

Bounds on the number and size of extra dimensions from molecular spectroscopy

Edcel Salumbides,¹ Bert Schellekens,² Beatriz Gato-Rivera³ and Wim Ubachs¹ ¹Department of Physics and Astronomy and LaserLaB, VU University Amsterdam, The Netherlands ²Nikhef, Science Park 105, 1098 XG Amsterdam, The Netherlands ³Instituto de Fisica Fundamental, CSIC, 28006 Madrid, Spain

Force laws and dimensions

Immanuel Kant

number of dimensions consequence of Newton's Universal law of gravitation

Gauss flux law:

$$\oint \vec{F} \cdot d\vec{A} = kQ_{\text{encl}}$$

3-dim :
$$A_{\rm V} \propto r^2
ightarrow F \propto rac{1}{r^2}$$

N-dim : $A_V \propto r^{n-1} \to F \propto \frac{1}{r^{N-1}}$

Immanuel Kant

Extra spatial dimensions

William Paley

William Paley Stability of planetary orbits

Paul Ehrenfest Stability of atoms only if (N<4)

$$E = \frac{p^2}{2m} + V \sim \frac{\hbar^2}{2mr} - \frac{e^2}{r^{N-2}}$$

Paul Ehrenfest

New Physics with extra dimensions

Kaluza theory:

Einstein field equations in (4+1) dimensions

 \rightarrow Maxwell equations in (3+1)-dim subspace + scalar field

Klein: Compactification: rolled-up dimensions

String theories: Bosonic: N=26 Supersymmetric: N=10

Theodor Kaluza

Oskar Klein

ADD theory

Arkani–Hamed, Dimopoulos, Dvali Phys. Lett. B **429**, 263–272 (1998)

Hierarchy problem: Why is gravity so much weaker? e.g. between two protons $\frac{V_G}{V_{em}} = 8 \times 10^{-37}$

Or equivalently: Why is the Planck mass M_{Pl} so much bigger?

$$\frac{M_{\rm Pl}}{M_Z} \sim 10^{17}$$

ADD and branes

Electromagnetism, Weak and Strong forces confined in normal (3+1)-dim space

Gravity leaks out to extra *n*-dim diluting its strength

At time of proposal, possibility of large extra dimensions up to ~mm

ADD and the hierarchy problem

ADD modified gravity with *n* extra dimensions:

 $V_{\text{ADD}}(r) = -G_{(4+n)} \frac{m_1 m_2}{r^{1+n}}$

for *r* separations larger than the compactification size R_{comp} : $V_{\text{ADD}}(r) = -G_{(4+n)} \frac{m_1 m_2}{(R_{\text{comp}})^n r}$ $r \gg R_{\text{comp}}$

corresponds to Newtonian gravity: $V_{
m Newton}(r) = -G rac{m_1 m_2}{r}$

$$G_{(4+n)} = (R_{\rm comp})^n G$$

ADD and the hierarchy problem

ADD modified gravity with *n* extra dimensions:

$$V_{\text{ADD}}(r) = -G_{(4+n)} \frac{m_1 m_2}{r^{1+n}}$$

 $G_{(4+n)} = (R_{\rm comp})^n G$

$$V_{\text{ADD}}(r) = -G \frac{m_1 m_2}{r} \left(\frac{R_{\text{comp}}}{r}\right)^n$$
enhancement factor

Constraints on ADD

Particle physics searches for new particles (Stellar cooling from production of new particles)

Cavendish-type experiments and tests of inverse square law for gravity

Propose tests based spectroscopy

Our system: two-proton H₂

Few-body system, simple nuclei neutrals: H₂, D₂, HD (also ions: H₂⁺, D₂⁺, HD⁺)

Tractable system from *ab initio* theory H₂: K. Pachucki, J. Komasa: J. Komasa *et al.*, J. Chem. Theory Comput. **7**, 3105 (2011)

Effect of weak, strong, and gravitational forces negligible

Any other effect may be new physics

ADD effect in molecules

$$V_{\text{Newton}}(r) = G \frac{m_1 m_2}{r} = N_1 N_2 \frac{\alpha_G}{r} \hbar c \qquad \alpha_G = \frac{G m_p^2}{\hbar c}$$

2

$$V_{\rm ADD}(r) = \left(\frac{R_{\rm comp}}{r}\right)^n N_1 N_2 \frac{\alpha_G}{r} \hbar c \qquad \text{for } r \ll R_n$$

Perturbation causing level shift:

$$\langle V_{\rm ADD} \rangle = \alpha_G \hbar c N_1 N_2 (R_{\rm comp})^n \int_0^{R_{\rm comp}} \Psi^*(r) \frac{1}{r^{n+1}} \Psi(r) r^2 \mathrm{d}r$$

Effect on transitions

Level shifts: $\langle V_{ADD} \rangle_1 = \langle \Psi_1 | V_{ADD} | \Psi_1 \rangle$

 $\langle V_{\rm ADD} \rangle_0 = \langle \Psi_0 | V_{\rm ADD} | \Psi_0 \rangle$

Transition shift:

 $\Delta \left\langle V_{\rm ADD} \right\rangle = \left\langle V_{\rm ADD} \right\rangle_1 - \left\langle V_{\rm ADD} \right\rangle_0$

Differential effect

Randall-Sundrum theory

Gravity confined in different brane and SM interactions in another

Gravity leaks out to extra dim with strength exponentially weakening

Extra dimension need not be compactified

Level energies in molecules

	species	transition	$\delta E \ (\mathrm{cm}^{-1})$
	H_2	$v = 0 \rightarrow 1$	0.00020
$\Delta E \equiv E_{\rm exp} - E_{\rm calc}$		$v = 0 \rightarrow 2$	0.004
		$v = 0 \rightarrow 3$	0.004
$\Lambda T \rightarrow 0 + \delta T$		D_0	0.0012
$\Delta E \rightarrow 0 + \delta E$	HD	$v = 0 \rightarrow 1$	0.00025
		D_0	0.0012
	D_2	$v = 0 \rightarrow 1$	0.00018
$\delta E = \sqrt{\delta E_{ m exp}^2 + \delta E_{ m calc}^2}$		$v = 0 \rightarrow 2$	0.001
V onp care		D_0	0.0011
	HD^+	$v = 0 \rightarrow 1$	0.000005
		$v = 0 \rightarrow 4$	0.000017

EJS, Koelemeij, Komasa, Pachucki, Eikema, Ubachs, Phys Rev D 87, 112008 (2013).

Constraints from H₂ X(v=0,1)

 $\delta E > \langle V_{\rm ADD} \rangle$

Constraints

\overline{n}	$R_{ m comp}({ m m})$					
	H_2 (1-0)	$H_2 D_0$	$D_2 D_0$	$HD^{+}(4-0)$		
2	$2.2 imes 10^4$	1.0×10^{4}	4.8×10^{3}	2.8×10^3		
3	$7.7 imes 10^{-1}$	1.9×10^{-1}	1.2×10^{-1}	$1.0 imes 10^{-1}$		
4	$1.1 imes 10^{-3}$	$8.5 imes 10^{-4}$	$5.9 imes 10^{-4}$	$7.0 imes 10^{-4}$		
5	$3.3 imes10^{-5}$	$3.2 imes 10^{-5}$	2.4×10^{-5}	$3.1 imes 10^{-5}$		
6	$3.4 imes 10^{-6}$	$3.7 imes 10^{-6}$	$2.9 imes 10^{-6}$	3.0×10^{-6}		
$\overline{7}$	$6.9 imes 10^{-7}$	$7.8 imes 10^{-7}$	6.4×10^{-7}	6.3×10^{-7}		

Constraints

\overline{n}	$R_{ m comp}({ m m})$				
	H_2 (1-0)	$H_2 D_0$	$D_2 D_0$	$HD^{+}(4-0)$	
2	2.2×10^4	$1.0 imes 10^4$	4.8×10^{3}	$2.8 imes 10^3$	
3	$7.7 imes 10^{-1}$	1.9×10^{-1}	1.2×10^{-1}	$1.0 imes 10^{-1}$	
4	$1.1 imes 10^{-3}$	$8.5 imes 10^{-4}$	$5.9 imes 10^{-4}$	$7.0 imes 10^{-4}$	
5	$3.3 imes10^{-5}$	$3.2 imes 10^{-5}$	2.4×10^{-5}	$3.1 imes 10^{-5}$	
6	$3.4 imes 10^{-6}$	$3.7 imes 10^{-6}$	$2.9 imes 10^{-6}$	$3.0 imes 10^{-6}$	
$\overline{7}$	$6.9 imes 10^{-7}$	$7.8 imes 10^{-7}$	6.4×10^{-7}	6.3×10^{-7}	

LHC (Atlas): Supernova cooling: Cavendish-type: $R_3 < 3.7 \times 10^{-10} \text{ m}$ $R_3 < 4 \times 10^{-7} \text{ m}$ $R_2 < 130 \times 10^{-6} \text{ m}$

QCD (nucleon masses): $R_7 < 2.4 \times 10^{-10} \text{ m}$

Conclusions

High-precision molecular spectroscopic results and accurate *ab initio* theory are used to constrain new physics

Comparisons set constraints for number and size (volume) of extra spatial dimensions

Spectroscopic method in Angstrom-separation range independent of and complement other methods

Talk based on: EJS, A. N. Schellekens, B. Gato-Rivera and W. Ubachs, New J. Phys 17, 033015 (2015).

Prospects

Thank you for your attention.

ADD effect in molecules

$$V_{\text{Newton}}(r) = G \frac{m_1 m_2}{r} = N_1 N_2 \frac{\alpha_G}{r} \hbar c \qquad \alpha_G = \frac{G m_p^2}{\hbar c}$$

2

$$V_{\rm ADD}(r) = \left(\frac{R_{\rm comp}}{r}\right)^n N_1 N_2 \frac{\alpha_G}{r} \hbar c \qquad \text{for } r \ll R_n$$

Perturbation causing level shift:

 $V_{\text{ADD}} = \alpha_G \hbar c N_1 N_2 (R_{\text{comp}})^n \int_0^{R_{\text{comp}}} \Psi^*(r) \frac{1}{r^{n+1}} \Psi(r) r^2 \mathrm{d}r$

Differential effect in transitions:

$$\Delta V_{\rm ADD} = V_{\rm Newton} (R_{\rm comp})^n \Delta \left(\left\langle r^{-(n+1)} \right\rangle \right)_{\Psi_1, \Psi_2}$$

ADD and the hierarchy problem

ADD modified gravity with *n* extra dimensions:

$$V_{\text{ADD}}(r) = \frac{m_1 m_2}{M_{(4+n)}^2 M_{(4+n)}^n} \frac{1}{r^{n+1}}$$
$$V_{\text{ADD}}(r) = \frac{m_1 m_2}{M_{(4+n)}^2 (M_{(4+n)} R_n)^n} \frac{1}{r} \qquad \text{for } r \gg R_n$$

ADD and the hierarchy problem

ADD modified gravity with *n* extra dimensions:

$$V_{\text{ADD}}(r) = \frac{m_1 m_2}{M_{(4+n)}^2 M_{(4+n)}^n} \frac{1}{r^{n+1}}$$
$$V_{\text{ADD}}(r) = \frac{m_1 m_2}{M_{(4+n)}^2 (M_{(4+n)} R_n)^n} \frac{1}{r} \qquad \text{for } r \gg R_r$$

Compared to Newtonian gravity:

$$V_{\rm N}(r) = G \frac{m_1 m_2}{r} = \frac{m_1 m_2}{M_{\rm Pl}^2} \frac{1}{r}$$

 $M_{\rm Pl}^2 = M_{(4+n)}^2 (M_{(4+n)} R_n)^n$

Fundamental mass $M_{(4+n)}$ may still be small, while observed M_{Pl} becomes large due to extra dimensions.

ADD in molecular transition

$$V_{\rm N}(r) = G \frac{m_1 m_2}{r} = N_1 N_2 \frac{\alpha_G}{r} \hbar c \qquad \alpha_G = \frac{G m_{\rm p}^2}{\hbar c}$$

$$V_{\rm ADD}(r) = \left(\frac{R_n}{r}\right)^n N_1 N_2 \frac{\alpha_G}{r} \hbar c \qquad \text{for } r \ll R_n$$
Perturbation causing level shift:

2

 $V_{\text{ADD}} = \alpha_G \hbar c N_1 N_2 R_n^n \int_0^{R_n} \Psi^*(r) \frac{1}{r^{n+1}} \Psi(r) r^2 \mathrm{d}r$

Differential effect in transitions: $\Delta V_{\text{ADD}} = \alpha_G \hbar c N_1 N_2 R_n^n \left(\left\langle r^{-(n+1)} \right\rangle_{\Psi_1} - \left\langle r^{-(n+1)} \right\rangle_{\Psi_2} \right)$

H, spectroscopy

Features

- Narrowband UV sources •
- Absolute frequency calibration •
- 2-photon Doppler-free REMPI •
- Sagnac alignment
- **Delayed** ionisation •
- ac-Stark extrapolation •

M. L. Niu et al., J. Mol. Spectrosc. 300, 44 (2014)

Example: H₂ spectroscopy

Features

- Narrowband UV sources •
- Absolute frequency calibration •
- 2-photon Doppler-free REMPI •

- Sagnac alignment
- Delayed ionisation

M. L. Niu et al., J. Mol. Spectrosc. **300**, 44 (2014)

Fifth force constraints: $\alpha_5 < \frac{\delta E}{N_1 N_2 \Delta Y_\lambda}$

EJS, Koelemeij, Komasa, Pachucki, Eikema, Ubachs, Phys Rev D 87, 112008 (2013).

Fifth-force constraints

EJS, W. Ubachs, V.I. Korobov, J. Mol. Spectrosc. **300**, 65 (2014)

The SM interactions

In molecules (and atoms): $r \sim a_0$ (Bohr radius)

- Electromagnetic (QED): $D_0 \sim 4.5 \text{ eV}$
- Weak < 10⁻¹² eV
- Strong < 10⁻⁴⁰⁰ eV
- Gravity ~ 10⁻³⁷ eV