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ABSTRACT 

 

Shaver, Ryan. M.S.Egr. Department of Electrical Engineering, Wright State University, 

2015. Analysis of the Tapered Transition Waveguide. 

 

 

 

The tapered transition waveguide is used in waveguide measurement systems for 

characterizing biaxial electromagnetic properties of materials, but its complex geometry 

does not support an analytic field solution.  To ensure single-mode field behavior, the 

system includes sections of standard waveguides that only support the dominant 

mode.  As a result, full-wave modeling and simulation of the system is exceedingly 

large.    

Using the finite-element method to analyze the high-order modes at the junctions and to 

explore field configurations within the transition altering geometry, it is shown that 

besides the TE10 mode, the TE11 mode is significant.  Then, two methods are proposed 

for using multi-mode excitation in the model as a way to simulate the scattering 

parameters of a material without the feed and transition section. 
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CHAPTER 1 

INTRODUCTION 

1.1. Motivation 

With advancements in material science and fabrication techniques, the fields of 

antenna and microwave engineering have the new opportunity to use precise man-made 

materials.  By using tailored materials, one could design array antennas with reduced 

elemental coupling, or guiding structures with lower insertion loss. Anisotropic materials 

offer additional degrees of freedom in the constitutive parameters over isotropic 

materials, but require a 3x3 tensor for both the permittivity and permeability [4][5].  As 

anisotropic materials are very difficult to fabricate for wide-band operation, a simpler 

approach would be to design biaxial materials and build up to fully anisotropic materials.  

In fact, this work is inspired by recent works on the measurement of the scattering matrix 

of biaxial samples in waveguide test fixtures (Figure 1).  In those methods, different 

waveguide sections are studied and analyzed to understand how to minimize the effects 

of higher-order modes that result from abrupt changes in the waveguide at the junctions 

between the excitation port, sample region, and transmission port. 

1.2. Challenges 

The anisotropic nature of the biaxial material requires an individual to model, 

design, and characterize the material along all three principal axes. This attribute can be 
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seen in the biaxially anisotropic representation for the permittivity, ε̿, and the 

permeability, μ̿, as shown in equations (1.2.1) and (1.2.2) 

 

Figure 1 Waveguide test fixture in [1]. 

ε̿ = [

εxx 0 0
0 εyy 0

0 0 εzz

] (1.2.1) 

μ̿ = [

μxx 0 0
0 μyy 0

0 0 μzz

] (1.2.2) 

which relate the electric (�⃗⃗� ) and magnetic (�⃗� ) fluxes to the fields �⃗�  and �⃗⃗� , respectively 

as  

�⃗⃗� = ε ̿�⃗�  
(1.2.3) 

�⃗� =   μ ̿�⃗⃗�  
(1.2.4) 
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The flux magnitudes are proportional to the field magnitudes, but fluxes are not polarized 

with the fields in anisotropic media. Therefore, material characterization involves 

multiple measurements based upon which axis is being excited, and which material 

property is to be estimated from the measurement. From [5], four different measurement 

orientations are needed to fully characterize a biaxial sample with the waveguide system.  

In a design cycle where many different configurations of the test sample are needed in 

order to determine the optimal configuration, one would need to fabricate and measure 

many test samples.  Measurements have error sources, but fabrication can also pose 

additional error.  During prototyping, it is helpful to have a way to exclude measurement 

or fabrication error sources.  The most common alternative is to use full-wave modeling 

and simulation as a surrogate for the actual measurement system.  Then, measurement 

and fabrication errors are traded for computational errors and time to compute.  Although 

computational error is controllable, there is a significant trade-off  between simulation 

accuracy and computation time.     

The primary challenge is the size of the numerical problem.  The computer aided 

design (CAD) model must be meshed on the order of a tenth of a wavelength and for the 

transition guide shown in Figure 1, there are over 90,000 unknowns in the underlying 

matrix problem.  Each simulation can vary from tens of minutes to multiple hours to 

compute.  Therefore, efficiency in the simulation method is the primary roadblock to 

simulation of thousands of iterations needed for design.   
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In addition, the waveguide junctions cause spurious responses and higher-order 

modes within different regions of the guide [10]. Each waveguide section has a different 

geometrical shape and results in a different cut-off frequency and distinct and discrete 

electric field behaviors referred to as modes. These modes exist at or above the 

fundamental TE10 mode and give rise to the undesired, or spurious, modes that can affect 

simulation. Additionally, the scale and dimensions of the waveguide vary with respect to 

the sample; thus, making the numerical mesh more complicated than a bulk material 

isotropic sample. Small geometric features of the test material and large dimensions of 

the guide pose a multi-scale geometry model. Also, the physical length of the guide 

makes the problem numerically large and requires a lot of computing resources and 

solution time. Full wave simulations can calculate a solution, but the time and memory 

may be too large or the accuracy may be degraded because of the geometry model.  

 

1.3. Research Hypothesis 

 This work proposes an alternate approach to full wave simulation of the complete 

system shown in Figure 1. Instead, full wave simulations are carried out on each 

waveguide segment except for the sample region.  Electromagnetic scattering matrices 

are calculated for each section of waveguide and stored. Then, using TE10 excitation with 

the scattering parameters, the excitation can be specified directly at the port of sample.  

Only the sample region is iteratively simulated to optimize the biaxial material design.  
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This approach would alleviate the need to simulate the long transition sections and would 

significantly decrease simulation time.  

The approach is presented for the case of WR-90 rectangular waveguide and the 

tapered transition section shown in Figure 1.  Finite element method is used to perform 

the full-wave simulation to compute scattering parameters and modal expansion of the 

fields is used to formulate the fields at the sample region.  Lastly, the technique is 

outlined for how it can be used to optimize the design parameters of the Knisely crystal 

[1]. 

1.4. Thesis Outline 

 Chapter II presents a survey of related computational methods and scattering 

matrix to transmission matrix methods. Chapter III describes the approach to model 

biaxial samples using finite element method and verifies the transmission matrix 

representation. Chapter IV presents results of the fields before and after the T-matrix to 

the sample. Chapter V offers conclusions and recommendations for future work.  
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CHAPTER 2 

BACKGROUND 

2.1. Previous work 

 The work presented in this thesis is inspired by [1], where Kinsley and Havrilla 

presented an analysis of the rectangular to square transition (RTST) measurement system 

for characterizing electromagnetic material properties. The system in [1] is shown in 

Figure 2, where the yellow cubic region holds the material under test. The cubic 

dimension allows rotation about the principal axes so the waveguide system can measure 

selected material tensor quantities.  

 

Figure 2. Waveguide measurement system from Kinsley and Havrilla [1]. 

 

 Constitutive parameter extraction of [1] is based on matching boundary conditions 

at each junction in the waveguide system to solve for the fields and then fitting to a 

parametric model consisting of the design variables for the material under test. As the 
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sample is cubic, the sample can be characterized from six different measurements 

corresponding to the six possible orientations of the test fixture. Each orientation of the 

sample is excited by the TE10 excitation. 

The parametric model is also based upon the PEC (perfectly electrically conductive) 

nature of the waveguide test fixture. The tangential electric fields must be zero at the PEC 

wall. Furthermore, when only a TE10 mode is induced within the test fixture, the curl 

equations are invariant to the field direction and we can represent all the fields within the 

guide by transverse electric (TE) and transverse magnetic (TM) solutions to Maxwells 

Equations. 

 ∇ × �⃗� =  −𝑗𝜔μ̿�⃗⃗�  
(2.1.1) 

 ∇ × �⃗⃗� =  𝑗𝜔𝜀�⃗̿�  
(2.1.2) 

For TE10 mode excitation, only TE modes exist and (2.1.1) and (2.1.2) reduce to:  

 

𝜕𝐸𝑦

𝜕𝑧
=  𝑗𝜔𝜇𝑥𝐻𝑥 (2.1.3) 

 

𝜕𝐸𝑦

𝜕𝑥
=  −𝑗𝜔𝜇𝑧𝐻𝑧 (2.1.4) 

 

𝜕𝐻𝑧

𝜕𝑥
−

𝜕𝐻𝑧

𝜕𝑧
=  −𝑗𝜔𝜀𝑦𝐸𝑦 

(2.1.5) 

When equations (2.1.3) and (2.1.4) are substituted into (2.1.5), the TE𝑧 wave equation 

within the guide becomes 
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 𝜇𝑥

𝜇𝑧

𝜕2𝐸𝑦(𝑥, 𝑧)

𝜕𝑥2
+

𝜕2𝐸𝑦(𝑥, 𝑧)

𝜕𝑧2
 =  −𝜔2𝜇𝑥𝜀𝑦𝐸𝑦(𝑥, 𝑧) 

(2.1.6) 

Equation (2.1.6) is not trivial to solve, but finite element method makes it tenable 

[13][14]. Further work in this thesis aims to reduce the computation times needed to 

simulate and analyze this tapered test fixture along with the de-embedding of S-parameter 

values measured from the biaxial anisotropic sample. 

2.2. De-embedding 

 The scattering parameters computed from the FEM solution to (2.1.6) relate 

complex amplitudes (magnitude and phase) of the traveling waves within the RTST test 

fixture to a specific phase reference within the guide. Consider the two port network seen 

in Figure 3 where the original terminal planes are assumed to be Port 1 and Port 2 (in 

blue). If the scattering parameters are found for the system, 𝑆̅, and we wish to consider a 

new reference plane at location further down the length of the transmission line, we will 

yield a new scattering matrix represented as 𝑆′̅. 
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Figure 3. Shifted reference plane for transition waveguide section. 

 

If we consider the incident and reflected voltage waves at each port, and follow the 

discussion on shifted reference planes by Pozar [3], we can solve for the new scattering 

parameters at a distance 𝑙𝑡𝑎𝑝𝑒𝑟 (in this example) from the original terminal planes.  

The S-parameters, or scattering matrix, simply relate incoming waves to outgoing waves. 

For a two-port system represented by Figure 4, the S-parameters are defined by equations 

(2.2.1) through (2.2.5). 

[
𝑏1

𝑏2
] = [

𝑆11 𝑆12

𝑆21 𝑆22
] [

𝑎1

𝑎2
] 

(2.2.1) 

𝑆11 =
𝑏1

𝑎1
|
𝑎2=0

 
 

(2.2.2) 
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𝑆12 =
𝑏1

𝑎2
|
𝑎1=0

 
 

(2.2.3) 

𝑆21 =
𝑏2

𝑎1
|
𝑎2=0

 
 

(2.2.4) 

𝑆22 =
𝑏2

𝑎2
|
𝑎1=0

 
 

(2.2.5) 

where 𝑎1, 𝑎2 and 𝑏1, 𝑏2  represent incoming and outgoing waves at the ports, 

respectively.  It is important to note that the S parameters are defined at the unprimed 

ports of Figure 3.  Assuming lossless waveguide, the parameters are easily related to a 

different reference plane, e.g., primed plane in Figure 4, when the propagation constant is 

known.  This process is known as the de-embed process and is useful for measurement 

test fixtures that require additional transmission lines to accommodate the device under 

test. 

 

Figure 4. Two-port network S-matrix representation 

 



11 

When the wave propagation constant is known in lossless guide, the scattering 

parameters at the new reference plane can be calculated as  

𝑆′̅ = [ 0 𝑒−j2𝛽𝑙

−𝑒−j2𝛽𝑙 0
] 𝑆̅ 

(2.2.6) 

where 𝛽 is the propagation constant and 𝑙 is the length of the transmission line.  If the 

line is lossless, it will only induce a phase shift corresponding to the electrical length the 

wave must travel. Equation (2.2.6) makes good physical sense because the wave travels 

twice the distance 𝑙 (forward and backward). 

2.3. T-matrix formation 

 The transfer matrix, or T-matrix, directly relates the waves on the input port to 

that on the output port and is much more convenient for analyzing cascaded microwave 

circuits. S-parameters relate incoming waves to outgoing waves while T-parameters relate 

incoming and outgoing waves at Port 1 to incoming and outgoing waves at Port 2. For 

incoming (𝑎 ) and outgoing (�⃗� ) waves, the T-matrix expression is 

[
𝑎1

𝑏1
] = [

𝑇11 𝑇12

𝑇21 𝑇22
] [

𝑏2

𝑎2
] 

(2.3.1) 

If we can characterize each individual segment of the RTST guide, we will be able to 

excite the test fixture directly at Port 1′. This new port excitation will be incident on the 

sample region instead of the entire test fixture, thus eliminating the need to model the 

transition guide and drastically reducing computation times for the numerical FEM 
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approach. The T-matrix simply links the incoming and outgoing waves in a manner 

different than the S-matrix. One may convert between the two representations as in 

equations (2.3.2) through (2.3.5) as long as the scattering matrix is defined as (2.2.1) [6].  

𝑇11 =
1

𝑆21
 

(2.3.2) 

𝑇12 = −
𝑆22

𝑆21
 

(2.3.3) 

𝑇21 =
𝑆11

𝑆21
 

(2.3.4) 

𝑇22 =
𝑆12𝑆21 − 𝑆11𝑆22

𝑆21
 

(2.3.5) 

If there are multiple transmission line segments which have already been characterized in 

terms of the incoming (𝑎 = [𝑎1, 𝑎2]
𝑇) and outgoing (�⃗� = [𝑏1, 𝑏2]

𝑇) waves, then each has 

a T-matrix and the response of the cascaded network can be represented by matrix 

multiplication of the T matrices. In Figure 5, each waveguide section has an individual 

scattering matrix representation. Each individual scattering matrix is converted into its 

corresponding T-matrix following equations (2.3.2) through (2.3.5). With each T-matrix 

calculated, one can model the incoming and outgoing complex wave amplitudes at an 

arbitrary reference plane.  
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Figure 5. T-matrix representation of a cascaded network [15]. 

 

For any 𝑀 number of waveguide segments, the total T-matrix can be calculated by doing 

a “left-to-right” multiplication in the direction of the forward going wave from Port 1. 

[
𝑎1

𝑏1
] = 𝑇1 [

𝑏2

𝑎2
] = 𝑇1 [

𝑎3

𝑏3
] = 𝑇1𝑇2 [

𝑎4

𝑏4
] 

(2.3.6) 

𝑇𝑀 = 𝑇1𝑇2 …𝑇𝑚 (2.3.7) 

After calculating the overall T-matrix, then the S-parameters are computed for the overall 

system as [6] 

𝑆11 =
𝑇21

𝑇11
 

(2.3.8) 

𝑆12 =
𝑇11𝑇22 − 𝑇12𝑇21

𝑇11
 

(2.3.9) 

𝑆21 =
1

𝑇11
 

(2.3.10) 

𝑆22 = −
𝑇12

𝑇11
 

(2.3.11) 
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For a reciprocal network, the T-parameters must follow the condition [15]: 

𝑇11𝑇22 − 𝑇12𝑇21 = 1 (2.3.12) 

2.4. Mode Matching 

 Electromagnetic wave propagation in waveguides is well-known for rectangular 

and square guides [3],[4]. When multiple sections of guide vary in size or material, 

boundary conditions cause complicated field behavior. A common method to analyze the 

fields inside any section of guide is known as mode matching [5],[13]. This approach 

utilizes linear superposition to express the total fields within the guide as a summation of 

all possible modes which can exist in the cross section of the guide. These cross-sectional 

fields are represented by a set of eigen-functions which correspond to the physical 

geometry of the section, and are solved by satisfying Maxwell’s equations within each 

section. Maxwell’s equations are satisfied by equating boundary conditions and 

preserving orthogonality of the eigen-functions at each junction. In other words, the fields 

on both sides of the junction discontinuity are expanded in terms of the modes in the 

respective regions with unknown coefficients [16]. Figure 6 represents a guide with three 

different sections, each nth section has its own set of electric 𝑒 𝑚
(𝑛)

and magnetic 

ℎ⃗ 𝑚
(𝑛)

 eigenfunctions, propagation constants 𝛽𝑚
(𝑛)

, and wave impedances 𝑍𝑚
(𝑛)

 per 𝑚 mode.  
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Figure 6. Waveguide sections with boundaries at the ports and sample-guide interfaces. 

The total fields in each waveguide section must account for all modes. As each of the 

three sections of Figure 6 has a different electromagnetic response based upon its 

geometry and material parameters, the fields are  

�⃗� (1)(𝑥, 𝑦, z ≤ 𝑧1) =  ∑ 𝐴𝑚
+ 𝑒 𝑚

(1)(𝑥, 𝑦)𝑒−𝑗𝛽𝑚
(1)

𝑧 +

𝑃

𝑚=1

∑ 𝐴𝑚
− 𝑒 𝑚

(1)(𝑥, 𝑦)𝑒+𝑗𝛽𝑚
(1)

𝑧

∞

𝑚=1

 
(2.4.1) 

�⃗⃗� (1)(𝑥, 𝑦, z ≤ 𝑧1) =  ∑ 𝐴𝑚
+ ℎ⃗ 𝑚

(1)(𝑥, 𝑦)𝑒−𝑗𝛽𝑚
(1)

𝑧 − ∑ 𝐴𝑚
− ℎ⃗ 𝑚

(1)(𝑥, 𝑦)𝑒+𝑗𝛽𝑚
(1)

𝑧

∞

𝑚=1

𝑃

𝑚=1

 
(2.4.2) 

�⃗� (𝑠)(𝑥, 𝑦, 𝑧1 ≤ 𝑧 ≤ 𝑧2)

=  ∑ 𝐵𝑚
+𝑒 𝑚

(𝑠)(𝑥, 𝑦)𝑒−𝑗𝛽𝑚
(𝑠)

𝑧 +

∞

𝑚=1

∑ 𝐵𝑚
−𝑒 𝑚

(𝑠)(𝑥, 𝑦)𝑒+𝑗𝛽𝑚
(𝑠)

𝑧

∞

𝑚=1

 
(2.4.3) 

�⃗⃗� (𝑠)(𝑥, 𝑦, 𝑧1 ≤ 𝑧 ≤ 𝑧2)

=  ∑ 𝐵𝑚
+ℎ⃗ 𝑚

(𝑠)
(𝑥, 𝑦)𝑒−𝑗𝛽𝑚

(𝑠)
𝑧 − ∑ 𝐵𝑚

−ℎ⃗ 𝑚
(𝑠)(𝑥, 𝑦)𝑒+𝑗𝛽𝑚

(𝑠)
𝑧

∞

𝑚=1

∞

𝑚=1

 
(2.4.4) 

�⃗� (2)(𝑥, 𝑦, 𝑧2 ≤ 𝑧) =  ∑ 𝐶𝑚
+𝑒 𝑚

(2)
(𝑥, 𝑦)𝑒−𝑗𝛽𝑚

(2)
𝑧 +

∞

𝑚=1

∑ 𝐶𝑚
−𝑒 𝑚

(2)(𝑥, 𝑦)𝑒+𝑗𝛽𝑚
(2)

𝑧

∞

𝑚=1

 
(2.4.5) 
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�⃗⃗� (2)(𝑥, 𝑦, 𝑧2 ≤ 𝑧) =  ∑ 𝐶𝑚
+ℎ⃗ 𝑚

(2)
(𝑥, 𝑦)𝑒−𝑗𝛽𝑚

(2)
𝑧 − ∑ 𝐶𝑚

−ℎ⃗ 𝑚
(2)(𝑥, 𝑦)𝑒+𝑗𝛽𝑚

(2)
𝑧

∞

𝑚=1

∞

𝑚=1

 
(2.4.6) 

where the forward-going (+) and backward-going (-) coefficients are 

𝐴𝑚
+ , 𝐴𝑚

− , 𝐵𝑚
+ , 𝐵𝑚

− , 𝐶𝑚
+ , 𝐶𝑚

−, and the wave functions in each region are 

𝑒 𝑚
(1)(𝑥, 𝑦) =  �̂� sin (𝑘𝑥,𝑚

(1)
 𝑥) (2.4.7) 

ℎ⃗ 𝑚
(1)(𝑥, 𝑦) = �̂�

1

𝑍𝑚
(1)

sin (𝑘𝑥,𝑚
(1)

 𝑥) 
(2.4.8) 

𝑒 𝑚
(s)(𝑥, 𝑦) = �̂� sin (𝑘𝑥,𝑚

(𝑠)
 𝑥) (2.4.9) 

ℎ⃗ 𝑚
(s)(𝑥, 𝑦) = �̂�

1

𝑍𝑚
(𝑠)

sin (𝑘𝑥,𝑚
(𝑠)  𝑥) 

(2.4.10) 

𝑒 𝑚
(2)(𝑥, 𝑦) = �̂� sin (𝑘𝑥,𝑚

(2)
 𝑥) (2.4.11) 

ℎ⃗ 𝑚
(2)(𝑥, 𝑦) = �̂�

1

𝑍𝑚
(2)

sin (𝑘𝑥,𝑚
(2)

 𝑥) 
(2.4.12) 

and the wave propagation constants and impedances are [4],[5]  

𝑘𝑥,𝑚
(1)

=
𝜋

𝑤1
𝑚, 𝑚 = 1,… , 𝑃 

(2.4.13) 

𝑘𝑥,𝑚
(𝑠)

=
𝜋

𝑤𝑠
𝑚, 𝑚 = 1,… , 𝑃 

(2.4.14) 

𝑘𝑥,𝑚
(2)

=
𝜋

𝑤2
𝑚, 𝑚 = 1,… , 𝑃 

(2.4.15) 

𝛽𝑚
(1)

= √𝑘2 − (𝑘𝑥,𝑚
(1)

)
2

= ±𝛽𝑟,𝑚
(1)

± 𝛽𝑖,𝑚
(1)

 
(2.4.16) 
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𝛽𝑚
(𝑠)

= √𝑘2 − (𝑘𝑥,𝑚
(𝑠) )

2

= ±𝛽𝑟,𝑚
(𝑠)

± 𝛽𝑖,𝑚
(𝑠)

 
(2.4.17) 

𝛽𝑚
(2)

= √𝑘2 − (𝑘𝑥,𝑚
(2)

)
2

= ±𝛽𝑟,𝑚
(2)

± 𝛽𝑖,𝑚
(2)

 
(2.4.18) 

The square root operations result in complex-valued propagation constants.  Hence, the 

constants are selected according to the direction of the wave such that only propagating 

and evanescing waves can exist.  In other words, waves cannot grow because there are no 

intrinsic sources of energy in the system.  

For transverse-electric (TE) field excitation used in the waveguide measurement system, 

the wave impedances are  

𝑍𝑚
(1)

=
𝜂(1)

√1 − (
𝛽𝑚

(1)

𝑘(1))

2
 

(2.4.19) 

𝑍𝑚
(𝑠) =

𝜂(𝑠)

√1 − (
𝛽𝑚

(𝑠)

𝑘(𝑠))

2
 

(2.4.20) 

𝑍𝑚
(2)

=
𝜂(2)

√1 − (
𝛽𝑚

(2)

𝑘(2))

2
 

(2.4.21) 

where 𝑘(1) = 2𝜋𝑓√𝜇1𝜖1, 𝑘(2) = 2𝜋𝑓√𝜇2𝜖2, and 𝑘(𝑠) = 2𝜋𝑓√𝜇𝑥𝑥𝜖𝑦𝑦 for the biaxial 

sample material.  Also, 𝜂(1) = √𝜇1/𝜖1, 𝜂(2) = √𝜇2/𝜖2, and 𝜂(𝑠) = √𝜇𝑥𝑥/𝜖𝑦𝑦. 
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To determine the total fields inside the guide, equations (2.4.1) through (2.4.6) are 

evaluated to enforce boundary conditions for the electric and magnetic fields. The total 

fields are matched at each junction represented by equations (2.4.22) through (2.4.25) 

�̂� × �⃗� (1)(𝑥, 𝑦, 𝑧1) = �̂� × �⃗� (𝑠)(𝑥, 𝑦, 𝑧1) (2.4.22) 

�̂� × �⃗⃗� (1)(𝑥, 𝑦, 𝑧1) = �̂� × �⃗⃗� (𝑠)(𝑥, 𝑦, 𝑧1) (2.4.23) 

�̂� × �⃗� (𝑠)(𝑥, 𝑦, 𝑧2) = �̂� × �⃗� (2)(𝑥, 𝑦, 𝑧2) (2.4.24) 

�̂� × �⃗⃗� (𝑠)(𝑥, 𝑦, 𝑧2) = �̂� × �⃗⃗� (2)(𝑥, 𝑦, 𝑧2) (2.4.25) 

Once these relations are made, linear matrix algebra can be used to determine the 

coefficients 𝐴𝑚
−/+

, 𝐵𝑚
−/+

, and 𝐶𝑚
−/+

.  The coefficients are then used to compute the 

scattering matrix. Since the excitation port is assumed to be perfectly matched, no higher-

order forward going waves will be present in section 1 (𝐴𝑚
+ = 𝐴1

+).  Also, the 

transmission port is perfectly matched so that no reflected waves will exist in section 2 

(𝐶𝑚
− = 0).  

Lastly, the S-parameters simply relate the incoming and outgoing waves at the ports.  For 

excitation by the pth mode 

𝑆11(𝑝) =
∑ 𝐴𝑚

−∞
𝑚=1

𝐴𝑝
+  

(2.4.11) 

𝑆21(𝑝) =
∑ 𝐶𝑚

+∞
𝑚=1

𝐴𝑝
+  

(2.4.12) 
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Once a mode matching solution can be obtained, we can use the numerical solutions data 

to construct an iterative constitutive parameter extraction technique. This stems from the 

fact that 𝐴𝑝
+,  𝑒 𝑚

(1)
, ℎ⃗ 𝑚

(1)
, 𝑒 𝑚

(2)
, ℎ⃗ 𝑚

(2)
, 𝛽𝑚

(1)
, 𝑍𝑚

(1)
, 𝛽𝑚

(2)
, and 𝑍𝑚

(2)
 are all known quantities in 

equations (2.4.1) through (2.4.6), and the only unknowns are from the sample area 

(𝑒 𝑚
(𝑠)

, ℎ⃗ 𝑚
(𝑠)

, 𝛽𝑚
(𝑠)

, 𝑍𝑚
(𝑠)

) because 𝜀 ̿, �̿� are unknown.  Note that 𝐴𝑚
− , 𝐵𝑚

− , 𝐵𝑚
+ , 𝐶𝑚

+  will also be 

unknown, but are a direct result of the junction at the sample region. These values can be 

measured using the actual system, or simulated using the FEM software, and then used to 

extract information about the material in the sample region.  

 



20 

CHAPTER 3 

METHODOLOGY 

3.1. Proposed Study 

This thesis investigates a method to model S-parameters from the rectangular to 

square transition waveguide (RTST guide). The approach is based on full-wave FEM 

modeling and simulation of the waveguide measurement system in Figure 2. The challenge 

is the size of the numerical problem.  The approach here is to numerically determine the S-

parameters for the transition section so that they can be used to directly excite the sample 

region. This approach would greatly reduce the computational cost because only the sample 

region would require simulation.  However, additional challenges are to de-embed S-

parameters of the waveguide test fixture to the sample because the transition guide is not 

symmetrical, nor does it have a closed form solution. If determined, the de-embedded 

parameters can then be used to support comprehensive study of different materials in the 

sample region of the test fixture. Of primary interest is the machined biaxial material 

proposed by Knisely and Havrilla [1],[7].  

3.2. Chapter Overview 

This chapter is organized as follows. Section 3.3 establishes the FEM requirements 

to accurately simulate the S-parameter matrix for TE𝑚𝑛 modes in the RTST guide. Using 

a WR-90 waveguide divided into multiple segments (Figure 7), Section 3.4 presents and 
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validates the T-matrix analysis to reduce the modeling requirements. Then, Chapter 4 will 

present analysis and modeling and simulation results of the air-filled RTST test fixture.  

In summary, the approach to reduce the computational cost of simulating the 

complete RTST test fixture follows four steps: 

1. Verify the meshing requirements for the FEM model to accurately represent the 

exact solution found via microwave theory (MT) analysis.  

2. Calculate the full S-parameter matrix and propagation constants for each 

segment of the text fixture except for the test sample region.  

3. Determine the T-parameters for the excitation and transmission waveguide 

segments. 

4. Compare the fields at the sample-guide interfaces as computed by 1) the full-

wave simulation and 2) the T matrix. 

5. Determine the cost savings of the T-matrix. 
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Figure 7. WR-90 waveguide verification test fixture. 

 

3.3. Meshing requirements of FEM 

To de-embed S-parameters from Port 1 to Port 1’ of Figure 7, a few steps must be 

taken. First, a validation of the FEM numerical solution to that of the exact solution must 

be met for the specific mesh used in solving the bounded waveguide problem. The WR-90 

verification test fixture in Figure 7 has a theoretical solution and is an ideal test case. As 

the guide is air-filled, and has no geometrical discontinuities, it represents an ideal lossless 

transmission line segment. This ideal segment has the S-matrix representation of 

𝑆̅ =  [ 0 𝑒−𝜸𝑙

𝑒−𝜸𝑙 0
] (3.3.1) 

𝛾 =  𝛼 + 𝑗𝛽 (3.3.2) 

where 𝛾 is the complex propagation constant of the line and 𝑙 is the length of the 

transmission line segment. Because waves below cut-off will become evanescent and 



23 

decay exponentially fast with line attenuation, 𝛼, the S-matrix only represents traveling 

waves as 

𝑆̅ =  [ 0 𝑒−𝑗𝜷𝑙

𝑒−𝑗𝜷𝑙 0
] 

(3.3.3) 

To verify the approach, the S-matrix of the theoretical solution will be compared to the 

FEM solution as computed using COMSOL Multiphysics software [8].  

3.3.1 WR-90 Segment Analysis 

The numerical analysis applied by the FEM model is based upon a “mesh” 

superimposed on the waveguide geometry model. This work uses the FEM solution from 

COMSOL Multiphysics [8]. The mesh establishes a basis for the linear matrix solution to 

the fields inside the waveguide and is scaled by the wavelength under study. The mesh of 

a WR-90 section of waveguide can be seen in Figure 8 where the mesh density is set so 

that each edge of an element is approximately one-tenth of a wavelength (𝜆/10). 

 

Figure 8. WR-90 segment with 
𝜆

10
  trihedral mesh 
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As the RTST test fixture undergoes an X-band (8.2 to 12.4 GHz) frequency sweep, the 

mesh size used within the guide should vary (from electrically large to small) as the 

sweep increases. However, this approach would be impractical as it would require the 

numerical solution to adapt the mesh to each frequency value. Instead, the center 

frequency of the X-band sweep is used to define the mesh, and the same mesh is used for 

all simulations in the sweep. Note that the cut-off frequency for WR-90 is 6.56 GHz [4]. 

Because of the mesh, the numerical solution will have some error when compared to the 

exact solution. This error exists because the mesh is fixed and does not change with 

frequency. The error is analyzed later in this section.   

From [4], the propagation constant (𝛽𝑧), cut-off frequency (𝑓𝑐), and guided wavelength 

(𝜆𝑔) for an air-filled WR-90 waveguide are 

𝛽𝑧(𝑓) = ± 𝛽√1 − (
𝑓𝑐

𝑓
)
2

     for  {
𝛽 > 𝛽𝑐 
𝑓 > 𝑓𝑐

 
(3.3.4) 

𝛽 = 2𝜋𝑓√𝜀𝑜𝜇𝑜 =
2𝜋𝑓

𝑣𝑝
 

(3.3.5) 

𝑓𝑐 =
1

2𝑎√𝜀𝑜𝜇𝑜

 
(3.3.6) 

𝜆𝑔 =
𝜆𝑜

√1 − (
𝑓𝑐
𝑓
)
2

 
(3.3.7) 
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where 𝛽𝑧(𝑓) is the propagation constant in the �̂� direction. We define the �̂�-axis as the 

longitudinal axis of the guide. The cut off frequency represents the lowest fundamental 

mode which can propagate within the guide, and is solved for 𝑓𝑐 = 6.557GHz. Any 

frequency below this threshold will not be supported by the WR-90 segment. The guide is 

constructed of perfectly electrically conducting (PEC) material, which forces TE𝑛0 fields 

on the boundaries to be zero. Because of these boundary conditions, each frequency 

propagates with a different spatial dependence within the guide. The mesh essentially 

represents the discretization of the integro-differential operators and is the primary source 

of computational error when using commercial software such as COMSOL. As long as the 

relative numerical error is on the order of 10−3 to 10−4, the error is considered sufficiently 

small and acceptable for the de-embedding process [7].  

Figure 9 shows the results of the FEM-based computation of the WR-90 S parameters.  The 

error is shown in Figure 10 and verifies the quality of the mesh.  It is important to note that 

the test case results in an ideal symmetric S-matrix.  Therefore, only the 𝑆11 and 𝑆21 values 

are shown in Figure 9 and only 𝑆12 and 𝑆21 errors are shown in Figure 10. 
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Figure 9. S parameters for air-filled WR-90. 
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Figure 10. Relative error of theory versus numerical solution (COMSOL). 

As seen in Figure 9 and Figure 10, the symmetric nature of the guide exhibits reciprocal 

S-parameters, i.e. 𝑆12 = 𝑆21 and 𝑆11 = 𝑆22.  Also, the meshing size for the WR-90 has 

small relative error when comparing the numerical solution to that of equation (3.3.3).  

3.3.2 Square Sample Region Analysis 

Similarly to the WR-90 section, the square cross-sectional waveguide section of the 

RTST which holds the sample is simulated. This square waveguide has dimensions of 𝑎1 ×

𝑎1 where 𝑎1 is the width of the WR-90 guide. The change in dimension dictates a new 

propagation constant and cutoff frequency per mode for the square region as [3] 
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𝑓𝑐𝑚𝑛
=

1

2𝜋√𝜇𝜀
√(

𝑚π

𝑎1
)
2

+ (
𝑛π

𝑎1
)
2

 

(3.3.8) 

 

𝛽(𝑧)𝑚𝑛 = (2𝜋𝑓√𝜇𝜀)√1 − (
𝑓𝑐𝑚𝑛

𝑓
)

2

 

 

(3.3.9) 

where 𝑓𝑐𝑚𝑛
is the cut off frequency per mode and 𝛽(𝑧)𝑚𝑛 is the propagation constant 

within the square guide. If we model the square guide as air filled, its scattering matrix 

should match (3.3.3) as an ideal lossless transmission line. The S parameters and error 

between the numerical solution and the theoretical values are shown in Figure 11. 

 

Figure 11. Relative error of square cross-sectional waveguide simulation. 
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Due to the reciprocal nature of the square waveguide, 𝑆21 and 𝑆12 have the same relative 

error.  It has been shown that the numerical solution is valid for both the WR-90 and 

square cross-section segments of the RTST guide. Using the analysis from this section, 

coupled with full wave simulations of the entire RTST fixture, one should be able to 

uniquely characterize the tapered section through an iterative approach using higher order 

mode analysis along with T-matrix theory. Hence, full-wave simulation of the entire 

RTST test fixture can be a baseline for comparison between the numerical solution and 

the de-embedding process, represented by the calibration process in the measurement 

system. 

 

3.4. De-embedding and T-Matrix Validation 

 Section 3.3 showed that the FEM numerical solution can be computed using a 

single mesh for the complete frequency sweep even though the WR-90 and square cross-

sectional waveguide segments have differently sized domains.  Later, the de-embed 

process will be applied from each of these two segments to determine the S parameters at 

the sample face.  However, the simulation requires a finite-length excitation segment and 

transmission segment as shown in Figure 12.  In a measurement system, the calibration 

process is performed at the desired plane of reference.  The simulation requires the 

simulation of a finite-section of WR-90 guide (segments 1 and 5) that precede the 
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transition segments (segments 2 and 4).  Therefore, the de-embed process must be 

applied when comparing mode-matching models or measurement to simulation. 

To demonstrate the de-embed process, a simplified all-WR-90 test fixture is studied first 

(shown in Figure 12). 

 

Figure 12. All-WR-90 test fixture. 

Each individual section is characterized by a two-port S-matrix 𝑆�̅�. The reciprocal nature 

of the air filled guide means that each section will have the same S-parameter values 

shown in Figure 9. 

Referring back to equation (3.3.3), only 𝑆21 and 𝑆12 have non-zero values. Therefore, 

only the errors for 𝑆21 and 𝑆′21 are considered. Also, the reciprocal nature of the WR-90 

guide results in 𝑆21 = 𝑆12, and it is unnecessary to de-embed Port 1 to Port 1’ to solve for 

𝑆′12. 
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The solution for 𝑆21 at the de-embed location (𝑆′21) uses the length 𝑙 = 𝐿1 + 𝐿2 as 

𝑆′21 = 𝑆21𝑒
+𝑗2𝜋𝛽𝑙 (3.4.1) 

  

Although some software tools may allow the user to define a new reference plane at any 

location within the guide, COMSOL only allows the port to be defined at the outer most 

boundary which would be similar to an actual measurement.  Also, based on the defined 

coordinate system used to calculate the S parameter, it may be necessary to multiply by 

−1.  By properly applying the de-embed technique, the analytic and numerical solutions 

for 𝑆′21 can be compared at arbitrary reference planes within the guide. 

To demonstrate the above, the complex S parameters at Port 2 and the relative error are 

shown in Figure 13 and Figure 14.  Likewise, the S parameters at Port 2’ and the relative 

error are shown in Figure 15 and Figure 16.  In each case, the error is on the order of 

0.001. 



32 

 

Figure 13.  𝑆21 at Port 2 for All-WR-90 guide. 
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Figure 14. Relative error of 𝑆21 at Port 2. 
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Figure 15. 𝑆′21 at new reference plane for All-WR90 guide. 
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Figure 16. Relative error of 𝑆′21 at new reference plane. 

The relative error following the de-embed process has the same order of magnitude as the 

mesh error.  In other words, we are able to define a new reference plane at any location 

within the guide.  

3.4.1 Propagation Constant 

The de-embed process utilizes the propagation constant 𝛽, solved per frequency value 

within COMSOL’s numerical solution.  The relative error between the numerical value of 

the propagation constant is shown in Figure 17.  It is easy to see that the numerical 

solution agrees with the theoretical solution for 𝛽 very well. 
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Figure 17. Relative error of propagation constant in WR-90 waveguide. 

 

3.4.2 T-Matrix Validation 

As seen in Figure 12, each individual waveguide segment is analyzed separately 

and yields its own scattering matrix [𝑆𝑛]. Following equations (2.3.2) through (2.3.5), one 

is able to convert each segment into its corresponding T-Matrix, and then cascade them 

together using equation (2.3.6) as represented in Figure 18.  
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Figure 18. T-Matrix conversion of All-WR90 guide. 

 

Once the cascade is applied, equations (2.3.8) through (2.3.11) are used to convert the 

overall T-matrix [𝑇𝑚𝑡𝑜𝑡𝑎𝑙] matrix back into S-parameters for the entire-cascaded network. 

The fields induced at Port 1 can be propagated to the sample using the T-matrices. Then, 

the fields at the primed reference planes may be used to excite the sample without direct 

simulation of the fields in the transition section of the guide. Thus, computing time and 

memory are reduced. Because the analytic solution for 𝑆11 is zero, an absolute error will 

be used. The absolute error for 𝑆11 is seen in Figure 19 and the relative error for 𝑆21 is 

displayed in Figure 20. It is important to note that the S parameters used in the “T-matrix” 

solution utilize equations (2.3.7) through (2.3.11) to yield its values, while the analytic 

solution utilizes equations (3.3.3) through (3.3.6).   
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Figure 19. Absolute error of T-matrix solution for 𝑆11 in Figure 18. 

The analytic solution utilizes the length 𝑙 = 2𝑙1 + 2𝑙2 + 𝑙3 to solve for the fields located 

at Port 2. 
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Figure 20. Relative error of T-matrix solution for 𝑆21 in Figure 18. 

 

To solve for the incoming and outgoing wave at any arbitrary reference plane, the 

corresponding cascaded T-matrix must equate all previous regions for which the wave 

has propagated through. This cascade is mathematically defined as left-to-right [6]. 

Therefore, for a new reference plane at location 𝑆′21, the cascaded T-matrix must take the 

form.  

𝑇𝑀 = 𝑇1𝑇2𝑇3 = 𝑇𝑚1
𝑇3 (3.4.3) 

This cascading will yield the 𝑆21value at the exit of the sample region using equation 

(2.3.10). This value is shown as 𝑆21
′ in Figure 18.  Comparing this value with the analytic 
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solution obtained by equations (3.3.3) through (3.3.6) with 𝑙 = 𝑙1 + 𝑙2 + 𝑙3 is shown in 

Figure 18. 

 

Figure 21. Relative error of T-matrix solution for𝑆21
′  in Figure 18. 

 

It is clear by analysis that that the T-matrix is a valid way to solve for the net response of 

individual waveguide sections. It and the de-embed process of (3.4.1) are valid 

approaches for the all-WR90, air filled, passive structure. This analysis will be carried 

over to the RTST structure next. 
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3.5. Taper Characterization 

The WR-90 and square waveguide sections were easy to analyze since a theoretical 

solution was available for the scattering parameters. The tapered transition, however, will 

be more difficult as there is no analytic solution available to compare against. Without a 

analytic solution, we cannot validate the numerical solution for the taper without a full 

analysis. This will include exploring higher order modes induced within the tapered 

transition, along with looking at the complex electric and magnetic fields at various 

regions within the taper. 

If we were to look down the �̂� axis of the guide, as seen in Figure 19, there is a large 

discontinuity at the plane between the WR-90 and the square sample region.  

 

Figure 22. Perspective view along longitudinal axis of RTST guide. 

 

The discontinuity will excite higher-order TE𝑚𝑛 modes within the taper, and must be 

accounted for to properly de-embed the data to a new reference plane. This reference 
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plane will then be used to excite the sample region, thus reducing the computation time of 

the numerical model. 

3.5.1 Total fields in tapered waveguide. 

The S parameters represent a collection of the modal amplitudes measured at a port (both 

forward and backward traveling waves).  For an excitation in segment 1 (�⃗� 0
(1)

), the 

parameters 𝑆11 and 𝑆21 are  

𝑆11(𝑧0, 𝑓) =
∫(�⃗� (1)(𝑥, 𝑦, 𝑧0; 𝑓) − �⃗� 0

(1)
(𝑥, 𝑦, 𝑧0; 𝑓)) ∙ �⃗� 0

(1)∗(𝑥, 𝑦, 𝑧0; 𝑓)d𝑥d𝑦

∫ �⃗� 0
(1)

(𝑥, 𝑦, 𝑧0; 𝑓) ⋅ �⃗� 0
(1)∗(𝑥, 𝑦, 𝑧0; 𝑓)d𝑥d𝑦

 

(3.5.1) 

𝑆21(𝑧3, 𝑓) =
∫ �⃗� (2)(𝑥, 𝑦, 𝑧3; 𝑓) ∙ �⃗� 0

(2)∗(𝑥, 𝑦, 𝑧3; 𝑓)d𝑥d𝑦

∫ �⃗� 0
(2)

(𝑥, 𝑦, 𝑧3; 𝑓) ⋅ �⃗� 0
(2)∗

(𝑥, 𝑦, 𝑧3; 𝑓)d𝑥d𝑦
 

(3.5.2) 

where �⃗� (1) and �⃗� (2) are the total fields in segments 1 and 2 and �⃗� 0
(1)

 and �⃗� 0
(2)

 are the 

waves entering Port 1 and leaving Port 2, respectively.  The asterisk denotes complex 

conjugation.  In Equations (3.5.1) and (3.5.2), the reference planes are specified at the 

𝑧 = 𝑧0 plane for Port 1 and 𝑧 = 𝑧3 for Port 2.  For dominant-mode excitation at Port 1, 

and sufficiently long waveguide segments, �⃗� 0
(1)

 and �⃗� 0
(2)

 are TE10. 

However, when a complicated junction exists such as that presented by an anisotropically 

filled region, and when the segment is not sufficiently long, then the total field 

measurement includes higher-order modes that have not sufficiently decayed.  In these 
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cases, modal expansion of the fields as in Section 2.4 is needed to analyze the S 

parameters. 

3.5.2 Higher-order modes in tapered waveguide 

The �⃗� 0
(1)

 term represents the dominant TE10 mode across the Port 1 surface (𝑑Ω), and 

�⃗� 
(1)

= Σ𝑚�⃗� 𝑚
(1)

 term represents the fields caused by all M modes. As higher-order modes 

will affect the scattering parameters, we investigate how many modes are excited by the 

test fixture.  Also, the taper grows from a rectangular WR-90 to a square waveguide, so, 

it is safe to assume that the taper will support just as many modes as a square waveguide 

would. According to [9], the estimated number of modes supported within a square 

waveguide structure is 

 
𝑁𝑠𝑞𝑢𝑎𝑟𝑒 = 1.5711 (

2𝑎𝑓

𝑐
)
2

 
(3.5.3) 

where 𝑐 is the speed of light, 𝑎 is the width of the square region, and 𝑓 is the frequency of 

the incident wave. This equation was found by numerically computing the total number 

of TE and TM modes in a square waveguide as a function of normalized frequency for 

the first 1000 modes. A regression analysis was then carried out to find the best second 

order polynomial fit, and then coefficients were obtained by using maximum likelihood 

estimates [9].  The highest number of supported modes will be caused by the upper 

frequency in the X-band sweep (𝑓 = 12 GHz) yielding the value of 𝑁𝑠𝑞𝑢𝑎𝑟𝑒 = 5.2. 

Therefore, we will analyze the taper for the lowest ordered 6 modes. For any excitation 
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frequency, only the modes whose cut-off frequency falls below the X-band sweep will be 

excited within the taper. In other words, 𝑓𝑐𝑠𝑞𝑢𝑎𝑟𝑒
 <  𝑓 for the mode to propagate within 

the guide. Recalling equation (3.3.8), one is able to solve for the cut off frequency per 

mode number as displayed in Table 1. 

 

Table 1. Cut-off Frequency per mode number. 

M n Cut off Frequency 𝒇𝒄 

1 0 6.557 GHz 

0 1 6.557 GHz 

1 1 9.273 GHz 

2 0 13.114 GHz 

0 2 13.114 GHz 

1 2 14.662 GHz 

2 1 14.662 GHz 

3 0 19.671 GHz 

5 0 32.786 GHz 

7 0 45.9 GHz 

   

 

Under the X-band sweep, there will be multiple modes supported by the taper. The 

strongest response is expected to be seen by the dominant TE10 mode, but TE11 will also 

contribute. This behavior can be seen in the normalized magnitude graphs exported from 

COMSOL (Figure 23 to Figure 27).  Red indicates strong field magnitude and blue 

indicates very weak magnitude.  
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Figure 23. Dominant TE10 mode within taper 

 

Figure 24.Response from TE01 mode excitation 

 

 

Figure 25. Response from TE11 mode excitation 
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Figure 26. Response from TE20 mode excitation 

 

Figure 27. Response from TE50 mode excitation 

 

It is clear that other modes exist within the taper, since theses modes have non-zero 

electric and magnetic field amplitudes. Even though these modes evanesce, the question 

remains: “Are we able to model the taper as a lossless transmission line if it is air filled?” 

If the taper is proven to be a lossless transmission line, then equation (3.3.3) may be 

utilized to model the scattering parameters of the taper, and then serve as a baseline for 

the numerical solution relative error analysis.  

For a transmission line segment to be considered lossless, it must meet five criteria 

 |𝑆11|
2 + |𝑆21|

2 = 1 (3.5.4) 
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 |𝑆12|
2 + |𝑆22|

2 = 1 (3.5.5) 

 𝑆11
∗ 𝑆12 + 𝑆21

∗ 𝑆22 = 0 (3.5.6) 

 |𝑆11||𝑆12| = |𝑆21||𝑆22| (3.5.7) 

 −arg(𝑆11) + arg(𝑆12) = −arg(𝑆21) + arg(𝑆22) + 𝜋 (3.5.8) 

 
arg(𝑥) = atan (

Im(𝑥)

Re(𝑥)
) 

(3.5.9) 

These criteria for a lossless network come from the unitary condition: 𝑆𝐻𝑆 = 𝐼 where 𝐼 is 

the identity matrix and the superscript H is the Hermitian Transpose (transposed complex 

conjugate).  But as there are multiple modes present within the taper, the S-parameter 

criteria for a lossless guide, Equations (3.5.4) through (3.5.8), must be satisfied for each 

mode and excitation frequency.   

To study the modes, the excitation of the taper is swept through different TEmn modes.  

Then, the S parameters are analyzed per mode. According to [1], the taper is designed to 

support only TEm0 modes, where m is an odd integer. This claim is investigated using the 

modes listed in Table 1which lists other modes and their corresponding cutoff 

frequencies. Specific interest lies in the TE11 mode, which has a cutoff frequency equal 

to: 𝑓𝑐11=9.273 GHz. This value is below half the frequencies used in the X-band 

excitation and means that the TE11 is able propagate within a square dimension for the 

upper half of the X-band sweep (10 GHz to 12 GHz). Therefore, the taper is excited by 

TEmn modes:  TE10, TE01, TE11, TE20, TE30, TE50, and TE70. 
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Figure 28. 𝑆11 magnitude of transition waveguide by mode and frequency. 

 

Figure 29. 𝑆12 magnitude of transition waveguide by mode and frequency. 
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Figure 30. 𝑆21 magnitude of transition guide by mode and frequency. 

 

Figure 31. 𝑆22 magnitude of transition guide by mode and frequency. 
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Figure 29 and Figure 30 make the taper seem reciprocal in nature as 𝑆12 = 𝑆21. These 

figures also show ideal propagation through the guide for modes TE10 and TE11. By 

visual analysis, a few intuitive things can be taken away from Figure 28 to Figure 31. As 

the taper gradually changes from rectangular to square, the square region supports modes 

which the rectangular does not. This can be seen for the 𝑆22 values measured at Port 2 

and thus within the square region. The high-order modes TE30, TE50, and TE70 all yield 

non-zero reflection as compared to the dominant TE10 mode at Port 2. Also, the 𝑆21 and 

𝑆12 values show ideal transmission line behavior for TE10 and TE11 modes within the 

guide.  Therefore, using Equations (3.5.3) through (3.5.8), the taper may be modeled as a 

lossless transmission line.  

The lossless transmission line criteria are graphed for the TE10 and TE11 modes in Figure 

32 to Figure 39.  The results show that the dominant mode and first high-order mode 

within the taper can be represented as an ideal lossless transmission line.  
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Figure 32. Equation (3.5.4) solved for TE10 mode within transition guide. 
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Figure 33. Equation (3.5.5) solved for TE10 mode within transition guide. 
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Figure 34. Equation (3.5.6) solved for TE10 mode within transition guide. 
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Figure 35. Equation (3.5.7) solved for TE10 mode within transition guide. 
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Figure 36. Equation (3.5.4) solved for TE11 mode within transition guide. 



56 

 

Figure 37. Equation (3.5.5) solved for TE11 mode within transition guide. 
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Figure 38. Equation (3.5.6) solved for TE11 mode within transition guide. 
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Figure 39. Equation (3.5.7) solved for TE11 mode within transition guide. 

 

3.6. Summary 

 When excited by the dominant mode at the WR-90 port of the transition 

waveguide, high-order modes are excited at Port 1 and Port 2.  The scattering parameters 

show that the air-filled guide only supports TE10 and TE11 modes.  To model the 

waveguide measurement system without explicitly modeling the transition guide, the 

excitation at the sample region must include both the dominant and first high-order mode.  

Then, the scattering parameters can be calculated for the sample region with increased 

efficiency.  
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CHAPTER 4 

RESULTS 

4.1. Experimental Set Up 

From Section 3.5, it was shown that the junction between the transition guide and sample 

waveguide section (Figure 40) causes TE11 modes to excite a sample in addition to the 

TE10 mode.  Therefore, if the sample region is to be excited directly to reduce the 

computational cost, then the excitation and calculation of the S parameters must be 

calculated for multi-mode fields.   

 

Figure 40. Single-mode excitation of WR-90 waveguide (Section 1) connected to square 

waveguide (Section 3) using transition waveguide (Section 2). High-order modes are 

excited at waveguide junctions causing multi-mode propagation at junction to Section 3. 
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Figure 41. Multi-mode excitation of square waveguide (sample region). 

 

To test the hypothesis, the field patterns at the guide-sample interface (Γ2 in Figure 40 

and Γ1 in Figure 41) are compared.  Due to the varying geometry of the transition guide, 

each section of the overall system must be individually modeled to show the field 

relationships. The rectangular-to-square waveguide was designed in the collective works 

of the authors of [1] and was specified to be y-invariant for the frequency band. If Port 1 

is excited by a TE10 mode, then Maxwell’s equations separate into two sets of modal 

equations: TEz and TMz. However, the TMz modal equations will yield a trivial solution 

for biaxial samples and are ignored [2]. Therefore, only the TEz modes are needed to fully 

characterize the tapered waveguide for biaxially dielectric samples. Following the 

discussion on transverse electric waves within bounded PEC structures in [4], we can 

model the incoming and outgoing waves shown in Figure 40. Also, as Section 1 is air 
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filled and assumed to be perfectly matched to the excitation port, the only forward going 

wave will be the excitation field. For a TE10 excitation, the forward going waves (𝑎+) are 

𝐸𝑦 = −
𝐴10

+

𝜀

𝜋

𝑎
sin(𝑘𝑥𝑥)𝑒−𝑗𝛽𝑧𝑧 (4.1) 

𝐻𝑥 = 𝐴10
+

𝛽𝑧

𝜔𝜇𝜀

𝜋

𝑎
sin(𝑘𝑥𝑥)𝑒−𝑗𝛽𝑧𝑧 

(4.2) 

𝐻𝑧 = −𝑗
𝐴10

+

𝜔𝜇𝜀
(
𝜋

𝑎
)
2

cos(𝑘𝑥𝑥)𝑒−𝑗𝛽𝑧𝑧 
(4.3) 

where 𝐸𝑥, 𝐸𝑧 , and 𝐻𝑦 all equal zero an. The reflected wave (𝑎−) caused by the junction at 

the leftmost side of the tapered guide, contains higher order modes.  Likewise, the high-

order modes are  

𝐸𝑥 = ∑
𝑘𝑦,𝑛

𝜀
cos(𝑘𝑥,𝑚𝑥) sin(𝑘𝑦,𝑛𝑦) [𝐴𝑚𝑛

+ 𝑒−𝑗𝛽𝑧,𝑚𝑛𝑧 + 𝐴𝑚𝑛
− 𝑒+𝑗𝛽𝑧,𝑚𝑛𝑧]

𝑚,𝑛

 
(4.4) 

𝐸𝑦 = ∑−
𝑘𝑥,𝑚

𝜀
cos(𝑘𝑦,𝑛𝑦) sin(𝑘𝑥,𝑚𝑥) [𝐴𝑚𝑛

+ 𝑒−𝑗𝛽𝑧,𝑚𝑛𝑧 + 𝐴𝑚𝑛
− 𝑒+𝑗𝛽𝑧,𝑚𝑛𝑧]

𝑚,𝑛

 
(4.5) 

𝐻𝑥 = ∑
𝑘𝑥,𝑚𝛽𝑧

𝜔𝜇𝜀
cos(𝑘𝑦,𝑛𝑦) sin(𝑘𝑥,𝑚𝑥) [𝐴𝑚𝑛

+ 𝑒−𝑗𝛽𝑧,𝑚𝑛𝑧 + 𝐴𝑚𝑛
− 𝑒+𝑗𝛽𝑧,𝑚𝑛𝑧]

𝑚,𝑛

 
(4.6) 

𝐻𝑦 = ∑
𝑘𝑦,𝑛𝛽𝑧,𝑚𝑛

𝜔𝜇𝜀
cos(𝑘𝑥,𝑚𝑥) sin(𝑘𝑦,𝑛𝑦) [𝐴𝑚𝑛

+ 𝑒−𝑗𝛽𝑧,𝑚𝑛𝑧 + 𝐴𝑚𝑛
− 𝑒+𝑗𝛽𝑧,𝑚𝑛𝑧]

𝑚,𝑛

 
(4.7) 

𝐻𝑧 = ∑−𝑗
𝑘𝑐,𝑚𝑛

2

𝜔𝜇𝜀
cos(𝑘𝑦,𝑛𝑦) cos(𝑘𝑥,𝑚𝑥) [𝐴𝑚𝑛

+ 𝑒−𝑗𝛽𝑧,𝑚𝑛𝑧 + 𝐴𝑚𝑛
− 𝑒+𝑗𝛽𝑧,𝑚𝑛𝑧]

𝑚,𝑛

 
(4.8) 

where 
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𝑘𝑐,𝑚𝑛
2 ≡ (

2𝜋

𝜆𝑐,𝑚𝑛
)

2

= 𝑘2 − 𝛽𝑧,𝑚𝑛
2 = 𝑘𝑥,𝑚

2 + 𝑘𝑦,𝑛
2 = 2𝜋𝑓𝑐√𝜇𝜀

= (
𝑚𝜋

𝑎
)
2

+ (
𝑛𝜋

𝑏
)
2

 

 

(4.9) 

(𝛽𝑧)𝑚𝑛 = 𝑘 √1 − (
𝑓𝑐
𝑐
)
2

 

 

(4.10) 

Equations (4.1) through (4.3) model the incoming wave to the system, where equations 

(4.4) through (4.10) represent the possible TE field formations located at any transverse 

region within the guide. It is good to note that Section 3 of Figure 40 will only have 

forward going waves as the port is assumed to be perfectly matched.  

Since the WR-90 and transition regions are air filled, TM𝑧modes are also able to exist. 

These field configurations are represented by equations (4.11) through (4.15). 

 

𝐸𝑥 = −
𝛽𝑥,𝑚𝛽𝑧,𝑚𝑛

𝜔𝜇𝜀
cos(𝛽𝑥,𝑚𝑥) sin(𝛽𝑦,𝑛𝑦) [𝐵𝑚𝑛

+ 𝑒−𝑗𝛽𝑧,𝑚𝑛𝑧 + 𝐵𝑚𝑛
− 𝑒+𝑗𝛽𝑧,𝑚𝑛𝑧] 

(4.11) 

𝐸𝑦 = −
𝛽𝑦,𝑛𝛽𝑧,𝑚𝑛

𝜔𝜇𝜀
cos(𝛽𝑦,𝑛𝑦) sin(𝛽𝑥,𝑚𝑥) [𝐵𝑚𝑛

+ 𝑒−𝑗𝛽𝑧,𝑚𝑛𝑧 + 𝐵𝑚𝑛
− 𝑒+𝑗𝛽𝑧,𝑚𝑛𝑧] 

(4.12) 

𝐸𝑧 = −𝑗
𝛽𝑐,𝑚𝑛

2

𝜔𝜇𝜀
sin(𝛽𝑦,𝑛𝑦) sin(𝛽𝑥,𝑚𝑥) [𝐵𝑚𝑛

+ 𝑒−𝑗𝛽𝑧,𝑚𝑛𝑧 + 𝐵𝑚𝑛
− 𝑒+𝑗𝛽𝑧,𝑚𝑛𝑧] 

(4.13) 

𝐻𝑥 =
𝛽𝑦,𝑛

𝜇
cos(𝛽𝑦,𝑛𝑦) sin(𝛽𝑥,𝑚𝑥) [𝐵𝑚𝑛

+ 𝑒−𝑗𝛽𝑧,𝑚𝑛𝑧 + 𝐵𝑚𝑛
− 𝑒+𝑗𝛽𝑧,𝑚𝑛𝑧] 

(4.14) 
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𝐻𝑦 = −
𝛽𝑥,𝑚

𝜇
cos(𝛽𝑥,𝑚𝑥) sin(𝛽𝑦,𝑛𝑦) [𝐵𝑚𝑛

+ 𝑒−𝑗𝛽𝑧,𝑚𝑛𝑧 + 𝐵𝑚𝑛
− 𝑒+𝑗𝛽𝑧,𝑚𝑛𝑧] 

(4.15) 

Where 𝛽𝑥,𝑚 =
𝑚𝜋

𝑎
 , 𝛽𝑦,𝑛 =

𝑛𝜋

𝑏
, and 𝛽𝑧,𝑚𝑛 matches equation (4.10). However, this work 

complements [1] and [2], which focus on dielectric samples constructed of UV cured 

polymer, and only the TE field configurations are analyzed. The UV cured polymer 

samples are displayed in Figure 42.   

 

Figure 42. Polymer crystal within square PEC sample holder [2]. 

The end of Chapter III showed that the taper is indeed lossless for certain excitation 

modes. Therefore, for these lossless modes, the tapered transition should not attenuate the 

dominant excitation mode.  

Figure 43 through Figure 46 show the electric field magnitude at Γ1 for the low, middle, 

and high frequencies from the X-band excitation.  Likewise, Figure 47 through Figure 49 

show the electric field magnitude at Γ2.  The fields are as expected because the dominant 

contribution is TE10. 
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Figure 43. Electric field measured at Γ1 at 8 GHz. 



65 

 

Figure 44. Electric field cross section (xy-plane) of Γ1 at 8 GHz. 
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Figure 45. Electric field cross section of Γ1 at 9.777 GHz.  
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Figure 46. Electric field cross section of Γ1 at 12 GHz. 
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Figure 47. Electric field measured of Γ2 at 8 GHz. 
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Figure 48. Electric field cross section of Γ2 at 8 GHz.  
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Figure 49. Electric field cross section at Γ2 at 9.777 GHz.  



71 

 

Figure 50. Electric field cross section of Γ2 at 12 GHz.  

 

Figure 47 through Figure 50 show that the dominant mode is preserved, yet as the higher 

frequencies in the X-band sweep are approached, we can see the magnitude of �⃗� 10 at 𝛤2 

begins to diminish. This behavior could be caused by the generation of higher order 

modes within the transition section. However, as the tapered waveguide is lossless, 

higher order modes may propagate to the junction at 𝛤2. Therefore, these modes must be 

preserved for the direct excitation at the sample region represented by Figure 41. But 

which higher order modes are present and form the total field at 𝛤2? 
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Since the tapered transition was deemed lossless, all of the higher order modes which are 

excited within Section 2 (and thus reflect at the junction 𝛤2) in Figure 40, will propagate 

back into Section 1. Therefore, if “listening” ports are inserted at 𝛤1 to numerically 

calculate the response for certain TEmn modes induced within the taper, it should be 

possible to get an idea of the strongest contributing higher order modes.  

To do this, the system in Figure 40 is excited at Port 1 by a TEmn mode. Then, five 

arbitrary listening ports are defined at the same plane as excitation (Port 1). However, 

each listening port performs a separate reaction integral to test for the specified mode. 

This reaction integral is defined as 

⟨𝐀, 𝐁⟩Γ𝑛
= ∬𝐁𝐻𝐀 𝑑Γ𝑛 

(4.11) 

where 𝐻 denotes the Hermitian transpose. The reaction integral, when to define S-

parameters, is a normalization on any boundary 𝑑Γ𝑛. This normalization must occur since 

Γ1 and Γ2 alter in dimension from rectangular to square. The reaction integral preserves 

the fact that only propagating and evanescing waves can exist within the guide. In other 

words, no energy larger than that induced into the system at Port 1 is able to propagate 

through the guide and reach Port 2. This is represented by equations (4.12) through (4.14) 

below. The scattering parameter at Port 1 can be represented as 
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𝑆11 =

⟨𝐄(1) − 𝐄0
(1)

, 𝐄0
(1)

⟩
Γ1

⟨𝐄0
(1)

, 𝐄0
(1)

⟩
Γ1

=
𝑎−

𝑎+
|
𝑒−=0

 
(4.12) 

where 𝐄(1) represents the total field on boundary Γ1, 𝐄0
(1)

 represents the dominant TE10 

mode excitation, and 𝑒−is the excitation at Port 2. Utilizing the listening ports, Equation 

(4.12) can be used to solve for any desired mode on Γ1 given an input of 𝐄0
(1)

 as 

𝑆11
𝑚𝑛 =

⟨𝐄(1) − 𝐄0
(1)

, 𝐄𝑚𝑛
(1)

⟩
Γ1

⟨𝐄0
(1)

, 𝐄0
(1)

⟩
Γ1

=
𝑎−

𝑎+
|
𝑒−=0

 
(4.13) 

and will give insight to the number of modes which are able to propagate back through 

Section 2 and into Section 1.  𝐄𝑚𝑛
(1)

 represents the electric field on boundary Γ1 for the 

mnth mode given a TE10 electric field excitation. Recall, the electric field configuration 

for TE10 takes the form of Equation (4.1). Utilizing equation (4.13), Figure 51 shows the 

modal results for TE10, TE11, TE20, TE30, TE50, TE70. 
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Figure 51. 𝑆11
𝑚𝑛 magnitude at Port 1 

The dominant TE10 mode is preserved as expected, and the next highest contributor 

towards the fields measured at Port 1 is the TE11 mode. The next strongest mode (3rd) is 

TE70 followed by TE20, TE50, and TE30 respectively.  

The reaction integral for  𝑆21 is. 

𝑆21 =

⟨𝐄(2), 𝐄0
(2)

⟩
𝛤2

⟨𝐄0
(1)

, 𝐄0
(1)

⟩
𝛤1

=
𝑒+

𝑎+
|
𝑒−=0

 

(4.14) 
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Where 𝐄(2) represents the entire field on the boundary 𝛤2 (Port 2), 𝐄0
(2)

 represents the 

field entering Port 2, and 𝐄0
(1)

 still represents the field leaving Port 1 (TE10). Recalling the 

discussion on mode matching in Section 2.4, it is easy to see that the reaction integrals for 

𝑆11 and 𝑆21  can be used to solve for modal amplitudes at any junction (equations (2.4.11) 

and (2.4.12)). This is explored further in Chapter V.  
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CHAPTER 5 

CONCLUSIONS 

5.1. Summary 

The analysis in Chapter IV yielded which modes have a contributing factor to the 

response measured at the sample region (𝛤2). Since we have an idea of the strongest 

contributing modes, the methods presented in Chapter II can be utilized to excite the sample 

region directly without simulation of the WR-90 or transition guide as seen in Figure 51. 

These methods include the T-matrix approach or the mode matching solution.  

 

Figure 52. Reduced model. 

 

The mode matching approach would utilize all the data collected in the TEmn analysis of 

the tapered transition in section 3.5.2 (Figures 28 through 31) and Chapter IV (Figure 

50). 
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The reaction integral for 𝑆11 is derived from three electric field evaluations; the total field 

𝐄(1), the excitation 𝐄0
(1)

, and the scattered field (equation (5.1)).  

𝑬𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑 = 𝐄(1) − 𝐄0
(1)

 (5.1) 

The scattered electric field is simply a measure of the entire field at a Port minus the 

excitation from that port. In other words, the scattered field used in 𝑆11 measurement is 

simply the reflected waves caused at junctions 𝛤1 and 𝛤2 which do not evanesce before 

reaching Port 1 in Figure 40 (𝑎−and 𝑏−) . Coupling this with the discussion on mode 

matching in section 2.4, we are able to model the scattered field in terms of any higher 

order propagating modes as seen in equation (5.2) 

𝑬𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑 = ∑𝐴𝑚𝑛
(−)

∞

𝑚,𝑛

𝒆𝑛𝑚
(1) (𝑥, 𝑦) 𝑒+𝑗𝛽𝑚𝑛

(1)
𝑧 

(5.2) 

where 𝐴𝑚𝑛
(−)

 is the amplitude of the reflected wave per mode, 𝒆𝑛𝑚
(1) (𝑥, 𝑦) is the 

eigenfunction per mode, and 𝛽𝑚𝑛
(1)

 is the propagation constant per mode. The superscript 

(1) denotes the region of interest and will vary from air filled in sections 1 and 2 to 

anisotropic in section 3 of Figure 40.  

Using the analysis done in Chapter IV, specifically Figure 50, one is able to expand 

equation (5.2) in terms of the strongest four modes: TE10, TE11, TE70, and TE20. 
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𝑬𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑 =  𝐴10
(−)

𝒆10
(1)

𝑒+𝑗𝛽10
(1)

𝑧 + 𝐴11
(−)

𝒆11
(1)

𝑒+𝑗𝛽11
(1)

𝑧 + 𝐴70
(−)

𝒆70
(1)

𝑒+𝑗𝛽70
(1)

𝑧       

+ 𝐴20
(−)

𝒆20
(1)

𝑒+𝑗𝛽20
(1)

𝑧 

 

(5.3) 

where  

𝒆10
(1)

= sin (
𝜋

𝑎
𝑥) 

(5.4) 

𝒆11
(1)

= sin (
𝑚𝜋

𝑎
𝑥) cos (

𝑛𝜋

𝑏
𝑦) = sin (

𝜋

𝑎
𝑥) cos (

𝜋

𝑏
𝑦) 

(5.5) 

𝒆70
(1)

= sin (
𝑚𝜋

𝑎
𝑥) cos (

𝑛𝜋

𝑏
𝑦) = sin (

7𝜋

𝑎
𝑥) 

(5.6) 

𝒆20
(1)

= sin (
𝑚𝜋

𝑎
𝑥) cos (

𝑛𝜋

𝑏
𝑦) = sin (

2𝜋

𝑎
𝑥) 

(5.7) 

  

Recalling equation (2.4.11) 

𝑆11(𝑝) =
∑ 𝐴𝑚

−∞
𝑚=1

𝐴𝑝
+    

we can see that the 𝑆11 value is simply the ratio of reflected waves to that of the 

excitation. In equation (2.4.11) the excitation is the forward going 𝑝𝑡ℎ mode, however, 

only the TE10 mode is excited at Port 1, so (2.4.11) will become  

𝑆11
𝑚 =

∑ 𝐴𝑚
−4

𝑚=1

𝐴10
+   

(5.8) 
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where ∑ 𝐴𝑚
−4

𝑚=1  represents the sum of the first four higher order modes which are 

reflected at 𝛤1 and 𝛤2. Utilizing equation (5.8) and multiplying equation (5.3) by the 

excitation amplitude of 𝐴10
+  will yield: 

𝑬𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑 = [𝑆11
(TE10)

𝒆10
(1)

𝑒+𝑗𝛽10
(1)

𝑧 + 𝑆11
(TE11)

𝒆11
(1)

𝑒+𝑗𝛽11
(1)

𝑧

+ 𝑆11
(TE70)

𝒆70
(1)

𝑒+𝑗𝛽70
(1)

𝑧       + 𝑆11
(TE20)

𝒆20
(1)

𝑒+𝑗𝛽20
(1)

𝑧] ∙ 𝐴10
(+)

 

 

(5.9) 

This scattered field will be the new excitation into the sample region as shown in Figure 

41.  

The only down side to this approach is the need for numerical data exports from 

simulation to determine the propagation constants per mode 𝛽𝑚𝑛
(1)

. An alternative 

approach would be to utilize the T-matrix. Since the T-matrix allows us to solve for the 

incoming and outgoing waves at any junction of the “multi-waveguide” cascaded system 

shown in Figure 52, we are able to solve how individual modes propagate through the 

tapered transition.  

 

Figure 53. T-matrix representation of Figure 40.  



80 

Following the discussion in Chapter II, we are able to cascade the air filled portions of 

the RTST guide to solve for the outgoing wave (𝑏4) into the sample region as seen in 

Figure 53. 

 

Figure 54. T-matrix cascade applied to Figure 40. 

This cascaded section of waveguide, 𝑇𝑚, relates the incoming TE10 wave to the output of 

the tapered transition (𝑏4 = 𝑎5) for the given excitation mode. To solve for the tapered 

transitions net response, a T-matrix solution must be obtained per mode. The linear 

system of equations which defines the T-matrix (equation (2.3.1)) can be rearranged to 

solve for the desired wave input to the sample region (𝑏4). 

[
𝑎1

𝑏1
] = [𝑇𝑚] [

𝑏4

𝑎4
] 

(5.10) 

𝑎1 = 𝑇11
𝑚𝑏4 + 𝑇12

𝑚𝑎4  (5.11) 

𝑏1 = 𝑇21
𝑚𝑏4 + 𝑇22

𝑚𝑎4 (5.12) 

  

Solving equation (5.11) and (5.12) for the incoming wave to the sample region yields: 
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𝑏4 =
𝑎1 − 𝑇12

𝑚𝑎4

𝑇11
𝑚   

(5.13) 

𝑏4 =
𝑏1 − 𝑇22

𝑚𝑎4

𝑇21
𝑚  

(5.14) 

Since we are only exciting Port 1 with the dominant TE10 wave, 𝑎1~TE10 and 𝑎4 = 0. 

Also, we know that the reflected waves seen at Port 1 (𝑏1) will consist of all the higher 

order modes reflected from 𝛤1 and 𝛤2. Therefore, we able to redefine equations (5.11) and 

(5.12) as: 

𝑏4 =
𝑎1

𝑇11
𝑚 =

TE10

𝑇11
𝑚   

(5.15) 

𝑏4 =
∑TE𝑚𝑛

𝑇21
𝑚  

(5.16) 

Recalling equations (2.3.2) through (2.3.5) we are able to model the incoming waves to 

the sample region in terms of the S-parameters by converting the T-parameters 

appropriately. This is shown in equations (5.17) and (5.18) 

𝑏4 = TE10 ∙ 𝑆21
𝑚   (5.17) 

𝑏4 =
∑TE𝑚𝑛 ∙ 𝑆21

𝑚

𝑆11
𝑚  

(5.18) 

 

5.2. Recommendations for future work 

If we were to study more complex samples such as fully anisotropic or ferromagnetic 

materials, we will find that the TEmn only solution to Maxwell’s equation does not hold.  
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This behavior stems from the fact that the anisotropic or ferromagnetic sample has a 

magnetic response represented by its permeability tensor �̿�. It is safe to assume that this 

magnetic response will excite TMmn modes within the sample region. Field distributions 

for TM𝑚𝑛
𝑧  modes within a bounded PEC structure are previously shown, but are relisted 

below [3]:  

𝐸𝑥 = −
𝛽𝑥,𝑚𝛽𝑧,𝑚

𝜔𝜇𝜀
cos(𝛽𝑥,𝑚𝑥) sin(𝛽𝑦,𝑛𝑦) [𝐵𝑚𝑛

+ 𝑒−𝑗𝛽𝑧,𝑚𝑧 + 𝐵𝑚𝑛
− 𝑒+𝑗𝛽𝑧,𝑚𝑧] 

(5.2.1) 

𝐸𝑦 = −
𝛽𝑦,𝑛𝛽𝑧,𝑚

𝜔𝜇𝜀
cos(𝛽𝑦,𝑛𝑦) sin(𝛽𝑥,𝑚𝑥) [𝐵𝑚𝑛

+ 𝑒−𝑗𝛽𝑧,𝑚𝑧 + 𝐵𝑚𝑛
− 𝑒+𝑗𝛽𝑧,𝑚𝑧] 

(5.2.2) 

𝐸𝑧 = −𝑗
𝛽𝑐,𝑚𝑛

2

𝜔𝜇𝜀
sin(𝛽𝑦,𝑛𝑦) sin(𝛽𝑥,𝑚𝑥) [𝐵𝑚𝑛

+ 𝑒−𝑗𝛽𝑧,𝑚𝑧 + 𝐵𝑚𝑛
− 𝑒+𝑗𝛽𝑧,𝑚𝑧] 

(5.2.3) 

𝐻𝑥 =
𝛽𝑦,𝑛

𝜇
cos(𝛽𝑦,𝑛𝑦) sin(𝛽𝑥,𝑚𝑥) [𝐵𝑚𝑛

+ 𝑒−𝑗𝛽𝑧,𝑚𝑧 + 𝐵𝑚𝑛
− 𝑒+𝑗𝛽𝑧,𝑚𝑧] 

(5.2.4) 

𝐻𝑦 = −
𝛽𝑥,𝑚

𝜇
cos(𝛽𝑥,𝑚𝑥) sin(𝛽𝑦,𝑛𝑦) [𝐵𝑚𝑛

+ 𝑒−𝑗𝛽𝑧,𝑚𝑧 + 𝐵𝑚𝑛
− 𝑒+𝑗𝛽𝑧,𝑚𝑧] 

(5.2.5) 

where 𝛽𝑥,𝑚 and  𝛽𝑦,𝑚 will be determined from boundary conditions and mode number. If 

the sample is biaxial anisotropic and made from a magnetically responsive material, the 

propagation constant 𝛽𝑧,𝑚 is related to the constitutive parameters of the sample region 

such that [2] 

 𝛽𝑧,𝑚 = ±√𝜔2𝜀𝑥𝜇𝑦 −
𝜀𝑥

𝜀𝑧
𝛽𝑥,𝑚

2    
(5.2.6) 
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Future work will also include an intensive comparison between the solutions obtained by 

the proposed methods in section 5.1 and the numerical solutions obtained by the full 

wave modeling and simulation.  
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