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ABSTRACT  17 

The decrease of stomatal conductance (gs) is one of the prime responses to water 18 

shortage and the main determinant of yield limitation. Understanding the mechanisms 19 

related to stomatal closure in response to imposed water stress is crucial for a correct 20 

irrigation management. The loss of leaf hydraulic functioning is considered one of the 21 

major factors triggering stomatal closure. Thus, we conducted an experiment to quantify 22 

the dehydration response of leaf hydraulic conductance (Kleaf) and its impact on gs in 23 

two fruit tree Mediterranean species, one deciduous (almond) and one evergreen (olive). 24 

Our hypothesis was that a higher Kleaf would be associated with a higher gs and the 25 

reduction in Kleaf would predict the reduction in gs in both species. We measured Kleaf in 26 

olive and almond during a cycle of irrigation withholding. We also compared the results 27 

of two methods to measure Kleaf: dynamic rehydration kinetics and evaporative flux 28 

methods. We also determined gs, leaf water potential (Ψleaf), vein density, 29 

photosynthetic capacity and turgor loss point. Results showed that gs was higher in 30 

almond than in olive and so was Kleaf (Kmax = 4.70 and 3.42 mmol s-1 MPa-1 m-2, in 31 

almond and olive, respectively) for Ψleaf>-1.2 MPa. At greater water stress levels than -32 

1.2 MPa, however, Kleaf decreased exponentially being similar for both species while gs 33 

was still higher in almond than in olive. We conclude that although the Kleaf decrease 34 

with increasing water stress does not drive unequivocally the gs response to water stress, 35 

Kleaf is the variable most strongly related to the gs response to water stess, especially in 36 

olive. Other variables such as the increase in ABA may be playing an important role in 37 

the gs regulation although in our study, the gs -ABA relationship did not show a clear 38 

pattern.. 39 

 40 

 41 
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Introduction 42 

Fruit tree orchards are among the agronomical systems that are most threatened by 43 

reduced water availability and climate change. Despite the high water demand of these 44 

orchards, they respond markedly to deficit irrigation practices (Fereres and Soriano 45 

2007, Ruiz-Sanchez et al. 2010). This explains the increasing demand to understand the 46 

physiological mechanisms involved in their response to imposed water stress (Rinaldi 47 

and He 2014). This is particularly important when plant-based sensors are used for 48 

water stress assessment. A correct interpretation of the collected outputs is then required 49 

for accurate irrigation scheduling. Stomatal conductance regulation is considered a 50 

major mechanism responsible for regulating the plant response to water stress, since 51 

stomatal closure is one of the earliest responses to water shortage and the main 52 

determinant of limitation to photosynthesis (Flexas et al. 2014), and hence, yield. 53 

Stomatal control is regulated to optimize both the outward diffusion of water 54 

vapor and the diffusion of CO2 into the leaf during photosynthesis (Hetherington and 55 

Woodward 2003). However, the mechanisms producing stomatal closure under water 56 

stress conditions still remain a matter of debate (Buckley 2005, Brodribb 2009, 57 

Brodribb and MacAdam 2011, Pantin et al. 2013). The loss of plant hydraulic 58 

functioning is considered one of the main driving factors of stomatal closure (Brodribb 59 

and Holbrook 2003, Brodribb and Jordan 2008, Brodribb and Cochard 2009, Torres-60 

Ruiz et al. 2014), since the same volume of water leaving the stomata as vapor must be 61 

replaced by liquid water flowing through the vascular system (Brodribb 2009). The 62 

other major mechanism considered to trigger stomatal closure is the increase of 63 

chemical signals such as ABA (Abscisic acid) in the leaf (Tardieu and Simonneau 1998, 64 

Dodd 2005). 65 
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Among all the resistances that water has to overcome through the plant, the leaf 66 

has been demonstrated to be a major one (Nardini and Salleo 2000, Nardini et al. 2001, 67 

Sack et al. 2003, Brodribb and Holbrook 2003) and, thus, it may play an important role 68 

in the regulation of stomata (Guyot et al. 2012). Consequently, leaf hydraulic 69 

conductance (Kleaf) may be a major determinant of plant productivity and growth (Sack 70 

and Holbrook 2006). However, the effect of Kleaf on stomatal conductance (gs) is still 71 

poorly understood and few studies have addressed the coordination dynamics between 72 

both variables (Brodribb and Holbrook 2004, Lo Gullo et al. 2005, Brodribb and Jordan 73 

2008, Blackman et al. 2009, Gortan et al. 2009, Johnson et al. 2009). Furthermore, the 74 

extent to which Kleaf declines with water stress varies from species to species, even 75 

within a particular habitat (Sack et al. 2003, Brodribb and Hobrook 2003, Lo Gullo et 76 

al. 2005, Johnson et al. 2009, Scoffoni et al. 2012) and the knowledge of its relationship 77 

to leaf structure and ecological strategy remains incomplete (Blackman et al. 2010). For 78 

these studies, reliable and fast Kleaf measurements would be of great help. Although 79 

there are new approaches that can provide Kleaf measurements within minutes, such as 80 

the “dynamic rehydration kinetics method” (DRKM, Blackman and Brodribb 2011), in 81 

opposition to more traditional and time-consuming options such as the “evaporative flux 82 

method” (EFM), some uncertainties are still unresolved. These include the identification 83 

of the flow pathways during leaf rehydration, upon which DRKM measurements are 84 

based, and how similar these pathways are to those of transpiration (Flexas et al. 2013). 85 

Thus, we conducted a study with the ultimate objective of contributing to the 86 

understanding of gs regulation. We focused on the impact of Kleaf on gs in an evergreen 87 

(olive) and a deciduous (almond) Mediterranean species, i.e. two species occurring in 88 

the same area but with different ecological strategies. Specifically, our objectives were: 89 

(i) to test the impact of DRKM and EFM as well as tree age on the values of Kleaf; (ii) to 90 
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determine the Kleaf response to dehydration in both olive and almond, and potentially 91 

related structural and functional leaf traits; and finally (iii) to study the effect of Kleaf on 92 

gs in response to water deficit. We further compared the effect of Kleaf on gs with the 93 

impact of ABA on gs. For the first objective, we hypothesized that both methods would 94 

produce similar Kleaf values, because the flow pathways used in leaf rehydration (basis 95 

for DRKM measurements) would be the same as the pathways followed by the water on 96 

its way to the leaf evaporation sites (basis for EFM measurements). For the second 97 

objective, we hypothesized that we would find differences by comparison between the 98 

species in maximum Kleaf and leaf traits such as vein density, photosynthetic capacity, 99 

and turgor loss point. For the third objective, we expected that a higher Kleaf would be 100 

associated with a higher gs, and the reduction in Kleaf  would predict the reduction in gs, 101 

to a greater extent than ABA level. 102 

 103 

Materials and methods 104 

The olive (Olea europaea L., cv Arbequina) and almond (Prunus dulcis (Mill.) D.A. 105 

Webb, cv. Guara) trees used in this study were located in Seville (Spain) (37º 15’ N, -5º 106 

48’ 102 W). The area has a Mediterranean climate with hot and dry weather from May 107 

to September, being mild and wet for the rest of the year. Measurements were taken 108 

from May to October, both in 2013 and 2014. The sampled plants were regularly 109 

irrigated before the beginning of the experiments to replace their water needs. 110 

 111 

Response of leaf hydraulic conductance to dehydration: methods and tree age effect 112 

We aimed to conduct a study comparing Kleaf values obtained using different methods, 113 

tree age material, and single leaves vs. terminal parts of shoots. The data obtained in 114 

these methodological experiments were independent of the data collected in the water 115 
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deficit experiment. Leaf hydraulic conductance was measured in fully developed, 116 

current year and sun-exposed leaves in both species. This was the same for the test 117 

comparing plant material, but in this test also the terminal parts of olive shoots were 118 

used. Before taking the measurements, we cut branches long enough to avoid any xylem 119 

embolism and put them in dark plastic bags with wet paper towel inside to equilibrate 120 

for at least 30 min. Leaves and terminal parts of shoots were cut from the branches 121 

under purified water. They were then rapidly connected under water to a flowmeter 122 

consisting of silicon tubing containing purified and degassed water. The tubing 123 

connected the leaf to a pressure transducer (PX26-005GV, Omega Engineering Ltd., 124 

UK), which was, in turn, connected to a Campbell data logger CR1000 (Campbell, 125 

Campbell Scientific Ltd., UK) to register and store readings every 1 s to calculate the 126 

flow rate through the leaf (mmol s-1 m-2). Reference tubing of different resistances was 127 

used to minimize measurement errors (Sack et al. 2011, Melcher et al. 2012). Some 128 

branches were allowed to dehydrate before measurement for increasing periods to 129 

obtain a wide range of leaf water potential values (Ψleaf). 130 

 131 

Comparison of DRKM and EFM methodologies 132 

To assess the differences between the Kleaf vulnerability curves potentially produced by 133 

the use of the two tested methods, a group of leaves (Table 1) was measured with either 134 

DRKM (KlDRKM) or EFM (KlEFM). The examination of leaf hydraulic methods was 135 

conducted using different types of plant material. With olive, we used leaves from eight 136 

6-year-old potted trees and three 8-year-old trees and with almond, we used leaves from 137 

eight 6-year-old potted trees and three 13-year-old trees.  138 

For the DRKM measurements (Brodribb and Holbrook 2003, Blackman and Brodribb 139 

2011) the leaves were connected to the flowmeter, as described in the former section, 140 
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until flow rate decayed from its maximum as leaves rehydrated. Initial flow was 141 

determined by fitting an exponential curve through the first 20 s of the rehydration flow 142 

data and extrapolating back to the initial point of leaf excision, considering the time (s) 143 

required to connect the leaf to the flowmeter (Blackman and Brodribb 2011). After 144 

connecting the leaves to the flowmeter, they were covered with moist paper and had no 145 

exposure to light in order to prevent transpiration. Prior to the flow rate determination, 146 

initial leaf water potential (Ψ0) was measured in the neighboring leaf. Final leaf water 147 

potential (ΨDRKMf) was also measured in the leaf used to determine the flow after being 148 

allowed to equilibrate for at least 30 min. A test conducted with rehydrated olive leaves 149 

at different leaf water potentials demonstrated that after 30 min the leaf water potential 150 

hardly changed.  151 

For the EFM measurements (Scoffoni et al. 2012), the leaves were connected to the 152 

same flowmeter, but they were allowed to transpire above a large box fan and under a 153 

light source (> 1,000 μmol m2 s-1 photosynthetically active radiation) for at least 30 min 154 

until the flow was stable (coefficient variation <5% in the last 5 min). In EFM, it is 155 

essential that the flow rate reaches a steady state, because the method assumes a stable 156 

leaf water potential (ΨEFMf) after flow rate reaches the steady state (Scoffoni et al. 157 

2012). Ψ0 was measured as in DRKM. 158 

In addition, and to compare the effect of both methods on Kleaf values and not 159 

only on Ψleaf- Kleaf curves, direct comparisons were conducted by determining Kleaf in 26 160 

leaves of both species using both methods. After connecting the leaves to the flowmeter, 161 

transpiration was prevented, as previously described for DRKM, until the leaves were 162 

rehydrated. Then, initial flow rate was determined following DRKM. Later, and while 163 

the leaves were still connected to the flowmeter, they were allowed to transpire under 164 
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the same conditions described before for EFM, and then steady-state flow rate and 165 

ΨEFMf were obtained following EFM. 166 

Thus, for each method, Kleaf was calculated as: 167 

 168 

 𝐾𝑙𝐸𝐹𝑀 =
𝐸

(−𝛹EFMf−0)𝐴𝑙𝑒𝑎𝑓
 , (1) 169 

 170 

𝐾𝑙𝐷𝑅𝐾𝑀 =
−𝐼

𝛹O𝐴𝑙𝑒𝑎𝑓
  . (2) 171 

 172 

In Eq. 1, KlEFM is leaf hydraulic conductance measured using EFM, E is steady-173 

state transpiration determined with the readings of the flowmeter (mmol s-1), and Aleaf is 174 

leaf area (m2). In Eq. 2, KlDRKM is leaf hydraulic conductance measured with DRKM, I 175 

is the instantaneous initial maximum flow rate into the leaf (mmol s-1), and Ψo is the 176 

initial leaf water potential (MPa). To correct for changes in Kleaf induced by temperature 177 

dependence of water viscosity, standardized Kleaf values at 25°C were calculated 178 

(Scoffoni et al. 2012). 179 

To construct the vulnerability curve for each species, Kleaf was then related to the 180 

lowest Ψleaf, i.e. Ψo in DRKM and Ψo or ΨEFMf in EFM (Scoffoni et al. 2012). All Ψleaf 181 

measurements were made with a Scholander-type pressure chamber (PMS Instrument 182 

Company, Albany, Oregon, USA). 183 

 184 

Tree age test 185 

For the tree age test, for olive we compared the Kleaf data of eight 6-year-old potted trees 186 

with Kleaf data of three 8-year-old trees. With almond, we compared Kleaf of eight potted 187 

6-year-old trees with Kleaf of three 13-year-old trees. Only DRKM was used in the Kleaf 188 

determination. 189 
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 190 

Single leaves—terminal shoots test 191 

An additional experiment was performed, with the olive trees only, to assess the effect 192 

on Kleaf of any potential artifact derived from the measurement of the terminal parts of 193 

shoots as opposed to the single leaves. For this test, we used plant material of the same 194 

eight 6-year-old potted olive trees. Kleaf was measured using DRKM. 195 

 196 

Structural and functional leaf traits 197 

The following measurements were conducted to analyze the coordination between leaf 198 

traits. 199 

 200 

Vein density 201 

Vein density (VD), defined as length of vein per unit leaf area (mm mm-2), was sampled 202 

using ten leaves per species. They had similar characteristics to the leaves used for the 203 

rest of measurements (fully developed, current year and sun-exposed leaves of potted 204 

trees of 6- and 8-year-old olive trees and 6- and 13-year-old almond trees). The major 205 

first vein was not considered. Leaves were slightly sanded and cleared using 5% NaOH 206 

solution, changed every 2 days for a total of 8 days in olive and 5 days in almond. To 207 

remove any remaining pigment from the leaves after the chemical clearing, we used a 208 

50% bleach solution on the leaf for 10–20 s. Images of cleared and stained leaves with 209 

1% safranin were captured using a Canon Powershot A620 camera mounted on a 210 

stereoscope (Zeiss Stereo Discovery V8, Germany). Images of 11 mm2 were taken 211 

centrally in the top, middle, and bottom thirds of the leaves and the ImageJ program 212 

1.48v (Schneider et al. 2012) was used to quantify the vein lengths. 213 

 214 
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Leaf hydraulic vulnerability parameters 215 

To compare the two species in their hydraulic parameters, Kleaf at full hydration (Klmax) 216 

was determined for both species using the average Kleaf for data above -0.5 MPa 217 

(Scoffoni et al. 2012). Ψleaf values, for which Klmax had declined by 50% and 80% (P50 218 

and P80, respectively), were calculated. P50 and P80 were used as indicators of 219 

vulnerability of leaf hydraulic conductance to decreasing water potential. 220 

 221 

Pressure-volume curves and turgor loss point 222 

We used five leaves of the 13-year-old almond and 8-year-old olive trees to calculate 223 

the pressure-volume curves. Leaves were sampled in the morning of October 7 of 2014 224 

(a few days after the water deficit experiment ended) and were rehydrated for 24 h, then 225 

left to desiccate. Leaf weight and leaf water potentials were measured at least nine times 226 

during that period until the leaves reached minimum Ψleaf values of ca. -5 MPa. The 227 

turgor loss point (TLP) was calculated as the intersection point of the two curves 228 

represented by the inflection point of the relation 1/ Ψleaf vs. 1-relative leaf water 229 

content. 230 

 231 

Photosynthetic response curves 232 

Five A-Ci response curves (the response of net CO2 assimilation to varying intercellular 233 

CO2 concentration)  per species were measured between 09:00 and 13:00 GMT during 234 

the experimental period. Measurements were made using a Li-cor LI-6400 portable 235 

photosynthesis system (Li-cor, Lincoln, NE, USA) at ambient temperature, saturating 236 

PPFD (photoshynthetic photon flux density, 1,600 mol m-2 s-1) and an ambient CO2 237 

concentration (Ca) of between 50 and 1,500 mol mol-1. After steady-state 238 

photosynthesis was achieved, the response of A to varying Ci was measured by lowering 239 
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Ca stepwise from 390 to 50 mol mol-1, returning to 390 mol mol-1, and then 240 

increasing Ca stepwise from 390 to 1,500 mol mol-1. Each A-Ci curve comprised 16 241 

measurements, each made after at least 3 min at each Ca. Maximum carboxylation rate 242 

(Vcmax) was estimated by the curve fitting method proposed by Ethier and Livingston 243 

(2004). Rubisco kinetic parameters were taken from the literature (Bernacchi et al. 244 

2002). 245 

 246 

Response to soil water deficit: the effect of leaf hydraulic conductance on stomatal 247 

conductance 248 

This last study consisted of a drydown experiment using potted plants, which aimed at 249 

determining whether the decline in Kleaf with increasing dehydration matched the 250 

decline in gs. Three potted olive and almond trees of 8 and 13 years, respectively, were 251 

gradually stressed by withholding irrigation for 13 days with olive and 24 days with 252 

almond. No plant deaths were reported. Measurements of Kleaf, gs, Ψleaf, and ABAleaf 253 

were conducted on the terminal parts of shoots and leaves of the two species, sampled 254 

from the outer part of the canopy facing S-E at ca. 1.5 m above ground. Two samples 255 

from three trees per species were used at predawn (05:00) and at 08:30 GMT, when gs is 256 

at its maximum (gsmax). We obtained the time for gsmax through daily gs measurement 257 

cycles in olive (Fernández et al. 1997) and almond (Rodriguez-Dominguez et al., 258 

personal communication). Maximum stomatal conductance was measured in the same 259 

leaves throughout the experiment, when possible. Kleaf and Ψleaf were measured using 260 

leaves or terminal parts of shoots from the same branches. The measurements were 261 

conducted on four clear and sunny days in September 2014 (September 2, 5, 10, and 15 262 

for olive and 2, 5, 15, and 26 for almond; technical problems impeded same-day 263 

measurements in olive and almond). Kleaf was measured using DRKM as described 264 
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before. The maximum stomatal conductance (gsmax, mol m-2 s-1) was measured with a 265 

Li-cor LI-6400 portable photosynthesis system (Li-cor) with a 2 × 3 cm standard 266 

chamber at ambient light and CO2 conditions. 267 

Leaves collected at the same time intervals as the rest of measurements were 268 

used to determine ABAleaf concentration. ABAleaf was measured by the liquid 269 

chromatography-electrospray/tandem mass spectrometry method of Gómez-Cadenas et 270 

al. (2002). Samples of about 400 mg of frozen leaf tissue, midribs not included, were 271 

milled, homogenized and extracted in 5 mL of distilled water using a benchtop 272 

homogenizer (Polytron PT 1600 E, Kinematica AG, Switzerland). An aliquot of 50 μL 273 

of 2-ppm deuterated abscisic acid (dABA) was previously added as an internal standard. 274 

Samples were centrifuged (20,000 rpm, 15 min, 4°C), supernatants were acidified to pH 275 

3.0 (150 μL acetic acid 30% v/v), and leaf extracts were twice partitioned with 3 mL of 276 

diethyl ether. Organic phases were collected in Erlenmeyer flasks and evaporated using 277 

a vacuum pump. Tube walls were washed with 1 mL diethyl ether and desiccated again. 278 

Dry residues were re-suspended in 500 μL methanol, completed to a total volume of 1 279 

mL with Milli-Q quality (reverse osmosis) water and filtered through a 13 mm diameter 280 

polypropylene membrane syringe filter (Ø 0.22 μm, RephiQuik PTFE Non-sterile 281 

Syringe Filter, RephiLe Bioscience Ltd., China). A calibration line was also prepared 282 

with different ABA concentrations (5, 10, 25, 50, and 100 ppb) and the internal standard 283 

dABA. Measurements were conducted using an Agilent 1290 Infinity HPLC system 284 

(Agilent Technologies Inc., CA, USA) coupled with an electrospray/tandem mass 285 

spectrometer (3200 QTRAP® LC/MS/MS System, AB SCIEX, Framingham, MA, 286 

USA) and data were analyzed with mass spectrometry software (Analyst® Software, AB 287 

SCIEX). Leaf ABA was normalized by fresh weight (g). 288 
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The main weather variables in the area were monitored by a Campbell weather 289 

station (Campbell Scientific Ltd., Shepshed, UK). The station recorded 30 min average 290 

values of air temperature (Ta), air humidity (RHa), global solar radiation (Rs), and 291 

photosynthetically active radiation (PAR), among other variables. 292 

Leaf hydraulic conductance measured at 8:30 GMT was compared with Kplant, 293 

calculated according to Ohm’s law analogy assuming steady-state conditions: 294 

 295 

𝐾𝑝𝑙𝑎𝑛𝑡 =
𝑔𝑠𝑚𝑎𝑥𝐷

𝛹𝑠−𝛹𝑙𝑒𝑎𝑓
  , (3) 296 

 297 

where gsmax (mol m-2 s-1) is the stomatal conductance measured at 08:30 GMT, 298 

Da is the air vapor pressure deficit (mmol mol-1) determined from measurements by the 299 

weather station mentioned above, Ψs is the soil water potential that is assumed to be 300 

similar to Ψleaf at predawn (Ψpd, MPa), and Ψleaf is the leaf water potential measured at 301 

08:30 GMT. All leaf water potentials were measured with the Scholander-type pressure 302 

chamber already mentioned. 303 

 304 

Data processing and statistical analysis 305 

The most-used functions in plant hydraulic studies (linear, sigmoidal, logistic, and 306 

exponential) were fitted to our dataset of leaf vulnerability curves (Ψleaf – Kleaf), using 307 

maximum likelihood, as described in Scoffoni et al. (2012). The function with the 308 

lowest Akaike information criterion (AIC) and highest R2 was chosen as the best fit 309 

function. Outlier tests were conducted for each 0.5 MPa interval using Dixon’s test 310 

(Sokal and Rohlf, 1995) for the vulnerability curves. 311 

Statistical analyses were used to compare gsmax, Kleaf, and ABAleaf between 312 

species for two Ψleaf ranges: one going from -1.2 to -2.1 MPa (n = 6 and 9 for olive and 313 
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almond, respectively) and the other from -2.7 to -3.0 MPa (n = 2 and 3, for olive and 314 

almond, respectively). We selected these two groups, considering that there were 315 

enough data for the comparison of the two species and avoiding the range of Ψleaf, 316 

where gsmax of both species changed dramatically (between -2.1 and -2.7 MPa). We were 317 

also able to compare Kleaf by species for higher values of Ψleaf (<-1.1 MPa) from the leaf 318 

vulnerability curves. The Mann–Whitney U-test was used instead of Student’s t-test for 319 

the comparisons due to the lack of normality in some cases. Significant differences were 320 

reported when variations between the groups were P <0.05. The same test was used to 321 

analyze the differences on Kleaf by method, tree age, and plant material. 322 

Binned values by 0.2 MPa intervals of Kleaf and ABAleaf were used to analyze 323 

their linear effect on binned values of gsmax to make the trends and correlations more 324 

robust, given that the variables were not measured in the same leaves. Simple 325 

regressions were run to determine whether Kleaf and ABAleaf were significantly related to 326 

gs (α = 0.05). 327 

The points at where the slope of the Ψleaf – Kleaf and Ψleaf – gsmax curve changes, 328 

were determined with a piecewise regression using the R package “segmented.” 329 

R software was used for all the analyses (R version 3.1.1) except for the Mann–330 

Whitney U-test, where SigmaPlot (version 12.0, Systat Software, Inc., San Jose 331 

California USA) was used. 332 

 333 

Results 334 

 Effect of methods and tree age on Kleaf values 335 

The Ψleaf – Kleaf relationships determined by the two methods were statistically 336 

indistinguishable (Table 1 and Fig. 1) and Kleaf obtained in the same leaves with both 337 

methods rendered similar values (Fig. 2), although with a slight tendency for EFM to 338 
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return higher values of Kleaf as compared to DRKM (slope KlEFM vs. KlDRKM = 1.11). The 339 

vulnerability curves obtained using leaves of different ages of tree were also statistically 340 

similar and, in the case of olive, data from terminal parts of shoots and single leaf were 341 

overlaid (Table 1). 342 

Due to the lack of differences by tree age or part of the plant, all of the data 343 

obtained with DRKM were pooled together for each species. Both olive and almond 344 

best fitting curves were exponential (Fig. 3). 345 

 346 

Structural and functional leaf traits 347 

The higher Klmax in almond (4.70 mmol m-2 s-1 MPa-1) compared to olive (3.42 mmol m-348 

2 s-1 MPa-1) related well with the leaf VD of each species: 11.33 ± 0.28 mm mm-2 for 349 

almond and 6.74 ± 0.19 mm mm-2 for olive (Table 2). This higher hydraulic capacity in 350 

almond than in olive also correlated with a higher photosynthetic capacity of leaves 351 

(185.7 mol m-2 s-1 in almond and 128.0 mol m-2 s-1 in olive). The slope of the 352 

transition between maximum and minimum Kleaf values was steeper for almond than for 353 

olive (Fig. 3). Thus, P50 and P80 were higher for almond than for olive (Table 2). 354 

Accordingly, TLP was also higher for almond than for olive (-2.26 for almond and -3.30 355 

MPafor olive), corresponding to a Kleaf loss of 65% in almond and 69% in olive (values 356 

derived from the vulnerability curves for each species). We also calculated the ratio 357 

gsmax/Kleaf as an index of the degree of the stomata’s hydraulic buffering against changes 358 

in Da and drought (Brodribb and Jordan 2008, Scoffoni et al. 2015). We observed that 359 

this ratio was lower for olive (88.02 ± 12.10) than for almond (140.37 ± 25.7) and for 360 

any Ψleaf, but differences were not significant in the range of Ψleaf for the number of 361 

replicates allowed to conduct statistical comparisons (-1.2/-2.1 MPa). 362 

 363 
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Effect of leaf hydraulic conductance on stomatal conductance in response to water 364 

stress 365 

During the days of September of 2014 when the irrigation withholding study was 366 

conducted, air temperature varied between 16C and 21C at dawn to 21C and 26C at 367 

8:30 GMT, when measurements of gsmax were made. Da was 0.04 ± 0.03 kPa at dawn 368 

and increased to 0.81 ± 0.07 kPa at 8:30 GMT. 369 

The lack of irrigation reduced Ψpd (taken as proxy of soil water potential) from -370 

0.47 ± 0.05 MPa to -1.20 ± 0.04 MPa in almond, and from -0.76 ± 0.11 MPa to -4.12 ± 371 

0.41 MPa in olive. Minimum values of Ψleaf at 8:30 GMT (Fig. 4a) were reached at the 372 

end of the experiment, being of -3.10 ± 0.02 MPa in almond and -6.14 ± 0.01 MPa in 373 

olive. Both gsmax and Kleaf decreased with lowering Ψleaf, for both species (Fig. 4a and b). 374 

However, Kleaf started to decrease at higher Ψleaf values than gsmax. Moreover, the Ψleaf 375 

values where gsmax reached its minimum values, -2.68 MPa in olive and -2.14 MPa in 376 

almond, represented a Kleaf reduction of 65% in olive and 63% in almond. These values 377 

were higher but not very different from the TLP values (-3.30 MPa in olive and -2.26 378 

MPa in almond). The other variable analyzed, ABAleaf (Fig. 4c), did not follow clearly 379 

the gsmax trend either. Interestingly, in olive, the relationship of Ψleaf with ABAleaf was 380 

not even statistically significant (P >0.05). The rest of the relationships shown in Fig. 4, 381 

between Ψleaf and gsmax, and Kleaf and ABAleaf, were statistically significant (P <0.05). 382 

We further analyzed the linear relationships of Kleaf and ABAleaf with gsmax and 383 

found that Kleaf was the only variable significantly correlated to gsmax in olive and 384 

almond (r2 = 0.79 and 0.47, respectively). Thus, adding ABAleaf as a predictor did not 385 

significantly improve the prediction of gs from Kleaf. 386 

The results of comparing gsmax by species showed that it was significantly lower 387 

in olive than in almond (P <0.05) for the two Ψleaf ranges analyzed in both species (-388 
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1.2/-2.1 MPa and -2.7/-3.0 MPa). This same test showed no differences in Kleaf between 389 

the species. However, almond Kleaf was significantly higher than olive Kleaf for the Ψleaf 390 

range between -0.4 and -1.1 MPa, using the leaf vulnerability curves (Fig. 3). On the 391 

contrary, ABAleaf was significantly higher for olive than for almond in the -1.2/-2.1 392 

MPa Ψleaf range (Fig. 4d). Unfortunately, there were not enough replicates of ABAleaf 393 

for the -2.7/-3.0 MPa range comparison. 394 

An independent estimate of Kplant was calculated from leaf gas exchange and leaf 395 

water potential measurements (Eq. 3). Despite the  shortcomings of this estimate 396 

(transpiration was not measured in the same leaves used for Kleaf measurements and root 397 

water potential was assumed to be the same at predawn and midday), our data (Fig. 5) 398 

confirm that the curve shape found for Kleaf in Fig. 3. Kleaf and Kplant decreased markedly 399 

at high leaf water potentials, the decrease for both Kleaf and Kplant being steeper in 400 

almond than in olive. 401 

 402 

Discussion 403 

Measuring the vulnerability of Kleaf to dehydration: methodological considerations 404 

Values of Kleaf determined by both DRKM and EFM showed good agreement, both in 405 

absolute values (Fig. 2b) and vulnerability to dehydration (Table 1, Fig. 1). This was 406 

despite methodological limitations (common and specific to each method, Scoffoni et 407 

al. 2012) and different measurement principles (Scoffoni et al. 2012, Blackman and 408 

Brodribb 2011). To our knowledge, this is the first time that both methods have been 409 

tested on the same plant material. We did not find any difference due to the tree age or 410 

the sampled plant material (Table 1). In the first case, this was likely because all leaves 411 

were of the current year, exposed to sun and all trees had been well-irrigated until the 412 

beginning of the water withholding experiment, and, presumably, no cavitation episodes 413 
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occurred (Hacke et al. 2001). Regarding the sampled plant material experiment, the lack 414 

of differences between the measurements made in single leaves and terminal parts of 415 

shoots with a few leaves could have been due, as suggested before (Blackman and 416 

Brodribb 2011, Nardini and Salleo 2000) and tested here, to the major resistance being 417 

located in the leaves and, thus these organs and not the shoots, being responsible for the 418 

total conductance (Nardini et al. 2003, Sack and Holbrook 2006). 419 

 420 

Kleaf response to water stress and interspecific differences in structural and functional 421 

leaf traits 422 

The high hydraulic capacity in almond, likely related to its higher VD, agrees with its 423 

high growth and water use rates, when soil water conditions are not limiting. Maximum 424 

Kleaf has been found to be related to maximum stomatal conductance and photosynthesis 425 

across different species (Sack et al. 2003, Sack and Holbrook 2006). Species with large 426 

photosynthetic capacity must show a high leaf hydraulic capacity to cope with the high 427 

gs values required to avoid diffusional limitations to photosynthesis (Flexas et al. 2004). 428 

In agreement with that, our data show that the photosynthetic capacity in almond leaves, 429 

estimated as Vcmax, was 1.44-fold that of olive (Table 2). These data are in agreement 430 

with a potential trade-off between hydraulic safety and efficiency. The steeper slope 431 

between Kleaf and Ψleaf in almond at high Ψleaf values (Fig. 3) shows that almond is more 432 

vulnerable to dehydration than olive, as its P50 and P80 values also suggest (Table 2). 433 

 According to its higher leaf hydraulic vulnerability, TLP in almond was higher 434 

than in olive (Table 2). Indeed, deciduous species have been shown to exhibit far more 435 

rapid transitions from high to low Kleaf values than evergreen ones (Brodribb and 436 

Holbrook 2003), as well as higher TLP (Corcuera et al. 2002). Moreover, the lower 437 

ratio gsmax/Kleaf for olive than almond indicates that olive had a higher degree of 438 
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hydraulic buffering of gs against declines in Ψleaf during leaf dehydration. As TLP was 439 

measured in leaves following the drought-response experiment, higher TLP values 440 

would have been found before due to osmotic adjustment. 441 

High cavitation thresholds in leaves have been reported for species belonging to 442 

the same genus as almond (Prunus mahaleb, -0.75 MPa) and the same family as olive 443 

(Phillyrea angustifolia, -0.9 MPa) (Kikuta et al. 1997). In general, however, lower P50 444 

values and shallower, more linear in shape Ψleaf declines would have been expected for 445 

drought-tolerant species (Scoffoni et al. 2012) such as olive and almond. The P80 446 

values of this study (-4.21 MPa in almond and -5.35 MPa in olive) were in the range of 447 

previously published P80 values of drought-tolerant species. For example, Scoffoni et 448 

al. (2012) reported P80 values for species of dry habitats ranging from -4.12 MPa for 449 

Heteromeles arbutifolia to -5.25 MPa for Cercocarpus betuloides. P80 has been 450 

reported to be more useful for comparison of species’ vulnerabilities, because P50 451 

values often occur in the middle of the steepest decline (Scoffoni et al. 2012). Indeed, as 452 

P50 and P80 values are a function of Klmax, these values may be artifactually skewed. 453 

Maximum Kleaf, contrary to what happens with stems, cannot be measured and it is 454 

usually estimated from the highest Kleaf values or extrapolating the Ψleaf- Kleaf adjusted 455 

curve to Ψleaf = 0 (Scoffoni et al. 2012). 456 

Apparently, the loss of hydraulic conductance at high Ψleaf could be surprising 457 

since the functional range of Ψleaf for both species is usually lower, with minimum Ψleaf 458 

around -3.5 MPa in almond (Egea et al. 2012) and -4.5 MPa in olive (Torres-Ruiz et al. 459 

2013). Although steep decreases of Kleaf to high Ψleaf have been often reported 460 

(Blackman et al. 2009, Scoffoni et al. 2012), methodological artifacts in Ψleaf 461 

measurement should be considered. When leaves are well-hydrated, Ψleaf is high and the 462 

gradient of water potential during measurements is small. Mistakes made in the correct 463 
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determination of high Ψleaf would lead to large errors in the estimation of Kleaf. 464 

However, absolute errors in the measurement of Ψleaf at high water potentials, 0.1 MPa 465 

for example, cannot explain the high values of Kleaf observed and thus, a Ψleaf 466 

measurement artifact can be disregarded. Additional evidence suggesting that our 467 

results were not affected by a methodological artifact comes from the comparison of the 468 

response of Kleaf and Kplant to Ψleaf (Fig. 4), since both curves show a similar shape. 469 

The early loss of Kleaf might be related to leaf shrinkage (Scoffoni et al. 2013), as 470 

mentioned above. Consequently, it might cause a reduction in the connections for water 471 

flow among cells in the mesophyll. Additionally, leaf shrinkage would reduce 472 

evaporative surface within the leaf. The outside-xylem vulnerability could play an 473 

important role in driving the initial vulnerability at mild water deficits. Thus, the initial 474 

slope of the vulnerability curve, before the bulk of cavitation is expected to occur, has 475 

been suggested to be more related to the outside-xylem component, while the behavior 476 

of the leaf vulnerability curve at stronger water deficits could be more influenced by the 477 

xylem component (Scoffoni et al. 2013). The major influence of the flow path outside 478 

the xylem could help to explain small differences observed measuring KlDRKM in olive, 479 

calculated with either initial flow and initial leaf water potential, or with final flow and 480 

final leaf water potential instead (data not shown). It seems that, despite the short period 481 

of time that the leaf was connected to the flowmeter, a certain rehydration occurred at 482 

the highest water potential values, which is more likely to happen due to a rehydration 483 

in the outside part of the xylem than to a refilling process of embolized vessels (Wang 484 

et al. 2014; also see Trifilo et al. 2014, Kim et al. 2014). 485 

 486 

Role of Kleaf on the regulation of stomatal conductance 487 
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Neither Kleaf or ABAleaf unequivocally followed the gsmax trend as Ψleaf decreased (Fig. 488 

4). However, the variable most strongly related to gsmax was Kleaf, especially in olive. In 489 

almond, although this relationship was less strong, it was still highly significant. In both 490 

studied species, the decline of Kleaf began immediately with dehydration, whereas that of 491 

gsmax began only after a substantial Kleaf loss. This agrees with findings reported for 492 

other woody species (Johnson et al. 2009, Pasquet-Kok et al. 2010, Guyot et al. 2012). 493 

However, the reasons for the loss of Kleaf at relatively high values of Ψleaf have not been 494 

fully elucidated yet. Previous work has suggested that cavitation might be responsible 495 

for a major portion of Kleaf decline in response to low leaf water potentials (Sack and 496 

Holbrook 2006), although effects in the extra-xylem pathways such as leaf shrinkage 497 

(Scoffoni et al. 2013) and aquaporin deactivation (Shatil-Cohen et al. 2011, Pantin et al. 498 

2013) are acquiring larger prominence. Thus, different trajectories of Kleaf decline likely 499 

did not implicate cavitation itself as a key signal for stomatal closure (Guyot et al. 500 

2012). A large percentage of Kleaf was lost before stomata started to show an active 501 

regulation, ruling out the idea of a protective role of stomata for Kleaf maintenance, as 502 

has been suggested for shoots. Thus, our results indicate that stomata would operate at 503 

the risk of leaf hydraulic catastrophic failure, with leaves functioning as hydraulic 504 

circuit breakers that can be reset overnight, rather than as indicators of their 505 

susceptibility to catastrophic hydraulic failure (Bucci et al. 2013). As already reported 506 

by different authors (Brodribb and Holbrook 2004, Johnson et al. 2009), our 507 

vulnerability curves suggest that Kleaf could be dynamic during the day as Kleaf would 508 

vary greatly for the Ψleaf range usually observed under field conditions in the study area. 509 

These evidences point toward a major contribution of the extra-xylem conductance 510 

component of Kleaf (Scoffoni et al. 2012). 511 
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 The role of ABA in the regulation of gsmax did not depict a clear pattern in either 512 

almond or olive (Fig. 4d). Although there is a trend for an increasing level of ABA with 513 

decreasing Ψleaf, ABAleaf was highly variable at low Ψleaf, suggesting that it might be 514 

determined by other variables apart from Ψleaf. For instance in olive, leaves with gsmax as 515 

high as 0.23 mol m-2 s-1 or as low as 0.03 mol m-2 s-1 presented identical values of ABA 516 

of 100 ng g FW-1.This does not mean that ABA did not play a role in the response to 517 

water stress. Actually, in addition to regulating many processes at the plant and leaf 518 

level (Hetherington 2001, Cutler et al. 2010), ABA has been proposed to regulate Kleaf 519 

(Pantin et al. 2013). Further studies on the regulation of stomata by hydraulic and non-520 

hydraulic signals are necessary to clarify the actual role of each component in the 521 

stomatal control mechanism of the two species considered here. 522 

 523 

Conclusions 524 

We found that Kleaf decreased exponentially with Ψleaf in both olive and almond. This 525 

decrease was steeper for almond than for olive, according to independent leaf functional 526 

features, such as lower TLP in olive than in almond. We conclude that neither 527 

mechanism analyzed unequivocally drives the gs response to water stress in these two 528 

species. However, Kleaf is the variable most strongly related to the gs response to water 529 

stress, especially in olive , ABA showing no clear effect on  gs regulation. The larger 530 

hydraulic capacity of almond at high Ψleaf allows gs to be higher in almond than in olive. 531 

This is in agreement with the greater VD values found in almond, which contribute to 532 

its higher photosynthetic capacity. We also conclude that, although based on different 533 

principles, both EFM and DRKM provide similar Kleaf values. Tree age and the use of 534 

terminal parts of shoots instead of leaves do not have any significant effect on measured 535 

Kleaf either. 536 
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 702 

FIGURES CAPTIONS 703 

Figure 1. Leaf hydraulic conductance (Kleaf) obtained with the Dynamic rehydration 704 

kinetics method (DRKM) and the Evaporative flux method (EFM) in different olive (a) 705 

and almond (b) leaves. Dashed line in represents P50 for each species. 706 

 707 
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Figure 2. Leaf hydraulic conductance (Kleaf) obtained in the same leaves or terminal 708 

parts of shoots for olive and almond with the Dynamic rehydration kinetics method 709 

(DRKM) and the Evaporative flux method (EFM). Dotted line represents 1:1 line.  710 

 711 

Figure 3. Vulnerability curves for leaf hydraulic conductance for olive and almond 712 

determined with the Dynamic rehydration kinetics method (DRKM). The fitted curves 713 

are exponential and statistically significant (y = 0.77+2.67*e-0.69*x R2=0.62, P<0.0001 714 

for olive and y = 0.75+4.70*e-0.74*x, R2=0.54, P<0.0001 for almond). 715 

 716 

Figure 4. Variation of stomatal conductance (gsmax) (a), leaf hydraulic conductance 717 

(Kleaf) (b), and leaf ABA (ABAleaf) (c) with leaf water potential (Ψleaf) measured when 718 

stomatal conductance is considered to be at its maximum (8.30 GMT) for olive and 719 

almond. The points represent the average of values for Ψleaf intervals of 0.2 MPa and the 720 

bars are the standard errors (SE).  721 

Figure 5. Comparison of leaf vulnerability curves for olive (a) and almond (b) where 722 

Kleaf was obtained with the Dynamic rehydration kinetics method (DRKM) and Kplant 723 

was calculated using Equation 3. 724 
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