition furnace with a three-zone automated system having a large quartz tube 

(Ø 80 mm, L 1400mm) for large scale synthesis. 
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3.2 Experimental 

3.2.1 Materials 

All the reagents used in this study were of analytical grade and used without further 

purification including Hexamethyl-di-siloxane (99.5%, HMDSO, (CH3)6Si2O, Sigma-

Aldrich chemicals), Ferrocene (99%, C10H10Fe, Alfa-Aesar Ltd), and Xylene 

(C6H4C2H6, PTI Process Chemicals). Other materials are de-ionized water (DI water) 

and laboratory grade gases that include argon and hydrogen. The microcellular carbon 

foam used in this study is L1a grade and was obtained from Koppers Inc. The 

reticulated vitreous carbon foam is 80 pores per inch (ppi) that was obtained from 

Ultramet Inc. 

3.2.2 Support Details 

Carbon foams structures were cut into the shape of circular discs of diameter 

(Ø) ~ 70 mm or ~ 3 inches (to fit the CVD tube diameter). Depending on their open 

pore structure, the thickness was uniformly maintained at 2.5 ±0.1 mm for cellular 

foams and at 5.0 ± 0.5 mm for RVC foams. The uniform thickness was obtained by 

cutting the foam blocks and subsequently sanding them using a sand paper. CNT were 

grown on these foams by coating with silica followed by thermal CVD process as 

described in Section 2.3.1.   

3.2.3 Synthesis of Vertically Aligned CNT on 3D Porous Structures 

 Vertically aligned carbon nanotubes were fabricated on porous foam 

structures using a two-step process involving, plasma enhanced chemical vapor 

deposition of a nano-layer of silica on the porous structures followed by carbon 

nanotubes coating using thermal chemical vapor deposition technique. The process 

described here is to optimize the CVD process for growing CNT through various 
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advanced porous structures using a 3-zone CVD furnace. Carbon nanotubes were 

essentially grown on disc shaped micro-cellular carbon foam and reticulated vitreous 

carbon foam structures. The process described here is to obtain CNT growth through 

various interconnected open cell porous structures. 

Silica was deposited on porous structures in the microwave plasma reactor 

(V15GL Plasma, PlasmaTech Inc.), using gas phase mixture of HMDSO and oxygen 

in cyclic steps at 300W microwave power. As a result of this process, thin layer of 

SiO2 was deposited on the open surfaces of the foam. Both sides of the disc shaped 

foams were coated with silica for a specific length of time. Detailed characterization 

on the influence of silica functional groups (buffer layer) on the mechanism of 

catalyst (Fe) activity for CNT growth has been reported in earlier publications [52]. 

The influence of thickness of such functional layers obtained with coating silica for 

different times as shown in Table 3.1, on porous foams is studied for CNT 

morphology and permeation through porous structure. 

Vertically aligned CNT were grown on the silica coated porous structures in 

the quartz tube of a three-zone CVD furnace system. The circular disc sample was 

kept in the growth zone of the quartz tube, at 90° angle i.e. perpendicular to the 

direction of gas flow. The mixture of ferrocene–xylene solution at 0.1g in 10 mL was 

used as a catalyst–carbon source, which was injected in the pre-heated zone. The 

reactions were allowed to take place in the growth zone for a specific length of time in 

an Ar/H2 environment to facilitate the growth of CNT as shown in Table 3.1.  The 

furnace was allowed to cool down to room temperature in a reduced flow of Ar. 
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3.2.4 Controlling CNT Fabrication Process Parameters 

The influence of following key parameters on CNT growth through the porous 

structure was studied as shown in Table 3.1:  

1. Furnace temperature - CNT growth zone 

2. Furnace temperature - Precursor injection zone,  

3. Gas composition and flow rates, [Ar, H2] 

4. Catalyst and source precursor (Fe/Xy) flow rates, 

5. Silica coating time (for thickness) [front, back], and  

6. CVD run time or CNT growth time 

These parameters are inter-dependent and play a significant role for growth and 

permeation of CNT on porous structures. The parameters were studied and optimized 

based on the results of CNT growth patterns throughout the foam thickness as 

observed in SEM imaging. The results are thus qualitative and presented here 

representing the samples as reasonably as possible.  
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Table 3.1 Variations of key process parameters for optimizing CNT growth through 

porous structure using CVD techniques 

S.No CVD Parameters Variations Units 

1. CNT growth zone Temperature 700, 750 °C 

2. Precursor injection zone Temperature 380, 400 °C 

3. 
Ferrocene and Xylene flow rates 

(Fe/Xy: 0.1g/10mL) 
9.25, 12.5, 25 mL/hr 

4. 
Gas flow ratios, [Ar:H2]  

1=120 cc/min 
20:2, 10:1, 10:1.5, 10:2,  cc/min 

5. Silica coating time, [front, back] [10, 20], [20, 20], [30, 30] minutes 
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3.3 Results and Discussion 

Figure 3.1(a-c) shows the optical images of typical foam structures that were 

used as base porous substrates for growing CNT arrays using CVD technique. Figure 

3.1(d-e) shows the SEM micrographs of pristine cellular carbon (Figure 3.1d) and 

pristine reticulated vitreous carbon foam (Figure 3.1e) structures. 

3.3.1 Nanotubes Arrays on Porous Carbon Structures 

CNT were grafted on porous carbon substrates using thermal CVD technique, 

where silica was initially coated using plasma CVD technique. Figure 3.2a shows the 

optical image of the CNT grown on the porous foams showing black film like coating 

layer after CNT growth. We found that dense and relatively uniform black nanotube 

film like layer was grown on full 3-inch diameter circular disc surfaces of foam 

inclusive in the pores as shown in Figure 3.2a. Typical low magnification 

microstructure of CNT grown on silica coated porous structures are shown for CNT-

RVC foam (Figure 3.2b) and CNT-cellular foam (Figure 3.2c). The SEM micrographs 

as shown in Figure 3.2, reveals that our CVD process produced CNT films consisting 

of aligned multi-walled carbon nanotubes that grow vertical to the surface of the pores 

and the ligaments on the foam (Figure 3.2d-f). The CNT films were observed to be in 

the form of tall carpets representing highly dense CNT forests. The low magnification 

images show vertically well-aligned CNT on the porous substrate but the high 

magnification images (Figure 3.3) show some entanglement of the CNT arrays 

referred to as having certain degree of entanglement. In the CNT arrays, the CNT 

show increase in the degree of entanglement as moving towards the top, and a 

complete entanglement was observed near the termination end as shown in Figure 3.3.  
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In a floating catalyst thermal CVD method, the CNT are grown on a substrate 

from vapor-phase pyrolysis of catalyst and carbon source solution mixture, under 

Ar/H2 environment. It is well known that while growing CNT using CVD technique, 

an oxide layer of silica on substrates such as carbon foam enhances the growth of the 

carbon nanotubes [15], [24]. For similar reasons, CNT films were also formed on the 

walls of the quartz (crystalline SiO2) reactor in the growth zone of the CVD. In the 

growth conditions that lead to high yield, densely packed CNTs with tight spacing 

were formed resulting in vertical alignment of the individual CNT. It was also 

observed that higher density of CNT leads to more aligned CNT arrays. It is 

considered that when CNT begin to grow on the substrate at high areal density, the 

van der-Waals forces among the adjacent CNT will influence their vertical alignment 

while growing. This is due to the crowding effect as suggested and reported in 

literature [44], [53], [54].  

Two different kinds of furnaces were used in this study that have different 

reactor tube lengths, CVD furnace with two-zone system and three-zone system. It 

was observed that the vertically aligned CNT with large carpet heights up to ~100 µm 

in 60 minutes were grown using three-zone furnace that has long reactor tube, 

whereas in the two-zone system with a short-reactor tube spaghetti-type CNT of up to 

few microns [15] were grown on the substrate. This is due to the long gas-residence 

time and prolonged path for the catalyst and source gases in the 3-zone furnace 

reactor tube that in fact shows a constructive effect on the CNT growth [55].  
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2 cm 

Figure 3.1 Optical images of (a) Cellular foam: Ce-Foam, (b-c) Reticulated 

Vitreous Foam:  RVC-Foam. SEM micrographs of (d) Ce-Foam, and (e) RVC-

Foam 

Figure 3.2 (a) Optical image of the CNT grown on RVC disc showing black film 

like layer of nanotubes. SEM micrographs showing the CNT grown on (b) RVC-

foam, and (c) Ce-foam. (d) Bare RVC-foam, and CNT-foam interface of CNT 

grown (e) on RVC-foam, and (f) on Ce-foam. 
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Figure 3.3 SEM micrographs showing (a) low magnification of the interface of 

vertically aligned CNT arrays on RVC Foam, (b-d) degree of alignment or 

entanglement through the height of the CNT arrays, (e-f) shows STEM images of 

the interface and CNT arrays. 
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(a) 

(b) 

(c) 

Figure 3.4 X-ray diffraction pattern for (a) Cellular (Ce-Foam), (b) RVC-Foam, 

(c) CNT grafted Ce-Foam, and (d) CNT grafted RVC-Foam, range 20° < 2Θ < 90° 

(d) 
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Figure 3.5 XPS spectra - (a) survey scan, and fine scans of (b) carbon, C 1s, and (c) 

Oxygen, O 1s for pristine Ce-foam (pink), pristine RVC-foam (black), CNT grown on 

Ce-foam (red) and CNT on RVC-foam (blue) 

  

(b) (c) 

(a) 
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3.3.2 Structural and Chemical Characterization  

Figure 3.4 shows the XRD patterns obtained from pristine Ce-foam and 

pristine RVC-foams sample as well as CNT grown of these foam sample.  The XRD 

pattern of Ce- foam exhibits peaks at 2Θ values of 26°, 42°, 44°, 55°, 78°, 83°, and 

87°, which corresponds to the graphitic structure of carbon. The strong peak at 26° 

corresponds to the (0 0 2) plane, a characteristic peak of hexagonal structure of 

graphite and CNT. The RVC-foam has no clear diffraction peaks (Figure 3.4b) that 

indicates the amorphous structure of the solid. Figure 3.4c and Figure 3.4d shows the 

XRD on CNT coated on Ce-foam and RVC-foam, respectively. The XRD pattern of 

CNT on these foams exhibit peaks at similar 2Θ values as Ce-foam. These have the 

prominent peak at 26° corresponding to (0 0 2) plane of graphite, which is clear in the 

CNT structure. 

Figure 3.5 shows the XPS data showing the survey scan (a), and fine scans of 

C 1s and O 1s peaks (Figure 3.5b-c) for pristine Ce-foam and RVC-foam, as well as 

CNT grown on Ce-foam and RVC-foam. The elements on the surface of the foams 

are carbon and oxygen. Carbon is the main constituent of these porous foam solids 

and oxygen signal comes from the surface contaminant adsorbed from air. This is 

normal for foam processed (commercial) in ambient atmosphere. Both pristine Ce-

foam and pristine RVC-foam have similar chemical nature showing C 1s 

characteristic peak at 284.5 eV and O 1s peak at ~ 532 eV (Figure 3.5). The 

composition of surface from XPS analysis show decreased oxygen content after CNT 

growth, which is also expected because high purity nanotubes are covering the surface 

of foams.  
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3.4 Factors Influencing CNT Growth Quality 

CNT growth using the vapor-phase pyrolysis CVD technique has been 

perfected on flat substrates but growing CNT on a porous substrate is significantly 

challenging. It must be noted that in a porous solid, CNT growth rates (μm/min) are 

higher at the outer surfaces, and lower in the deeper inner pores. In this study, we 

focus on permeation of CNT through the complex geometries like interconnected 

porous structures. Various parameters were investigated related to CVD system and 

growth process. These were evaluated based on the results of CNT growth patterns 

throughout the foam’s cross-sectional thickness as observed with SEM imaging.  

3.4.1 Run-to-Run Variation – System Factors 

Consistent growth of nanotubes between the runs in a given reactor is critical. 

Any CVD system needs initial optimization for process parameters and layout for a 

given substrate (on which nanotubes are grown). The basic system factors that can 

vary from run-to run, include position of the sample in the furnace, placement of the 

syringe needle-end, and ambient conditions. These can limit the consistency of CNT 

growth using CVD method, which can significantly affect the quality (height, 

diameter, density, and impurities) of CNT. 

Figure 3.6 shows the schematic of CVD system used in this study. The sample 

was placed in the center zone at 61 cm and the syringe needle was kept at 5 mm from 

the right end (Figure 3.6). it was observed that varying the sample position by +/- 2 

cm or the position of needle-end by +/- 1 cm resulted in significant variation in the 

CNT growth and deposition of impurities. Samples when positioned close to upstream 

were observed to have more Fe-NPs as impurities and those farther in the tube were 

observed to have shorter CNT carpets. Similarly, positioning the needle-end further 
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into the furnace led to Fe-NPs as impurities on already grown CNT. Therefore, an 

optimum position for both sample and needle in the quartz tube was determined as 

shown in Figure 3.5. To obtain consistent results with precise control of CNT growth 

and quality, steps were followed meticulously to avoid run-to-run variations.  

For maximum permeation of CNT through the porous structure, the gasses 

should pass through the foam rather than flow around it. The porous foams of circular 

disc shape were placed perpendicular to the flow fitting the round quartz tube. A 

graphite sheet was wrapped around the porous foam to maintain good sealing with the 

tube walls and to ensure the flow of gases through the porous structure.  
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Figure 3.6 Schematic representation of CVD Furnace, (a) 3-zone system, and (b) 2-

zone system 

 

  

 

5 mm 
61 cm 33 cm 

Syringe Inlet 

Gas mixtures 

Syringe Inlet 
To Exhaust 

50 cm 

30 cm 

To 

Exhaust 

a b 

c 

Figure 3.7 SEM micrographs showing (a-b) CNT-arrays blocking the pores of the 

foam, and (c) Fe-NPs as impurities on already grown CNT 

(b) 
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3.4.2 Study of Key Process Parameters 

In this study, once the system setup was optimized the influence of key 

parameters on CNT growth and CNT permeation in porous structure was investigated 

through systematic set of CVD experiments as shown in Table 3.1.  

1. CVD Run Time: 

CVD run time is the time for which the reactions to form CNT are carried out 

in the furnace. Therefore, increase in CVD run time is expected to produce high CNT 

growth (until the catalyst deactivation). However, it was found that for a porous 

structure a minimum injection time of 30 minutes is required to obtain significant 

growth of CNT towards the other side of porous structure. Consequently other 

parameters affecting the growth of CNT were studied for CVD run time of 30 

minutes.  

2. Furnace Temperature: 

The temperature in the precursor injection zone and growth zone were studied 

as shown in Table 3.1. By increasing the temperatures in the injection or the growth 

zone, the yield of CNT increases as the reaction kinetics is governed by temperature. 

But at high injection temperature (400 ºC) CNT were accompanied with more Fe as 

impurities as shown in Figure 3.7. High injection zone temperatures are known to 

deposit iron-nanoparticles on the already grown CNT [15]. It was observed that by 

increasing the furnace temperature, the yield of CNT increases mostly on the exteriors 

of the porous foams but permeation of CNT into the interiors was ineffective.  

3. Gas Flow Rates and Composition:  

The growth and permeation of CNT in the porous structure can be attained by 

changing the gas flow patterns in the tube. The CVD gas composition implies two 
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components that include evaporated mixture of catalyst-carbon source 

(ferrocene/xylene - Fe/Xy) gas and mixture of Ar/H2 gas. With an increase in the 

Fe/Xy flow rate (as shown in Table 3.1) the CNT growth rate increases, which points 

out that rate is directly related to the feed stock of the CNT. However, the Fe content 

increase in the reactor flow affects the morphology of CNT as the CNT diameter 

grows bigger and also more Fe-NPs impurities gets deposited on already grown CNT.  

We studied different combinations of Ar and H2 flow rates as shown in Table 

3.1. Changing the total Ar/H2 gas flow rate directly affects the CNT growth rates. It 

was observed that when the total Ar/H2 flow is reduced, the overall CNT growth 

(yield) is observed to decrease. However, thereon increasing the H2 concentration in 

the gas flow from 0.1 vol% to 0.2 vol% (with respect to Ar) improves the CNT yield 

as well as the CNT permeation through porous structure. It is observed that with high 

H2 concentration, the gas flow rates need to be slow enough for proper CNT growth 

and permeation. Increasing the H2 concentrations also influences the morphology of 

CNT, as significantly lower diameters CNT with high purity were obtained. The 

presence of hydrogen usually prevents formation of amorphous carbon and the 

deactivation of the catalyst thereby enhancing the CNT growth [56].  

4. Oxide Buffer Layer Thickness:  

An oxide buffer layer is essential to grow CNT on a substrate like silicon or 

carbon, which acts as an effective barrier between the metal catalyst and the substrate.  

In the absence of such an oxide layer the catalyst will react with the substrate and 

form metal silicide or carbide, which leads to deactivation of catalyst that inhibits 

CNT growth [15]. In this study, a detailed analysis is carried out to understand the 

effect of thickness of silica buffer layer on porous structure (obtained by varying the 
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silica coating time) for the growth and permeation of CNT. Silica was coated on both 

sides of the circular foam discs as shown in Table 3.1. 

CNT arrays were observed to grow on both exterior (upstream – front, nearest 

to inlet gas flow) and posterior (downstream - back, farther from inlet gas flow) sides 

of the porous foam which indicates that gas diffusion of carbon source and catalyst 

through the foam in the CVD furnace was not the limiting factor. The geometry of the 

substrate plays an important role in the permeation of CNT through the interior pores. 

Among the porous structures having porosities 80% (Ce-Foam) and 97% (RVC-

Foam), it was observed that more open porous structure has higher CNT growth 

through the interior pores due to high mass transfer capability. This is also true for 

vapor deposition of silica on the porous structure in a microwave plasma reactor. 

However, maximum silica coating is obtained on the outer surfaces as the gas phase 

diffusion of silica into the porous structures appears to be the limiting factor in a 

plasma reactor. The cross-sectional EDS elemental analysis as shown in Figure 3.8 

reveals that the exterior sides of porous foam gets maximum silica coating whereas 

the interior open pores show scarce silica content.  

From the SEM analysis it is understood that the CNT growth is highest for the 

front part of the porous substrate i.e., nearest to the inlet of gases into the furnace. The 

thick silica coating on the exteriors leads to this high growth rate of CNT on the 

exterior pores of foam structure, which hinders the permeation of CNT growth 

through the interior (center). In order to reduce the clogging of exterior pores by CNT 

and achieve uniform growth throughout the foam, the simplest approach was to 

decrease the silica thickness. A gradient of silica thickness on front to back was 

obtained by coating for 10 and 20 mins on front and back side of porous disc 

substrate, respectively. It produces desirable amount of uniform CNT coating on both 
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front and back sides as well as throughout the pores of the foam (Figure 3.9). This can 

be attributed to the reduced CNT growth rate on the front side of the foam that may 

allow the flow of mass inside the pores. 
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Figure 3.8 Cross-sectional analysis of silica coating thickness through porous foam 

using Energy Dispersive Spectroscopy (EDS) obtained for sample coated with silica 

on both sides of disc foam i.e. Front 20 and Back 20 minutes  

 

 

 

 

 

 

 

 

  

 

 
a b c 

Figure 3.9 SEM micrographs showing CNT growth throughout the porous foam 

structures at (a) Front -exterior, (b) Center – interior, and (c) Back – posterior side of the 

foam 
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3.5 Conclusion 

In this study, hierarchical carbon nanostructures have been successfully 

synthesized as demonstrated by multi-walled carbon nanotubes grafted through the 

micro-cellular carbon foams using thermal chemical vapor deposition technique. High 

purity, vertically aligned carbon nanotubes were grown on surfaces of open cell 

porous structures. In-depth investigations of process parameters that actually control 

the through-thickness CNT distribution on the walls of the interconnected pores were 

studied. Key parameters have been identified for controlling the growth of CNT 

through the porous structure. The buffer layer thickness and gas flow composition are 

identified as two important parameters for growth and permeation of CNT through the 

porous structure. It was seen that creating a thickness gradient of the silica buffer 

layer (thicker buffer layer towards the back end of the porous substrate) enhances 

CNT permeation deeper into the pores. 
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4 Chapter 4: Analysis of Specific Surface Area of CNT-Foam 

Structures 

4.1 Introduction   

Fabricating carbon nanotubes (CNT) on the porous structure can create 

additional increase of specific surface area (SSA) by several orders of magnitude 

without any decrease in strength or significant increase in weight. The hierarchical 

carbon nanostructures (CNT on porous structures) demonstrated here are potentially 

useful in many applications that depend upon surface area. Hence, tuning the 

available surface area without affecting the bulk volume of the support by varying the 

length of CNT can be advantageous. The versatility of the CVD technique offers 

additional control of the nanotube growth. The specific surface area can be increased 

by tuning the morphology of the CNT, such as diameter, length, and areal density 

using process parameters [47], [48], [57]. In this study, controlled length of CNT 

arrays were grown on the foam supports by varying key process parameters of the 

CVD technique in order to tune the SSA of the hybrid material.  

Controlled length of CNT arrays were obtained on such porous structures by 

varying process parameters like CVD run time or silica coating time. In this study, the 

thickness of CNT layer or the length of CNT carpet was controlled by varying either 

the silica coating time (tsilica= 10 and 15 mins) or the CVD run time (tCVD = 10, 20, 30, 

40, and 60 mins) and keeping the rest of the parameters constant. Detailed 

morphological analysis was carried out on each final structure in Field Emission 

Scanning Electron Microscopic (FE-SEM), to estimate CNT diameters, densities, and 

lengths of CNT arrays at different depths of porous foam. Owing to the high surface 

areas of CNT, these hierarchical structures offer very high SSA. The SSA of 
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microscopic samples is typically measured by the gas adsorption (typically N2) using 

the Brunauer-Emmett-Teller (BET) isotherm method. In this study, we have 

developed some analytical models to estimate CNT surface areas using 

microstructural analysis method and weight-gain method, as well as verified these 

using BET analysis measurements (N2 gas) and Langmuir adsorption studies using 

aqueous compound (discussed in Chapter 5) [58]. 

In this research, we report microscopic as well as macroscopic measurements 

and establish the theoretical models for SSA of CNT-foam hybrids based on the 

geometrical characteristics of CNT (diameter, length, number of walls, areal density) 

and the geometrical characteristics of porous structures (RVC in this case). By 

adjusting the synthesis parameters of CNT, one can vary the SSA of the hierarchical 

material and this model can provide useful information for determining its SSA. 

Additionally, knowledge of the available SSA would be desirable to understand the 

mechanism of various systems. 

4.2 Experimental 

4.2.1 Support Details 

Circular disc shaped RVC foam supports of diameter (Ø) ~70 mm and 

thickness 5.0 ±0.1 mm were used here to grow CNT. The uniform thickness was 

obtained by carefully cutting the foam blocks using a band saw machine and 

subsequently sanding using a fine grid sand paper. The foams were then coated with 

specified silica coating time and CVD run times to obtain different lengths of CNT. 
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Table 4.1 Showing the sample ID of various RVC-CNT hybrids used in this study 

S.No 
Silica coating (mins) CNT coating 

(mins) 
Sample ID 

Front Back 

1 10 20 10 RVC-CNT 10 

2 10 20 20 RVC-CNT 20 

3 10 20 30 RVC-CNT 30 

4 10 20 40 RVC-CNT 40 

5 10 20 60 RVC-CNT 60 

6 15 20 30 RVC-CNT 30 Si 35 

 

 

 

  

Figure 4.1 SEM images showing typical height of the CNT arrays obtained on the 

RVC foam sample (exterior side) with CVD run-times of (a) 10, (b) 20, (c,) 30, (d) 

40, and (e) 60 minutes. Low magnification SEM images showing pores filled by CNT 

arrays for (f) 30 and (g) 60 minutes coating 
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4.2.2 Varying Amount of CNT Coating  

The amount of CNT was varied by changing the following process parameters 

and keeping the rest of the variables constant as described in section 2.3.1. 

1. Silica coating time on the front side; tsilica= 10 and 15 minutes - (constant CVD run 

time of 30 minutes) 

2. CVD run time; tCVD = 10, 20, 30, 40, and 60 minutes - (constant silica coating 

time of 10 minutes) 

The details along with the sample ID of the samples used here are tabulated in 

Table 4.1. To obtain the estimated surface area of CNT, a mathematical model was 

determined using the SEM images by measuring the length of the carpets at various 

spots throughout the foam and by determining the linear density of CNT. 

4.2.3 Estimating the Surface Area of CNT Arrays 

The surface area of CNT arrays on porous RVC samples can be estimated 

using different methods such as (1) Microstructural SEM analysis of CNT, (2) Weight 

gain method, and (3) Surface adsorption method. Surface area analysis was carried 

out for CNT arrays grown on RVC foam by varying CVD run time (10 to 60 mins).  

The microstructural analysis method uses scanning or scanning transmission 

electron microscopy images (SEM/STEM) to estimate surface areas of CNT by 

analyzing lengths, diameters and area densities of the CNT arrays. This method is less 

quantitative but can provide reasonable estimates for the surface areas. The second 

method is weight gain method, where the surface area can be determined using area 

density obtained from weight gain due to CNT growth divided by weight of 

individual nanotube of length L. The third method is surface adsorption technique 

which is a semi-quantitative method. In this method an adsorbate is used which can be 
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a gas molecule or a compound in a liquid. This has been studied using (1) BET 

analysis measurements using N2 gas adsorbate and (b) Langmuir measurements using 

an aqueous pollutant as adsorbate on the CNT surface where the available area can be 

related to monolayer adsorption of methylene blue compound and the Langmuir 

studies are discussed in Chapter 5 [58]. 

4.2.4 BET Characterization Method 

SSA was measured using Brunauer-Emmett-Teller (BET) method with a 

Micromeritics TriStar 3000 (V6.05) for N2 adsorption-desorption isothermal analysis 

at 77.3 K with a 5 s equilibration interval. The full isotherm was recorded from 

relative pressures of 0.05 – 0.99. Measurements were taken with duplicate samples 

and the average values are reported here.  

4.3 Results and Discussion 

4.3.1 Controlling CNT Carpet Length/Height 

As discussed earlier, the height of CNT arrays grown on the porous foam 

support trend linearly with variations in silica thickness and CVD run time, and can 

be directly controlled by modifying these process parameters. The silica coating time, 

tsilica of 10 and 15 mins was studied here. Within these ranges longer silica coating 

time creates thicker silica buffer layer, which leads to longer CNT lengths. The CVD 

run time was investigated for tCVD of 10, 20, 30, 40, and 60 minutes. It was observed 

that longer CVD time directly results in longer CNT carpet lengths. Figure 4.1 shows 

the height of the CNT arrays on foam surface obtained for different CVD run times. 

The increase in the height of CNT arrays grown on the porous structures allows 

packing more CNT that offers tuning the surface area within the same volume. 
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(b) 

(a) 

Figure 4.2 Cross-sectional SEM micrographs of RVC-CNT 30 at cross-section 

thickness (a) 0 mm - front, (b) 1 mm, (c) 2 mm, (d) 3 mm, (e) 4 mm, and (f) 5 mm - 

back 

Figure 4.3 Plot obtained for the (a) length of CNT carpet with respect to the cross-

sectional thickness (starting from the front side, x = 0 mm), and (b) a typical 

polynomial fit plot 
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Table 4.2 Estimated values of average length of CNT arrays and average growth rate 

of CNT through foam for various RVC-CNT hybrids  

Sample ID 
CVD Run time, 

minutes 

Avg Length of 

CNT arrays, 

Lavg (µm) 

Avg CNT growth rate 

through foam, 

µm/min 

RVC-CNT 10 10 3 0.2 

RVC-CNT 20 20 10 0.5 

RVC-CNT 30 30 17 0.6 

RVC-CNT 40 40 25 0.6 

RVC-CNT 60 60 46 0.8 

 

Table 4.3  Estimated values of CNT morphology obtained using SEM analysis. 

Specific surface area of reticulated foams – RVC of 80 ppi obtained from literature 

Estimated CNT Morphology Values and SSA of  RVC 80 ppi 

Avg. Outer Diameter, Do 18 nm 

Avg. Inner Diameter, Di 8 nm 

Avg. Number of walls, n 15  # 

Density of MWCNT, ρMW 1.86 g/cm
3 

Area Density of CNT on RVC, NA 1.5 * 10
10 

#/cm
2 

SSA of RVC foam, A0  [23] 45 cm
2
/cm

3 

Density of RVC foam, ρRVC  0.045 g/cm
3 

SSA of RVC foam, A0 0.1 m
2
/g 
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4.3.2 Estimating the Surface Area of CNT Arrays 

The surface area of CNT arrays on porous RVC samples can be estimated 

using different methods such as (1) Microstructural SEM analysis of CNT, (2) Weight 

gain method, and (3) Surface adsorption method. Surface area analysis was carried 

out for CNT arrays grown on RVC foam by varying CVD run time (10 to 60 mins).  

1. Microstructural SEM Analysis: 

It must be noted that in a porous solid, CNT growth rates are higher at the 

outer surfaces, and lower in the deeper inner pores. In order to estimate the average 

length (height) of CNT arrays, detailed cross sectional image analysis was carried out 

for each of the final structure. This was done by slicing the sample into thin regions 

and performing detailed microstructural analysis of each slice using SEM. Figure 4.2 

shows SEM micrographs indicating CNT carpet length at different spots through the 

thickness of porous RVC structure, i.e. cross-section from 0 to 5 mm. The length of 

CNT arrays at different depths (cross-section - CS) in 5 mm thick porous RVC foam 

are plotted against the CS depth of porous foam (where 0 mm is the exterior side of 

foam near to the inlet of gas flow - front),  as shown in the graph of Figure 4.3. CNT 

carpet lengths are averaged over multiple samples and the error bars indicate the 

standard deviation. The CNT length profiles were observed to follow certain 

asymmetrical growth patterns through the foam: very high CNT growth on the front 

side, decrease in CNT growth towards the center followed by increase in the growth 

towards the back. From the graph in Figure 4.3a, it can be deduced that the CNT 

growth rate on front side is ~ 1 to 1.5 μm/min, at center is ~ 0 to 0.5 μm/min, and on 

back side is ~ 0.2 to 1 μm/min. The average length of CNT arrays on RVC foams is 

observed to increase with CVD run time having an average CNT growth rate of ~ 0.7 

μm/min. Polynomial trend lines, Lc(x) were fit for each of the sample as shown in 
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Figure 4.3b. The average length of the CNT arrays was obtained by integrating Lc(x) 

through the sample thickness ‘t’, using Equation 4.1 and the Lavg values are tabulated 

in Table 4.2.  

     
 

 
   

 

 
           ---- (4.1) 

The area densities of the CNT (number of CNT per unit area) can be estimated 

by counting the CNT in the CNT arrays using SEM images at the CNT-foam interface 

as shown in Figure 4.4(a). The depth of focus of SEM microscopy was taken into 

consideration and the average number of CNT per unit area was counted. The 

estimated area density of CNT on RVC samples with our setup was observed to be, 

NA = 150 μm
-2

 or 1.5x10
10

 cm
-2

.  

Figure 4.4(b-d) shows the typical SEM/STEM images and Figure 4.4(e-f) 

shows the distribution graphs for the outer and inner diameter of MWCNT. The 

estimated mean outer diameter (Do) and mean inner diameter (Di) of CNT were 18 nm 

and 8 nm, respectively and the CNT morphology estimates are tabulated in Table 4.3. 

It is worth mentioning some of the assumptions that were made in this study: 

(1) CNT are assumed to have complete alignment with no degree of entanglement i.e. 

length of a CNT is equal to the average length of CNT carpet, LCNT = Lavg; (2) it is 

also assumed that a CNT at the base grows till the tip of the carpet, (3) the area 

density of CNT arrays is the average and it is assumed to be the same throughout the 

foam structure.  

Assuming that the CNT have closed ends, where D<<LCNT, the available 

surface area of an individual CNT is given by Equation 4.2. The CNT morphology 

data can be combined with specific surface area of support (Ao) to estimate the 
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available CNT surface area within each volume of the hierarchical structure given by 

total specific surface area (SSA) in the Equation 4.3.  

                    ---- (4.2) 

                             ---- (4.3) 

SSARVC-CNT is the total available surface area of CNT per unit volume (m
2
/m

3
) 

or per gram (m
2
/g) of the porous foam support. Where, LC(x) is the polynomial fit 

obtained from CNT carpet length profile; t is the cross-sectional thickness of the 

sample, t = 5000 µm (5 mm); AO is the specific surface area of the base support, 

AO=0.1 m
2
/g; Do is the average diameter of the CNT, Do =18 nm, and NA is the areal 

density of CNT, (estimated NA = 1.5x10
10

 cm
-2

). The estimated SSA obtained using 

microstructural analysis for all the samples is tabulated in Table 4.4.   

2. Weight Gain Method: 

The weight gain for each of the RVC-CNT hybrids was monitored by 

weighing the foams before and after CNT deposition. For RVC-CNT hybrids 

samples, an increase in weight of up to 25% was seen for a 10 to 60 mins CNT 

growth as tabulated in Table 4.4. The mass of RVC foam when heated in Ar/H2 CVD 

environment without carbon source was observed to decrease by 2 to 4% of initial 

weight of the RVC foam as shown in Table 4.4. Therefore, the absolute weight gain 

obtained by CNT for a 60 minutes CVD run time is up to 28.7% (compared to initial 

weight of foam).  

The weight of individual CNT is obtained from the mass density equation of 

MWCNT that includes the outer diameter and inner diameter or number of nanotube 

walls. The outer and inner diameters were obtained using SEM/STEM images (Figure 

4.4). In MWCNT, the inter-wall distance, di is approximately 0.34 nm as reported by 
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et al [59].  Therefore, the average number of nanotube walls (n) in MWCNT can be 

given by Equation 4.4 [60]. The mass density of MWCNT       is obtained using 

Equation 4.5 and graphs as reported by Ch. Laurent et.al. [60]. 

   
     

      
        ---- (4.4) 

     
    

    
 

 

  
 

         

  
       ---- (4.5) 

Where, Di and Do are inner and outer diameters of MWCNT, respectively, ‘di’ 

is inter-wall spacing, n is number of walls in MWCNT, and     is the mass density 

of MWCNT. Some of these values are tabulated in Table 4.3. 

The SSA (m
2
/g) of an individual CNT is the surface area to mass ratio of the 

CNT that is determined by Equation 4.6. The total SSA of RVC-CNT (SSARVC-CNT) 

can be determined using Equation 4.7, i.e., given by the SSA of individual CNT times 

the fraction of weight of CNT (MCNT) and total weight of the RVC-CNT foam (MRVC-

CNT). The data obtained from this analysis for all the CNT samples are tabulated in 

Table 4.5. 

        
     

    
  

     

        
 

 

      
     ---- (4.6) 

                  
     

        
    

 

      
  

     

        
   ---- (4.7) 

Where, MRVC-CNT is total mass of RVC-CNT sample after CNT growth, MCNT mass of 

CNT (mass difference after CNT growth) grown on RVC sample, and SACNT, VCNT, 

and mCNT is the surface area, volume, and mass of an individual CNT respectively. 

Attachment of CNT enhances the SSA on the RVC sample by two to three 

orders of magnitude. The multiplication factor increase in SSA, f, as tabulated in 
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Table 4.5 with varying amount of CNT on RVC foams indicates the surface area 

tuning ability of the hybrid structures.  
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Table 4.4 The mass of RVC-CNT hybrids before and after CNT growth, percent weight loss 

of foams due to heat in CVD environment, absolute weight gain (% increase) in weight after 

CNT growth, and areal density of CNT obtained from various CVD run times, tCVD = 10, 20, 

30, 40, and 60. 

 

Table 4.5 Total estimated available surface area created by grafting varying amount 

of CNT on RVC-foam supports 

Sample ID 

Avg Length 

of CNT 

Carpet 

Method 1 

Microstructur

al SEM 

Factor 

Increase in 

SSA with 

CNT 

Method 2 

Weight Gain 

Factor 

Increase in 

SSA with 

CNT 

 
Lavg, µm SSA, m

2
/g fSEM SSA, m

2
/g fweight-gain 

RVC Foam NA 0.1 1 0.1 1 

RVC CNT 10 2 2 20 2 17 

RVC CNT 20 10 9 88 5 49 

RVC CNT 30 17 15 147 10 100 

RVC CNT 40 25 21 210 15 153 

RVC CNT 60 46 39 394 27 274 

Isolated CNT 

[23] 
-- 

 
 119 1190* 

 *Compared with RVC foam 

Sample ID 

Average 

Mass of 

sample 

before CNT 

growth, 

MRVC (g) 

Average 

total mass 

of RVC-

CNT 

MT (g) 

weight 

gain after 

CNT, 
(% increase) 

A 

Wt loss of 

Foam alone 

due to heat 
(% reduced) 

B 

Absolute 

weight gain 

after CNT, 
(% increase) 

A+B 

Avg # of 

CNT per 

area, NCNT, 

#/cm
2
 

x 10
10 

RVC-CNT 

10 
0.8382 0.834 -0.5 2.0 1.5 0.9

 

RVC-CNT 

20 
0.8951 0.9139 2.1 2.1 4.2 0.9 

RVC-CNT 

30 
0.8486 0.9013 6.2 2.7 8.9 1.0 

RVC-CNT 

40 
0.9032 1.0052 11.3 3.0 14.3 1.1 

RVC-CNT 

60 
0.8909 1.1143 25.1 3.6 28.7 1.2 
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c d 

a b 

f e 

Figure 4.4 SEM/STEM micrographs of (a) a typical RVC-CNT hybrid 

interface for linear density analysis, (b -d) typical STEM images used for inner 

and outer diameter measurements, and size distribution graph of (e) inner 

diameter of CNT, and (f) outer diameter of CNT.  
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4.3.3 BET Measurements  

Nitrogen BET was used to measure the SSA of RVC foam, RVC-CNT foam 

hierarchical structures, and isolated CNT. The measured BET SSA is averaged over 

duplicate samples and the mean values along with the standard error are tabulated in 

Table 4.6. The SSA of pristine RVC foam of 80 ppi is reported in earlier publications 

and is estimated to be 0.1 m
2
/g [23]. The average SSA of RVC foams measured using 

BET is 0.25 ± 0.21 m
2
/g, that shows very large standard error as the SSA of RVC 

foams (~0.1 m
2
/g) is at the lower end of the detection limit of BET adsorption method 

with N2 gas.  

The BET areas of various RVC-CNT hybrids, RVC foams, and isolated CNT 

were measured and the mean values are shown in Table 4.6. Figure 4.5 and Figure 4.6 

shows the full isotherm and the linear analysis of two samples: RVC-CNT 60 and 

Isolated CNT. The full isotherm for the samples shows steady adsorption and 

desorption with pressure variations. The analysis plots show high correlation 

coefficients, and the slope and intercept were used to determine the BET surface 

areas.  

From Table 4.6, the SSA of RVC-CNT samples increase with increasing CVD 

run time, as the increase in CVD run time increases the height of CNT arrays and 

therefore this increases the SSA. The SSA is observed to increase proportionally from 

2 m
2
/g to 24 m

2
/g for 10 minutes to 60 of minutes CNT growth on RVC foam. By 

grafting CNT on RVC foams the SSA increases by 2- 3 orders of magnitude within 

the same volume of RVC foam. The measured BET SSA of isolated CNT is 75 m
2
/g, 

which is approximately 3 times higher than the SSA of RVC-CNT 60. It must be 

pointed out that the measured SSA value is lesser than the theoretical SSA values that 
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are between 110 – 130 m
2
/g for isolated CNT having 15 - 20 nm diameters and 15 

walls nanotubes [61]. The isolated CNT typically tends to agglomerate by forming 

bundles and may also contain catalyst nanoparticles that adds mass to material and 

therefore reflects low SSA. Therefore, we may be underestimating the SSA value of 

isolated CNT. 

The SSA values of the hybrid porous structures are tabulated in Table 4.6. 

From this table it is observed that the SSA values of such hybrid structures can further 

be increased by growing more CNT within the same volume, which can be achieved 

by adjusting the CVD parameters such as increasing the CVD run time (as long as it 

continues to grow CNT).  The RVC foams are highly porous with 97% porosity and 

pore sizes of ~300 µm and the theoretical SSA of RVC-CNT hybrid when the pore 

volume is filled with the CNT carpets of same morphology (CNT diameter, length, 

and density) is estimated to be 182 m
2
/g.  But filling the space with 100 % CNT is 

challenging through direct growth of CNT on RVC using CVD techniques due to 

mass transfer limitations into the porous structures. However, if the average length of 

CNT carpet grown on RVC foams is 150 µm, the SSA of RVC-CNT is estimated to 

be 127 m
2
/g (using Equation 4.3). This is within the range of the theoretical SSA of 

isolated CNT of above mentioned morphology, as the theoretical SSA values of 

isolated CNT having 15 - 20 nm diameters are between 110 – 130 m
2
/g given using 

mathematical model by Piegney et.al. [61]. The possibility of attaching CNT on a 

porous substrate distinguishably increases the surface area as well as it allows full 

utilization of the CNT surface as it avoids CNT agglomeration and therefore we can 

achieve higher SSA value. 
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Table 4.6 BET surface areas and Langmuir surface areas measured using N2 

adsorption BET technique 

 

S. No Samples 
BET area 

SSA, m
2
/g 

Langmuir area 

SSA, m
2
/g 

1 RVC Foam 0.28 ± 0.2 0.44 ± 0.4 

2 RVC CNT 10 2.2 3.6 

3 RVC CNT 20 3.9 ± 1 6.6 ± 1.8 

4 RVC CNT 30 8.6 ± 2.1 14.6 ± 3.9 

5 RVC CNT 40 12.6 ± 0.5 21 ±  0.8 

6 RVC CNT 60 24.7 42.2 

7 Isolated CNT 75.1 127.7 
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(b) 

(a) 

Figure 4.5 (a) Full BET isotherm and (b) linear analysis plot for RVC-CNT 60 
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(b) 

(a) 

Figure 4.6 (a) Full BET isotherm and (b) linear analysis plot for Isolated CNT 
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4.4 Conclusion 

The available surface area of CNT per unit volume of the RVC was tuned by 

varying the packing density and/or the height of CNT arrays using the CVD 

parameters. Two main process parameters were used to control the distribution of 

CNT arrays – (1) silica coating thickness, and (2) CVD run time. The longer CVD run 

times results in increased length of CNT carpet and the silica coating on RVC foam 

improves the CNT growth throughout the supports. Various growth patterns were 

observed for RVC-CNT hybrids used in this study. Detailed microstructural analysis 

reveals that the CNT growth through the porous structure follows polynomial trends, 

having longer CNT arrays on the exterior and less CNT growth towards the interior. 

The specific surface area of these hierarchical structures was estimated using 

analytical models and microstructural data, which shows that nanotubes grafting 

increases the available surface area by few orders of magnitude. This correlates well 

with the BET measurements. Tuning the surfaces of pores with aligned carbon 

nanotubes is an important factor for the effective performance of many applications. 

This hybrid structure is robust in nature and holds the capability of tuning the 

surface area, which can be increased by several orders of magnitude without adding 

any significant weight to the material. Such a phenomenal hierarchical rigid support 

can be utilized for wide range of applications ranging from novel catalysts supports, 

electrodes, to water filters. The potential of such hetero-structures to improve the 

functionalities of existing materials is very promising. 
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5 Chapter 5: Adsorption of Methylene Blue Dye Compound 

5.1 Introduction  

The contamination of water bodies is  an ever-growing problem worldwide, 

and water pollution issues are impacting all aspects of life [62]–[64]. In addition to 

population growth, water contamination is increased by  widespread industrialization 

that can produce unprecedented amount of contaminants [65]. These include  

byproducts containing heavy metals, chemical toxins, petroleum derivatives, dyes, 

and other emerging contaminants [66], [67]. Dyes are common contaminants from 

textile, plastics and paper industries. They are complex aromatic synthetic compounds 

that have potential carcinogenic and mutagenic effects [63], [64], [67], [68], and are 

difficult to treat due to their chemical stability and resistance to natural biological 

degradation. Several techniques have been developed for dye degradation including 

chemical precipitation, filtration [69], adsorption [70]–[72], photo-catalysis [73], [74], 

electrochemical [75], ion-exchange [76] and oxidation/catalytic degradation [77], 

[78]. Among these techniques, adsorption is the most attractive due to its simplicity, 

high efficiency, ease of operation, and its ability to remove multiple components 

simultaneously. Moreover, adsorption techniques can be coupled with other 

mechanisms such as photo-degradation or catalysis, whereby the adsorbed and 

immobilized toxic compounds and their derivatives can be subsequently treated [79]. 

This has led to the study of a wide range of natural and synthetic materials as potential 

adsorbents [19], [80].  It is recognized that the desirable material characteristics of an 

adsorbent are chemical stability, structural durability, and high specific surface area. 

Hence, there has been growing emphasis on developing innovative adsorbent solids 

that can maximize the above characteristics. 
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Carbon-based materials such as activated carbon, carbon fibers, aerogels, and 

nanostructures of carbon are well-suited as adsorbents [81]–[83]. Nanostructures of 

carbon such as graphene, carbon nanotubes (CNT), and bucky-balls, have recently 

gained significant interest [21], [82]–[86]. Among them, CNT have shown special 

promise due to their high aspect ratio, fibrous meso-porous structure, and large 

specific surface area [86]. These have been reportedly used in isolated powder form 

and have shown high adsorption performance, but successful recovery of 

nanostructures poses a significant challenge and calls for additional separation steps 

[70], [87]. This is a serious limitation of stand-alone CNT and all isolated 

nanomaterials in general, since their dispersion in water can relate to uneconomical 

material loss and pose toxicity risks to the aquatic environment [88], [89]. Moreover, 

the cost-effectiveness will be significantly reduced if the material cannot be recovered 

and reused easily. Possible approaches proposed to address this limitation include 

centrifugation and attachment of magnetic iron nanoparticles that can be separated 

from liquid media using a magnet [90]–[93]. Both options add cost and complexity to 

the adsorption process.  

 More recent investigations have focused on designing aggregated materials 

containing nanostructures of carbon [36], [94]–[100]. Vecitis et. al. has reported a thin 

sheet of multiwalled carbon nanotubes - MWCNT (50 µm) as filter material held with 

PTFE membrane, encased in filter casing [98]. Zhao et. al. have developed a graphene 

sponge [36] and Ai et. al. have reported a graphene-carbon nanotube hybrid structure 

as adsorbent material [99]. These structures are improvements over isolated 

nanotubes, but still consist of loosely aggregated nanostructures that are not 

sustainable in flowing water because they lack the structural integrity of a covalently 

bonded continuous solid. 
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In this study, we demonstrate a new class of hybrid solid consisting of tall 

vertical carbon nanotube arrays chemically bonded to larger carbon supports through 

a reactive buffer layer of silicon dioxide. The CNT arrays are structurally robust, and 

provide the flexibility of tunable surface area, which can be several orders of 

magnitude higher than that of conventional high-porosity solids as shown in previous 

chapter. The hybrid structures can be used as effective reusable adsorbents since the 

nanotubes do not detach in liquid media, and therefore no additional recovery step is 

needed. Moreover, these structures, if successful as adsorbents, can be functionalized 

with suitable nanocatalysts in the future for degradation of the adsorbed species. 

These types of hierarchical materials are already proven to effectively host metal 

nanoparticles [16], which were successful in repeatable use for degradation of carbon 

tetrachloride [17] and biological contaminants in water [101]. 

This study focuses on bench-scale investigation of the CNT-Foam hybrid 

structures for removal of a model organic contaminant: methylene blue dye (MB). 

Methylene blue is a well-known cationic dye that has wide range of applications in 

textile, printing, biology, and chemistry. MB has some harmful effects to the 

environment but it is less toxic than most aromatic dyes and hence it is suitable as a 

good model pollutant. 

Methylene blue adsorption experiments were studied using UV-VIS 

spectroscopy to monitor dye concentration in water. Rate kinetics and isotherm 

analysis for adsorption of MB on CNT arrays on foam structures have been 

performed, and results are compared with those from other advanced materials 

reported in the literature. The results of this study suggest that CNT arrays on foams 

compare well with other reported materials, while providing the additional benefit of 

structural durability and repeated use. 
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5.2 Experimental 

5.2.1 Materials and Chemicals 

The chemical reagents used in this study were of analytical grade and 

consumed without further purification. These include Methylene Blue (C16H18N3SCl, 

MW: 319.85 g/mol, max: 665 nm, Sigma-Aldrich chemicals), 2-propanol (99.9%, 

HPLC Grade, Fisher Scientific) and De-ionized (DI) water. Methylene blue stock 

solution was prepared by adding known amount of methylene blue in DI water. 

Further dilution was obtained on demand using DI water to obtain required 

concentration. Standard solutions were made with concentrations ranging from 0.25 

mg/L to 10 mg/L of MB in DI water.  

5.2.2 Supports Used 

The porous foam structures that were used in this study are: cellular (Ce)-

Foam and reticulated vitreous carbon (RVC)-Foam. The SSA of Ce-foams is ~ 0.017 

m
2
/g [15] and that of RVC-foams is ~ 0.1 m

2
/g [23]. CNT were grown on these foam 

structures under identical growth conditions, involving 10 minutes of silica coating 

time followed by 30 minutes of CVD run time (unless specified otherwise). For these 

samples, estimated SSA of CNT coated Ce-foams (Ce-CNT foam)  is ~1 m
2
/g and 

that of CNT coated RVC-foams (RVC-CNT foam)  is ~13 m
2
/g [15], [102]. 

For this study, controlled length of CNT arrays was grown on foams as 

described in chapter 4 section 4.2.2. Parameters varied were (i) silica coating time 

(tsilica= 10 and 15 mins), and (ii) CVD run time (tCVD = 10, 20, 30, and 40 minutes). 

For this study, statistical estimates of specific surface areas were calculated using 

micro-structural analysis method as described in chapter 4 and are shown in Table 

5.1. 
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5.2.3 Batch Studies – Adsorption, Desorption, and Repeatability Studies 

Adsorption Studies: 

The batch adsorption experiments were carried out at room temperature in 250 

mL round bottomed flask containing 100 mL of aqueous MB dye solution of initial 

concentration 2 mg/L (unless specified otherwise) at 21 °C. Since earlier studies have 

reported that MB adsorption capacity may change with pH in the acidic range (pH < 

6) [99], [100], the pH of MB solution was maintained at ~ 6.8 for all the experiments. 

This value was seen to be unaltered at the end of the experiment.  

The hybrid supports were initially rinsed with 2-propanol and DI water 

thoroughly. The supports, typically weighing ~120 mg (unless specified otherwise) 

were introduced into the flask containing MB solution, and the adsorption time period 

was started. The flasks were stirred on a rotary shaker (New Brunswick Scientific Co. 

Inc.), operated at room temperature and 150 rpm for 120 minutes. Approximately 1.5 

mL aliquot samples of MB solution were withdrawn using micro-pipets from the flask 

at pre-determined time intervals. The absorbance was analyzed by the 

spectrophotometry technique using Cary 50 UV-Vis Spectrophotometer to determine 

the residue concentration of dye in the solution. The maximum absorbance of MB was 

observed at wavelength ~665 nm, max. It must be pointed out that several earlier 

studies have discussed a filtration step prior to UV-Vis analysis, but this was not 

required for these samples. The CNT arrays remained firmly attached to the larger 

foam supports and were not released in the solution. A detailed study on structural 

integrity has been reported earlier [17], where the CNT remained attached to the 

substrates even after several days of rotation in water. In another study [103], [104], it 

was shown that when the CNT-foam structure is subjected to ultrasonic bath using 

high power intensity until it fails, the failure occurs by delamination within the 



 

71 

 

supporting foam, and not by nanotube detachment. In fact, the nanotube carpet 

remained attached to the outer layer of peeled-off foam substrate, indicating that the 

CNT to substrate bond is stronger than the graphitic layers within the substrate. Each 

adsorption experiment was duplicated multiple times and the data reported here shows 

the mean values with standard error. 

Desorption Studies and Repeatability/Reusability of Hybrid Structures: 

After the adsorption of MB on the CNT-foam hybrid structure, the supports 

from the flask were immersed in a vial containing 15 mL 2-propanol alcohol for 

desorption analysis. The samples were held in the vial without stirring for few 

minutes followed by manual agitation. After desorption of MB the supports were 

finally rinsed with water and air-dried. Reusability of these hybrid structures for MB 

removal was performed under similar adsorption-desorption experimental conditions.  

The influence of storage media on repeatability was investigated by comparing their 

performances after storing them overnight in propanol, water, and air.   

5.2.4 Data Treatment – Rate Kinetics and Adsorption Isotherms 

For each adsorption experiment, the plots of MB removal were plotted using 

the normalized maximum absorbance, ‘A
n
’ at wavelength ‘max’ of 665nm, with the 

elapsed time ‘t’ (minutes). Standard curve was obtained from the absorbance values 

of standard concentrations ranging from 0.25 mg/L to 10 mg/L, which was applied to 

convert the maximum absorbance value to respective concentration of MB in the 

solution (mg/L). The amount of MB adsorbed per unit mass of the adsorbent (mg/g) at 

time t was calculated from the following mass-balance equation;  

    
        

 
  ……. (5.1) 
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Where, qt is the amount of dye adsorbed on CNT (mg/g) at any time t, C0 is the 

initial concentration and Ct is the concentration of MB in the liquid at any time t 

(mg/L), V is the volume of MB solution (L), and m is the mass of the nanotubes 

(CNT) within the sample (g).  

Rate Constants: 

The study of kinetics of adsorption plays an important role for determining the 

performance of the adsorbent and for designing the system for treatment applications. 

In order to study the kinetics and estimate the Langmuir monolayer adsorption 

capacity of the material, the adsorption study was repeated at different initial MB 

concentrations ranging from 1 mg/L to 16 mg/L using the RVC-CNT 40 samples. The 

MB removal rate constants were calculated using pseudo-first order and pseudo-

second order kinetics and the data were fit with suitable kinetics rate model. To 

analyze the adsorption rate of MB on CNT, the linear form of the Pseudo-first order 

and Pseudo-second order rate equations were employed [105]–[107].  

First order implies that the rate, governed by driving force, is directly 

proportional to the availability of surface sites on the adsorbent, hence the pseudo first 

order equation for adsorption is expressed as: 

   

  
               ……. (5.2) 

Where, qe and qt are the amount of MB dye adsorbed per unit weight of CNT 

(mg/g) at equilibrium and at time t, respectively, k1 is the pseudo-first order rate 

constant (min
-1

).  

Integrating the above equation with the boundary conditions, qt = 0 at t = 0 and 

qt = qt at t = t, and solving for the linear form, yields the following equation: 

                 
  

     
    ……. (5.3) 
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Similarly, the second order rate equation for adsorption indicates that the 

kinetic rate is directly proportional to the square of available surface sites, hence the 

rate equation is given as  

   

  
          

    ……. (5.4) 

Integrating the equation 5.4 with appropriate boundary conditions of qt = 0 at t 

= 0 and qt = qt at t = t, gives:  

 

       
 

 

  
        ……. (5.5) 

  

Equation 5.5 can be rearranged to obtain the general form of integrated 

second-order reaction equation as given in Eq. 5.6 

   
    

  

       
   

  

       
          ……. (5.6) 

Where, k2 is the pseudo-second order rate constant (g mg
-1 

min
-1

) and h is the 

initial adsorption rate (mg g
-1 

min
-1

).   Rearranging the above equation to obtain linear 

form of pseudo-second order:  

  
 

  
 

 

 
 

 

  
       ……. (5.7) 

          
            ……. (5.8)  

Adsorption Isotherms: 

The adsorption property of a new material is worth investigating through 

adsorption isotherms. It depicts the amount of adsorbate (MB in this case) that can be 

adsorbed on the adsorbent (selected hierarchical foam structure, RVC-CNT 40) as a 

function of concentration at constant temperature (room temperature in this case). The 

quantity adsorbed is normalized by the mass of the adsorbent to allow comparison 
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with other materials. In this study, the two widely studied isotherm models, Langmuir 

[108] and Freundlich [109], have been used. 

The Langmuir model is a theoretical model primarily based on the following 

assumptions: (i) all adsorption sites are equivalent, (ii) adsorbed molecules do not 

interact, and (iii) at the maximum adsorption limit (represented by qm), a complete 

monolayer is formed. The equilibrium adsorption capacity (qe) is related to the 

concentration of adsorbate in the liquid at equilibrium (Ce). The linear form of this 

adsorption isotherm model can be represented by Equation 5.9 as follows: 

  

  
 

 

   
 

  

  
     …….(5.9) 

Where, b represents equilibrium constant (L/mg) that is associated with the 

energy of adsorption, qm is the maximum adsorption capacity limit (mg/g) that 

correlates to a complete monolayer coverage [108]. 

Freundlich isotherm is a model that fits the adsorbed quantity (qe) proportional 

to a fractional power (1/n) of the concentration in solution (Ce) at equilibrium. 

Therefore, it can be expressed as: 

            
 

 
          …….(5.10) 

Where, Kf is Freundlich constant related to the adsorption capacity of 

adsorbent; and the value of n must be in the range of 1 to 10 for noticeable adsorption 

[109]. 
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5.3 Results and Discussion 

5.3.1 Adsorption of Methylene Blue  

5.3.1.1 Influence of the base support geometry:  

The following CNT-foam materials have been investigated as adsorbents to 

study the effect of support geometry: (a) cellular carbon foam (Ce-foam), (b) 

reticulated vitreous carbon (RVC-foam), (c) CNT coated Ce-foam (Ce-CNT foam), 

and (d) CNT coated RVC-foam (RVC-CNT foam). For this study, the mass of Ce-

foams introduced in each flask was ~ 400 mg and that of RVC foams was ~ 85 mg. 

Since the samples have vastly different specific surface areas, volumes, and CNT 

distributions, the mass of material introduced was varied to obtain comparable surface 

areas for the two samples. Figure 5.1a shows the absorption spectrum of methylene 

blue having λmax at ~ 665 nm obtained using UV-Vis spectrophotometer. Figure 5.1b 

shows the plot of MB adsorbed on the aforementioned materials (a-d) as adsorbents 

obtained using the absorbance maximum at 665 nm, where the graph is normalized 

per gram of hybrid sample (mg/g). 

 It can be seen that the bare Ce-foam and the bare RVC-foam samples showed 

small but noticeable MB removal that saturates within the first 10 minutes (Figure 

5.1b). When coated with CNT, the RVC foam shows significantly stronger dye 

reduction, with almost complete adsorption within 120 minutes of the reaction time. 

This is expected due to the increased surface area created by CNT forests. More 

interestingly, the CNT coated RVC-foam samples showed increased adsorption 

compared to CNT coated Ce-foams. This can be attributed to the denser and longer 

CNT growth on RVC-foams. The starting foams have higher SSA to begin with, and 

the more open porosity of RVC foams allows higher level of control and significantly 
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better growth of nanotube arrays on the surface. As indicated in the earlier section, the 

estimated SSA of CNT coated RVC foam materials is over 10 times that of CNT-

coated Ce-foams. Due to this obvious advantage, RVC foam has been selected as the 

preferred support for future, more detailed quantitative studies of reaction kinetic 

rates.  

5.3.1.2 Influence of nanotube carpet length: 

 Adsorption studies were carried out on various CNT carpet lengths on the 

base RVC-foam supports by modifying the CNT growth process. This was obtained 

either by changing the CVD run time (tcvd = 0, 10, 20, 30, or 40 minutes) or by 

varying the silica coating time (tsilica = 10 or 15 minutes), while keeping rest of the 

standard parameters constant. 

Figure 5.2a shows the plot of MB removal using RVC-CNT hybrid supports 

with varying amount of CNT that was obtained by changing CVD run times. As the 

run time increases, the CNT carpet length increases offering more available surface 

area and therefore the MB adsorption increases systematically. 

Another approach of increasing CNT growth without changing the CVD run 

time was to increase the pre-coating, or oxide buffer layer thickness on RVC foam 

prior to CNT attachment. It is expected that, within the range studied, thicker silica 

buffer layer results in faster nanotube growth. Figure 5.2b shows the plot of MB 

removal using RVC-CNT hybrid obtained by 10 and 15 minutes of silica coating time 

followed by a fixed (30 minutes) CVD run time. It is evident from the plot that silica 

coating by itself (no CNT growth) does not influence MB adsorption. However, 

higher silica coating thickness leading to increased CNT growth in the same CVD run 

time results in samples that adsorb higher amounts of MB in identical conditions.  
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(b) (a) 

Figure 5.1 (a) UV-Vis absorbance spectrum of MB solution, λmax ~ 665 nm, (b) Plot 

showing influence of different porous structures on adsorption of methylene blue 

obtained with bare and CNT coated: cellular (Ce-foam) and reticulated (RVC) foams, 

at initial concentration – 2 mg/L. 

Figure 5.2 Adsorption efficiency of methylene blue (initial concentration 2 mg/L) 

using RVC-CNT hybrids CNT obtained by (a) varying CVD growth time - 10, 20, 

30, and 40 minutes, (silica coating time fixed at 10 mins), (b) Silica coating time -10 

and 15 mins (CVD run time fixed at 30 mins) 

(a) 

(b) 
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Table 5.1 Estimated specific surface area of RVC-CNT hybrids and removal 

efficiency at initial concentration 2 mg/L methylene blue  

Sample ID 
CVD Run Time, 

minutes 

Estimated 

Specific Surface 

Area, m
2
/g 

Removal Efficiency 

   
     

  
     

RVC Control NA 0.11 11.39 

RVC-CNT 10 10 2 27.90 

RVC-CNT 20 20 6 39.17 

RVC-CNT 30 30 13 85.64 

RVC-CNT 40 40 17 99.45 

 

 

 

  Figure 5.3 Graph showing correlation between MB removal capacity and specific 

surface area of RVC-CNT hybrid samples (Bare RVC foam and RVC-CNT 10, 20, 

30, 40, Table 5.1). Initial concentration of MB was ~ 2 mg/L for all tests. 
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5.3.1.3 Correlation of MB adsorbed with specific surface area (SSA) of CNT-foam 

samples: 

 For an initial MB concentration of 2 mg/L, the fraction of MB adsorbed at 

equilibrium time, te = 120 minutes was considered here for comparison with available 

surface area and the data are tabulated in Table 5.1. Figure 5.3 shows the correlation 

of % MB removed with the estimated SSA of the RVC-CNT samples. The linear 

relationship of MB removal fraction with the available SSA shows the dye adsorption 

performance of the CNT hybrids is directly correlated to the amount of CNT on the 

foam. The slope of the graph can be used to estimate the amount of MB adsorbed per 

unit area of CNT. This correlation indicates that it is possible to tailor the adsorption 

capacity of this type of hybrid material by varying the length of CNT arrays through 

controllable process parameters. 

5.3.2 Kinetics Analysis 

The rate of dye adsorption by a measured quantity of material from a solution 

of specific concentration corresponds to it adsorption efficiency. In order to determine 

the suitable kinetic rate equation, the adsorption capacity of a selected RVC-CNT 

material (CNT-40) was determined by adsorption studies at different initial MB 

concentrations ranging from 1 mg/L to 16 mg/L. As discussed in section 5.2.4, the 

experimental data were plotted according to the pseudo-first order and pseudo-second 

order rate models using Equation 5.3 and Equation 5.7 respectively. Linear regression 

fits as shown in Figure 5.4 were used to estimate the kinetics parameters that are 

tabulated in Table 5.2. 

It can be seen from Figure 5.4a that pseudo-first order model does not fit well 

with experimental data. In addition to data points not being linear, the equilibrium 
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adsorption capacity estimated from the intercept of the graph does not match the 

experimental values, as seen in Table 5.2.  

In contrast, the pseudo-second order model shows a good fit (Figure 5.4b) 

having regression coefficients close to one and the calculated equilibrium adsorption 

capacity values agree well with the experimental values (Table 5.2). This suggests 

that the adsorption kinetics in this type of material follows the pseudo-second order 

rate model, i.e., adsorption rate varies as square of the surface site availability. The 

applicability of pseudo-second order may imply that two active surface sites are 

involved for removal of one unit of MB. 

It must be noted that, as expected, the equilibrium adsorption capacity 

(maximum MB adsorbed before saturation) increases with an external driving force 

controlled by the MB concentration in the solution. Therefore, when the initial 

concentration of the solution was increased from 1 mg/L to 16 mg/L, the adsorption 

capacity increased monotonically from 7 mg/g to 43 mg/g. Understanding the pseudo-

second order rate constants, k2, on the other hand is not so straightforward. It was 

observed to decrease with initial concentration of MB till 4 mg/L and then increase 

again with initial concentration from 4 to 16 mg/L. It has been pointed out in the 

[105]–[107], that the pseudo-second order rate constant is a complex function of an 

initial external driving force (concentration of adsorbate in solution) and may depend 

on the residual surface charge and the ion exchange mechanisms. Detailed 

investigation about the local surface sites and their chemical potentials will be needed 

in future to fully explain this phenomenon. 

5.3.3 Adsorption Isotherms 

As discussed earlier, adsorption isotherms depicting the equilibrium state 

relationship between the solid-phase concentrations of MB per unit mass of the 
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adsorbent (q, mg/g) and the liquid-phase concentration (C, mg/L) were obtained at 

room temperature. The experimental data were analyzed using two widely known 

models - Langmuir and Freundlich isotherm models. The linear form of isotherms 

based on the experimental data and the equations 5.9 and 5.10 are shown in Figure 

5.5. The best fit of the data is shown by the linear regression and the parameters 

obtained from the plots are tabulated in Table 5.3. It can be seen that the isotherm 

equations fit the data very well. 

The Langmuir isotherm fit for the concentration range investigated was used 

to determine adsorption capacity. From Langmuir theory and data fit, it indicates that 

there is indeed a saturation capacity equivalent to a “monolayer” adsorption amount 

of MB molecules that can be accommodated on these surfaces. This result has also 

been confirmed with molecular dynamic simulation studies by Chagovets et.al. [110]. 

Their computational modeling studies on random adsorption of MB ions on nanotubes 

in aqueous media reveal that MB ions form a monolayer shell-like configuration 

around the CNT surface [110]. 

From the Langmuir plot, the maximum MB adsorption capacity (qm) of the 

CNT in CNT 40 sample is estimated to be about 43.5 mg/g. As MB forms the 

monolayer adsorption on CNT surface [110], the specific surface area (SSA) of CNT 

or the RVC-CNT hybrids can be estimated from the maximum MB adsorption 

capacity ‘qm’ [111]–[113]. From [113]: 

       
       

   
           ……. (5.11) 

Where ‘NA’ is the Avogadro’s number (6.023x10
23 

mol
-1

), ‘qm’ is maximum 

adsorption capacity of adsorbent, ‘τ’ is the cross-section surface area that is occupied 

by MB molecule, ‘MMB ’ is the molecular weight of MB (320 g mol
-1

) [111]–[113]. 
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The cross-sectional surface area of MB as reported in literature is τ = 1.3 nm
2 

[111]–

[113]. Specific surface area of CNT using MB analysis turns out to be about SSAMB = 

106 m
2
/g. This value agrees very well with the SSA value of CNT (SSA = 119 m

2
/g) 

estimated from analytical models shown in Chapter 4 - section 4.2.3. 

The maximum adsorption capacity of CNT has been compared to the 

maximum adsorption capacities of various other types of MB adsorbents that have 

been reported in the literature as tabulated in Table 5.4. It can be seen that the 

adsorption capacity of CNT arrays in these materials is higher than most adsorbents 

shown, except for a few graphene-based materials. The CNT arrays in these materials 

seem to have higher projected capacity compared to carbon fibers, and even compared 

to isolated CNT dispersed in the water. Isolated CNT dispersed in the solution would 

be expected to be more effective than dense packed carpets anchored to larger solids, 

since dispersion may offer more intimate interaction with the aqueous medium. 

However, this result shows otherwise implying that it is possible to fully utilize the 

high quality nanotubes in these hybrid materials. The only materials having higher 

projected adsorption capacity are the graphene-based materials [97], [99]. However, 

as mentioned in these papers, these aggregated graphene-containing structures 

disintegrate in water and would require a follow-up separation step for removal if 

deployed. On the other hand, the material in this study is robust and allows full 

utilization of the nanotube surface without the need to disperse the nanomaterials in 

water. 

  



 

83 

 

 

 

 

 

  

Figure 5.4 Kinetic rate plots of MB adsorbed on to RVC-CNT hybrid structure (CNT 

40) showing (a) Pseudo-first order rate model and (b) Pseudo-second order rate model 
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Figure 5.5 Plots showing adsorption isotherms for the adsorption of MB on to the 

RVC-CNT hybrid structures, CNT-40, (a) Langmuir isotherm, and (b) Freundlich 

isotherm 
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Table 5.2. Adsorption kinetic parameters obtained using Pseudo-First order and 

Pseudo-Second order rate kinetics for adsorption of MB on CNT-40  

 Pseudo-First Order Pseudo-Second Order 

Co 

mg L
-1 

qe exp 

mg g
-1 

qe cal 

mg g
-1 

k1 

min
-1 R

2 qe cal 

mg g
-1

 

k2 

g mg
-1 

min
-1 R

2
 

1 ppm 7.43 3.31 
0.053 

0.8994 7.69 0.036 0.9997 

2 ppm 15.82 9.14 
0.060 

0.9723 16.53 0.014 0.9996 

4 ppm 30.15 18.80 
0.054 

0.9653 31.95 0.005 0.9993 

8 ppm 33.94 8.35 
0.069 

0.7746 34.60 0.016 0.9992 

16 ppm 43.13 24.11 
0.116 

0.8412 43.67 0.021 0.9997 

Table 5.3. Isotherm parameters obtained using Langmuir and Freundlich isotherm for 

the adsorption of MB on CNT-40 

Langmuir Isotherm Freundlich Isotherm 

qm
 
(mg g

-

1
) 

b (L mg
-1

) R
2 

Kf n R
2
 

43.5 4.89 0.9919 29.5 5.2 0.7334 

Table 5.4 Adsorption capacities of MB on various adsorbents as reported in the 

literature for comparison 

Adsorbents 
Adsorption Capacity 

(mg g
-1

) 
References 

CNT (on RVC Foam) 43.5 This study 

Carbon Nanotubes - isolated 35 Yao et al., 2010 [70] 

MWCNT – filters 29 Vecitis et al., 2011 [98] 

Granular or powdered 

Activated carbon 
21.5 - 91 Yener et al., 2008 [81] 

Vegetal Fiber – activated 

carbon 
33 Cherifi et al., 2013 [80] 

Exfoliated graphene oxide 17.3 Ramesha et al., 2011 [85] 

G-CNT Hybrids 81.97 Ai and Jiang, 2012 [99] 

Graphene Sponge 184 Zhao et al., 2012 [36] 

  



 

86 

 

5.3.4 Desorption of MB and Regeneration of the Adsorbent  

The possibility of regenerating the adsorbent after use was studied by 

attempting a simple desorption method: dipping in alcohol. Figure 5.6 shows the 

visual images of adsorption and desorption cycles of MB in water and 2-propanol 

respectively. As indicated in earlier sections, samples kept in aqueous MB solution (2 

mg/L in this case) turned colorless within 120 minutes indicating adsorption of the 

entire MB on the CNT as demonstrated in Figure 5.6(a-b). These solids were 

subsequently placed in 2-propanol solution, where the adsorbed MB is gradually 

desorbed from the adsorbent (CNT) surface changing the appearance of 2-propanol 

from colorless to blue color as shown in Figure 5.6(c-e). Agitating the support in the 

2-propanol solution removes the MB more swiftly and effectively. This step was 

repeated (1-2 times) until the 2-propanol solution stayed colorless. 

5.3.5 Repeatability Test  

For practical applications, it is essential to determine the reusability of a 

potential adsorbent such as the RVC-CNT hybrid structures of this study.  In order to 

evaluate that, several adsorption-desorption cycles were performed on each type of 

RVC-CNT hybrid. The removal capacity obtained with the re-used samples was 

similar to that of the fresh samples and the dye degradation profiles were observed to 

be within the standard error bars reported for fresh samples. 

The long term repeatability was seen to depend on the storage medium as seen 

in Figure 5.7. Figure 5.7a shows the removal percentage of MB for multiple 

adsorption-desorption cycles using RVC-CNT 40 that was stored in propanol. The 

first three cycles of MB adsorption from aqueous solution and desorption into 2-

propanol were performed within one day, and the adsorption capacity was clearly 

unchanged. After three cycles, the samples were stored overnight submerged in 2-
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propanol solution and the test resumed the following day. A detectable reduction in 

reusable efficiency can be observed from cycle 3 to 4 (Figure 5.7a), indicating that 

prolonged storage in alcohol may reduce the surface activity of the CNT.  However, 

the tests repeated on the second day, cycles 4-6, show identical adsorption capacity, 

indicating that short term desorption in alcohol does-not influence adsorption activity. 

In order to test if prolonged storage in other media is possible without performance 

degradation, this test was repeated by storing the samples in air and water.  Figure 

5.7b shows the removal efficiency of RVC-CNT 40 sample after prolonged storage in 

water (between cycles 8 to 9). For overnight storage in air, the results are identical 

and were observed to be within the standard error bars. It can be seen that the 

adsorption capacity remains unchanged throughout 10 cycles and shows no decrease 

after storing in water or in air.   

     In order to investigate the desorption capacity of RVC-CNT, systematic desorption 

studies were carried out. Figure 5.7c shows the adsorption-desorption cycles of MB 

on RVC-CNT 40, showing the adsorption in water and desorption in 2-propanol. The 

amount of MB in 2-propanol was determined using standards of known concentration 

in 2-propanol. Figure 5.7c shows high desorption capacity and it appears that most of 

the adsorbed MB is desorbed in 2-propanol and are within the error bars. 

This study points to several important characteristics of these hierarchical 

hybrid materials.  Unlike other nanoscale adsorbents reported in the literature, these 

are robust solids suitable for prolonged use without dispersion of loose nano-

components in water. Their adsorption capacity per unit volume can be easily 

increased by increasing the length of CNT carpets using known process parameters. 

Moreover, they are seen to retain their adsorption capacity after repeated use. These 

materials therefore provide significant promise for water purification applications. 
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Figure 5.6. Images of the vials representing adsorption and desorption of MB using 

RVC-CNT foam, (a) MB in water, (b) colorless solution indicating MB adsorbed on 

hybrid sample, (c) 2-Propanol solution, (d) MB-adsorbed sample placed in 2-Propanol 

– blue ring indicates release of MB from sample, and (e) MB desorbed completely in 

2-propanol solution and RVC-CNT sample is retained. 
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(a) 

(b) 

(c) 

Figure 5.7 Methylene blue removal plots obtained by re-using RVC-CNT hybrid 

structures (a) adsorption for up to 6 cycles and samples stored in 2-propanol overnight 

(at cycles 3-4), (b) adsorption-desorption analysis for up to 10 cycles where the 

samples were stored in water and in air overnight (at cycles 8-9), and (c) adsorption-

desorption cycles. 
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5.4 Conclusion 

Hierarchical carbon structures obtained by grafting carbon nanotubes on 

porous structures having different porosities were used as adsorbents for removal of a 

model contaminant - ‘methylene blue’ from water. It was found that the performance 

of the CNT-Foams hybrids to adsorb dye is greatly influenced by the amount of CNT 

on the foam, which dominates the specific surface area of the material. The available 

surface area of the RVC foam can be controlled by changing the buffer layer 

thickness and CNT growth time. This surface area is directly proportional to the 

measured adsorption capacity of the solids. The removal rate of MB was seen to 

follow Pseudo-second order kinetics, and the rate model has been employed to predict 

the equilibrium capacity, initial adsorption rate, and second order rate constant for 

different dye concentrations. The saturation adsorption at a given concentration is a 

good fit with the Langmuir isotherm model indicating a “monolayer” adsorption limit 

for methylene blue molecules on the CNT surface. The maximum projected 

adsorption capacity for MB on CNT arrays is about 43.5 mg/g, which compares very 

favorably with other advanced materials reported in the literature. It is noted that the 

adsorption capacity can be easily increased in this design by increasing the length of 

the CNT carpet on the foams. Moreover, unlike other nano-material aggregates 

reported, these materials are robust enough to survive prolonged use over many cycles 

without deterioration. These attributes make the CNT-Foam hybrid solids a promising 

design for advanced hybrid materials for future pollutant removal applications. 
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6 Chapter 6: Palladium and Palladium-Oxide Nanoparticles on 

Hierarchical Carbon Nanostructures 

6.1 Introduction  

Metal and metal-oxide nanoparticles (NPs) have potential applications in 

various fields including bio-medicine, electronics, environment, catalysis, optics and 

optical sensing that can constructively be used to advance the current cutting-edge 

technologies [114][115][116]. Many novel applications of metal nanoparticles as 

sensors, absorbents, ceramics, and/or catalysts are governed by their size, structure, 

and surface chemical properties. Metal nanoparticles of precious metals such as Pt, 

Pd, Au, and Rh are well known for their activity. Among various transition and rare 

earth metals, Palladium (Pd) is studied extensively for its high catalytic activity, 

unique ability to absorb hydrogen gas while being impervious to other gases, and also 

as an inexpensive substitute to platinum (Pt) [117]. Supported palladium nanoparticles 

are commonly employed for automotive exhaust catalysis, hydrogenation reactions, 

dechlorination of halogenated compounds, etc. For many surface dependent 

applications, attaching nanoparticles of precious metals on high surface area supports 

becomes economically and ecologically desirable for effectiveness of the system 

[118] [119]. The hierarchical nanostructures used in this study can behave as an ideal 

support for anchoring metal nanoparticles.  

This study builds upon the earlier studies to investigate a new class of carbon 

support for porous, robust, compact, and highly active Pd-based catalyst structures. 

This involves attachment of palladium nanoparticles on multi-scale hierarchical 

structures of carbon, which are formed by grafting CNT on porous structures. In 

earlier research, cellular carbon foams having 80% porosity were used as base 
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supports for constructing hierarchical support for Pd-NPs. Synthesis and 

characterization of supported Pd-NPs was carried out using liquid-phase infiltration 

and thermal reduction techniques that have been developed and published previously 

[16], [18]. The supported Pd-NPs were then employed as catalysts for removal of 

toxic chemicals such as carbon tetrachloride from water using batch reductive 

degradation [16][17].  

In this study, new types of porous materials that have more open reticulated 

structures have been investigated as high surface area supports for Pd based NPs. Pd-

NPs obtained using thermal reduction were in the form of zero-valent metallic 

palladium. Supported palladium oxide nanoparticles were then prepared by thermally 

oxidizing Pd-NPs. The crystal structure of Pd-NPs on CNT-foam structures was 

investigated and reported here. Microstructural and spectroscopic characterizations 

were carried out comparing the Pd and PdO nanoparticles (NPs) on various 

hierarchical structures. 

6.2 Experimental 

6.2.1 Materials  

All the reagents used in this study were of analytical grade and used without 

further purification; that includes Tetra-amine Palladium (II) Nitrate solution (TAPN, 

99.9%, 5% Pd, Alfa-Aesar Ltd.). Other materials are de-ionized water (DI water), and 

laboratory grade methanol. Ultra high purity hydrogen gas (H2, 99.999%), and 

laboratory purity argon gas (Ar) were used.  
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6.2.2 Support Preparation 

The porous supports employed in this study include cellular and RVC foams 

as shown in Figure 2.1. Palladium-nanoparticles (Pd-NPs) were synthesized on bare 

foams as well as on CNT that were grafted on the above mentioned foam structures. 

The size of Ce-foam support used was Ø 8 mm x 2.5 mm, weighing ~ 100 mg 

whereas the RVC-foam support used was Ø 8 mm x 5 mm, weighing ~ 25 mg, each. 

All the supports were rinsed with methanol and water prior to palladium deposition. 

6.2.3 Synthesis of Supported Palladium Nano-Particles 

In this study, supported Palladium nanoparticles on the specified foam 

supports were fabricated by the liquid-phase synthesis technique combined with 

thermal reduction process [16], [18]. The Pd-NPs synthesis process used in this study 

is described in detail in section 2.3.2. 

6.2.4 Synthesis of Supported Palladium-Oxide Nanoparticles 

Palladium oxide nanoparticles were prepared by thermally oxidizing the as-

prepared supported Pd-NPs. The Pd-NPs samples were placed in the furnace with 

quartz tube and the oxidation treatment was carried out by heating the samples at 250 

ºC and 300 ºC for 2 hours in air oxidation environment (inlet open to ambient air 

environment and outlet to exhaust). 

6.2.5 Materials Characterization  

Micro-structural investigation was performed using scanning electron 

microscopy (SEM). Spectroscopic analysis for chemical composition and structure 

was performed using energy dispersive X-ray spectroscopy (EDS) and X-ray 

photoelectron spectroscopy (XPS) techniques. Crystal structure investigation of Pd-
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NPs was performed using X-ray diffraction (XRD). These techniques are briefly 

explained in Section 2.4. 

6.3 Results and Discussion  

6.3.1 Crystal Structure Characterization – XRD 

Figure 6.1 shows the XRD patterns obtained from Pd-NPs on CNT Foam (Pd-

CNT-Foam) sample and pristine CNT Foam sample (CNT-Foam).  The XRD pattern 

of CNT-Foam exhibits peaks at 2Θ values of 26°, 42°, 44°, 55°, 78°, 83°, and 87°. 

These correspond to the graphitic structure of carbon. The strong peak at 26° 

corresponds to (0 0 2) plane, a characteristic peak of hexagonal structure of graphite 

and CNT. The XRD pattern of Pd-CNT-Foam exhibits additional peaks at 2Θ values 

of 40°, 46°, 69°, 82°, and 86° corresponding with the (1 1 1), (2 0 0), (2 2 0), (3 1 1), 

and (2 2 2) crystal planes, respectively [16]. These peaks are in good agreement with 

those reported in the literature for the face centered cubic (FCC) structure of 

palladium nanoparticles having a lattice constant, a= 3.91Å [120], [121], [122]. 
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Figure 6.1 X-ray diffraction pattern for CNT grafted Ce-Foam and Pd-CNT 

grafted Ce-Foam, range 20° < 2Θ < 90° 

 

 

 
Figure 6.2 SEM micrographs showing Pd-NPs fabricated on (a) Ce-foam and (b) 

RVC foam 

  

a b 
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6.3.2 Microstructure Characterization – Pd on Various Porous Structures  

Figure 6.2 shows the SEM images of Pd-NPs on bare Ce-foam and RVC-foam 

structures fabricated by one-coating cycle of Pd. Multiple coating of Pd synthesis was 

carried out for fabricating Pd-NPs on the CNT-grafted Ce-foams as well as RVC-

foams using similar coating process.  

Figure 6.3 depicts the SEM micrographs of Pd-NPs deposited on the CNT- 

foam supports. The high loading of Pd is desirable and the hierarchical structures 

developed with CNT-grafting provide additional surface for anchoring NPs. The SEM 

images (Figure 6.3) show that uniformly distributed Pd-NPs were fabricated on the 

CNT hierarchical architecture. 

Figure 6.4 shows the SEM images of Pd-NPs fabricated on CNT-grafted Ce-

foams by one- and two- coating cycles of Pd. SEM micrographs reveal that the two- 

coating of palladium significantly enhances the amount of nanoparticles loaded on the 

support, whereas any further increase in Pd content would result in sintering of 

particles in to large and continuous film like metal coating. The compositional 

element data was obtained using EDS that are tabulated in Table 6.1. The 

spectroscopy analysis using EDS system on these supports shows strong peaks for Pd 

and the elemental data confirms that the Pd content (wt%) obtained with two-coating 

cycles was twice the amount obtained with one-coating cycle on CNT grafted Ce-

foams.  

Figure 6.5 shows the SEM micrographs of Pd-NPs coated on CNT-RVC 

foams. Pd-NPs were fabricated by one-, two-, and three-coating cycles of Pd on RVC 

foams, so as to increase the amount of Pd-loading. The SEM images shown in Figure 

6.4 and Figure 6.5 reveal that the amount of Pd loading was significantly improved 
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with multiple coating cycles of Pd. EDS analysis data as tabulated in Table 6.1 shows 

that Pd content (wt%) increases with the number of coating cycles of Pd. 

6.3.3 Microstructure of Pd-O Nanoparticles 

Figure 6.6 shows the SEM micrographs of Pd-NPs decorated on the CNT- 

foam supports before (a-b) and after (c-h) the oxidation treatment. Figure 6.6(c-d) 

shows the palladium nanoparticles that were oxidized at 250 ºC and Figure 6.6(e-f) 

shows the palladium nanoparticles that were oxidized at 300 ºC. These samples are 

referred as Pd-O250 and Pd-O300, respectively. The microstructure of Pd-NPs after the 

oxidation treatment does not show any detectable difference in size and structure of 

nanoparticles. Furthermore, no detectable difference in the structure of CNT was 

observed. 

6.3.4  Chemical State of Pd and Pd-O Nanoparticles 

The chemical state of palladium and palladium oxide nanoparticles attached 

on CNT-RVC foams is studied using the XPS. The XPS survey-scans and fine-scans 

were taken for as-synthesized and oxidized palladium nanoparticles samples. The 

general scan shows low resolution peaks that gives an outlook to the various elements 

in a sample. Semi-quantitative compositional analysis was also obtained from the 

survey-scans. A detailed investigation was done on high resolution fine-scan peaks 

obtained for the core level (orbital) spectra of the corresponding elements. By 

examining the binding energy (BE), full width at half maximum (FWHM), intensities 

of the component peaks and their relative sensitivity factor (RSF), the relative 

quantitative surface compositional analysis was obtained for the above mentioned 

samples.  
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Figure 6.3 Typical SEM images of one-coating cycle of Pd-NPs fabricated on CNT-

coated foams (a-d) top view of CNT arrays, (e-f) side view of the CNT arrays 
  

c d 

e f 

a b 
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Figure 6.4 SEM micrographs showing Pd-NPs fabricated on CNT-grafted cellular 

foam by one-coating cycle (a), and two-coating cycle (b), processes 

 

 
Figure 6.5 SEM micrographs showing Pd-NPs fabricated on CNT-grafted RVC-foam 

by one-coating cycle (a), two-coating cycle (b), and three-coating cycle (c), processes 

 

 

a b 

c 
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Table 6.1 Elemental composition obtained from EDS analysis of Pd-NPs fabricated 

on the Cellular foam and RVC foams with one, two, or three coating cycles. 

Samples  
Coating 

cycles CK OK FeL PdL SiK 

Pd-NPs on CNT Ce-Foam 

One 72.97 2.85 2.22 21.06 0.88 

Two 53.81 1.14 1.29 43.14 0.60 

Pd-NPs on CNT RVC Foam 

One 92.03 3.06 1.71 3.19 - 

Two 86.24 4.10 1.91 7.75 - 

Three 83.04 4.34 2.48 10.14 - 

 

  



 

101 

 

 

 

 

a 

f e 
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Figure 6.6 SEM micrographs of (a-b) Pd, (c-d) Pd-O250, and (e-h) Pd-O300 synthesized 

on RVC-CNT hybrid structures  
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Figure 6.7 Survey scan (general scan) of as-prepared palladium nanoparticles sample 
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(a) 

(b) 

Figure 6.8 Survey scans (general scan) of oxidized palladium nanoparticles samples, 

(a) Pd-O250 and (b) Pd-O300 treated at 250 °C and 300 °C, respectively 
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Figure 6.9 XPS C 1s peak fine-scan obtained from (a) Pd, (b) Pd-O250 and (c) Pd-O300 

samples 

(b) 

(a) 

(c) 
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Figure 6.7 and Figure 6.8 shows the XPS survey scans obtained from Pd NPs 

and Pd-O NPs on RVC-CNT samples. It must be pointed out that the signal/noise 

ratio is lower as the analysis is carried out on porous structures having irregular 

surfaces (at both macro and micro scales) that greatly diffuse the signals. Analysis on 

these samples was carried out by carefully optimizing the maximum output counts as 

well as by analysing multiple spots in each sample (including duplicate samples).  

The peaks in the survey scan are at the characteristic positions for carbon, 

oxygen, and palladium peaks. The annotation in the survey scan figures shows the 

semi-quantitative compositional values obtained from quantifying the low resolution 

regions. The high resolution fine scans of these peaks were also obtained. Each fine 

scan was obtained by averaging over multiple sweeps to enhance the signal/noise ratio 

from these uneven surfaces. Figure 6.9 shows the fine scans of C 1s peaks for all the 

three samples. The prominent peak at 284.5 eV is the C-C type bonding of graphitic 

nature that corresponds to the CNT in the sample [16]. No iron or silica signals 

(precursors for CNT growth) were observed in these samples. Figure 6.10 shows the 

high resolution fine scan spectrum of Pd 3d peaks, the core level spectra of palladium, 

obtained from Pd-NPs samples. Figure 6.11a and Figure 6.11b shows the Pd 3d peaks 

for oxidized Pd-NPs treated at 250 ºC and 300 ºC, respectively. The 3d5/2 peak 

position for as-prepared i.e. reduced Pd-NPs sample is at 335.2eV, which represents 

the metallic palladium (Pd
0
) state (Figure 6.10). For the oxidized Pd-NPs samples 

treated at 250 ºC, the 3d5/2 peak at 335.2 eV reduces significantly and an additional 

peak is observed at position 336.9 eV, which represents the oxide form of palladium 

(Figure 6.11a) [16]. This indicates that the Pd-NPs are partially coated with an oxide 

layer forming PdO. The oxidized sample treated at higher temperature i.e. 300 ºC 

shows a near complete oxidation of Pd (Figure 6.11b) as the 3d5/2 peak at 335.2 eV 
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diminishes significantly and peak at 336.9±0.1 eV becomes stronger. The XPS for Pd 

samples treated at 300 ºC for 2 hours in air environment shows that the Pd-NPs are 

(significantly) fully oxidized (~96%).  

Figure 6.12 shows the fine scan spectrum of O 1s and Pd 3p peaks,  ranging 

from 570 - 525 eV and it is denoted as ‘O 1s - Pd 3p’ peak. It must be pointed out that 

the O 1s peak overlaps with the Pd 3p3/2 peak observed between 531 - 534 eV, 

whereas as the Pd 3p1/2 peak is clearly separated at ~ 560 eV. The O 1s peak is 

resolved by separating the Pd 3p3/2 components using the intensity of 3p1/2 and 

appropriate ‘p’ orbital ratios for the Pd 3p peaks.  

The O 1s – Pd 3p peaks of the oxidized Pd samples (Pd-O250 and Pd-O300) are 

as shown in Figure 6.12b and Figure 6.12c, respectively. It can be seen that a new 

oxygen (O 1s) component appears at the lower binding energy side (~530 eV) for 

palladium samples after oxidization. This O 1s peak at 530 eV corresponds to the 

oxygen atoms bonded to Pd during the formation of PdO. However, there are now 

multiple components of Pd 3p also that co-exist and/or overlap within the main O 1s 

peak. For partially oxidized Pd samples, there would be two components of Pd 3p3/2 

peaks (metallic and oxidized state components of Pd) as shown in Figure 6.12b. The 

areas of these peaks are estimated using appropriate ratios from the respective Pd 3d 

components and thus careful peak processing of Pd 3p and O 1s peak components was 

carried out. The preliminary atomic percentage estimates of peak components of Pd, 

Pd-O250 and Pd-O300 are shown in the Table 6.2. The low binding energy O-Pd 

component for Pd-O250 and Pd-O300, (at ~ 530 eV) increases from 0.67% to 1.32% 

with the increase in oxidation temperature from 250 to 300 °C. This clearly indicates 

more complete oxidation of Pd at 300 °C (Pd-O300). As shown in Table 6.2, the total 

concentration of Pd (sum of Pd and/or Pd-O 3d components percent) across the three 
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types of samples is similar with the surface averaged Pd% of 1.34%. This data is also 

confirmed from EDS analysis as shown in Table 6.3, where all the three samples have 

similar At% of Pd (4.6%). It must be noted that because XPS and EDS have very 

different analysis depths and resolutions, their quantitative values are expected to be 

different. So, only the trends from XPS and EDS are being compared here. The EDS 

analysis also shows that At% of oxygen follows an increasing trend with oxidation 

temperature.  
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Figure 6.10 XPS fine-scan spectra of Pd 3d peak obtained from palladium 

nanoparticles (Pd-NPs)    
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Figure 6.11 XPS Pd 3d fine-scan of samples oxidized at (a) 250 °C (Pd-O250), and (b) 

300 °C (Pd-O300) 

(a) 

(b) 
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Figure 6.12 XPS fine-scan spectra of O 1s and Pd 3p peaks obtained from (a) Pd NPs, 

(b) Pd-O250, and (C) Pd-O300 samples 

(b) 
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Table 6.2 Elemental chemical composition and characteristic core spectra positions of 

elements from Pd, Pd-O250, and Pd-O300 samples using XPS analysis 

NA- Not applicable 

 

Table 6.3 Elemental chemical composition obtained using EDS analysis for Pd, Pd-

O250, and Pd-O300 samples  

At% Pd Pd-O250 Pd-O300 

CK 91.9 91.2 91.6 

OK 2.9 3.6 4.0 

SiK 0.3 0.2 0.3 

PdL 4.7 5.0 4.1 

  

XPS Element 

Composition 

Pd Sample 
Pd-O250 

Sample 

Pd-O300 

Sample 

Binding 

Energy, 

eV 

Atomic 

% 

Binding 

Energy, 

eV 

Atomic 

% 

Binding 

Energy, 

eV 

Atomic 

% 

C 1s 284.5 96.45 284.9 96.61 284.4 95.94 

O 1s 531.9 2.23 531.2 1.49 531.6 1.28 

Pd 3d 335.2 1.32 335.1 0.40 335.15 0.07 

Pd 3d – O  NA 336.8 0.84 337.0 1.39 

O 1s - Pd NA 529.9 0.67 530.1 1.32 
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6.4 Conclusion 

In this study, Pd-NPs and PdO-NPs were synthesized on vertically aligned 

carbon nanotubes attached to porous structures forming multi-scale architecture. 

Crystal structure investigation using X-ray diffraction of Pd-NPs indicates FCC 

structure. Thermal oxidation of Pd in air shows formation of oxidized palladium 

particles. XPS analysis shows that Pd-NPs can be partially oxidized or fully oxidized 

by thermal heating at 250 °C or 300 °C, respectively. The catalyst particles on 

hierarchical structures can provide very high surface activity for smaller and lighter 

components. Moreover, these nano-catalysts can be used easily for treating 

contaminated water treatment, as they are adhered to larger supports. This makes 

them reusable and eco-friendly as the NPs and the CNT are immobilized on larger 

porous supports.  

 

  



 

113 

 

7 Chapter 7: Bimetallic Nanoparticles: Palladium – Silver 

Bimetallic Nanoparticles on Hierarchical Carbon 

Nanostructures 

7.1 Introduction 

As discussed in earlier chapters (Chapter 6), metal nanoparticles have potential 

applications in various fields including bio-medicine, electronics, environment, 

catalysis, optics and optical sensing [114][115][116]. Many novel applications of 

metal nanoparticles as sensors, absorbents, ceramics, and/or catalysts are governed by 

their size, structure, and surface chemical properties. These applications are 

dependent on the characteristics properties of the metal nanoparticles. Assembling 

two or more types of metals in the same nanoparticle can improve their chemical and 

structural properties. Bimetallic or multi-metallic nanoparticles can advance the 

current cutting-edge technologies by constructively enhancing their characteristics 

[123]–[125]. 

In this study, Ag/Pd bimetallic nanoparticles on CNT-Foam structures were 

synthesized by subsequent synthesis of silver on the as-prepared palladium 

nanoparticles-CNT hybrids. This was achieved by thermal reduction of a palladium 

precursor (tetraamine palladium nitrate) to form Pd-NPs followed by chemical 

reduction of silver nitrate on as-prepared Pd-NPs using dimethyl-sulfoxide and tri 

sodium citrate as reducing/stabilizing agents [16], [18], [103], [104].  
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7.2 Experimental 

7.2.1 Materials  

All the reagents used in this study were of analytical grade and used without 

further purification. These include Tetra-amine Palladium (II) Nitrate solution 

(TAPN, 99.9%, 5% Pd, Alfa-Aesar Ltd.), Silver Nitrate (AgNO3, 99.99%, Sigma 

Aldrich Ltd.), Dimethyl sulfoxide (DMSO, 99.5% Sigma Aldrich Ltd.), and Tri 

sodium citrate (Na3C6H5O7, 99%, MP bio Ltd.). Other materials are de-ionized water 

(DI water), and laboratory grade methanol. Ultra high purity hydrogen gas (H2, 

99.999%), and laboratory purity argon gas (Ar) were used.  

7.2.2 Synthesis of Silver-Palladium Bimetallic Nanoparticles  

In this study, Ag/Pd bimetallic nanoparticles on CNT-Foam structures were 

fabricated by synthesis of palladium followed by subsequent synthesis of silver on the 

as-prepared Pd-CNT-Foam structures. The CNT-Foam structures used in this study 

are CNT on RVC structures obtained by growing CNT for 40 minutes as described in 

Chapter 3 and Chapter 4. 

Initially, palladium was synthesized on the CNT-RVC foams using the 

thermal reduction process [16], [18] as discussed in Section 2.3.2. The CNT-foam 

samples were infiltrated with tetraamine palladium (II) nitrate solution (62.5 mM 

TAPN) for 120 mins followed by thermal treatment and reduction steps using 

hydrogen gas as the reducing agent (described in detail in section 2.3.2) to form Pd-

NPs on CNT-Foams. 

Consequently, silver was synthesized using a pre-developed chemical 

reduction process developed in as reported by [103], [104]. The process involves 

infiltration of the support with AgNO3 precursor solution followed by in-situ chemical 
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reduction using sodium citrate and DMSO. The details of silver deposition on Pd-NPs 

CNT-foam supports are described as follows. 

The silver synthesis process is carried out in a dark room to avoid degradation 

of silver nitrate under visible light [103], [104]. Silver nitrate of a known 

concentration (0.72 M AgNO3) is used as a silver precursor solution. As-prepared Pd-

NPs CNT samples are wetted by rinsing with methanol and DI water, and are then 

immersed in an aqueous precursor solution of AgNO3 for 12 hours. The solid supports 

are recovered from the silver solution and the excess non-interacting solution on the 

sample is washed-off by briefly dipping the support in methanol. The AgNO3 

adsorbed sample is now is treated chemically to reduce it to form silver 

In-situ chemical reduction method was carried out using DMSO and Tri 

sodium citrate in a 25 mL pyrex glass beaker under dark room conditions. Initially, 15 

mL DMSO was heated to 60 °C on a hot plate and 5 mg of tri sodium citrate was 

added to the DMSO (1 mM Citrate). The as-prepared Pd CNT sample was immersed 

in the beaker containing DMSO and 1 mM citrate solution. Continuous stirring was 

carried out using a stir bar and the temperature was maintained at 60 °C. The 

reactions were allowed to take place for 2 hours. As the reactions occur, i.e. the 

AgNO3 is reduced to silver; the colorless DMSO-citrate solution changes its color. 

The samples were removed from the solution after 2 hours and rinsed with DI water 

followed by air drying for 24 hours. 
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Figure 7.1 SEM micrograph of Pd-NPs attached on CNT-RVC foam samples 
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Figure 7.2 SEM micrographs of Ag coated Pd-NPs attached on CNT-RVC foam 

samples (Ag-Pd NPs) 
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7.3  Results and Discussion 

Figure 7.1 shows SEM micrographs for the microstructure of Pd-NPs on CNT-

foams and Figure 7.2 shows the microstructure of Ag-Pd nanoparticles on CNT foam 

structures. The SEM images do not show any significant difference in the silver and 

palladium particles.  

 Figure 7.3 shows the XPS survey scans obtained from Ag-Pd NPs on RVC-

CNT samples. It must be pointed out that as the analysis is carried out on porous 

structures the noise to signal ratio is high. XPS analysis was carried out for multiple 

spots in a sample (including duplicate samples).  

The peaks in the survey scan (Figure 7.3) are at the characteristic positions for 

carbon, oxygen, palladium, and silver. The annotation in the Figure 7.3 shows the 

semi-quantitative values for surface compositions obtained from quantifying regions 

of the low resolution survey scans. The high resolution fine scans of these peaks were 

also obtained. Figure 7.4 shows the fine scan of C 1s peaks obtained from Ag-Pd on 

RVC-CNT sample. The prominent peak at 284.5 eV is the C-C type bonding of 

graphitic nature that corresponds to the CNT in the sample. Figure 7.5 shows the high 

resolution fine scan spectrum for the core level of silver and palladium, the Ag 3d 

peaks and Pd 3d peaks respectively. The Ag 3d5/2 peak position is at 368.3 eV as 

shown in Figure 7.5a. It must be noted that it is not possible to determine the 

oxidation state of Ag from the 3d5/2 peaks, because the peaks for the Ag and Ag-O are 

within 0.3 eV of each other [104]. The O 1s component is discussed in next 

paragraph. The Pd 3d5/2 peak position is at 335.2 eV as shown in Figure 7.5b, which 

represents the metallic palladium (Pd
0
) state (Figure 6.10) [16], [18].  
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Figure 7.3 XPS survey scan (general scan) of Ag-Pd bimetallic nanoparticles on 

RVC-CNT foam samples 

Figure 7.4 XPS C 1s fine-scan obtained from Ag-Pd bimetallic nanoparticles on 

RVC-CNT foam samples 
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(b) 

(a) 

Figure 7.5 XPS fine scan spectra of (a) Ag 3d and (b) Pd 3d obtained from Ag-

Pd bimetallic nanoparticles  
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O 1s – Pd 3p 

(b) 

(a) 

Figure 7.6 XPS fine scan spectra of (a) Ag 3p, and (b) O 1s – Pd 3p obtained 

from Ag-Pd bimetallic nanoparticles  
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Figure 7.6a shows the fine scan spectrum of Ag 3p peaks, where the Ag 3p3/2 

is at 572.9 eV. Figure 7.6b shows the fine scan spectrum of O 1s and Pd 3p peaks, 

ranging from 570 - 525 eV. As discussed earlier in section 6.3.4, the Pd 3p3/2 peak for 

a Pd sample overlaps with the O 1s peak as shown in Figure 7.6b. The 3p3/2 

component is processed using the intensity of 3p1/2 and ‘p’ orbital ratios as discussed 

in chapter 6 (section 6.3.4). For the Ag-Pd sample no additional O 1s component was 

observed indicating that there may not be any noticeable Ag-O signal. As reported in 

literature [119], [120], Ag-O bond should have an O 1s component at low binding 

energy side in the 528 – 530 eV energy range. 

The atomic percentage of the elemental compositions obtained from the XPS 

peak area analysis of fine-scan spectrums are shown in the Table 7.1. It must be noted 

that the XPS peaks are extremely surface sensitive, and signals are averaged over 

large areas of very uneven surface morphologies, so the absolute concentrations need 

further analysis.  The trends of how these peaks change with processing provide 

useful insights. The surface fractional content of Pd (calculated from the Pd 3d peak 

area) decreases from 1.3% to 0.52% after silver deposition. This may indicate 

covering of the Pd surfaces with Ag film, resulting in loss of XPS signal from Pd.  

The EDS analysis results of Pd and Ag-Pd bimetallic samples are tabulated in 

Table 7.2. The At% of Pd in Ag-Pd samples is ~ 6.3% and that of silver is ~ 1.3% (4 

to 5 times less). Moreover, the Pd concentration is not reduced by silver deposition, 

unlike seen in the signals from XPS surface analysis. This is because, whereas XPS 

provides data from only few nanometers in the surface, the EDS analysis provides 

elemental composition of the surface depth of up to few microns in the sample, larger 

than the size of Pd nanoparticles. Combining XPS and EDS results, it can be 

concluded that in Ag-Pd bimetallic samples the Pd-NPs are coated with a layer of 
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silver, creating core-shell type of structure. Further investigation involving HRTEM 

and XRD can reveal more details of these bi-metallic nano-particles.  
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Table 7.1 Elemental chemical composition and characteristic core spectra positions of 

elements from Pd and Ag-Pd bimetallic samples using XPS analysis 

NA – Not applicable; ND – Not detectable 

 

Table 7.2 Elemental chemical composition obtained using EDS analysis for Pd and 

Ag-Pd bimetallic on RVC-CNT foam samples  

EDS 

Analysis 

Pd Sample 

At% 

Ag-Pd Sample 

At% 

CK 91.9 87.0 

OK 2.9 4.4 

SiK 0.3 0.9 

PdL 4.7 6.3 

AgL NA 1.33 

NA – Not applicable 

  

XPS Element 

Composition 

Pd CNT Sample Ag-Pd CNT Sample 

Binding Energy, 

eV 
Atomic % 

Binding Energy, 

eV 
Atomic % 

C 1s 284.5 96.45 284.5 92.87 

O 1s 531.9 2.23 532 4.21 

Pd 3d 335.2 1.32 335.2 0.52 

Ag 3d  NA 368.3 2.40 

Ag - Pd 3d NA ND 
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7.4 Conclusion 

In this study, silver was deposited on palladium nanoparticles attached to 

vertically aligned carbon nanotubes and porous structures. This deposition coating 

was carried out to form Ag-Pd bimetallic nanoparticles forming multi-scale 

architecture. Microstructural and Surface chemical characterization was carried out 

using SEM, EDS, and XPS. The SEM microstructure analysis does not show any 

detectable variation in the Ag and Pd samples. The EDS analysis shows that Pd is 

present in high amount in the sample, where as the XPS analysis shows a low 

concentration of Pd that accounts for less Pd on the surface. A similar trend was 

observed with Ag concentration, indicating that a layer of silver is coated on Pd-NPs 

surfaces. High resolution TEM or XRD characterization is required to confirm the 

formation of bimetallic nanoparticles. The Ag-Pd nanoparticles on CNT foam 

structures were employed in this study for catalytic degradation of chlorinated 

contaminants that are discussed in later chapters. The catalytic activity of palladium 

and silver-palladium catalysts - Pd, PdO, and Ag-Pd nanoparticles structures were 

also investigated (Chapter 9).  
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8 Chapter 8: Catalytic Dechlorination of Trichloroethylene and 

Trichloroethane using Palladium Based Catalysts 

8.1 Introduction 

Halogenated hydrocarbons are organic contaminants that are commonly 

present in soil and groundwater across the globe and they are of great concern 

worldwide. Ground water contamination by halogenated organic compounds such as 

chlorinated organic compounds (COCs), which include chlorinated alkanes, alkenes, 

halo-aromatics, and chloro-flouro hydrocarbons (CFCs) have harmful effects on the 

environment and human health. The common chlorinated hydrocarbon compounds 

(CHCs) that contaminate the soil, water, and air environment in large quantities 

include Carbon tetrachloride, Trichloroethylene, and Trichloroethane. These 

chemicals have widespread industrial applications and therefore are easily released 

into the environment. Due to their toxicity and green house effects, strict restrictions 

have been posed on the usage and disposal of such chemicals [126], [127].  They also 

posses high resistance to biological degradation and are able to easily migrate into 

ground water and atmosphere, thereby contaminating the environment on the whole. 

Therefore, many treatment methods have been developed to remove COCs from the 

environment [66], [128].  

The traditional techniques used for the removal of CHCs include combustion, 

adsorption, and osmosis. However, for toxic contaminants these techniques are not 

very effective and may require additional steps for disposing of the recovered 

contaminants. Researchers are exploring more ecologically and economically friendly 

techniques to remove these toxic chemical compounds from soil and water.  A 

widespread approach is to selectively degrade the toxic chemical compounds into 
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smaller daughter products that are less toxic or non-toxic. Degradation of such 

chlorinated compounds can be done with the aid of catalyst material such as transition 

metals by the following processes: electrochemical dechlorination, reductive 

dechlorination, radiation dechlorination, and hydro-dechlorination. Use of a catalyst 

facilitates the removal by selective degradation pathways [128][129]. The common 

metals used for catalytic dechlorination of COC include platinum, palladium, 

rhodium, zinc, silver, gold, copper, etc.; among which, Pd is a well known catalyst for 

selective reduction of chlorinated carbon species. In this study, we evaluate the 

catalytic activity of palladium-based catalyst for dechlorination of Trichloroethylene 

and Trichloroethane in the presence of hydrogen gas. The dechlorination reaction 

involves breaking/reducing the carbon-chlorine bonds facilitated by a catalyst such as 

Pd which requires H2 to catalyse the reactions. Here the molecular hydrogen initially 

dissociates on the catalyst surface and the hydrogen therefore replaces the chlorine in 

the compound that produces a reduced chlorinated compound.  

Catalysis is a surface specific phenomenon, therefore supports having high 

specific surface area such as activated carbon, free-standing carbon nanotubes (CNT), 

and carbon nano-fibers (CNFs) have been extensively used for anchoring metal 

nanocatalysts [20][130]. For heterogeneous catalysis, the reactants are in the liquid-

phase and the catalyst materials although in solid-phase, are anchored on such free-

standing supports in suspended form [130]. If the supported nanoparticles for treating 

water are in suspended form, successful recovery of the nanoparticles from the treated 

water can be difficult and intricate. This presents certain challenges in water 

treatment. If the suspended nanoparticles are not recovered completely, it can be 

uneconomical and also pose environmental safety hazards [21], [22]. This may 

require further purification of the treated water thereby increasing the cost of the 
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system. The supports used in this study are robust porous supports that consist of high 

surface area carbon nanotubes strongly attached to microcellular carbon foams. The 

robustness, ease of handling, and structural integrity along with the high surface area 

of these supports surpasses currently available supports. Pd-NPs are strongly attached 

to the supports, thereby preventing the nanocatalyst from dispersing into the 

environment [16]–[18]. These types of hierarchical materials with Pd catalysts and 

hydrogen have already proven to be effective and successful for repeated use for 

degradation of carbon tetrachloride [17], [18]. 

The objective of this work is to demonstrate the use of a hierarchical substrate 

as an effective catalyst support for water treatment applications and also to evaluate 

the reactivity of various Pd based catalysts for dechlorination reactions. This study 

focuses on bench-scale investigations of catalytic reductive dechlorination of 

Trichloroethylene (TCE) and Trichloroethane (TCA) in the aqueous phase using 

carbon supported palladium catalysts. Gas chromatography was used to quantify the 

volatile compounds present in the gaseous samples. The effects of varying amount of 

palladium-based catalysts (Pd, PdO, isolated Pd) with hydrogen in the serum bottle 

reactor, on the kinetics of TCE and TCA degradation and the formation of daughter 

products are discussed. We select 5% H2 balance N2 as the hydrogen environment 

based on the previous studies [17], [18], which shows that Pd catalysts requires 

hydrogen to reduce chlorinated compounds and that 5% or 50% H2 has similar effects. 

The Pd-NPs are one coating of Pd on CNT-RVC foam samples, the PdO sample used 

in this study is PdO300°C, obtained by oxidizing Pd at 300 °C as described in section 

6.2.4, and isolated Pd was obtained by scratching the Pd from the ceramic boat that is 

used in the furnace for Pd preparation. 
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8.2 Experimental 

8.2.1 Chemicals 

The chemical reagents used in this study were of analytical grade and 

consumed without further purification. These include Trichloroethylene (TCE, 

C2HCl3, Fisher Scientific), 1,1,1 -Trichloroethane (TCA, C2H3Cl3, Fisher Scientific), 

1,1 - Dichloroethane (DCA, C2H4Cl2, Fisher Scientific), and 2-propanol (99.9%, 

HPLC Grade, Fisher Scientific). The water used in this study was MiliQ DI water that 

has resistivity of 18 Megaohm-cm (MΩ-cm). Other materials are laboratory grade 

high purity gases that include 5% H2 balance N2. Gas-tight syringes (Hamilton, Inc.) 

and end-to-end rotators at 60 rpm (Glas-Col®) were used. The pH of buffer solution 

was monitored using a pH meter (HACH©, HQ 411d pH/mV). Teflon-lined butyl 

rubber stopper (PTFE-lined) of size 20 mm and aluminium crimp were purchased 

from Wheaton Inc. 

8.2.2 Stock Solution and Standards 

The stock solutions of chlorinated hydrocarbons (CHCs) such as TCE (182.5 

mg/L) and TCA (165 mg/L) were separately prepared in 160 mL glass serum bottle 

filled completely with MilliQ water. These were securely capped with Teflon-lined 

butyl rubber stoppers and sealed with aluminum crimp leaving no headspace. The 

TCE in liquid phase is known to be sensitive to light and therefore the clear serum 

bottles were wrapped with Aluminum foil. To make the stock solution, 20 µL of free-

phase CHCs compound was injected into the 160 mL serum bottle. The stock solution 

serum bottles were equilibrated prior to use by rotating on a rotary shaker for 48 to 72 

hours.   
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CHCs standards as the gaseous analytical standards were prepared in 60 mL 

amber colour serum bottles by adding 36 mL MilliQ water leaving 24 mL of air 

headspace volume, so as to maintain the water to headspace ratio of 60:40. The serum 

bottles were sealed with Teflon lined stoppers and Al-crimps. Standards were 

prepared for concentrations ranging from 0.1 mg/L up to 10 mg/L, without H2 purging 

(sealed in ambient air) and with H2 purging (purged with 5% H2 balance N2 gas for 20 

mins) into the serum bottles. Measured amount of stock solution was injected into the 

sealed serum bottles using appropriate volume micro-syringes. 100 μL volume of gas 

samples were extracted from the headspace of each reactor using a Hamilton© gas-

tight syringe and analyzed on gas chromatography-mass spectrometry (GC-MS). The 

known concentration of CHCs in both liquid and gaseous phase was calculated using 

the ideal gas law equation and their Henry’s constant at 25 °C. The Henry’s constant 

values were obtained from USEPA [131], [132]. The stock solutions and standards for 

the expected daughter products (1,1-dichloroethane) were also obtained similarly. The 

standard calculation and analysis of the CHCs and the daughter products are shown in 

Table B.1 and Table B.2 of Appendix B.  

8.2.3 Batch Experiments 

The dechlorination of TCE and TCA was carried out in a batch reactor system 

of 60 mL amber colour glass serum bottles. Since, TCE is sensitive to light, amber 

colour serum bottles were used for these batch experiments. The catalyst foam 

samples (~25 mg) were attached to the sides of the serum bottle using a double sided 

carbon tape. MilliQ de-ionized water (36 mL) was added to the reactors, maintaining 

the solution to headspace ratio of 60:40. The reactors were sealed with Teflon-lined 

butyl rubber septa and aluminum crimp. For hydrogen purging experiments, the 

reactors were then purged with a gas mixture of nitrogen and hydrogen (95% N2 - 5% 
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H2, 40 kpa, 0.05 atm) for 20 minutes. Appropriate amounts of CHCs from the stock 

solution were injected into each batch reactor using a gas-tight syringe and the time 

was recorded as the reaction initiation time. The bottles were spun on an end-to-end 

rotary shaker (60 rpm, 45° inclination), at room temperature. The reactors were 

rotated so as to minimize the liquid-gas mass transfer effects and were maintained at a 

certain angle so that the samples attached on the walls of the reactors remain in the 

solution at all times. No mass transfer limitations from liquid to gaseous phase were 

assumed i.e. equilibrium was attained rapidly. 100 μL of the gaseous samples were 

removed from the headspace of the reactor at various intervals using a gas-tight glass 

syringe and were analyzed instantly by direct injection into the inlet port at the front 

injector of gas chromatograph (GC). The injection port was maintained at a 

temperature of 150 °C. GC was equipped with a MSD detector and DB-5MS capillary 

column. High purity He gas was used as a carrier with a flow rate of 1 mL/min.  

Batch degradation experiments were carried out for TCE analysis and TCA 

analysis separately by the above mentioned method using various Pd-based catalysts 

with and without the H2 purging. These experiments were repeated for validation of 

the data. A repeatability test was also done to determine the stability of the Pd and 

PdO catalysts. 

8.3 Results and Discussion 

8.3.1 Trichloroethylene (TCE) Experiments 

The dechlorination reactions of Trichloroethylene using a palladium-based 

catalyst were monitored by analysing the headspace of the reactors using GC-MS. 

The GC is equipped with a mass selective detector (MSD), which provides the 

capability of detecting the compound by its ionizations and molecular weights. TCE 
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standards of varying concentration and samples of unknown concentration were 

analyzed using headspace GC-MS analysis and the compounds were detected using 

the library. Catalytic dechlorination reactions of TCE using Pd-based catalysts were 

carried out for initial concentrations of 1 mg/L and 5 mg/L (ppm) i.e. for total initial 

mass of TCE in the bottle of 0.278 µmoles and 1.389 µmoles, respectively. 

Figure 8.1 shows the calibration curves obtained from the GC-MS analysis of 

standards and by plotting the area of TCE peaks with the known mass in the bottle 

(ranging from 0.028 to 1.389 µmoles). The curve shows excellent linearity with the 

regression coefficient close to 1, R
2
 ~ 0.99. The calibration curve equation is used for 

determining the concentration of TCE in the headspace of the reactor with H2 and 

without H2 purging. Calibration curves were obtained for every experiment. 

Figure 8.2 shows the degradation kinetics of TCE at an initial concentration of 

1 mg/L or initial TCE mass of 0.278 µmoles obtained with following materials; (a) 

control (no support or catalyst), (b) RVC Foam, (c) CNT Foam, (d) Pd-Foam, (e) Pd-

CNT Foam, (f) PdO-CNT Foam, (g) CNT-Foam Oxidized (h) Isolated CNTs, and (i) 

Isolated Pd particles. Figure 8.2a shows the reaction kinetics of TCE using different 

materials without hydrogen purging. It is clear from the graph that no significant 

degradation of TCE was observed in the reactors without the presence of hydrogen. 

Figure 8.2b shows the reaction dechlorination kinetics using different materials in the 

presence of hydrogen. It is evident from the graph that Pd based catalysts in the 

presence of hydrogen (Pd-foam, isolated Pd, Pd-CNT, and PdO-CNT) show improved 

removal rates for TCE as compared to its non-Pd counterparts (CNT-Foam, CNT-

Foam oxidized, and isolated-CNT). The removal rate compares well with the 

formation of other compounds indicating dechlorination reactions have occured as 

discussed later in this section. However, at lower initial amount of TCE (1 mg/L or 
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0.278 µmoles), no significant difference in dechlorination kinetics was observed for 

Pd-CNT and PdO-CNT (Figure 8.2b).  

Figure 8.3 shows the dechlorination kinetics of TCE at an initial concentration 

of 5 mg/L or initial TCE mass of 1.389 µmoles in the bottle, obtained with CNT-

foam, Pd-CNT foam, and PdO-CNT foam samples. As the initial concentration or 

amount of TCE mass increases the competition for the available catalyst sites 

increases, which determines the rate at which the reactions occur. In this case (at 

1.389 µmoles TCE), PdO-CNT samples show increased catalytic activity in the 

presence of hydrogen compared to Pd-CNT. Also, the repeat experiments on these 

samples show similar dechlorination rates showing the effectiveness of the catalyst. 

The repeatability test for up to three cycles as shown in Figure 8.4, shows that the Pd 

and PdO on CNT can be reused effectively as catalysts for dechlorination of TCE.  

8.3.1.1 Kinetic Analysis: 

The reaction rate kinetics of dechlorination of TCE was fitted using Pseudo-

first order rate equation as given by the linear form of the exponential mass decay 

equation in the following equation: 

                      ……. (8.1) 

Where Mt0 is the initial mass of TCE in the batch reactor and Mt is the mass of 

TCE present at time t.  kobs is the apparent pseudo-first order rate coefficient (min-1).  Note 

that kobs is the pseudo-first order rate coefficient based on the entire mass of TCE in the 

reactor. Since TCE degradation occurs in the aqueous phase only, the actual rate constant, 

k’obs, is equal to kobs/Fw  where Fw is the fraction of total mass in the aqueous phase.  

Details for calculating Fw and k’obs are in Burris et.al. [133] and are obtained using 

Henry’s constant [131], [132] as shown in Appendix B Table B.3.  
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Figure 8.1 Calibration curves of TCE compound in 60 mL reactors with mass varying 

form 0.028 µmoles to 1.389 µmoles (a) without H2 purging, and (b) with H2 purging 

in the reactors obtained by plotting peak areas with known TCE standards 

(a) 

(b) 
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Figure 8.2 Dechlorination profile of TCE using various carbon and Pd-based catalysts 

(a) without Hydrogen gas purging, and (b) with Hydrogen gas purging (5% H2 

balance N2) for 20 minutes. Total initial mass of TCE in bottle, [TCE]0 = 0.278 

µmoles 

(a) 

(b) 
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Figure 8.3 Dechlorination profile of TCE using various carbon and Pd-based catalysts 

with hydrogen gas purging (5% H2 balance N2) for 20 minutes. Total initial mass of 

TCE in bottle, [TCE]0 = 1.389 µmoles  

 

 

Figure 8.4 Trichloroethylene removal plots obtained by re-using Pd-CNT and PdO-

CNT hybrid structures as catalysts showing repeatability of TCE removal capacity 

after three cycles 



 

137 

 

 

 

 

Figure 8.5 Pseudo-first order rate plots for the dechlorination of TCE by Pd-based 

catalysts on RVC foams with H2 showing total initial mass (a) [TCE]0 – 0.278 

µmoles, and (b) [TCE]0 – 1.389 µmoles 

  

(a) 

(b) 
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Table 8.1 Pseudo-first order rate constants for dechlorination of TCE using Pd based 

catalysts in the presence of H2 

 

 

 

 

 

 

 

 

 

 

 

 

k’obs calculated from kobs as shown in Table B.3 using a  dimensionless 

Henry’s constant for Trichloroethylene at 25 °C, KH' = 0.421 [131], [132] 

  

Total mass of 

TCE, µmoles 
Sample kobs, min

-1 
k'obs, min

-1
 

0.278 

Pd- Foam 0.0015 0.0019 

Pd-Isolated 0.0066 0.0085 

Pd-CNT foam 0.1126 0.1442 

PdO-CNT foam 0.112 0.1434 

    

1.389 

Control 0.00009 0.0001 

CNT-foam 0.0017 0.0022 

Pd-CNT foam 0.031 0.0397 

Pd-CNT foam Repeat 0.0304 0.0389 

PdO-CNT foam 0.0837 0.1072 

PdO-CNT foam Repeat 0.0829 0.1062 
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Figure 8.5 shows the reaction rate coefficients of the TCE degradation using 

carbon and Pd-based samples at initial mass of (a) 0.278 µmoles and (b) 1.389 µmoles 

TCE in the reactor bottle. The linear regression fits as shown in Figure 8.5 were 

obtained for the Pseudo first order plots and the rate coefficients are tabulated in 

Table 8.1. 

8.3.1.2 Catalyst Chemical Analysis 

After the dechlorination reactions the catalyst samples were retained from the 

reactors for surface chemical analysis. The samples (foam supports with catalyst) 

were rinsed with methanol and water and allowed to dry for up to 48 hours in air. The 

chemical state of Pd-based catalyst was studied before and after TCE dechlorination 

reactions. The chemical state of Pd-CNT samples for as-prepared and used sample 

were observed to be at 335.2 eV for Pd 3d5/2 and shows no significant difference in 

the chemical state before and after TCE dechlorination. Figure 8.6 shows the fine scan 

of Pd 3d peak obtained from PdO300°C sample before and after dechlorination of TCE. 

It can be observed that the PdO sample reduced to metallic state after dechlorination 

as the Pd 3d5/2 peak of Pd
2+ 

at 337 eV shifts towards the 335.3 eV, indicating release 

of surface oxide. Figure 8.7 shows the fine scan spectra of C 1s before and after TCE 

dechlorination. The C 1s peak broadens after dechlorination showing a satellite peak 

at ~286 eV, which can be attributed to the adsorbed hydrocarbon impurities on CNT. 

8.3.1.3 Daughter Products Formation 

Catalytic dechlorination of TCE using palladium based catalysts in the 

presence of hydrogen gas forms various daughter compounds as shown in Figure 8.8. 

The formation of daughter compounds includes n-butane, n-hexane, and acetyl-

hydride. As shown in Figure 8.8a, the dechlorination reactions using Pd-NPs and H2 

gas transformed TCE to non-chlorinated hydrocarbons, mostly alkanes and alkenes 
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such as butane, hexane, and diethylethene (~85%). DCE (dichloroethylene) was 

detected as the reactive intermediate product and subsequently disappeared. Trace 

amounts of vinyl chloride (VC) were observed and no ethylene was detected. These 

daughter products show that all the three chlorine atoms in the TCE compound are 

being replaced by hydrogen in the dechlorination reaction with Pd-NPs. It 

significantly forms coupled hydrocarbons (C4, C6) as final products. 

A similar trend was observed for the TCE dechlorination reactions using PdO-

NPs as catalysts with the H2 gas, where the TCE mostly transformed to non-

chlorinated hydrocarbons. Coupled hydrocarbons were mostly formed (~80%), such 

as propane, butane, methyl-pentane, and diethyl-ethene (C3, C4, C6). No chlorinated 

compounds such as DCE or VC were observed as daughter products or reactive 

intermediates. However, when using PdO, significant amounts of acetic aldehyde 

(CH3CHO) formation was observed (~17%). This can be attributed to the donation of 

the oxygen by the PdO. Formation of the daughter compound in all cases correlates 

well with the decrease in TCE concentration. Some of the dechlorination products 

reported in literature include are ethene, ethane, coupled hydrocarbons [133]–[139].  

Table 8.2 summarizes the final products of TCE dechlorination using Pd and 

PdO catalysts with H2. The dechlorination of TCE using Pd-based catalysts (Pd or 

PdO) in the presence of H2 results in smaller compounds by breaking the carbon-

chlorine bonds. This leads to formation of HCl compound, which in this case was 

observed to affect the final pH of the solution. For TCE dechlorination reactions (at 

initial pH ~6.5) the pH decreases to pH ~5 at the end of the reactions.  
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Figure 8.6 XPS Pd 3d fine-scan spectra of PdO-CNT on RVC foam (a) before and (b) 

after TCE dechlorination 

 

Figure 8.7 XPS C 1s fine-scan spectra of PdO-CNT-Foam before and after TCE 

dechlorination 

(a) 

Bef

ore 

(b) 
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Figure 8.8. Formation of daughter products of TCE ([TCE]0 – 1.389 µmoles or C0 – 5 

µg/mL) during dechlorination  with (a) Pd-CNT Foam, and (b) PdO-CNT Foam 

samples in the presence of H2. 

  

(a) 

(b) 
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Table 8.2 Daughter products of TCE by dechlorination with Pd and PdO as catalysts 

Compound Chemical Structure Pd-NPs PdO-NPs 

TCE Trichloroethylene Cl2C = CHCl 

Initial 

compound 

Initial 

compound 

DCE Dichloroethylene ClHC = CHCl 
Intermediate 

product  
nd

 

VC Vinyl Chloride H2C = CHCl trace nd
 

C3 n-propane n-C3H8 nd   

 

C4 
n-butane 

(diethyl) 
n-C4H10     

 

C6 n-hexane n-C6H14   nd 

1,1-diethylethene (C2H5)2 – C = CH2     

3-methyl pentane (C2H5)2 – CHCH3 nd   

- HC = O acetic aldehyde 
 

nd   

nd – not detected, trace – observed in minute quantities 
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8.3.2 Trichloroethane (TCA) Experiments 

1,1,1 - Trichloroethane (TCA) batch experiments were carried out similar to 

the TCE experiments as described in section 8.2. The dechlorination reactions of 1,1,1 

– Trichloroethane using palladium based catalyst were monitored by analysing the 

headspace of the reactors using GC-MS. TCA standards of varying concentration and 

samples of unknown concentration were analyzed using headspace GC-MS analysis 

and the degradation compounds were detected by analysing the actual compound and 

also using library. Catalytic dechlorination reactions of TCA using Pd-based catalysts 

were carried out for initial concentrations of 1 mg/L and 5 mg/L (ppm) i.e. for total 

initial mass of TCA in the bottle of 0.247 µmoles and 1.237 µmoles, respectively. 

Figure 8.9 shows the calibration curves obtained from GC-MS analysis of 

standards and by plotting the area of TCA peaks with the known mass in the bottle 

(ranging from 0.025 to 1.237 µmoles). The curve shows excellent linearity with the 

regression coefficient close to 1, R
2
 ~ 0.99. The calibration curve equation is used for 

determining the concentration of TCA in the headspace of the reactor with H2 

purging. Calibration curves were obtained for every experiment. 

Figure 8.10 and Figure 8.11 shows the dechlorination kinetics of TCA at an 

initial concentration of 1 mg/L or total initial TCA mass of 0.247 µmoles obtained 

with various materials. Figure 8.10 shows the effect of hydrogen for degradation of 

TCA using Pd-CNT foam samples. The Pd-CNT foam sample without hydrogen 

shows only 30% of TCA removal. However, the Pd-CNT foam sample in the 

presence of hydrogen gas in the reactor shows complete removal of TCA. Figure 8.11 

shows the reaction kinetics of TCA with following materials in the presence of 

hydrogen gas: (a) control (no support or catalyst), (b) RVC Foam, (c) CNT Foam, (d) 
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Pd-CNT Foam, (e) PdO-CNT Foam, and (f) isolated Pd. The control reactor (no 

support or catalyst) shows no significant change in the concentration of TCA. The 

RVC-foam and CNT-RVC foam in the presence of hydrogen shows only 30% 

degradation of TCA. This TCA removal is similar to that of Pd-CNT foam sample 

without H2. This can be attributed to the adsorption of TCA on carbon or Pd surface. 

Interestingly the removal rate for both carbon samples is similar showing no 

additional effect due to CNT grafting on RVC. This result contradicts the results 

observed previously with other non-volatile compounds (methylene blue – Figure 

5.1b).  

As shown in Figure 8.11, the dechlorination of TCA using Pd based catalysts 

(Isolated Pd, Pd-CNT, PdO-CNT) in the presence of H2 shows improved removal 

rates compared to that of CNT-RVC foam samples. The Pd-CNT and PdO-CNT 

samples show complete dechlorination of TCA within 150 mins with identical 

dechlorination kinetics. However, the isolated palladium shows only 50% TCA 

dechlorination, which can be due to agglomeration of the Pd particles as the isolated 

palladium particles are in suspended form in the liquid. 

Additional dechlorination experiments were carried out with an initial 

concentration of TCA of 5 mg/L or total initial TCA mass of 1.237 µmoles with Pd-

CNT and PdO-CNT RVC foam samples in the presence of H2 gas in the reactor. The 

dechlorination kinetics are as shown in Figure 8.12. The TCA dechlorination profile 

with H2 (Figure 8.12) shows the average of two runs, where PdO shows a higher 

dechlorination rate compared to that of Pd-CNT. Note the Pd-CNT profile has large 

error bars that overlap the PdO-CNT rate profile. In this research, it has been shown 

that PdO-CNT catalysts show higher dechlorination rates compared to Pd-CNT in the 

presence of hydrogen for dechlorination of other contaminants such as 
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Trichloroethylene. However, it is not clear in the TCA dechlorination study if PdO-

CNT shows a higher rate for dechlorination of TCA, owing to the TCA compound 

being unstable in water. This requires additional experiments to confirm the data for 

TCA.  

Figure 8.13 shows the reaction rate coefficients of the TCA degradation using 

carbon and Pd-based samples at initial mass of (a) 0.247 µmoles and (b) 1.237 µmoles 

TCA in the reactor bottle. The linear regression fits as shown in Figure 8.13 were 

obtained for the Pseudo first order plots and the rate coefficients are tabulated in 

Table 8.3. The TCA dechlorination reactions are observed to fit the Pseudo-first order 

equations. 

 

  



 

147 

 

 

Figure 8.9 Calibration curves of TCA compound in 60 mL reactors for mass varying 

form 0.025 µmoles to 1.237 µmoles with H2 purging in the reactors obtained by 

plotting peak areas with known TCA standard 

 

 

Figure 8.10. Dechlorination kinetics profile of TCA ([TCA]0 – 0.247 µmoles or C0 = 

~ 1 µg/mL) showing the effect of H2 gas obtained for the control and Pd-CNT foam 

samples without and with H2 purging. 
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Figure 8.11 Dechlorination kinetics profile of TCA ([TCA]0 – 0.247 µmoles or C0 = 

~ 1 µg/mL) obtained with different samples in the presence of H2 

  

 

Figure 8.12 Dechlorination kinetics profile of TCA ([TCA]0 – 1.237 µmoles or C0 = 

~ 5 µg/mL)obtained using Pd-CNT, and PdO-CNT foam samples in the presence H2. 
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Figure 8.13 Pseudo-first order rate plots for the dechlorination of TCA by Pd-based 

catalysts with H2 showing for total initial mass (a) [TCA]0 – 0.247 µmoles, and (b) 

[TCA]0 – 1.237 µmoles 

 

  

(a) 

(b) 
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Table 8.3 Pseudo-first order rate constants for dechlorination of TCA using Pd-based 

catalysts in the presence of H2 

 

k’obs calculated from kobs as shown in  Table B.3 using a dimensionless 

Henry’s constant for 1,1,1-Trichloroethane at 25 °C, KH' = 0.703 [131], [132]  

 

  

Total mass of 

TCA, µmoles 
Sample kobs, min

-1 
k’obs, min

-1
 

0.247 

Control 0.0003 0.0004 

Foam 0.0009 0.0013 

CNT-foam 0.0016 0.0023 

Pd-CNT-No H2 0.0018 0.0026 

Pd-Isolated 0.0047 0.0069 

Pd-CNT foam 0.0392 0.0576 

PdO-CNT foam 0.0429 0.0630 

    

1.237 

Pd-CNT foam 0.0137 0.0201 

PdO-CNT foam 0.0449 0.0659 
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8.3.2.1 TCA Daughter Products Formation: 

The dechlorination reactions of 1,1,1 – Trichloroethane using palladium based 

catalyst in the presence of hydrogen gas breaks the carbon-chlorine bonds and forms 

HCl and other smaller compounds. The catalytic dechlorination of TCA at initial 

concentration of 1 mg/L or mass of 0.247 µmoles with Pd-CNT and PdO-CNT as 

catalysts was observed to produce small amounts of dichloroethane at low 

concentrations. No other daughter products were observed at 1 mg/L TCA 

concentration. It must be noted that in the presence of H2 gas, no daughter products of 

TCA were observed for RVC and CNT-RVC sample. Also, no daughter products 

were observed for Pd-CNT catalyst without H2 gas. This indicates that Pd requires 

hydrogen gas to catalyse the dechlorination reactions of TCA. 

For TCA at an initial concentration of 5 mg/L or mass of 1.237 µmoles, 

multiple daughter products were formed using Pd-CNT and PdO-CNT as catalysts 

with hydrogen gas as shown in Figure 8.14. Using both Pd and PdO as catalysts with 

H2, TCA was mainly transformed to 1,1- dichloroethane (DCA) as the major product 

[139]. As shown in Figure 8.14a, Pd transforms TCA to DCA and dichloro-butane. 

These chemical structures are summarized in Table 8.4. 

With PdO as catalyst, along with dichloroethane, acetly-propyl chloride 

(C5H9OCl) containing a C=O group was observed to form as a product (Figure 8.14b). 

Oxygen is acquired from the PdO-NPs, which are known to be reduced to Pd after the 

dechlorination reactions. The final products of trichloroethane dechlorination using Pd 

and PdO with H2 are summarized in Table 8.4. 
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Figure 8.14 Formation of daughter products of TCA during dechlorination with (a) 

Pd-CNT Foam, and (b) PdO-CNT Foam samples in the presence of H2. 

  

(a) 

(b) 
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Table 8.4 Daughter products of TCA by dechlorination with Pd and PdO as catalysts 

Compound Chemical Structure Pd-NPs PdO-NPs 

TCA 
1,1,1 - 

Trichloroethane 
Cl3C – CH3 

Initial 

compound 

Initial 

compound 

DCA 
1,1 - Dichloro-

ethane 
Cl2HC – CH3 

major final 

product  

major final 

product
 

Cl-C4-Cl 

1,4, -  

Dichloro-

butane 

ClH4C2 – C2H4Cl product nd 

O=HC-C4H8Cl 
Acetylpropyl-

chloride 
 

nd product 

nd – not detected, trace – observed in minute quantities 
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8.3.3 Dechlorination Mechanisms with the Pd/H2 System 

 In this study, aqueous phase degradation of chlorinated hydrocarbons (TCE 

and TCA) at ambient temperatures was accomplished using Pd-based catalysts on 

hierarchical carbon supports in the presence of H2 gas as a reducing agent.   

 The reduction of trichloroethylene (TCE) can happen through various reaction 

pathways. The most favorable catalyzed reaction pathway is often observed, where 

TCE yields daughter products such as dichloroethylene  (C2H2Cl2), chloro ethylene 

(C2H3Cl), and/or ethylene (C2H4), and other non-chlorinated carbon species which are 

less toxic or non-toxic  [133]–[139]. In this study, in the presence of Pd and H2, TCE 

is catalytically reduced to dichloroethylene (C2H2Cl2), coupled hydrocarbons such as 

butane or hexane. The degradation mechanism presumably involves steps that include 

dissociative adsorption of chemical species on the surface of the Pd (through 

dissociation of H2 and C2HCl3 into intermediate species on the active sites), chemical 

reaction between the intermediate species forming the reduced product (for example 

C2H2Cl2 and HCl), and the desorption of the final products from the catalyst surface 

or further degradation of the adsorbed intermediate species into the smaller daughter 

products. 

 With PdO in the presence of H2, we observe the formation of aldehyde group 

(-HC=O) containing oxygen. Here, the degradation mechanism involves dissociative 

adsorption of chemical species on the surface of the PdO, chemical reaction between 

the intermediate species and the surface oxygen, which may include subsequent 

dissociation of oxygen from the surface of Pd. This leads to formation of the acetic 

aldehyde as a daughter product. In this study, the PdO is reduced to Pd as observed by 

XPS surface analysis.  
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The reduction of Trichloroethane (TCA) can happen through multiple pathways 

[139]. However, the most favorable reaction pathway observed in this study is where 

TCA is reduced to its immediate daughter products such as dichloroethane and 

chloroethanes. Additionally using PdO as a catalyst, we observe formation of 

acetylpropyl chloride (-HC=O --Cl) instead of chloroethane. The dechlorination 

mechanism as observed for TCE is demonstrated here for TCA products where 

surface oxygen of Pd reacts with intermediate compounds and reduces to Pd.  

8.4  Conclusion 

In this study, Pd and PdO on hierarchical carbon structures were used as 

catalysts in the presence of hydrogen gas for dechlorination of chlorinated 

hydrocarbons, Trichlorethylene (TCE) and Trichloroethane (TCA) in simulated water. 

It was found that performance of the Pd-based catalyst is greatly influenced by the 

presence of hydrogen in the reactors to catalyze the dechlorination reactions. 

Moreover, it was observed that PdO as a catalyst has higher catalytic activity 

compared to that of Pd for dechlorination of TCE. With the Pd based catalysts in the 

presence of hydrogen, complete removal of TCE was observed by dechlorination 

reactions, where all the chlorines are replaced with hydrogens and n-butane is the 

primary product. The dechlorination reaction for TCA using Pd-based catalyst on 

hierarchical substrates shows complete removal in the presence of hydrogen. TCA 

was observed to primarily form dichloroethane. For dechlorination reactions, PdO 

shows improved catalytic activity and also formation of aldehyde groups (-HC=O).  

The surface oxygen of PdO reacts with the adsorbed intermediate products and the 

PdO reduces to zerovalent Pd. All of the dechlorination reactions with the aid of 

hydrogen releases HCl compound in the liquid and the solution becomes acidic (pH 

decreases from ~6.9 to ~ 5).  
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9 Chapter 9: Catalytic Degradation of Emerging Contaminants – 

Atrazine using Palladium Based Catalysts  

9.1 Introduction 

A wide variety of emerging contaminants, known as contaminants of 

emerging concern (CECs) which are of immediate concern due to their potential 

threat to health and the environment, have recently been identified by the United 

States Environmental Protection Agency (USEPA) [140]–[143]. These include a 

variety of detergents, pharmaceutical agents, antimicrobial agents, plasticizers, 

fertilizers, herbicides, and pesticides. A few such compounds are Atrazine, Bisphenol-

A, Triclosan, Triclocarban, Perfluorooctanoic acid, Octylphenol, Nonylphenol, 

Carbamazepine, and Progestron. These chemicals are non-point source pollutants that 

are commonly present in ground water as well as in treated wastewater effluents that 

are released into water ways. Wide varieties of CECs have been detected in treated 

drinking water in various places [142]. Research is being done to explore various 

technologies to remove these contaminants from wastewater and treated water. There 

are several techniques that are being investigated to remove such chemicals from 

water such as adsorption on carbon, ozonation, hydrolysis, biodegradation, 

photodegradation, advanced oxidation and catalytic degradation techniques [144]–

[147].  

 In this study, we focus on catalytic degradation using palladium and silver 

based catalysts for treating such emerging contaminants in water. The choice of a 

model emerging contaminant for this study is atrazine. Atrazine, chemically known as 

6-chloro-N-ethyl-N’-(1-methylethyl)-1,3,5- triazine-2,4-diamine or 2-Chloro-4-

ethylamino-6-isopropylamino-1,3,5-triazine has a chemical formula of C8H14ClN5 and 
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a molecular weight of 215.1. The chemical structure of atrazine   is shown in Table 

8.1. The solubility of atrazine in water at 20 °C is 30 mg/L. Atrazine is a triazine 

herbicide that inhibits photosynthetic electron transport and is commonly used for 

controlling the growth of weed on various crops such as wheat, sugarcane, guava, and 

a wide range of grasses. It is also used for corn and sorghum production. It is a widely 

used herbicide in the United States (~64 to 75 million pounds per year) [148], [149]. 

As a herbicide, atrazine is directly applied to the soil during pre-planting process and 

due to its high solubility in water it can easily migrate into the ground and surface 

waters. As a result of its extensive usage and very low natural biodegradability, it is 

persistent in the environment. Due to its potential ecological and health effects, its 

usage has been restricted in many developed countries including USA. As instituted 

by the USEPA, the maximum contamination level of atrazine in drinking water is 3 

µg/L or ppb [149], [150].  

The adsorption of atrazine on adsorbents is relatively ineffective due to its low 

adsorption ability. More commonly atrazine is treated using biological or 

oxidative/reductive degradation techniques. Common reducing agents employed for 

atrazine reductive degradation include zerovalent iron (ZVI) and a common catalyst 

used to promote reduction is palladium [78], [146]. Nadagouda et. al. have 

investigated the reactivity of Pd catalyst in aerobic conditions for reductive or 

oxidative removal of some emerging contaminants such as atrazine, triclosan, and/or 

octylphenol [78]. As shown by Nadagouda et.al., the reactivity of palladium for 

degradation of atrazine in aerobic conditions is very low.  

In this study, we test the reactivity of palladium based catalysts: Pd-NPs, PdO-

NPs, and Ag/Pd-NPs supported on carbon hierarchical supports in the presence of 

hydrogen (anaerobic conditions) for the effective degradation of such emerging 
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contaminants. The objective is to demonstrate the potential of the hierarchical 

structuring of the materials, which can provide high surface activity as well as 

robustness for smaller and lighter components. The degradation kinetics and 

mechanism for such catalytic reduction experiments were studied using LC-MS 

techniques. The catalytic degradation of atrazine can produce various daughter 

products that are discussed in this chapter. Some of the possible daughter products of 

atrazine formed due to hydrogenated and hydroxylated degradation are shown in 

Table 9.1 and Table 9.2, respectively. Attempts were made to detect daughter product 

formation using LC-MS analysis. Potential degradation pathways are also proposed 

herein. An internal standard ‘d5-Atrazine’ was used to quantify the peak intensities of 

the compounds in the HPLC analysis. The chemical structure of d5-atrazine is shown 

in Table 9.1. Structural and chemical correlation properties of the hierarchical catalyst 

material were investigated using SEM and XPS. 
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Table 9.1 Chemical structure, chemical name, molecular formula, molecular weight 

of atrazine and related hydrogenated atrazine products  

No. 

Chemical 

 Chemical Name  

 Molecular formula 

 Molecular weight; ion 

Chemical Structure 
 

1 

Atrazine  

 2-Chloro-4-ethylamino-6-

isopropylamino-1,3,5-triazine 

 C8H14ClN5 

 215.68  g/mol;  [(µ+1)
+ 

: 216.10]  

2 

Dechlorinated Atrazine  

 2-ethylamino-4-isopropylamino-

1,3,5-triazine 

 C8H15N5 

 181.14 g/mol; [(µ+1)
+ 

: 182.14]  

3 

De-ethyl-Dechlorinated Atrazine 

 2-amino-4-isopropylamino-1,3,5-

triazine 

 C6H11N5 

 153.11 g/mol; [(µ+1)
+ 

: 154.11]  

4 

De-isopropyl-Dechlorinated 

Atrazine 

 2-amino-4-ethylamino-1,3,5-

triazine 

 C5H9N5 

 139.04 g/mol; [(µ+1)
+ 

: 140.04] 
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No. 

Chemical 

 Chemical Name  

 Molecular formula 

 Molecular weight; ion 

Chemical Structure 
 

5 

Di-Dealkyl-Dechlorinated Atrazine 

‘or’ Guanamine 

 

 2,4-diamino-1,3,5-triazine  

 C3H5N5 

 111.05 g/mol; [(µ+1)
+ 

: 112.06]  

6 

 2- ethylamino-1,3,5-triazine 

 C5H8N4  

 124.07 g/mol; [(µ+1)
+ 

: 125.08] 

 

7 

 2- amino-1,3,5-triazine 

 C3H4N4  

 96.04 g/mol; [(µ+1)
+ 

: 97.05] 

 

8 

Cyanidine or s-triazine 

 1,3,5-triazine 

 C3H3N3  

 81.03 g/mol; [(µ+1)
+ 

: 82.04]  

9 

Internal Standard 

d5-Atrazine or Deuterated Atrazine 

 2-Chloro-4-pentadeutero 

ethylamino-6-isopropylamino-

1,3,5-triazine 

 C8H9D5ClN5 

 220.71  g/mol; [(µ+1)
+ 

: 221.1] 
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Table 9.2 Chemical structure, chemical name, molecular formula, molecular weight 

of atrazine and related hydroxylated atrazine products [151] 

 

No. 

Chemical 

 Chemical Name  

 Molecular formula 

 Molecular weight; ion 

Chemical Structure 
 

1 

Atrazine  

 2-Chloro-4-ethylamino-6-

isopropylamino-1,3,5-triazine 

 C8H14ClN5 

 215.68  g/mol;  [(µ+1)
+ 

: 216.10]  

2 

Hydroxy-Atrazine  

 2-hydroxy-4-ethylamino-6-

isopropylamino-1,3,5-triazine 

 C8OH15N5 

 197.13 g/mol; [(µ+1)
+ 

: 198.14]  

3 

 2-hydroxy-4-Acetylamino-6-

isopropylamino-1,3,5-triazine 

 C8O2H12N5  

 211.1 g/mol; [(µ+1)
+ 

: 212.1] 
 

4 

 2-hydroxy-4-ethylamino-6- 

Acetylamino-1,3,5-triazine 

 C7O2H11N5  

 197.1 g/mol; [(µ+1)
+ 

: 198.1] 
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No. 

Chemical 

 Chemical Name  

 Molecular formula 

 Molecular weight; ion 

Chemical Structure 
 

5 

De-ethyl-hydroxy-Atrazine  

 2-hydroxy-4-amino-6-

isopropylamino-1,3,5-triazine 

 C6H11N5 

 169.11 g/mol; [(µ+1)
+ 

: 170.1]  

6 

De-isopropyl-hydroxy-Atrazine 

 2-amino-4-ethylamino-1,3,5-

triazine 

 C5H9N5 

 155.03 g/mol; [(µ+1)
+ 

: 156.04]  

7 

Di-dealkyl hydroxy- Atrazine ‘or’ 

Ammeline 

 

 2-hydroxy-4,6-diamino-1,3,5-

triazine  

 C3OH5N5 

 127.04 g/mol; [(µ+1)
+ 

: 128.05] 
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9.2 Experimental 

9.2.1 Materials and Chemicals 

The chemical reagents used in this study were of analytical grade and 

consumed without further purification. These include atrazine (C8H14ClN5, Sigma 

Aldrich, Fluka Analytical Pesternal® Analytical Standard 45330), d5-atrazine 

(C8H9D5ClN5, Sigma Aldrich, Fluka Analytical Pesternal® Analytical Standard) and 

2-propanol (99.9%, HPLC Grade, Fisher Scientific). Teflon-lined butyl rubber stopper 

(PTFE-lined) of size 20mm and aluminium crimp were purchased from Wheaton Inc, 

and PTFE syringe filters (Supelco©) were used. Other materials are de-ionized water 

(DI water) and laboratory grade gases that include 5% H2 balance N2. The atrazine 

stock solution of 100 µg/mL concentration was prepared by dissolving 5 mg of 

atrazine in 50 mL methanol. 

9.2.2 Substrates used 

Palladium based catalysts supported on hierarchical carbon structures were 

used in this study. Palladium (metallic state), palladium oxide, and palladium-silver 

bimetallic nanoparticles were synthesized on carbon nanotube grafted reticulated 

vitreous carbon (RVC) foam structures. The fabrication process is discussed in the 

earlier sections (section 6.2 and section 7.2). The supports used in this study are RVC 

foam, CNT-RVC foam, Pd-CNT-RVC foam, PdO-CNT-RVC foam, and Ag-Pd on 

CNT-RVC foam. The weight of sample (e.g. Pd-CNT-RVC weight) used in each 

reactor was ~ 50 mg. 

9.2.3 Batch Degradation Studies 

The bench-scale investigation of atrazine degradation was carried out in batch 

reactors consisting of 160 mL glass serum bottles. The batch experiments were carried 
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out using palladium based catalyst supports (Pd-CNT, PdO-CNT, and Ag-Pd CNT on 

RVC foams), with and without hydrogen gas in the reactors. The supported catalysts 

were attached to the inside wall of the serum bottle using double-sided carbon tape. 

Two samples, each of size Ø 8 mm x 5 mm and weight ~ 25 mg were introduced in 

each serum bottle and attached to the side walls. Samples were rinsed in 2-propanol 

and water. Approximately 80 mL of 5% v/v methanol in Milli-Q water was added to 

the reactors, maintaining the solution to headspace ratio of 50:50. The pH was 

monitored using a pH meter. The reactors were sealed with Teflon-lined butyl rubber 

stoppers and aluminum crimps. The reactors were then purged with a high purity 5% 

H2 and balance N2 gas mixture ([pH2] = 0.05 atm) for approximately 30 min. For 

reactors without hydrogen purging, the reactors were sealed with ambient air. 

Atrazine stock solution was injected into each reactor (initial atrazine conc. = 

1 μg mL
−1 

or 4.63 µM; initial atrazine amount = 0.463 μmoles in 100 mL) using a gas-

tight syringe. The reactors were then placed on an end-over-end rotary shaker at room 

temperature (60 rpm, 30° inclination). The bottles were placed on the rotator at an 

inclination such that the solid samples attached on the walls of the reactors remain 

immersed in liquid-phase at all times during rotation, so that the reactions occur (in 

liquid-phase) continuously. A control reactor without any support or catalyst material 

was also investigated.   

Aliquot samples of 2 mL were derived from the bottles using a syringe at 

specified time intervals. Samples collected in the syringe at different reaction times 

were filtered using disposable PTFE syringe filters. Initially 1 mL aliquot sample was 

discarded by running it through the filter in order to saturate the filter and then the 

remaining liquid sample was collected through the saturated filter in a 2 mL vial for 

HPLC analysis.   
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9.2.3.1 Internal Standard – d5-Atrazine 

An internal standard was added to the aliquot samples collected in a 2 mL vial 

for high performance liquid chromatography (HPLC) quantification. In this study, 

deuterated atrazine - ‘d5-atrazine’ compound was used as an internal standard for 

atrazine analysis. Stock solution of d5-atrazine was prepared to obtain the 

concentration 10 µg/mL in 65% (v/v) methanol 2mM acetic acid. 50 µL of d5-atrazine 

stock solution (10 µg/mL) was carefully measured using an automatic micro-pipette 

and added to each vial having 1 mL solution. The concentration of internal standard in 

each vial was maintained at 0.5 µg/mL. 

9.2.4 Standard Concentration Analysis  

For analytical purpose, standard concentration of atrazine was studied for 

concentrations ranging from 0.01µg/mL to 1 µg/mL (ppm). The standard solutions 

were prepared in 10 mL vials by adding the appropriate amount of atrazine stock 

solution in 5% (v/v) methanol in Milli-Q water. 1 mL solution from each standard 

was collected in small vials and a known amount of internal standard was added to 

this for quantitative HPLC analysis.   

9.2.5 Chemical Analysis – HPLC 

Atrazine in water was analyzed by using Waters Micromass Quattro Micro 

equipped with a mass spectrometer for liquid chromatography (LC-MS) and an auto-

sampler. The HPLC column is a Restek Biphenyl Column - Pinnacle DB Biphenyl 

Column of dimensions 100 x 2.1 mm
2
 (1.9 µm) and temperature was set to 50 °C. A 

mixture of water and methanol containing 2mM acetic acid (NH4OAc) was used as 

the mobile phase. The ratio of methanol to reagent water containing 2mM acetic acid 

was maintained at 10 : 90 (v/v %) for atrazine analysis. The flow rate of the pump was 
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set at 0.3 ml/min and the actual sample injection volume was 20 µl. Each run was 

conducted for 24 min and the method is shown in section 2.4.8. The method detection 

limit for atrazine was 0.5 ng/mL. Selective ion reaction monitoring (SIR) was carried 

out for pure atrazine and the fragment ion spectra was used for MS/MS analysis. SIR 

for all possible metabolites of atrazine was carried out using analyte solution to 

determine their formation due to the degradation of atrazine. The liquid analyte 

samples were analyzed in the multiple reaction mode (MRM) using the fragment ions 

spectra for MS/MS analysis of atrazine and the possible metabolite (daughter product) 

compounds. 

9.3 Results and Discussion 

9.3.1 Atrazine Degradation 

Figure 9.1 shows a typical total ion current (TIC) chromatogram acquired 

from the full scan mode in LC/MS and the graph shows the mass scan data collected 

over time. From this plot, the atrazine compound is obtained at retention time of ~8 

mins using the above mentioned HPLC method. Figure 9.1b shows the multiple 

reaction monitoring (MRM) analysis modes that shows the mass separation scan 

acquired in the MS experiment. The MRM peak acquired at 216.2 represents 

protonated atrazine - ionization (μ+1) of atrazine and the MRM peak acquired at 

221.1 represents protonated d5-atrazine, ionization (μ+1) of d5-atrazine. The ratio of 

atrazine peak area to d5-atrazine peak area is utilized here to control the run-to-run 

variability in injection and ionization intensity of HPLC. Similarly, other mass 

compounds were determined using SIR mode and acquired using MRM mode. 

Figure 9.2 shows the calibration curves obtained from standard solution 

analysis by plotting the area ratios of atrazine and d5-atrazine peaks with the known 



 

167 

 

concentrations. The curve shows excellent linearity with the regression coefficient of 

R
2
 = 0.999. The calibration curve equation is used for determining the concentration 

of atrazine in the water samples. The calibration curves were obtained for every 

experiment. 

Figure 9.3 shows the degradation kinetics of atrazine at an initial concentration 

of 1 µg/mL obtained by CNT foam, Pd-CNT foam, and for the control reactor without 

hydrogen purging i.e. under aerobic conditions of ambient air and with hydrogen 

purging (Figure 9.3). It is clear from Figure 9.3 that the control reactor with and 

without hydrogen purging shows no significant effect for the degradation or removal 

of atrazine. The degradation kinetics obtained for the reactors containing CNT foam 

structures without H2 purging shows some reduction (~30%) in atrazine 

concentration. The Pd-CNT catalysts without H2 do not show any significant increase 

in atrazine removal compared to that with the CNT foam. The 30% reduction in 

concentration using CNT and Pd-CNT without H2 can be attributed to the adsorption 

of atrazine on the CNT and/or Pd surface. The CNT foam reactor with hydrogen 

(Figure 9.3) shows a similar removal rate as its no-H2 counterpart. However, addition 

of H2 to the Pd-CNT reactor shows near-complete degradation of atrazine within 120 

minutes as shown in Figure 9.3. This indicates that the degradation reaction of 

atrazine using Pd catalyst is carried with the aid of H2. A study by Nadagouda et. al. 

for degradation of atrazine using Pd and PdO catalyst in ambient air conditions (with 

no added hydrogen) shows no significant removal of atrazine using palladium catalyst 

[78]. 
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Figure 9.2 Calibration curve of atrazine concentrations varying from 0.01 µg/mL to 1 

µg/mL obtained by plotting peak area ratios (Atrazine to d5-atrazine peak area ratio) 

with known standard atrazine concentration. 

(b) 

(a) 

Figure 9.1 A typical (a) full scan TIC chromatograph and (b) LC-MS/MS chromatogram 

acquired in multiple reaction monitoring mode for Atrazine (216.2) and d5-Atrazine 

(221.1) ion channels. 



 

169 

 

 

Figure 9.3 Degradation kinetics of atrazine (initial concentration of 1 µg/mL) 

obtained for the control, CNT foam, and Pd-CNT foam reactor samples with and 

without H2 gas purging. Dotted lines are reactions without H2 purging. 

 

 

Figure 9.4 Degradation kinetics of atrazine (initial concentration of 1 µg/mL) 

obtained for the Pd-CNT, PdO-CNT, and bimetallic Ag-Pd CNT foam samples with 

H2 gas purging (5% H2 balance N2) for 30 minutes.  
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Figure 9.4 shows the degradation kinetics of atrazine with various Pd-based 

catalysts and H2 purging. The catalysts investigated here are Pd-CNT, PdO-CNT, and 

Ag-Pd CNT foam. It is evident from Figure 9.4 that nanoparticles of Pd-O and Ag-Pd 

on CNT structure are more effective in catalytic degradation of atrazine compared to 

Pd-CNT foam samples. Furthermore, the PdO nanoparticles have the highest removal 

rate that reaches nearly complete degradation within 40 minutes.  

9.3.2 Catalyst Chemical Analysis 

After the degradation reactions the catalyst samples were retained from the 

reactors for surface chemical analysis. The samples (Pd, PdO, and Ag-Pd NPs on 

CNT-foam supports) were rinsed with methanol and water and allowed to dry for up 

to 48 hours in air. The chemical state of Pd-based catalysts was studied before and 

after atrazine degradation reactions. The chemical state of Pd-CNT samples for as-

prepared and used catalyst is shown in Figure 9.5a.  The Pd 3d5/2 peak at 335.3 eV for 

Pd-CNT sample remains unchanged after atrazine degradation. Figure 9.5b shows the 

fine scan of Pd 3d peak obtained from PdO250°C sample before and after atrazine 

degradation. It can be observed that the partially oxidized PdO sample reduced to 

fully metallic state after degradation as the Pd 3d5/2 peak of Pd
2+ 

at 336.9 eV shifts 

towards the 335.3± 0.1 eV, indicating release of surface oxide. The chemical state of 

Ag and Pd in Ag-Pd CNT samples remains unchanged after atrazine degradation 

(spectra not shown here). The fine-scan spectra of C 1s (not shown here) after atrazine 

degradation shows a satellite peak at around ~ 286 eV that can be attributed to the 

adsorbed impurities on CNT. 
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Figure 9.5 XPS Pd 3d fine-scan spectra of before and after atrazine degradation using 

(a) Pd-CNT and (b) PdO-CNT on RVC foam  

  

(a) 

(b) 
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(b) 

(c) 

(a) 

Figure 9.6. Atrazine degradation and daughter products formation curves with (a) 

Pd-CNT Foam, (b) PdO-CNT Foam, and (c) Ag-Pd CNT Foam samples in the 

presence of hydrogen gas. 
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Figure 9.7 Proposed mechanism for hydrogenated products of atrazine - catalytic 

degradation with palladium based catalysts in the presence of hydrogen  
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  Figure 9.8 Proposed mechanism for hydroxylated products of atrazine - catalytic 

degradation with palladium (oxide) catalysts in the presence of hydrogen [151], [153] 



 

175 

 

9.3.3 Daughter Products Formation 

Degradation of atrazine using palladium-based catalysts in the presence of 

hydrogen gas forms various daughter compounds. Some of the most common 

daughter products are shown in Figure 9.6. The daughter compounds include 

significant amounts of dechlorinated atrazine and deisopropyl-dechlorinated atrazine. 

Only trace amounts of de-ethyl-dechlorinated atrazine and de-ethyl-deisopropyl-

dechlorinated atrazine were observed. As shown in Figure 9.6, the degradation of 

atrazine yielded dechlorinated atrazine compound as the major product of the reaction 

in all cases and this formation correlates well with the decrease in atrazine 

concentration. Formation of trace amounts of other daughter products indicate further 

reduction of dechlorinated atrazine.  

9.3.4 Atrazine Degradation Mechanism with Pd/H2 System 

 In this study, aqueous phase degradation of atrazine at ambient temperatures 

was accomplished using Pd-based catalysts on hierarchical carbon supports in the 

presence of H2 gas as a reducing agent. A proposed mechanism for the degradation of 

atrazine using palladium and hydrogen is shown in Figure 9.7. This figure shows the 

possible daughter products of atrazine as a result of degradation. As shown in this 

figure, reduction of atrazine can happen through various reaction pathways. The 

favorable catalyzed reaction pathway often observed is where atrazine yields 

dechlorinated atrazine [152]. Reduction of dechlorinated atrazine to de-isopropyl-de-

chlorinated atrazine was observed, subsequently leading to formation of “Guanmine” 

in trace amounts using path 2 as shown in Figure 9.7 (Refer to Table 9.1 for labels). 

Some traces of de-ethyl-de-chlorinated atrazine were observed indicating reduction 

with path 1. In this study, using Pd-based catalysts and Ag-Pd catalysts in the 

presence of H2, atrazine is catalytically reduced to dechlorinated-atrazine. The 
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degradation mechanism presumably involves steps that include dissociative 

adsorption of chemical species on the surface of the Pd (through dissociation of H2 

and atrazine into intermediate species on the active sites), chemical reaction between 

the intermediate species forming the reduced product including HCl, and the 

desorption of the final products from the catalyst surface or further degradation of the 

adsorbed intermediate species into the smaller daughter products. 

 The degradation mechanism using PdO can be different as compared to Pd-

based catalyst. The proposed degradation mechanism of atrazine with PdO catalyst in 

the presence of H2 is shown in Figure 9.8. With PdO catalyst in the presence of H2 the 

degradation of atrazine is significantly fast, but the formation of detected daughter 

product (dechlorinated atrazine) is low (Figure 9.6c). There may be additional 

products such as hydroxylated atrazine [151]–[153],  with PdO and H2, as it was 

observed that the oxide layer was released from the PdO surface forming reduced Pd 

after degradation. The degradation of atrazine using Ag-Pd bimetallic nanoparticles in 

the presence of H2 was observed to follow a similar mechanism as with Pd-NPs. 

9.4 Conclusion 

In this study, Pd, PdO, and Ag/Pd on hierarchical carbon structures were used 

as catalysts in the presence of hydrogen gas for degradation of a model emerging 

contaminant, atrazine, in water. It was found that the performance of the Pd-based 

catalyst is greatly influenced by the presence of hydrogen in the reactors to catalyze 

the degradation reactions. Moreover, it was observed that PdO as a catalyst has higher 

activity compared to Pd and Ag/Pd on hierarchical substrates. The catalytic activity 

for degradation of atrazine in the presence of hydrogen follows the order: PdO-CNT > 

Ag/Pd-CNT > Pd-CNT. Complete degradation of atrazine was observed with the Pd-

based catalysts in the presence of hydrogen, where atrazine initially transformed to 
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form dechlorinated-atrazine and de-ethyl-deisopropyl-dechlorinated-atrazine. This 

architecture of catalyst particles attached to larger hierarchical carbon supports can be 

recovered easily. Such structures may therefore provide a nonpolluting, reusable, and 

cost-effective solution for the removal of pollutants from contaminated water. 
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10 Summary 

In this study, various porous structures - cellular carbon foams and reticulated 

vitreous carbon foams having different porosities and pore densities were investigated 

for fabrication of hierarchical carbon structures. Approaches of maximizing the 

surface functionalities by ehancing the pore surfaces with vertically aligned carpet-

like arrays of carbon nanotubes (CNT) were investigated. CNT arrays can be grown 

on surfaces of interconnected porous foams by pre-activating them with an oxide 

buffer layer followed by Chemical Vapor Deposition (CVD). Key process parameters 

were identified for controlling the growth rate of CNT and the permeation of CNT 

through the porous structure were investigated. It was seen that longer CVD run times 

results in increased length of CNT arrays overall, and creating a thickness gradient of 

the silica buffer layer (thicker buffer layer towards the back end of the porous 

substrate) improved the CNT permeation deeper into the pores. This type of 

hierarchical morphology increases surface area by several orders of magnitude, and 

provides opportunity of tuning the morphology for targeted applications by varying 

the packing density and/or the height of CNT arrays. Analytical models using surface 

morphologies to estimate the specific surface area of CNT arrays on porous structures 

were developed using input from two experimental methods: microstructural analysis 

and weight gain method. The SSA increase matches well with BET measurements 

and the reported surface adsorption data indicates that the entire surface functionality 

of individual nanotubes in the carpet (arrays) are retained in this multiscale 

architecture. 

The hierarchical carbon structures obtained by grafting aligned carbon 

nanotubes on porous structures were used as adsorbents for removal of a model 

contaminant, methylene blue, from water. It was found that adsorption of dye on the 
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CNT-foam hybrids is greatly influenced by the amount of CNT on the foam, which 

dominates the specific surface area of the material. The maximum adsorption capacity 

for MB on CNT arrays is about 43.5 mg/g, which compares very favorably with other 

advanced, less durable, nanomaterials reported in the literature. 

In this study, Pd-NPs, PdO-NPs and Ag-Pd bimetallic NPs were synthesized 

on vertically aligned carbon nanotubes attached to porous structures forming multi-

scale architecture. Thermal oxidation of Pd-NPs in air forms oxidized palladium 

nanoparticles. XPS analysis shows that Pd-NPs can be partially oxidized or fully 

oxidized by thermal heating at 250 °C or 300 °C, respectively. Silver was synthesized 

on Pd-NPs using a chemical reduction process. The XPS and EDS qualitatively 

analyses for Ag-Pd samples indicate that Pd nanoparticles may possibly have a layer 

of Ag coating on the surface. 

The palladium based hierarchical structures were employed in water 

purification for removal of aqueous contaminants such as atrazine, trichloroethylene, 

and trichloroethane. All degradation rates in the presence of hydrogen follows the 

order PdO-CNT > Ag/Pd-CNT > Pd-CNT. It was seen that atrazine is mostly 

transformed to dechlorinated-atrazine and trace de-ethyl-deisopropyl-dechlorinated 

atrazine. TCE and TCA also show complete dechlorination, mostly forming butane 

and dichloroethane, respectively, as daughter products. 

This study shows that anchoring carbon nanotube carpets on these types of 

porous substrates may be a very practical approach to create robust solid devices that 

fully utilize the surface area benefits of carbon nanotubes without dispersing loose 

nanomaterials in the environment. This makes them reusable and eco-friendly solids 

that can provide very effective and portable water purification devices.  
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11 Future Work 

The current results can be expanded to a broader range of applications involving 

high surface area solids. A few examples of future applications are briefly 

summarized here.  

1. Hydrogen Storage: Palladium is known to absorb hydrogen by forming 

palladium-hydride under certain temperature and pressure conditions. This 

property has received significant interest in the scientific community for exploring 

new materials for hydrogen sensing, storage, separation, extraction, and transport 

applications. The hydrogen storage capacity of Pd-NPs attached on CNT grafted 

foam supports can be determined using the chemisorption BET method with 

hydrogen as the carrier gas.  

2. Electrodes: The robustness and high surface area of catalyst palladium particles 

attached on CNT-porous foam hybrids can be attractive as electrode materials for 

fuel cell or electrochemical cell applications.  

3. Bimetallic Systems: Synthesis and characterization of various bimetallic 

nanoparticles systems including Pd, Pt, Ag, or Fe on the hybrid structures can be 

designed. These can have applications in sensors, electrodes, and environmental 

purification.  

4. Detailed Catalysis Studies: Palladium or bimetallic systems of palladium with 

silver, iron or platinum for additional emerging contaminants such as bisphenol-A, 

triclosan, pharmaceutical, perfluorooctanoic acid, nitrate compounds or a mixture 

of compounds to simulate real wastewater conditions can be possible future work 

issues. Studies involving influence of particles sizes, deactivation of catalyst, 

regeneration issues, and in-column flow reactor studies are required in future to 

expand determining the practical applications of these materials.  
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5. Surface Characterization and Ion Leaching: Future studies to understand the 

catalysis pathway and possible leaching of catalyst ions in water are needed. 

6. Computational Modeling: The interactions of catalyst particles on the CNT can 

be studied using molecular modeling and quantum mechanics. Also, the 

adsorption of environmental pollutants such as dyes are attributed to various 

adsorption interaction mechanisms such as hydrogen bonding, electrostatic 

interactions, defect filling, and strong π-π interactions with CNT [110]. Possible 

non-covalent interaction of cationic methylene blue dye or similar organic 

pollutant compounds with multi-walled carbon nanotubes using molecular 

dynamics simulation should be investigated. 

7. High Surface Area Porous Structures: The correlation of process parameter 

described in this research for permeation of CNT through porous structures can be 

used as baseline to grow CNT on other interconnected porous geometries. 
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Appendix  A: Methylene Blue Removal - using supported Pd-NPs  

Batch test for removal of MB dye from simulated water as discussed in 

Chapter 5 were also carried out using Pd-NPs fabricated on hierarchical carbon 

structures and studied using UV-Vis Spectroscopy.  Figure A1 shows the removal of 

MB with and without Pd-NPs catalysts on foam as well as CNT grafted foams. CNT-

Foam structures again prove to be better for removal of MB as compared to bare 

porous foams. However, additional Pd catalysts on Foam or CNT-Foam (Pd-Foam 

and Pd-CNT-Foam) did not show any significant increase (Figure A1) in the removal 

kinetics of MB indicating that the mechanism of MB removal using metallic 

palladium may not be catalytically significant.  The excess surface created by Pd-NPs 

on CNT structures may account for adsorbing sites for MB. Future studies involving 

characterization of the structures as well as HPLC analysis may provide insight to the 

current findings. 

 
Figure A1 Methylene blue removal plot obtained with (a) Ce-Foam, (b)Pd/Ce-Foam, 

(c) CNT Ce-Foam, and (d) Pd/CNT Ce-Foam hybrid structures. 

  



 

200 

 

Appendix B : Chlorinated Hydrocarbons Quantification  

Chlorinated hydrocarbon compounds (CHCs) studied and analyzed are 

1. Trichloroethylene – TCE 

2. Trichloroethane – TCA  

3. Dichloroethane – DCA 

CHCs Quantification: 

1. Stock solutions of CHCs were prepared in a 160 mL serum bottle filled with 

water and 20µL of the pure compound was added to the stock. Concentration of 

the stock (mg/L) was determined as shown in Table B1. 

2.  Standard solutions of the CHCs were prepared in MilliQ water for various 

concentrations or total initial mass of CHCs in the 60 mL reactor bottles 

containing 40% headspace. The total mass added to reactors is calculated using 

equations as shown in Table B2.  

3. Calibration curves were obtained by plotting the GC peak areas of corresponding 

compounds (x- abscissa) with the total known standard mass (at y-coordinate) 

4. Using ideal gas law equations and dimensionless Henry’s constant at 25 °C 

[131], [132], the fraction in water or partitioning coefficient was determined as 

shown in Table B2 (S.No. 5 and 6). The partitioning coefficient, Fw, was used to 

determine the aqueous mass in µmoles after partitioning as shown in S.No 8 to 10 

of Table B2 

5. The rate constants were obtained from the Psuedo-first order model as 

determined by Burris et.al. [133] and the actual (aqueous) rate constant, k’obs was 

determined using the partitioning coefficient as shown in Table B3. 
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Table B.1 Chlorinated hydrocarbons compounds (CHCs) - stock solution calculations 

 

Table B.2 Chlorinated hydrocarbon compounds (CHCs) standard calculations   

CHCs STOCK Solution Preparations – Ex: Trichloroethylene 

S.No Description Formula Amount 

1 Density of Trichloroethylene ρTCE 1.46  g/mL 

2 Volume of water in bottle V 160 mL 

3 
Vol. Pure TCE injected into stock 

bottle 
Vpure 20 μL 

4 Mass. TCE in stock bottle MTCE =  ρTCE  x Vpure 29.2 mg 

5 Concentration of stock solution CS = MTCE / V 
182.5 mg/L 

(ppm) 

CHCs Standard Solution Preparations – Ex: Trichloroethylene 

S.No Description Formula Amount 

1 Total Volume of Reactor Bottle VT 60 mL 

2 Volume of water, 60% Vw 36 mL 

3 Volume of air, 40% Va 24 mL 

4 Molecular Weight TCE MWTCE 131.4 g/mol 

5 

Dimensionless Henry's 

Constant for TCE  at 25
o
C, 

[131], [132] 

KH' 0.421 

6 
FW (fraction in water), 

partitioning coefficient 

    
 

     
   
  

 
 

0.7808 

7 
Volume of stock to be injected 

(0.02, 0.1, 0.2, 0.4, 1 or 2  mL) 
VS 200 μL 

8 
Total TCE mass in the bottle 

(μmoles)  
                

       

     
 0.278 µmoles 

9 
Total TCE mass  in the bottle 

(µg) 
MT (gms) = MT(moles)*MWTCE 36.5 μg 

10 
Aqueous mass after partitioning 

(μmoles) 
  

          0.2169 μmoles 

11 
Aqueous TCE conc. before 

partitioning (mg/L) 
     

  

  
 

1.014 mg/L 

(ppm) 

12 
Aqueous TCE after partitioning 

(mg/L) 
  

          
0.7917 mg/L 

(ppm) 
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Table B.3 Pseudo-first order equation and rate constant calculations for chlorinated 

hydrocarbons (CHCs) in reactors 

 

  

Pseudo-First Order Model Calculations – Ex: Trichloroethylene Dechlorination Rates 

S.No Description Formula Amount 

1 
Volume of stock to be 

injected 
VS 200 μL 

2 
Total TCE mass in the bottle 

(μmoles)  
                

       

     
 0.278 µmoles 

3 
Initial TCE mass in the 

reactor, (μmoles) 
    0.278 µmoles 

4 

Mass of TCE in the reactor at 

time t, (determined using 

calibration curve and peak 

areas) (μmoles) 

   µmoles 

5 Pseudo-First order Equation                      Linear equation 

6 

Apparent Pseudo-first order 

rate constant (obtained from 

plot in Figure 8.6 and Table 

8.1) Ex: Pd-CNT foam 

     0.1126 min
-1 

7 

FW (mass fraction TCE in 

water), partitioning 

coefficient 

    
 

     
   
  

 
 

0.7808 

8 
Actual Pseudo-first order rate 

constant (aqueous) 
    

   
    

  

  0.1442 min 
-1 
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Appendix C: Abbreviations and Chemical Compounds  

Ag Silver 

Ag-Pd Silver-Palladium 

Ag-Pd NPs Silver-Palladium nanoparticles 

Ar Argon 

BE Binding energy 

BET Brunauer-Emmett-Teller 

Ce-Foam Cellular Foam 

CECs Contaminants of emerging concern 

CFCs Chloroflorocarbons 

CHCs Chlorinated hydrocarbons 

CNFs Carbon nanofibers 

CNT Carbon nanotubes 

COCs Chlorinated organic compounds 

CS Cross-section 

CVD Chemical vapor deposition 

DCA Dichloroethane 

DCE- Dichloroethylene 

DI De-ionized 

DMSO Dimethyl sulfoxide 

EDS Energy dispersive X-ray spectroscopy 

FCC Face centered cubic 

FE-SEM Field emission scanning electron microscopy 
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Fe/Xy Ferrocene/Xylene 

FWHM Full width half maximum 

GC-MS Gas Chromatography – Mass Spectrometry 

H2 Hydrogen 

HCl Hydrochloric acid 

HMDSO Hexmethyl-di-siloxane 

HPLC High Performance Liquid Chromatography 

KE Kinetic energy 

LC-MS Liquid Chromatography – Mass Spectrometry 

MRM Multiple reaction mode 

MSD Mass selective detector 

MW Microwave 

MWCNT Multi wall carbon nanotubes 

NPs Nanoparticles 

O Oxygen 

Pd Palladium 

Pd-NPs Palladium nanoparticles 

PdO Palladium Oxide 

PdO-NPs Palladium Oxide nanoparticles 

ppm Parts per million 

ppi Pores per inch 

Pt Platinum 

PTFE Polytetrafluoroethylene, Teflon 

RSF Relative sensitivity factor 
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RVC Reticulated vitreous carbon 

RVC-CNT 
Carbon nanotubes grown on Reticulated vitreous 

carbon 

SEM Scanning electron microscopy 

SiO2 or SiOx Silica 

SIR Selective ion reaction monitoring 

SSA Specific surface area 

STEM Scanning transmission electron microscopy 

SWCNT Single wall carbon nanotubes 

TAPN 

Tetraamine palladium (II) nitrate, 

[Pd(NH3)4](NO3)2] 

TCA Trichloroethane 

TCE Trichloroethylene 

TIC Total ion chromatogram 

UHV Ultra high vacuum 

UV-Vis UV-Vis Spectrophotometry 

VACNT Vertically aligned carbon nanotubes 

XPS X-ray photoelectron spectroscopy 

XRD X-ray diffraction 

Z Atomic number 

ZVI Zero valent iron 

3-D Three Dimensional 
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