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ABSTRACT

We present a new geometrical method aimed at determining the members of open
clusters. The methodology estimates, in an N-dimensional space, the membership
probabilities by means of the distances between every star and the cluster central
overdensity. It can handle different sets of variables, which have to satisfy the simple
condition of being more densely distributed for the cluster members than for the field
stars (as positions, proper motions, radial velocities and/or parallaxes are). Unlike
other existing techniques, this fact makes the method more flexible and so can be
easily applied to different datasets. To quantify how the method identifies the clus-
ter members, we design series of realistic simulations recreating sky regions in both
position and proper motion subspaces populated by clusters and field stars. The re-
sults, using different simulated datasets (N = 1, 2 and 4 variables), show that the
method properly recovers a very high fraction of simulated cluster members, with a
low number of misclassified stars. To compare the goodness of our methodology, we
also run other existing algorithms on the same simulated data. The results show that
our method has a similar or even better performance than the other techniques. We
study the robustness of the new methodology from different subsamplings of the ini-
tial sample, showing a progressive deterioration of the capability of our method as the
fraction of missing objects increases. Finally, we apply all the methodologies to the
real cluster NGC 2682, indicating that our methodology is again in good agreement
with preceding studies.
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1 INTRODUCTION

The determination of the members of a stellar open cluster
is an essential prior task to a large number of astrophysi-
cal problems, mainly concerning the star formation process,
the birth and destruction of stellar clusters, stellar evolu-
tion, Galactic structure and evolution, and many others.
This task has a statistical nature and usually involves the
separation of two populations defined by several variables of
different natures: the cluster members and the field stars. To
make a good classification, the quality, quantity and avail-
ability of the stellar variables are fundamental.

Consequently, the advent of the new generation of large
Galactic surveys like the Gaia-ESO Public Spectroscopic
Survey (GES, Gilmore et al. 2012; Randich & Gilmore 2013),
or the Gaia mission (Perryman et al. 2001), will help us to
enhance the current knowledge of the physics of our Galaxy
and, in particular, of the Galactic star cluster populations.
The Gaia mission will provide an unprecedented precision in

astrometry that will result in very accurate measurements
of positions, parallaxes and proper motions for one billion
stars. This will enable us to build the first 5-D map of our
Galaxy. If we add the Gaia radial velocities or the high pre-
cision ones given by GES, we will have a 6-D map covering
the phase space for an important sample of the Milky Way
stellar population. GES also intends to provide not only ra-
dial velocities but also chemical abundances and other sets
of astrophysical parameters, increasing the number of phase-
space dimensions to more than 12-D (Gilmore et al. 2012).

Most of the current techniques address the estimation
of the membership probabilities computing the probability
density functions (hereafter pdfs) of the variables used in the
analysis, either by parametric or non-parametric techniques.
Examples of these approaches are: Vasilevskis, Klemola, &
Preston (1958) along with Sanders (1971), Cabrera-Caño
& Alfaro (1985), Zhao & He (1990), Cabrera-Caño & Alfaro
(1990) and Uribe, Barrera, & Brieva (2006), among oth-
ers. This fact makes the cluster membership determination
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dependent on the availability of these variables. But, be-
ing aware of all the possibilities that the new generation of
galactic surveys offer, it becomes necessary to develop new
tools that make it possible to exploit the sets of variables
in a flexible way, being able to adjust the determination of
the cluster members to the availability and characteristics
of the data.

The purpose of this study is, therefore, the determi-
nation of the potential members of a stellar cluster allow-
ing for the use of as many phase-space variables (positions,
parallaxes, proper motions, radial velocities) as possible. To
achieve this objective, we have designed a geometrical ap-
proach, based on the distance distribution between each star
of the sample and a central overdensity in an N-dimensional
space (hereafter, N-D space). We assume that the distance
distribution can be approximated by a mixture of two 1-D
Gaussian functions: one for the cluster members and another
for the field stars. In this way our method computes the pdfs
of just one variable: the distance defined in an N-D space.
Thus we can choose the variables in our study, being able to
address the determination of cluster members from different
perspectives.

We tested the new methodology through its application
to a series of realistic simulations of a sky region, in the posi-
tion and proper motions subspaces, where a cluster and field
stars co-exist. We compared our results with those obtained
by applying two other techniques, one based on the paramet-
ric definition of the pdfs (Cabrera-Caño & Alfaro 1985) and
the other on the pdf direct kernel estimation (Cabrera-Caño
& Alfaro 1990), always using the same simulated datasets.
Finally, we selected the open cluster NGC 2682 to show the
application of our approach to real data.

The paper is organised as follows: Section 2 details the
fundamentals of the method; Section 3 describes the per-
formed simulations and the figures of merit introduced to
test it; the results achieved by the new methodology and
the comparison with those obtained by other techniques
are shown in Section 4, along with the results accomplished
when we apply the methodology to the open cluster NGC
2682; and, finally, Section 5 discuss the results and highlights
the main conclusions.

2 METHODOLOGY

Our approach considers an N-D space, where we estimate
the distances between every star and a central overdensity.
We assume that the N variables satisfy the basic condition of
being more densely distributed for the cluster members than
for the field stars. The distance distribution of cluster stars
would therefore show a mean and a dispersion smaller and
narrower than those for the field stars. A Bayesian analysis
of distance pdfs will allow us to assign a cluster membership
probability to the sample stars. In the following, we describe
the foundations and application protocol of our methodol-
ogy.

2.1 Distances in an N-Dimensional space.

Given the different nature of the variables involved in this
problem, we need to normalise them. The normalisation is
highly affected by the presence of outliers in the sample, for

which the first step is the data pruning, removing those ob-
jects with a high probability of being outliers. In addition,
the outlier detection represents a fundamental step in this
procedure because these objects modify the estimated distri-
bution functions both of the cluster and field stars, biasing
the final membership probability.

For the pruning of outliers, we followed the OUTKER
procedure proposed by Cabrera-Caño & Alfaro (1985) for
the case of the proper motion distribution, and easily tied
to the case of just one velocity dimension. It is important
to note that an outlier is one of the few mathematical con-
cepts that are not rigorously defined. In fact, we can never
deterministically say that a given object is an outlier, above
all if the only information that we have is the sample of ob-
jects. However, we can determine the probability of a given
object from the sample being an outlier from the probabil-
ity density function defined by the sample itself. The best
approximation to the definition of an outlier is that of an ob-
ject that is located in a low-density-probability region of the
space of N-variables. For its detection, the OUTKER pro-
cedure compares the probability density observed for each
object with the probability density function expected for the
whole sample. Thus we obtain the probability of being an
outlier for every object in the sample. Given these probabil-
ities we can decide which objects to remove from the initial
sample. As in the rest of this work we have followed the
Bayes minimum error rate decision rule (Kulkarni & Har-
man 2011), which specifies a threshold in the membership
probability of 0.5 to minimise the probability of error in the
classification. Thus, those objects with a probability of being
an outlier greater than 0.5 were removed from this analysis.
This process is carried out just once at the beginning of the
procedure and before the normalisation of the variables.

In principle one should detect and remove the outliers
for all the variables involved in the problem, but due to the
fact that the spatial distribution of the open clusters shows
a highly variable case history of alternating regions of high
and low density of objects, we have taken the decision to
remove the outliers in the proper motion distributions.

With an outlier-free sample, the estimation of the mem-
bership probabilities involves two iterative process, one in-
side the other. Figure 1 details the flow diagram of the pro-
cess. The external loop computes the distances, while the
internal one deals with the membership probabilities es-
timation. During the first iteration, the variables used in
the membership analysis (positions and/or proper motions
and/or radial velocities...) are normalised by their modes
and dispersions, according to:

Xi =
xi − x0

σx
(1)

where Xi represents the normalised variables and xi the
initial ones for the i-th star, x0 is the mode of the xi distri-
bution and σx its standard deviation. Then the distances for
every star (disi) are computed making use of the expression:

disi =
√

(XiN )T (M)(XiN ) (2)

where (XiN ) and (XiN )T are the N-dimensional vector and
the transpose vector respectively, composed by the values
taken from the normalised N-variables for the i-th star. In
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Figure 1. Flow diagram of the entire process.

the present work, we adopt an euclidean metric, M. However,
it could be changed, allowing the variables to have different
weights more according to the characteristics of the problem.

2.2 Bayesian Membership Probabilities.

These distances are used to estimate the membership prob-
abilities supposing that the distance distribution can be fit-
ted by a mixture of two 1-D Gaussians: one for the cluster
members and another for the field stars. Considering that
the subscripts c and f refer to the cluster members and to
the field stars, respectively, the pdf model of the distance
distribution is given by:

φi(disi) = ncφi,c(disi) + nfφi,f (disi) (3)

where nc and nf are the priors, and φi,c(disi) and φi,f (disi)
are the conditional pdfs defined as follows:

φi,c(disi) =
1

σc
√

2π
exp

(
−1

2

(
disi − µc

σc

)2
)

(4)

φi,f (disi) =
1

σf
√

2π
exp

(
−1

2

(
disi − µf

σf

)2
)

(5)

where disi is the distance value for the i-th star and µc,
σc, µf and σf are the Gaussian model parameters of both
populations.

Through an iterative Wolfe estimation procedure (Wolfe

1970) and starting with some reasonable values for the Gaus-
sian model parameters (means, standard deviations and pri-
ors of both groups of stars), the algorithm computes the
membership probabilities (within what we call the internal
loop) according to:

Probi(c/disi) =
ncφi,c(disi)

φi(disi)
(6)

These probabilities are used to derive a new estimation
of the model parameters that are then used to recompute the
pdfs and to update the membership probabilities until the
convergence of the iterative process is reached. This conver-
gence is reached once the difference between the parameters
that define the Gaussians of the distance distribution are
similar between one iteration and another with a tolerance
of one thousandth.

The resulting membership probabilities are used to
compute the weighted mean of every N variable used in the
distance estimation in order to re-determine the cluster cen-
ter in the N-D space. The new cluster center is compared
with the previous one (in the case of the first iteration with
the mode of the variables). If the difference is larger than a
chosen threshold (ε>0.001), another iteration is performed
where the distances are now computed from the new cen-
troids. In another case, the convergence is reached, and we
get the final membership probabilities.

For the range of values obtained in our simulations, the
thresholds of 0.001 ensure that the differences in the cluster
membership probabilities and in the distance distribution
obtained between the last iteration and the one before, guar-
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Figure 2. Example of distance distribution, computed using the

simulated positions and proper motions data. The legends show
the best fit parameters from which the fit to two 1-D Gaussians

is done. The dashed blue and the dot-dashed black lines refer

to the cluster and field distance distributions. The total pdf is
over-plotted as a solid red line.

antee us the same classification of objects between cluster
and field.

It should be noted that, although in the first iteration
the distances are computed using the mode, i.e., the overden-
sity in the N-D space, in subsequent iterations the distances
are calculated from the estimated cluster centroid. This way
of proceeding is due to the fact that in the first iteration
there is no previous classification of the stars into the two
categories, and therefore we do not know the centroid of the
cluster. As a first hypothesis we consider that the distances
to any point of origin must have the histogram maximum
in the cluster centroid. If, due to the characteristics of the
sample, this maximum corresponds to the field stars, the
situation is corrected in the following iterations where it is
a requirement (as starting hypothesis) for the dispersion of
the cluster stars to be lower than that of the field stars.
Once the first probabilities distribution has been obtained,
we obtain the cluster centroid as the moment of zero order
of this distribution, which thus becomes the new origin for
the determination of distances of the next iteration.

Figure 2 shows an example of a distance distribution
and the best fit to two 1-D Gaussians, in which the po-
sitions and proper motions are the variables used for the
cluster membership determination (see the following section
for the description of the simulations). The dashed blue line
represents the Gaussian fit for the cluster distance distribu-
tion, while the dot-dash black line represents the Gaussian
fit for the field stars. The total pdf is over-plotted as a solid
red line. As can be seen in the figure, the Gaussian fit to
the cluster distance distribution shows a lower mean and a
narrower dispersion than the field stars. This is an expected
result, since the distances were computed with respect to

the cluster center. In addition, it is the narrowest distribu-
tion due to the fact that we are using variables which are
more densely distributed for the cluster members than for
the field stars.

Once our methodology estimates the membership prob-
abilities, it is necessary to make a decision on the probability
value from which a star will be classified as a cluster member.
Again we used the decision criterion of the Bayes minimum
error rate decision rule. Thus, any star with a cluster mem-
bership probability above 0.5 will be classified as a cluster
member, so providing the final classification of the sample
into the two populations.

3 SIMULATIONS

3.1 Simulated Cases

In order to test the potential of the methodology to sepa-
rate between cluster members and field stars, we designed a
series of simulations, recreating regions of the sky including
a stellar open cluster and field star distribution. The sim-
ulations were performed in the position and in the proper
motion subspaces with different sets of parameters chosen
to quantify the feasibility of this method for determining
the final star classification into both populations. Trying to
make the simulations as realistic as possible, parameters for
both population distributions were selected, taking into ac-
count the current data in the main and most complete stellar
open cluster catalogues. In particular, we make use of the
values listed in the work of Dias et al. (2014), where a sample
of 1805 clusters was compiled and analysed. The distances
at which the clusters are found have been taken from the
DAML02 catalogue (Dias et al. 2002). Making use of these
two studies and imposing the condition that the number of
objects in the cluster field be lower than 5000, we obtain the
parameters of the cluster and field proper motions distribu-
tions, the distances and the projected radii for a sample of
1646 clusters.

In order to simulate the sample, we have calculated the
average of the number of objects in the field of the 1646 clus-
ters, obtaining a value that we approximate to 500 stars.
Given the high degree of skewness of the distance distri-
butions and the clusters radii, we decided to utilise their
respective modes as a representative value. Thus we con-
sider that a typical cluster, in this catalogue, is found at a
distance of 1250 pc and has a radius of 2 pc.

The spatial centroid of the stars of the cluster is always
located in the central position of the sample. Considering
that the real radius of the cluster is 2 pc and it is found at
a distance of 1250 pc, we obtain a projected radius value
of 0.093◦. The distribution in position of the cluster stars is
given by a circular Gaussian function with constant disper-
sion for all cases and equal to (σpos =) 0.031◦, which is equal
to a third of the projected radius. The spatial distribution
of the field stars is an homogeneous distribution within a
square field with a side of approximately 0.3◦.

Both the proper motions of the cluster and the field
stars are defined by a bivariate Gaussian pdf, circular for
the cluster and elliptic for the field. The field’s proper mo-
tions distribution is always centered on the (0,0) and its
covariance matrix is diagonal with values that vary (10, 15,
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20 and 25) mas/yr for σµf,x, and 1 or 1.2 times σµf,x for the
dispersion on the y axis (σµf,y). These values correspond
to the most frequent interval in the distribution of the quo-
tient σµf,x/σµf,y , for the distribution of the field stars for
the sample of 1646 clusters.

The relative frequencies of cluster stars used are 20%,
40%, 60% and 80% of the total sample. The internal dis-
persion of the cluster’s proper motions is constant for all
cases and has been determined as the mean of the veloc-
ity in virial equilibrium for all of the values of the fraction
of cluster stars, considering a mass equal to the number of
stars in the cluster and a radius of 2 pc, which gives us a
value of 0.42 km/s per degree of freedom. Considering that
the cluster is at a typical distance of 1250 pc, a value of 0.07
mas/yr for the internal dispersion of the proper motions of
the cluster stars is obtained.

However, the proper motions distribution observed in
a cluster is mainly dominated by the observational errors.
Once again utilising the values catalogued by Dias et al.
(2014), we can see that the standard deviation of the proper
motions of the clusters (σµc) presents a maximum around
3 mas/yr, a value that we have taken to model the proper
motions distribution of the cluster in our simulations. In
order to introduce the errors into the sample, the initial
proper motion for each star (obtained using the internal ve-
locity dispersion) has been replaced by a random number
taken from a Gaussian distribution of equal mean to the
initial proper motion and with standard deviation equal to
the error, which in this case is 3 mas/yr. The position of
the cluster in the Vector Point Diagram (VPD) keeps its
component µc,x fixed to 0 mas/yr and the component µc,y
varies between the following values: 1, 5 and 7.5 mas/yr. In
the end, a total of 96 simulations have been constructed to
quantify the new methodologys potential.

In Tables 1 and 2 a summary is shown of the set of
parameters utilised in the simulations for the four variables
of the sub-phase space. Table 1 summarises the fixed pa-
rameters of the simulations and Table 2 the variables. An
example of the simulations carried out is shown in Figure
3, where the upper and lower graphs show the distribution
of the field and cluster stars in the positions and proper
motions subspaces, respectively.

With the objective of analysing the possible bias intro-
duced by an observational subsampling of the population,
we have obtained a subsample for each simulation of 50%,
20% and 10% with regard to the initial number of objects
simulated (250, 100 and 50 objects, respectively), chosen
randomly though keeping the proportions between field and
cluster stars.

With these four variables we have carried out different
experiments utilising subspaces of phase space of N = 1, 2
and 4 dimensions. In the case of 1 and 2 dimensions we re-
stricted ourselves to the kinematic data. All the simulations
have been tailored using the pdfs, for the different statistical
distributions, given by NumPy Package in Python.

3.2 Figures of Merit.

With the purpose of studying in detail the potentiality of
the different methods that we analyse comparatively in this
work, we have considered two figures of merit, Complete-

ness (C) and Misclassification (M) that are defined by the
following expressions:

C =
Nc,met

Nc,real
(7)

M =
Nc−>f,met +Nf−>c,met

NTotal
(8)

where Nc,met is the number of simulated cluster mem-
bers recovered by the different methodologies, Nc,real is
the total number of simulated cluster members, Nc−>f,met
is the number of cluster members classified as field stars,
Nf−>c,met is the number of field stars classified as cluster
members, and NTotal is the number of stars in the total
sample.

4 RESULTS

In this section we analyse the results of applying the new
methodology to the 96 models that have been simulated.
For this we make use of the previously defined figures of
merit. One of the aims of this work is to compare the new
methodology with other already defined methods that have
been widely used. These are the parametric method for the
proper motion distributions (MT1 for the 1D case and MT2
for the 2D case), and the non-parametric method applica-
ble to the case of the four dimensions of sub-phase space
(hereafter MT4).

For MT1 and MT2 we use the formalism introduced by
Cabrera-Caño & Alfaro (1985) for proper motion distribu-
tion, which is easily reducible to the case of one dimension
(see, for example, Cantat-Gaudin et al. (2014)). This tech-
nique approaches the total pdf as a mixture of two bivariate
Gaussian distributions (for 1 or 2 dimensions): one for the
stellar cluster and another for the field population. Through
an iterative Wolfe estimation method, the pdfs’ parameters
are determined as well as the corresponding membership
probabilities. In all cases we used the Bayes minimum error
rate decision rule to make the final classification.

For the case of 4 dimensions, we compare the results
obtained from the membership analysis based on the non-
parametric method (MT4) developed by (Cabrera-Caño &
Alfaro 1990). This method doesn’t make any a priori as-
sumptions about the cluster and field star distributions and
assumes two hypotheses: i) there are two populations, clus-
ter members and field stars, and ii) the cluster members are
more densely distributed than the field stars in any sub-
space of variables. Membership probabilities are calculated
using Kernel estimators in an iterative way. In every iter-
ation, 3 different probabilities for each star are estimated:
one just using the positions of the stars, the second for the
proper motion data (kinematic probability), and the last
using both positions and proper motions (joint probability).
Cluster members in every iteration are selected as those stars
with joint and kinematic probabilities higher or equal to 0.5.

To summarise, MT1 is applied to the 96 simulations
where the only variable used is µy. MT2 is also applied to
the 96 simulations, where the variables used are the proper
motions (µx, µy), while MT4 is applied to the same number
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Table 1. Fixed parameters in all the simulations.

Parameters Values

Total Number of the Star Sample NTotal = 500

Cluster and Field Centroids in Space (xc, yc) = (xf , yf ) = (0,0) degree

Cluster Proper Motion Centroid (X-coord) µc,x = 0 mas/yr

Field Proper Motion Centroid (µf,x, µf,y) = (0,0) mas/yr

Cluster Proper Motion Dispersion σµc,x = σµc,y = σµc = 3 mas/yr

Cluster Angular Radius RCluster = 0.093 degrees

Table 2. Variable parameters in the simulations.

Parameters Values

Cluster Proper Motion Centroid (Y-coord) µc,y = (1, 5, 7.5) mas/yr

Proper Motion Dispersion of the Field Stars (X-coord) σµf,x = (10, 15, 20, 25) mas/yr

Proper Motion Dispersion of the Field Stars (Y-coord) σµf,y = (1, 1.2)·σµf,x
Fraction of Cluster Members 20%, 40%, 60%, 80%

Subsampling 50%, 20%, 10%

of test cases using both position and proper-motion variables
(x, y, µx, µy).

It is clear that the goodness of the classifications into
cluster and field stars depends on the characteristics of the
distribution functions that define the two populations in the
sub-phase space. In other words, it depends on the het-
eroscedasticity of the pdfs. A measure of this is given by
the Chernoff distance (Chernoff 1952, hereafter CD), which
is a measurement of the degree of similarity between the dis-
tribution functions that describe both populations. This CD
is calculated making use of the parameters of the simulated
distributions, both the positions and the proper motions, of
both populations. Its general analytic expression is given by
the equation:

CD =
1

2
αcαf (µc − µf )T [αcΣc + αfΣf ]−1(µc − µf )

+
1

2
log
|αcΣc + αfΣf |
|Σc|αc |Σf |αf

(9)

where α, µ and Σ are the percentages, means and covariances
of both groups of stars, and the superscripts T and -1 refer
to the transpose vector and to the inverse of the matrix,
respectively.

The methodology proposed in this work will also be
analysed according to different observational subsamples of
the same distribution function of the phase space. This
means that, using the earlier simulations, we will extract
samples corresponding to 50%, 20% and 10% of each of
them, in all cases keeping the same proportion of cluster
stars and field stars as in the original test case.

In the next part we will analyse the behaviour of the
different methodologies for the simulated samples, as well as
for cluster NGC 2682.

4.1 Analysis of the Simulations.

In this work we present a new methodology in which the im-
plementation of the outlier determination must be the first
step in the membership analysis. In the simulations carried
out we have assumed some well-behaved errors (Gaussian

errors with zero mean and standard deviation of 3 mas/yr).
For these simulations, the purging or not of outliers leads
to variations of less than 1% for the completeness (C ) and
0.4% for the misclassification rate (M ). However, this could
be different for the actual samples where the errors might
be larger and their distribution not necessarily well behaved.
No simulated cluster member has been removed as an outlier
in our simulations.

Once the outliers have been removed, the different
methodologies described above have been applied, and the
results detailed below have been obtained. Figure 4 sum-
marises the main results of the comparison of the different
methodologies applied to the simulated data. The figure is
divided into six panels, the two upper panels analysing the
case of one variable (N = 1), the middle panels that of two
variables (N = 2), and the lower panels the case of four vari-
ables (N = 4). For each set of variables, the graphs show
the figures of merit C and M versus the CD. Take note
that the estimation of the CD enables one to incorporate
all the parameter variations that the simulated distribution
functions describe. Below we shall also analyse the behav-
ior of these figures of merit with singular parameters of the
distributions.

The results of the new method application are indicated
by a continuous magenta line, while the results of the model
with which it is compared in each case are represented by a
dashed black line. The shaded areas represent the dispersion
(1σ wide) of the results within an interval of 0.15 in units
of distance.

In Figure 4 it can be observed that the M obtained by
all the methodologies decreases upon increasing the number
of variables utilised in the analysis. We should note that the
M rate obtained by the new methodology decreases from
25% for one variable to 5% for four variables, for the set
of CD values lower than 0.9. Likewise C increases with the
number of variables utilised, but for the new methodology
the C can be considered constant (C >90%) for any set
of variables and within the CD range analysed. It should
be noted that for the case of N = 4 variables the M cor-
responding to CDs less than 1 improves with the proposed
new methodology if we compare it to methodology MT4.
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The right-hand column in Figure 4 shows an abrupt change
in the behavior of M for CD values between 0.9 and 1.0. This
behavior, as will be seen further on, is due to the change in
the proportion of cluster stars when going from 20% to 40%.

From a general point of view, as the CD between cluster
and field stars increases, all the methodologies are able to
recover a greater number of members, introducing a lower
contamination of field stars. The greater differences in the
values obtained from C and M between methodologies are
observed in the lowest CD values.

The results show that the proportion of the number
of cluster stars in the sample also has a large influence on
the figures of merit. Figure 5 shows the values of C and M
obtained by the new methodology for N = 2 for the four
simulated cluster star percentages, that of 20% in magenta,
40% in blue, 60% in green and 80% in black. It is observed
that the lowest CD values (CD < 0.9) correspond only with
the lowest percentage of cluster stars, that of 20%. Moreover,
while C has a practically constant behavior, it is observed
that the larger the percentage of cluster stars in the sample,
the lower the value of M obtained.

The probability distributions of cluster membership ob-
tained by the new methodology are influenced both by the
number of variables utilised in the analysis and by the per-
centage of cluster stars simulated. In Figure 6 the cluster
membership probability distributions obtained after apply-
ing the new methodology for N = 1, 2 and 4 are shown.
These results correspond to a number of cluster stars equal
to 20% of the sample total, on the left, and to 80% of the
sample on the right, maintaining the same values in the rest
of the parameters that define the distributions of both pop-
ulations. It is observed that for a 20% proportion of stars
the highest probability attained is of the order of 90%. For
both cases, the highest values of membership probability are
those obtained for N = 4.

To find out the uncertainties in the estimation of the
two figures of merit obtained by the new methodology for N
= 1, 2 and 4 variables, the Bootstrap technique (Efron 1979)
is applied. For this, 50 resamplings of each of the simulated
models were carried out, obtaining uncertainties of ∼ 1% for
both C and M.

The results obtained by the new methodology after their
application to the different observational samplings of the
phase-space distribution functions are presented in Figure 7.
The figure-of-merit values obtained are better, on average,
in the samplings of 50% (close-dashed blue line) and 20%
(wide-dotted magenta line) for any of the proportions of
cluster stars and number of variables utilised. Although the
average values obtained in the 10% sampling (continuous
black line) are not very different to those obtained by the
other two subsamples, the uncertainty in the estimation of
C and M is greater, which affects the correct classification of
the sample into cluster and field. This can be observed from
the coloured zone (1 σ) associated with this subsample. This
result shows the importance of having a good completeness
in the catalogues utilised for the correct classification of the
sample into the two stellar populations.

Tables 3 and 4 show the differences between the means
and the dispersions obtained after the application of the new
methodology using N = 1, 2 and 4 variables, with respect to
the simulated models. The results of the three subsampling
cases are shown in detail, as well as the initial test cases

in which there was a total of 500 stars. It can be seen that
the use of a larger number of variables in the membership
analysis results in a better attainment of the cluster param-
eters. Moreover, if we compare the results obtained for the
different subsamples with the initial one, we observe a grad-
ual worsening in the determination of the simulated models’
cluster parameters.

4.2 Analysis of real data.

In this subsection, we analyse the application of the new
method to real data, specifically to the open cluster NGC
2682. The data used for the analysis comes from the work of
Zhao et al. (1993). Its catalogue contains position and proper
motion data for 1046 stars in the region of the cluster.

To demonstrate the potential of the methodology pro-
posed in this work in the use of different datasets, we
have carried out two membership analyses with N = 2 and
4 variables, and compared the results obtained with the
two methodologies described above. Thus we have applied
methodology MT2 to the proper motions variables, to com-
pare their results with those obtained by the new methodol-
ogy. This cluster was analysed using the methodology MT4
in the work by Sánchez & Alfaro (2009). We will use the
member determination performed in this work to compare
with our results. Moreover, the catalogue Zhao et al. (1993)
provides us with membership probabilities calculated from
the proper motions, which we have used to carry out an-
other comparative analysis, for which we consider a thresh-
old value on the probability of 0.5 to classify the sample into
cluster and field stars.

Prior to the application of the methodologies, the out-
liers in the proper motion subspace have been estimated,
restricting the study to stars with proper motion data lower
than ± 30 mas/yr. This range of proper motions is greater
than ten times the cluster proper motions dispersion ob-
tained by Zhao et al. (1993), which means that a star situ-
ated outside this square might be considered as an outlier.
This previous selection enables us, on the one hand, to re-
duce computational time without detriment to the quality
and robustness of the results obtained; and, on the other
hand, it also facilitates the convergence of the OUTKER
procedure. The OUTKER algorithm determines 91 outliers,
leaving a sample of 922 stars, which are those used to carry
out the membership analysis.

Figure 8 shows the members determined by each of the
methodologies in the proper motions subspace. In the graph
on the left the members obtained by the methodologies that
use the N = 2 variables, and on the right, those using N =
4 variables.

The parameters of the distribution functions that de-
scribe the field and cluster populations in the sub-phase
space, obtained by each membership analysis, are presented
in Table 5. The results show that the number of cluster mem-
bers obtained by the different membership analyses is very
similar, around 356, with the exception of those obtained by
the new methodology for N = 4, which determines 314.

In the positions space, the dispersions of the cluster dis-
tribution functions obtained both by the new methodology
for N = 4 and by MT4 are lower than those obtained when
only the proper motions are used in the membership anal-
ysis. Hence the introduction of the positions restricts the
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Figure 4. Behaviour of both figures of merit with the number of variables utilised in the membership analysis, according to CD. The

continuous magenta lines refer to the results obtained by the new methodology, while the dashed black lines show the results obtained by
the other methodologies. The shaded areas represent the dispersion (of 1σ) of the results within an interval of 0.15 in units of distance.
An improvement in the results is observed, both with the increase in the number of variables and with the heteroscedasticity of the

distribution functions measured by the CD between the two populations.
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Figure 6. Distribution of the cluster membership probabilities obtained by the methodology proposed in this work, for N = 1, 2 and
4 variables. These results correspond to the same simulated model in which the only variable parameter is the fraction of cluster stars,
20% on the left, and 80% on the right.

cluster determination to more central regions of the posi-
tions space. The rest of the parameters that describe the
distribution functions of both populations are very similar.

With regard to the proper motions variables, the cluster
parameters determined by the methodologies present a high
degree of agreement, with a slight increase in the disper-
sion obtained in the studies that use N = 4 variables. For
the field population, the dispersions obtained by the new
methodology and by MT2 are lower than those obtained by

Zhao et al. (1993) and MT4. This behaviour is due to the
sample utilised to calculate them: both for the methodology
MT2 and for the new proposal in this work for N = 2 and 4
variables, the parameters of the field star distribution have
been calculated with respect to the sample free of outliers,
whereas for both Zhao et al. (1993) and MT4 the calcu-
lations have been performed for the total number of stars
present in the catalogue.

The comparison of the number of members common
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Figure 7. Influence on the determination of C and M of the different simulated observational subsamples. The results referring to the

50%, 20% and 10% samples are shown by a close-dashed blue line, a wide-dotted magenta line and a continuous black line, respectively.

Table 3. Means and dispersions of the differences between the simulated spatial parameters and those obtained by the new methodology

for N = 1, 2 and 4 variables, for the four subsampling cases.

Sampling N Var Cluster Spatial Coordinates (deg)

∆xc, σ∆xc ∆σxc , σ∆σxc
∆yc, σ∆yc ∆σyc , σ∆σyc

100%

1 Var 0.000, 0.003 -0.019, 0.011 0.000, 0.003 -0.019, 0.011

2 Var 0.000, 0.002 -0.011, 0.009 0.000, 0.002 -0.011, 0.009

4 Var 0.000, 0.001 0.001, 0.001 0.000, 0.001 0.001, 0.001

50%

1 Var 0.000, 0.004 -0.019, 0.012 0.000, 0.004 -0.019, 0.012

2 Var 0.001, 0.004 -0.011, 0.009 0.000, 0.003 -0.011, 0.009

4 Var 0.001, 0.003 0.001, 0.002 0.001, 0.002 0.001, 0.002

20%

1 Var 0.001, 0.011 -0.019, 0.013 0.000, 0.009 -0.019, 0.013

2 Var 0.001, 0.006 -0.010, 0.011 0.000, 0.005 -0.012, 0.012

4 Var 0.000, 0.006 0.002, 0.004 0.000, 0.005 0.001, 0.004

10%

1 Var 0.005, 0.028 -0.018, 0.019 0.000, 0.022 -0.021, 0.017

2 Var -0.001, 0.013 -0.014, 0.016 0.003, 0.015 -0.015, 0.017

4 Var 0.002, 0.014 0.003, 0.007 0.000, 0.010 0.002, 0.008

between methodologies is shown in Table 6. As can be ob-
served, the number of common members is very high, al-
though lower for the case of the new methodology for N =
4 variables, as it determines the fewest potential members.

From the classification of the sample from Zhao et al.
(1993) in cluster and field stars, we have obtained a CD of
1.57. Using this value, and making use of the results ob-
tained in our simulations, we have estimated the C and M
expected in the membership analysis carried out for this
cluster. From the graphs in Figure 4 for N = 2 and 4 vari-
ables, we observe that the values of C corresponding to this
distance are around 98% for all the methodologies. The M
for this distance is around 5%, that is to say, approximately
52 stars.

Given that the cluster can be considered responsible for
the overdensity observed in the positions space, after extrac-
tion, we should obtain a uniform distribution of field stars.
In Figure 9 the residues obtained are studied after eliminat-
ing the cluster determination from the sample performed by
each methodology. The density of the field stars, obtained
for each methodology, does not show a high degree of struc-
ture in the residues, which are perfectly compatible with a
discrete homogeneous distribution. Particularly uniform is
the distribution of field stars obtained by the new method-
ology for N = 4 variables, showing the potential of this new
methodology in the identification of members in star clus-
ters.
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Table 4. Means and dispersions of the differences between the simulated kinematic parameters and those obtained by the new method-

ology for N = 1, 2 and 4 variables, for the four subsampling cases.

Sampling N Var Cluster Kinematic Coordinates (mas/yr)

∆µc,x, σ∆µc,x ∆σµc,x , σ∆σµc,x
∆µc,y , σ∆µc,y ∆σµc,y , σ∆σµc,y

100%

1 Var -0.013, 0.695 -5.693, 3.442 0.142, 0.316 0.031, 0.379

2 Var 0.001, 0.147 0.033, 0.272 0.093, 0.373 -0.114, 0.400

4 Var -0.025, 0.109 -0.147, 0.279 0.027, 0.151 -0.231, 0.317

50%

1 Var -0.143, 0.846 -5.531, 3.634 0.244, 0.561 -0.039, 0.712

2 Var -0.020, 0.385 0.006, 0.420 0.142, 0.433 -0.154, 0.534

4 Var -0.026, 0.229 -0.137, 0.382 0.049, 0.289 -0.232, 0.391

20%

1 Var -0.023, 1.541 -5.771, 4.226 0.782, 3.086 -0.170, 3.454

2 Var 0.012, 0.491 0.003, 0.651 0.275, 0.759 -0.083, 0.928

4 Var -0.062, 0.517 -0.104, 0.496 0.137, 0.436 -0.119, 0.534

10%

1 Var 0.763, 5.752 -6.262, 6.056 2.491, 9.565 -0.696, 5.546

2 Var 0.722, 3.964 -0.651, 2.400 1.595, 3.641 -0.851, 2.663

4 Var 0.017, 1.839 -0135, 1.457 0.198, 1.079 -0.147, 1.317
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Figure 8. Members of cluster NGC 2682 determined by the different methodologies in the proper motion subspace. The graphs have
been divided according to the variables utilised in the membership analysis: N = 2 on the left and N = 4 on the right. The sample total
is represented in black, the outliers in green, the results obtained by the new methodology in magenta, those obtained by Zhao et al.

(1993) in yellow, and those obtained by MT2 and MT4 in blue.

5 SUMMARY AND CONCLUSIONS

We present a new geometrical method aimed at determining
the members of stellar clusters. The methodology computes
the distances between every star and the cluster central over-
density, in an N-dimensional space. Through an iterative
Wolfe estimation procedure, the membership probabilities
for every star in the sample are computed fitting the dis-
tance distribution through a mixture of two 1-D Gaussians:
one for the cluster members and another for the field stars.
After imposing a decision criteria of 0.5 on the probability
value, the cluster members are determined.

The method can handle different sets of variables, which
have to satisfy the simple condition of being more densely
distributed for the cluster members than for the field stars
(as positions, proper motions, radial velocities, abundances
or/and parallaxes, are). Thus we designed a series of realis-
tic simulations, in the positions and in the proper motions
subspaces populated by clusters and field stars. The simu-
lations not only enable us to quantify how the method is
able to distinguish between both populations under differ-
ent numbers of variables (N), but also to compare the results
with those obtained by other existing methodologies, always
using the same simulated dataset.
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Figure 9. Density maps (using a squared beam of 1 pc per side) of the field population determined by different methods. The upper

and middle graphs show the distribution of field stars for the membership analyses that utilise the N = 2 and 4 variables, respectively.

The lower graph shows the distribution obtained making use of the data from Zhao et al. (1993). Particularly uniform is the distribution
of field stars obtained by the new methodology for N = 4 variables, showing the potential of this new methodology in the identification

of members in star clusters.
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Table 5. Parameters of the cluster and field distribution functions obtained by each of the NGC 2682 membership analyses.

Number of Variables

Parameters 2 Variables 4 Variables

This Work MT2 Zhao et al. (1993) This Work MT4

Number of Cluster Members 370 356 354 314 354

xc (pc) 0.224 0.055 0.052 -0.264 0.127

σx,c (pc) 3.078 2.893 2.821 1.709 2.425

yc (pc) 1.226 1.188 1.177 1.295 1.265

σy,c (pc) 3.010 2.883 2.885 1.765 2.534

xf (pc) 0.266 0.371 0.243 0.513 0.204

σx,f (pc) 7.324 7.295 7.286 7.264 7.359

yf (pc) 0.872 0.904 0.965 0.868 0.920

σy,f (pc) 7.271 7.231 7.413 7.204 7.476

µα,c (mas yr−1) -0.530 -0.566 -0.561 -0.426 -0.476

σµα,c (mas yr−1) 1.141 1.104 1.076 1.248 1.101

µδ,c (mas yr−1) 0.505 0.470 0.471 0.266 0.380

σµδ,c (mas yr−1) 1.057 1.016 1.033 1.154 1.196

ρc -0.246 -0.350 -0.272 -0.315 -0.258

µα,f (mas yr−1) 0.568 0.563 -0.703 0.413 -0.747

σµα,f (mas yr−1) 7.413 7.326 11.507 7.078 11.500

µδ,f (mas yr−1) 4.146 4.078 2.748 3.935 2.794

σµδ,f (mas yr−1) 6.448 6.387 11.622 6.164 11.610

ρf -0.213 -0.211 -0.150 -0.201 -0.149

Table 6. Number of members of NGC 2682 common between methodologies.

Number of Variables Reference 2 Variables 4 Variables

This Work, N = 2 MT2 Zhao et al. (1993) This Work, N = 4 MT4

2 Variables
This Work, N = 2 — 354 352 288 343
MT2 354 — 345 284 335

Zhao et al. (1993) 352 345 — 282 333

4 Variables
This Work, N = 4 288 284 282 — 295

MT4 343 335 333 295 —

The results obtained have been described according to
two figures of merit, C and M, from which we can quantify
how each methodology has classified an initial sample of
cluster and field stars. The goodness of the classifications
depends on the characteristics of the distribution functions
of both populations that is, the heteroscedasticity of the
pdfs. A measure of this is the Chernoff Distance (CD), which
has been utilised to represent both figures of merit.

The results show that the increase in the number of vari-
ables utilised produces better results, recovering a higher
percentage of cluster stars with a lower contamination of
field stars. C and fundamentally M improve with the het-
eroscedasticity of the pdfs, measured by the CD between the
two populations.

The new methodology produces similar or even better
results for C than those obtained by other methodologies
for any set of variables, obtaining values superior to 90% for
practically all the simulations performed. The M obtained
by the methodology proposed in this work is greater than
that obtained by methodologies MT1 and MT2, but lower
than that obtained by methodology MT4 for the shorter CD.

The proportion of cluster stars in the sample also has a
large influence on the figures of merit. It is observed that the
lowest CD values correspond only with the lowest percentage
of cluster stars, that of 20%. The larger the percentage of

cluster stars in the sample, the lower the value of M obtained
by any methodology. For the case of an 80% proportion of
cluster stars M is almost constant for any CD.

We have estimated the error of both figures of merit
obtained by the new methodology for variables N = 1, 2 and
4. For this we have applied the Bootstrap method, sampling
each model 50 times, and thus obtaining errors of ∼1% in
the estimation both of C and M.

The results obtained after applying the new method-
ology to different observational subsampling of the same
simulated phase-space distribution function show a gradual
worsening in the recovery of the parameters that describe
the initial cluster and field populations. In the specific case
of the proper motions, the differences obtained between the
means are much lower than the mean error introduced in
the simulations, which was 3 mas/yr.

As a practical example, the new methodology has been
applied to cluster NGC 2682, making use of the data from
Zhao et al. (1993). The membership analyses were carried
out utilising N = 2 and 4 variables, and they were compared
with those obtained by the methodologies MT2, MT4 and
our classification carried out using the membership proba-
bilities present in the catalogue of Zhao et al. (1993). The
results obtained by our new methodology show a high de-
gree of agreement with those obtained by the other mem-
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bership analyses. Making use of the parameters of the dis-
tribution functions of both populations obtained for Zhao et
al. (1993), a CD of 1.57 has been calculated. For this value,
and using the results obtained in our simulations, we esti-
mate values of C around 98% for the methodologies that use
N = 2 and 4 variables. The M for this distance is around
5%, that is, approximately 52 stars.

It is worth mentioning that in the present work we show
the potential of our methodology in determining cluster
members. The comparison with other widely used method-
ologies shows a high degree of agreement. However, unlike
those methodologies, the new methodology presents a high
flexibility in the use of different sets of variables. This fea-
ture enables us to carry out membership analyses adapting
its application to the best variables available in each sur-
vey. We should not forget that our ultimate goal is Gaia, for
which this code has been specially designed.
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