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Analytical derivatives and non-adiabatic coupling matrix elements are derived for H+n systems
(n = 3–5). The method uses a generalized Hellmann-Feynman theorem applied to a multi-state
description based on diatomics-in-molecules (for H+3) or triatomics-in-molecules (for H+4 and H+5)
formalisms, corrected with a permutationally invariant many-body term to get high accuracy. The
analytical non-adiabatic coupling matrix elements are compared with ab initio calculations performed
at multi-reference configuration interaction level. These magnitudes are used to calculate H2(v ′ = 0,
j ′ = 0) + H+2(v, j = 0) collisions, to determine the effect of electronic transitions using a molecular
dynamics method with electronic transitions. Cross sections for several initial vibrational states of H+2
are calculated and compared with the available experimental data, yielding an excellent agreement.
The effect of vibrational excitation of H+2 reactant and its relation with non-adiabatic processes are
discussed. Also, the behavior at low collisional energies, in the 1 meV-0.1 eV interval, of interest
in astrophysical environments, is discussed in terms of the long range behaviour of the interaction
potential which is properly described within the triatomics-in-molecules formalism. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4937138]

I. INTRODUCTION

In the interstellar medium (ISM), hydrogen is by far
the most abundant atom. H2 is the most abundant molecule
and is formed on the surface of dust particles by successive
adsorption of H atoms1 and several gas phase processes such as
radiative association of H atoms. Another gas phase reaction
of interest is

H + H+2 → H2 + H+, (1)

which is important in the formation of H2 in the early universe.
Once H2 is formed, the chemistry in space starts by the
formation of the first hydrides. In cold clouds, the most
abundant ion is H+3 which is formed in the collision

H2 + H+2 → H+3 + H, (2)

which is exothermic by 1.2 eV and therefore very efficient.
This explains why H+2 , formed by the ionization of H2 by
cosmic rays, is not very abundant. On the contrary, when
H+3 collides with molecular hydrogen, a proton exchange is
produced as

H2 + H+3 → H+3 + H2, (3)

which does not destroy H+3 , but simply transforms it. This last
reaction is the main source of ortho/para-conversion of H+3 and
when involving deuterium is the main source of deuterated
H+3 .

a)Electronic address: octavio.roncero@csic.es
b)On sabbatical at IFF-CSIC.

H+3 is involved in many processes in astrochemistry
with other atoms and polyatomic molecules, electrons and
hydrogen, and protons and H−. These processes are described
in details in many review articles such as Refs. 2–6 and there
are special issues devoted to H+3 .7 Many of these processes
are very efficient because they are highly exothermic. In cold
molecular clouds, many reactive species are adsorbed on icy
particles, and the densities of electrons and cosmic rays are
considerably reduced, making possible slow processes such
as deuteration through Eq. (3) exchange reaction. Deuterated
species are favored by their lower zero-point energy (ZPE),
thus shifting the equilibrium in gas phase reactions such
as that of Eq. (3).8,9 H+3 , as the universal protonator,2,10–12

plays a central role in the interstellar chemistry, since it is
at the origin of the formation of the first hydrides, including
deuterated species.

In the reactive cycle of pure hydrogen species of
Eqs. (1)–(3), there are several electronic states, corresponding
to electron holes in each of the equivalent hydrogen atoms.
This makes necessary to use a multi-state description of
the potential energy surfaces (PESs), such as the diatomics-
in-molecules (DIM) frequently used to describe these
systems.13–16 The DIM description is however not enough
to describe accurately H+3 fragments, and several many-body
(MB) terms have to be added. For H+3 , this was done for ground
singlet17 and triplet18 states by adding a three-body term to the
DIM PES so that an accuracy of about 1-5 cm−1 was reached
on global surfaces designed to describe the reactive collisions.
This was later improved by adding the long range (LR) terms,
charge-induced dipole and charge-quadrupole, on the diagonal

0021-9606/2015/143(23)/234303/12/$30.00 143, 234303-1 © 2015 AIP Publishing LLC
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terms of the DIM Hamiltonian matrix.19 Another approach
was adopted adding three-body terms on the non-diagonal
matrix elements of the DIM matrix.20

For H+4 and H+5 , the DIM approach does not describe
the different fragmentation channels because many of them
correspond to triatomic H+3 . In order to describe these channels,
a generalization of the DIM approach was used, the triatomics-
in-molecules (TRIM) approach, which is essentially exact at
the asymptotes but not in the interaction region. To get the
desired accuracy, many-body terms were added to describe the
ground state. With this approach, accurate 6 and 9 dimension
PESs were obtained for H+4

21 and H+5 .22

In this work, we generalize these approaches to describe
several electronic states of H+n, with special emphasis on
analytic non-adiabatic coupling matrix elements (NACMEs)
and potential derivatives, using the generalized Hellmann-
Feynman theorem. The analytical derivatives of the ground
PES are tested with quasi-classical trajectories (QCTs) on
H2 + H+, H2 + H+2 , and H2 + H+3 reactive collisions, getting a
significant speedup and better accuracy as compared to the
numerical ones previously used for H+3

23,24 and H+5 .25 For
H+3 ,23,24 with a deep insertion well, the reaction mechanism
is essentially statistical, and QCTs underestimate the cross
section because this method is unable to describe tunneling
for high total angular momenta. For H+5 , the exchange reaction
of Eq. (3) has been treated with statistical approaches,26–28

using asymptotic long range interaction potentials between
reactants. When considering the full potential of Ref. 22 and
a dynamical bias in the statistical model, it was found that
the complex formation can only occur at low temperatures,
while for T > 10 K, a direct proton hop mechanism
dominates.25

In this work, we focus on the non-adiabatic dynamic
of the reaction of Eq. (2) using the classical molecular
dynamics with quantum transitions (MDQTs) of Tully.29

The MDQT is a variant of the commonly known surface
hopping applied to study the non-adiabatic reactive H+ + H2
collisions by Krenos et al.30 and supported by the experiments
of Ochs and Teloy.31 In this reaction, there is a curve
crossing in the entrance channel very close to the ZPE of
the reactants, and here, we shall analyze the effect of non-
adiabatic transitions as a function of translational energy
and vibrational excitation of the H+2 reactants. The results
are compared with the available experimental data30,32–35 and
with the previous surface hopping results.30,36,37 These last
results were obtained with DIM PESs,38 which do not include
long-range interaction terms and are not accurate to describe
H+3 fragments. In the present approach, these two problems are
solved.

The organization of the paper is as follows. In Section II,
the theoretical methods used are presented: the generalized
Hellmann-Feynman approach used to obtain analytical
potential derivatives and non-adiabatic matrix elements
applied to the TRIM+many body (TRIM+MB) method. Also,
some details of the numerical implementation of the MDQT
developed in this work will be briefly described. In Section III,
the results obtained for the reaction of Eq. (2) will be shown
and discussed. Finally, Section IV is devoted to extract some
conclusions.

II. THEORETICAL METHODS

A. Generalized Hellmann-Feynman theorem

We will consider N adiabatic eigenstates, φa
n, which are

obtained as solution of the electronic Schrödinger equations

H(R)φa
n = Wn(R)φa

n, (4)

where Wn is the electronic eigenvalue at a nuclear
configuration given by the nuclear coordinates R. These
eigenfunctions are represented in a basis set, ϕm, as

φa
n =

m

Tm
n ϕd

m. (5)

This basis set, hereafter called diabatic, does not depend on
the nuclear configuration R and is assumed to be complete and
orthonormal. The procedure can be easily generalized to the
non-orthonormal case. In this diabatic basis, the Hamiltonian
operator H takes a matricial form of elements Hmm′.

Differentiating Eq. (4) with respect to α ≡ Rα, a
component of the hypervector determining the nuclear
configuration,

∂H
∂α

φn + H
∂φn

∂α
=

∂Wn

∂α
φn +Wn

∂φn

∂α
, (6)

and premultiplying by φn′ and integrating over electronic
coordinates, a generalized version of the Hellmann-Feynman
theorem is obtained as
φn′

�����
∂H
∂α

�����
φn


= (Wn −Wn′)


φn′

�����
∂

∂α

�����
φn


+ δnn′

∂Wn

∂α
, (7)

where the NACMEs,


φn′

�
∂
∂α

�
φn

�
, are non-diagonal.

To evaluate the derivatives of the electronic Hamiltonian
it is convenient to represent the adiabatic eigenfunctions in
the diabatic basis, so that using ∂ϕd

m/∂α = 0, two cases can
be distinguished as the following:

1. Diagonal with n = n′, in which NACMEs are zero, giving
the derivative of the adiabatic potential as

∂Wn

∂α
=

mm′

(
Tm′
n

)†
Tm
n

∂Hm′m

∂α
. (8)

An equivalent formalism was previously employed, in
particular, for obtaining derivatives of DIM potential
energy surfaces of Rg+n (Rg = He, Ne, Ar) and Ar∗n,39–43

used further for their geometry optimizations.
2. Non-diagonal with n , n′, to evaluate the NACME as

φn′
�����
∂

∂α

�����
φn


= dα

n′n

=
1

Wn −Wn′


mm′

(
Tm′
n′

)†
Tm
n

∂Hm′m

∂α
. (9)

All the components of the NACME are arranged in a vector
denoted by dn′n.

The calculation of the NACME using Eq. (9) is analogous
to that given previously by Preston and Tully44 and applied to
the DIM Hamiltonian of the H+3 . Below, we shall apply it to
the TRIM+MB Hamiltonian for H+4 and H+5 .
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B. TRIM+MB method for H+n
In this work, we use the DIM and/or TRIM representation,

improved by including many-body interactions, generally
called TRIM+MB, described in detail previously.21,22

The basis set used is an antisymmetrized product of
an orbital and a spin part, ϕm = AφiSI , with m ≡ iI,
corresponding to linear combinations of Slater determinants
or configurations, A being the anti-symmetrization operator.
When applied to H+n, we use for the orbital part the minimum
basis set of 1s orbitals in each hydrogen atom, which for the
H+4 case is written as

φi = s j(1) sk(2) sl(3) (10)

corresponding to an electron hole on nuclei i, and one electron
in each 1s function of the rest of nuclei (i, j, k, l = 1,2, . . .
cyclic and j = i + 1, k = j + 1, l = k + 1).

We use a complete set of spin functions for 2–4 electrons
to describe H+3(11A′,13A′), H+4(2A), and H+5(1A). For H+3 either
one singlet or one triplet function is needed. However, for
H+4(2A) and H+5(1A), two spin functions are needed to describe
the doublet and singlet states, respectively. Thus, the total
basis is composed by 3, 8, and 10 functions for H+3 , H+4 , and
H+5 , respectively.

The electronic Hamiltonian matrix is partitioned as

H = HTRIM + HMB, (11)

where HTRIM is the TRIM electronic matrix (DIM matrix for
H+3), and HMB is the many-body term matrix added to get the
desired accuracy.

HMB matrix elements are constructed45,46 as permutation-
ally invariant linear combinations of products of Rydberg
polynomials, depending on the internuclear distances Ri j

between atoms i and j. The parameters of these polynomials
are fitted to minimize the difference between the energies
obtained in this representation and ab initio points calculated
at the higher accuracy. In the present implementation, HMB

is a diagonal matrix in which all Hmm terms are equal,
corresponding to many-body terms added to reproduce the
ground state of each of the systems considered.

The HTRIM is the total electronic Hamiltonian rewritten
as a sum of in triatomic and diatomic fragment terms and
is formally exact. In the case of H+4 for the electronic
configuration corresponding to an electron hole at nuclei
i, it can be written as21

HTRIM
i =


n>i,o>n

Ĥ+ino(n − i,o − i) −

p>i

Ĥ+i p(p − i) (12)

(please note in Eq. (4) of Ref. 21 that the sign of the
monoelectronic Ĥ+i p(p − i) Hamiltonians, the second term in
the rhs, is wrong and should be negative). For H+5 , it is written
as22

HTRIM
i =


n>i,o>n

Ĥ+ino(n − i,o − i) − 2

p>i

Ĥ+i p(p − i). (13)

In these expressions, H+i p(p − i) are monoelectronic Hamilto-
nians of H+2 fragments and H+ino(n − i,o − i) are bielectronic
Hamiltonians (for electrons n − i,o − i) describing H+3 for the
ino nuclei. The i,n,o,p indexes are defined in a cyclic way
and runs up to 4 and 5, for H+4 and H+5 , respectively.

The evaluation of the matrix elements of Ĥ+i p(p − i)
describing H+2 is simple, since they can be directly deduced
from ab initio points obtained for few electronic states, the
ground state on each symmetry box (see the Appendix of
Ref. 22). The usual method is to fit these points to analytical
functions, allowing a simple way to evaluate the derivatives
as a function of internuclear distances. This is the same as it
is usually done in the DIM approach.

The matrix elements of the triatomic Hamiltonians,


φ j

�
Ĥ+ino(n − i,o − i)� φi

�
, (14)

correspond to diagonal and non-diagonal matrix elements
involving linear combination of spin adapted diabatic matrices
of H+3 , of the first three electronic states of singlet and
triplet symmetry. A good description of these triatomic matrix
elements is what allows an accurate description of H+4 and
H+5 systems, specially at long distances needed to properly
describe collisions at low energies. For the evaluation of
the matrix elements of the triatomic Hamiltonian, we use
a generalization of DIM+MB method,17 which is formally
analogue to the TRIM and which is briefly described below.

C. DIM+MB method for H+3
The electronic Hamiltonian in the DIM approach13–16 is

expressed as a sum of atomic and diatomic fragment terms,
and for H+3 , it is written as22

HDIM
i =


n>i,o>n

Ĥno(n − i,o − i) +

p>i

Ĥ+i p(p − i), (15)

where Ĥno(n − i,o − i) are the bielectronic Hamiltonians of
H2. This Hamiltonian is formally exact. The approximation is
in the use of a small basis set that introduces inaccuracies. To
improve the accuracy, 3-body terms are added, HMB ≡ H3B,
as indicated in Eq. (11). Thus, the triatomic electronic
Hamiltonians involved in Eqs. (12) and (13) can be rewritten
as

Ĥ+ino(n − i,o − i) = HDIM
i (n − i,o − i) + H3B. (16)

The triatomic DIM 3 × 3 matrices of H+3 are given by
Ref. 17 for the singlet and by Ref. 47 for the triplet state.
The H3B here is also considered as a diagonal matrix, whose
elements are all equal, as described above.

In the H3B, the long range interactions are included,
describing the interaction of the H+ with the induced electric
dipole and quadrupole of H2,

VH2· · ·H+(R,r) = Q2(r)P2(cos θ)R−3

−


1
2
α0 +

1
3
�
α ∥ − α⊥

�
P2(cos θ)


R−4, (17)

where α0,α ∥,α⊥ are the average, parallel, and perpendicular
polarizabilities and depend on the internuclear distance r and
cos θ = R · r/r R. The interaction of H+2 with H is considered
as two H+ − H interactions,

VH+· · ·H(R) = −9
4

R−4 − 15
2

R−6, (18)

which are already included in the mono-electronic terms that
correspond to H+2 fragments, H+i p(p − i).19 Being included in
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the diatomic terms, the H+2 + H long range terms are included
in all the H+ + H2 asymptotes, while it should not and has to
be subtracted properly. Moreover, there are three equivalent
rearrangement channels all tending to the same long range
interactions so that it cannot be repeated either.

Let us consider a triangular configuration characterized
by the internuclear distances Ri = Pi+2 − Pi+1 (i = 1, 2, 3
cyclic), where the charge is in atom i and Pi+1 is the position

vector of atom i + 1. The weighting function wi =
e
−2R2

i
j e
−2R2

j

is

defined to include the LR interaction as

V LR
i (Ri,Ri+1,Ri+2)
= wi


V H2· · ·H+(R,Ri) − VH+· · ·H(Ri+1) − VH+· · ·H(Ri+2)


,

(19)

where the R = [Ri+1 + Ri+2]/2 is the corresponding Jacobi
vector. This form is slightly different to that used previously
in Ref. 19 and has the advantage that its derivatives are
continuous. Also, the Jacobi vector R can only reach the value
of zero when the corresponding internuclear Ri distance is
very long, and in this situation, the weight Wi becomes zero,
i.e., this function acts as a damping function.

Including the long range term as a contribution in the H3B

allows to describe very accurately the long range behavior in
H+3 . In addition, in the TRIM+MB method, several triatomic
fragments are considered, and these long range terms are
involved in each of them, thus allowing to describe the
delocalization of the charge in H+2 or H+3 when accounting for
the H+2 + H2 or H+3 + H2 long range interactions.

For example, in Fig. 1, we show the long range
dependence of the H2 + H+2 interaction potential, for distances
R > 10 a.u. For R > 20 a.u., the TRIM+MB potential fits
very well the long range potential of Eq. (17). However, for
10 < R < 20 a.u., the potential is better fitted using C/R4.16.
This is due to the contribution of two triatomic terms, each
one with a charge in one of the two atoms of H+2 . At these
intermediate distances, the potential does not yet reach its
long range behavior, what has some influence in the collision
dynamics, as described below.

FIG. 1. Interaction potential for the H2 (r1= 1.4 a.u.) + H+2 (r2= 2 a.u.)
interaction as a function of the distance R between their centers of mass. The
two molecules are in the plane, with r1 and r2 being parallel and perpendicular
to R. The internuclear distances r1 and r2 approximately correspond to their
equilibrium distances.

The error of the potential in 10 < R < 20 a.u. region
is of the order of 1 cm−1, when compared with the
ab initio points. In some configurations, the ab initio points
are better fitted by Eq. (17). Thus, we conclude that some more
work has to be done to check the influence on the dynamics
described below. Some work in this direction is currently under
way.

The derivative of all the Ĥ+ino(n − i,o − i) and Ĥ+i p(p − i)
can be evaluated analytically, and hence those of the full
diabatic matrices, ∂Hm′m

∂α
, required in Eqs. (8) and (9).

These analytical derivatives were implemented to evaluate
the derivative of the potential of the ground states of H+n and
compared with the numerical ones, giving excellent results. In
addition, they were used in classical trajectory calculations,
giving lower errors in conserving the total energy than the
numerical ones.25

The minimum energy paths (MEPs) of the first states of
H+3 , H+4 , and H+5 are shown in Fig. 2. For H+3 and H+4 , the
ground state potential crosses with the first excited state at
intermediate distances, due to the charge transfer between the
fragments. The three codes, for n = 3–5, are available upon
request.

D. MDQT

The non-adiabatic dynamics is studied in the adiabatic
representation with the MDQT method as developed and
described by Tully.29 Here, only some details on the numerical
implementation made in this work are described.

An electronic wave-packet is expanded as Ψ(R[t])
=
nmax

n cn(t)φn′, with cn(t = 0) = δin determining the initial
conditions. Its evolution in time is governed by29

i~ċn(t) =

l

�
Wlδnl − ihṘ · ḋkl

�
cl(t). (20)

These coupled equations are integrated in time using a split
operator propagator,48 along a classical trajectory R(t). To
avoid numerical problems at conical intersections, where the
non-adiabatic couplings diverge, the NACMEs are truncated
so that −ihṘ · ḋkl ≤ Emax. In these expressions, Ṙ is the
multidimensional velocity vector, corresponding to the 3 × N

FIG. 2. Minimum energy paths (in eV) of the lowest electronic states of H+3 ,
H+4 , and H+5 . In each system, a different zero of energy is chosen to plot all of
them together.
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Cartesian coordinates of the position vectors of the N
atoms.

The classical trajectories R(t) are obtained solving
the Hamilton equations of motion in the 6N generalized
coordinates using a step adaptive Adams-Bashforth-Moulton
predictor-corrector method.49 At each time step, the switching
probability, gif , from electronic state i to each f is calculated
as29

gi, f =
∆t
|ci |2


2Re(cic∗f Ṙ · ḋif )


, (21)

so that the sum of all these probabilities is 1. These
probabilities are then considered consecutively in a vector as
Gi = gi, i+1,Gi+1 = Gi + gi, i+2, . . .. Then, a random number, ξ,
is selected and if it lies in the G f < ξ < G f +1, a switch to state
f is done if the energy condition,

Ekin
i (Ṙ) +Wi(R) = Ekin

f (Ṙ′) +W f (R), (22)

is fulfilled. To accomplish this, the velocities, Ṙ, in the new f
state are changed along the dif vector as

Ṙ → Ṙ′ = Ṙ + βdif , (23)

where β is chosen to accomplish Eq. (22). If this condition
is not possible, with an error lower than ϵ = 10−12 a.u., the
switch is not done and the trajectory is continued in the same
i electronic state.

In order to get the reaction cross section for the reaction

H+2(v, j = 0) + H2(v ′ = 0) → H+3 + H, (24)

a Monte Carlo sampling of initial conditions is performed.
The method used is completely analogous to that introduced
by Karplus et al.50 In order to distinguish between H2 and
H+2 in a single electronic state, we take the inner classical
turning point for H2 and the outer turning point for H+2 in their
respective initial vibrational states, for a reason which will
become clear below. More than 105 trajectories are run for
each energy and initial state. The energy conservation in all
of them is better than 0.001 cm−1.

In order to get an approximate relationship between
the non-adiabatic transitions and the non-adiabatic matrix
elements, we shall use the inverse of the Massey parameter38,44

defined as

M−1
if =

Ṙ · ḋif

2(Wi −W f ) . (25)

III. APPLICATION TO H+4
A. Non-adiabatic couplings

As shown in Fig. 2, the first two electronic states are
separated by ≈0.5 eV in the H2 + H+2 entrance channel, which
is close to the sum of the vibrational zero-point energies of the
reactants. These two states cross at configurations where the
two diatomic molecules have the same internuclear distances,
as can be seen in the top panel of Fig. 3. In a pure adiabatic
representation, the positive charge is not located in any of
the two diatomic fragments, but it is delocalized. When the
two internuclear distances are the same, the charge has an

equal probability of being in either one of the two first lower
electronic states giving rise to two degenerate states, i.e., to a
crossing.

In the middle panels of Fig. 3, some cuts of the potential
energy for the first two adiabatic states are shown as a function
of the internuclear distance r1 of the first diatomic fragment.
The other diatom is frozen for three values, r2 = 1.4, 1.7, and
2 a.u. All the other coordinates are frozen, with the two bonds
parallel in a plane. Three different energies are plotted: the
ab initio points (calculated at Multi-Reference Configuration
Interaction (MRCI) level using the MOLPRO package51 as
described in Ref. 21), results obtained with the TRIM+MB
(labeled TRIM) described here, and finally the energies
obtained with the DIM approach. The DIM energies are
rather good in the H+2 + H2 entrance channel but already show
some disagreements with the ab initio ones. The TRIM+MB
results for the ground state are excellent, since the MB term is
adjusted for that, showing some discrepancies for the excited
electronic state. Nevertheless, for the collision energies of
interest, below 1 eV, these results are considered to be accurate
enough, giving a rather good description of the crossings.

The NACMEs obtained with these three methods are
shown in the bottom panels of Fig. 3. Note that the TRIM+MB
method gives DIM results when removing the MB terms in
the triatomic fragments and in the H+4 potential. The ab initio
results are obtained with the MOLPRO package, using a first
order difference method with an interval of 0.01 a.u. For the
square geometry, r2 = 2 a.u., the crossings and the NACME
obtained with the three methods are in very good agreement.
As r2 distance decreases, TRIM and DIM results remain very
close but their differences with respect to the ab initio results
increase. These differences are considered to be rather small
and are neglected here.

The TRIM NACMEs are only slightly better as compared
to the DIM results. The reason is that the adiabatic
wave-functions are obtained from the approximated HTRIM

Hamiltonian, in whose triatomic terms and the diagonal H3B

term are all the same. Under this condition, the DIM and
TRIM NACMEs are very similar. The inclusion of the “exact”
H3B terms in the HTRIM method would improve the description
of the crossings and the accuracy of the NACME. Work in
this direction is in progress.

Summarising, the TRIM+MB improves significantly the
accuracy of the ground adiabatic state, including the long-
range interactions and triatomic fragments, as described
previously.21 In addition, it improves the position of the curve
crossing in the entrance channel with respect to the DIM
approach. The NACMEs of the TRIM method with the
approximations made so far are very similar to those obtained
with the DIM approach, and both are pretty similar to the
ab initio results.

These results are analogous to all the geometries
and distances analyzed in the entrance channel. In the
H + H+3 products channels, the ground and excited states
separate, and non-adiabatic effects become negligible.
We therefore conclude that the present approach is a
significant improvement with respect to the previous DIM
method used to study the non-adiabatic dynamics in this
system.
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FIG. 3. Top panel: Energy diagram
of the lowest electronic states of H+4
showing curve crossings as a result
of charge transfers between equivalent
subunits. Middle panels show the po-
tential energy curves and bottom panels
the NACME, obtained for two parallel
H2 fragments in a plane at fixed values
of R = 2 a.u. (the distance between the
two centers of mass) and r2= 2 a.u. and
by varying the internuclear distance of
the first H2 subunit, r1. The NACME
is calculated in Cartesian coordinates,
and here, only one is shown, along the z
component of r1. The DIM, TRIM, and
MRCI label the method used to obtain
the energies or NACMEs.

B. Reactive collision cross sections

This reaction has 10 rearrangement channels

AB+ + CD −→ AB+ + CD inelastic
−→ AB + CD+ electron transfer

−→



A + BCD+

B + ACD+



proton hop

−→



ABC+ + D
ABD+ + C




atom hop

−→




AC+ + BD
AC + BD+

AD+ + BC
AD + BC+




exchange.

(26)

The electron transfer channel is included within the first
adiabatic electronic state, as discussed later, in which the
charge is in either of the two fragments and can only be
distinguished in the dynamical calculations by the vibrational
frequency when the distance between the two diatomic
fragments is long.

Proton hop and atom hop mechanisms both yield to H+3
products and have relatively similar cross sections, as shown
in Fig. 4. The proton hop mechanism has a slightly higher
cross section, probably because the H+2 fragment with a larger
equilibrium distance is easier to brake.

The exchange mechanism is about 100 times lower.
This mechanism involves two atoms or proton hops or a
simultaneous exchange. This reaction is rather direct, and the
reaction occurs without giving time to a second atom/proton
transfer. This could explain why the exchange mechanisms
present lower cross sections.

The proton and atom hop mechanisms cannot be
separated, and only two products can be distinguished,
H+2 + H2 and H+3 + H, because all the hydrogen atoms are

FIG. 4. Cross sections (in Å2) for the H2(v′= 0, j′= 0)+H+2 (v = 0, j = 0)
collisions for the different arrangement channels indicated in Eq. (26) as
calculated here with the MDQT method.
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indistinguishable. This is a fundamental principle of quantum
mechanics, and in order to distinguish among some channels,
it is necessary to substitute one or several hydrogen atoms by
an isotope.

In this work, we present MDQT calculations for the
H2(v ′ = 0, j ′ = 0) + H+2(v, j = 0) collisions, always keeping
the reactants in their ground rovibrational state, except in
Section III C, where the effect of the initial vibrational
excitation of H+2(v) is analyzed. Unless otherwise indicated,
the first two adiabatic electronic states have been included.

In Fig. 5, we compare the total reaction probability,
the sum of proton hop and atom hop, with previous
experimental35,52 and theoretical results.36,53 In all cases,
the agreement is very good. The merged beam results of
Glenewinkel-Meyer and Gerlich35 were obtained with H+2
ions produced in a storage ion source. The relative error is due
to the calibration of the target density and, therefore, constant
over the energy range shown. Thus, our MDQT results are all
within the experimental error bars.

The previous results of Eaker and Schatz36 for collision
energies higher than 0.3 eV are also in good agreement with
the results presented here. Those results were obtained using
the DIM potential of Stine and Muckerman,38 using also a
variation of a surface hopping method. This indicates that at
this intermediate energies, the DIM approach is rather good
in describing the total reaction cross section. The quantum
mechanical results of Baer and Ng53 are lower than the present
results, and this may be explained by their use of a lower
dimensional model needed to perform their calculations.

The Langevin model gives results significantly lower
than the results obtained here, what means that the interaction
potential averaged over the H2( j ′ = 0) rotation does not vary
as −α/2R4. At the collision energies of 1, 10, and 50 meV,
the maximum impact parameter for the reaction is found to
be 30, 15, and 10 a.u., respectively. As discussed above, for
these “intermediate” distances, the averaged potential does
not follow the C/R4 long range behaviour but it is better fitted
by adding a −C/R4.16 term (see Fig. 1). In this reaction, once
the H+3 + H product channels are reached, there is no return

FIG. 5. H2(v′= 0, j′= 0)+H+2 (v = 0, j = 0)→ H+3 +H total reaction cross sec-
tions (in Å2) obtained with the MDQT method, compared with the experi-
mental data of Glenewinkel-Meyer and Gerlich35 and Shao and Ng,52 and
with theoretical simulations, the QCT results of Eaker and Schatz36 and the 3
dimension quantum mechanical results of Baer and Ng.53

back to the entrance channel, and the capture models are then
applicable here. According to these models, the cross section
takes the form54

σ(E) = π q(s) (C/E)2/s with q(s) = s/2

[(s − 2)/2](s−2)/s .

(27)

The MDQT cross section of Fig. 5 is perfectly fitted by
this expression for E < 0.1 eV, with C = 11.51 Ås eV and
s = 4.16. This value of s is in agreement with the dependence
of the potential in the region 10 < R < 20 a.u. To get the
Langevin results, much lower collision energies have to be
considered, involving longer distances, at which the average
interaction potential varies as ∝ R−4. This can be explained
knowing that in this system, the positive charge is not punctual,
but it is distributed in H+2 .

For collisions of H2 with atomic cations, it is expected
that at these energies of 1-100 meV, the asymptotic
Langevin limit is already achieved, since the charge can be
considered punctual. This is, for example, the case of H2 + O+

in experimental55 as well as in theoretical simulations.56

However, to check this finding in H2 + H+2 collisions, a better
fit of the 10 < R < 20 a.u. region, with much lower errors,
should be obtained.

C. Effect of initial vibrational excitation

The possibility of generating H+2 in different vibrational
states made possible many experimental and theoretical
studies for its effect.32,34–37 Here, we analyze the effect of
H+2(v = 0,1,2,3) initial vibrational states in the formation of
H+3 in the 0-1 eV translational energy range, as shown in
Fig. 6. The behaviour of all of them is very similar, being
nearly parallel as a function of energy, clearly demonstrating
that the capture model is valid in all the cases.

The small decrease of the cross section of the H+3
formation as v increases is not explained by the increase
of the exchange cross section, in the right panel of Fig. 6.
When the two mechanisms are added, the resulting plot is
very close to that shown in the left panel. This exchange

FIG. 6. Left panel: H2+H+2 (v = 0,1,2,3)→ H+3 +H and right panel: H2

+H+2 (v = 0,1,2,3)→ H+2 +H2 exchange cross sections (in Å2), obtained with
the MDQT method considering 2 adiabatic electronic states. The two reagents
are initially in their ground rotational state.
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TABLE I. Experimental32 and simulated cross sections (Å2) for the H2(v′
= 0, j′= 0)+H+2 (v, j = 0)→ H+3 +H reaction as a function of the vibrational
excitation of H+2 for 0.1 eV of translational energy.

v Experiment32 Simulated

0 51 ± 2 59.9
1 45 ± 3 59.9
2 46 ± 3 52.2
3 42 ± 3 49.4

mechanism has a much lower cross section, but its increase
with v is rather important.

The experimental measurements indicate this trend for
the formation of H+3 , as listed in Table I. The absolute value
51 ± 2 Å2 of the cross section of Koyano and Tanaka32 is lower
at 0.1 eV than the present result of 59.9 Å2. The experimental
results of Glenewinkel-Meyer and Gerlich35 in Fig. 5 is also
lower, being 48 ± 13 Å2 at 1.0 eV. The systematic deviation
of the cross sections on the collision energy may be due to
rovibrational excitation of the ions. However, the error bars
in these last experiments were estimated to be larger, of the
order of 15 Å2, and the simulated values lie within these
larger error bars. For this reason, we consider the present
values rather good in describing the reaction cross section,
noting that there is a qualitative agreement of the trends with
increasing v between the experimental and theoretical values.
In addition, the adequacy of the classical method used here
should be tested by doing quantum dynamical simulations.

What is the origin of the decrease of the H+3 for-
mation cross section as vibrational excitation increases? One
possibility is the non-adiabaticity due to the curve crossing
with the first excited state, as shown in Fig. 3. To check this,
we have performed the same calculations but including only
the ground electronic state, i.e., pure QCT calculation, shown
in Fig. 7. The QCT cross section shows a similar trend as
compared to those shown in Fig. 6 obtained with 2 electronic
states. However, the H+3 formation cross sections for different
v’s are closer and with a different ordering. This may be taken
as an indication that the small differences observed in the left
panel of Fig. 6 are due to non-adiabatic effects.

FIG. 7. Same as Fig. 6 but considering only the ground electronic state, thus
being denoted as QCT results.

The MDQT and QCT exchange cross sections shown
in the right panels of Figs. 6 and 7 are very similar for
collision energies below 0.1 eV. However, for larger energies,
the oscillations differ considerably, and these differences are
attributed to non-adiabatic effects.

Experimentally, there are no results studying the effect
of the neutral H2(v ′) vibrational excitation. However, since
the variations are due to non-adiabatic effects (as discussed
in more detailed below), we do expect a similar qualitative
behaviour when exciting either of the two diatomic reagents,
H+2 described above or H2.

D. Non-adiabatic dynamics

The lowest two adiabatic states of H+4 cross at relatively
low energies in the H2 + H+2 entrance channel and then separate
in the H+3 + H products channel, as can be seen in the middle
panel of Fig. 2. The origin of this crossing is that at asymptotic
distances, there are two equivalent diabatic states, H2 + H+2 and
H+2 + H2, which combine to form the adiabatic state in which
the charge is delocalized between the two fragments. This
situation is similar to that of H+2 , in which two diabatic states
are obtained, of gerade and ungerade symmetries.

In the ground adiabatic state of H+4 , at long distances
between H2 and H+2 center of masses, R, when one of
the diatomic fragments is frozen at the H2 equilibrium
distance, the other fragment presents a potential diabatic
curve similar to H+2 , and vice versa. However, the adiabatic
states present crossings with cusps as represented in Fig. 8.
If the two fragments are kept in their ground vibrational
state, the two H2 and H+2 internuclear distances never get the
same value at the asymptote simply because their turning
points are slightly separated. This is a classical effect, since
the quantum wave-functions penetrate in the potential and
overlap.

FIG. 8. Potential energy cuts obtained by freezing r34 internuclear distance
to the equilibrium value of H+2 (r2≈ 2 a.u.) and r12 to the equilibrium value
of H2 (r1≈ 1.4 a.u.) and varying the other.
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When H+2 gets vibrationally excited, its inner classical
turning point is shorter than the outer one of H2, see Fig. 8.
In this situation, even at long distances among the diatoms, R,
the diatomic internuclear distances, r1 and r2, can get the same
value. At this configuration, there is a crossing at which the
non-adiabatic couplings, shown in Fig. 3, are large and may
induce non-adiabatic transitions. As the vibrational excitation
increases, the possibility that r1 = r2 increases and therefore
the probability of electronic transitions.

All these are illustrated in Figs. 9 and 10, in which we
show several quantities associated to two trajectories leading
to H+3 products, one starting in H+2(v = 0) and the other in
H+2(v = 2). The initial conditions for the two trajectories are
very similar, except in the initial H+2 internuclear distance,
r2, corresponding to the outer turning points for v = 0 and 2,
respectively. In Fig. 9, the two internuclear distances (in the
second panel from the bottom) never cross for R > 10 a.u.
(bottom panel), and as a consequence, there is no electronic
transition. The quantum wave-packet (top panel) always

FIG. 9. MDQT trajectory for the H2+H+2 (v = 0)→ H+3 +H collision. Bottom
panel indicates the distance R between the centers of mass of the two
diatomic molecules (in red is in the ground electronic state and in blue is
in the excited electronic state). Second panel from bottom shows the two
internuclear distances, r1 (red) and r2 (blue), initially corresponding to H2
and H+2 . Third panel from bottom shows the inverse of the Massey parameter
along the trajectory. Since there is only one NACME, Mi j has been replaced
by M in the y label. Top panel shows the state population of the electronic
wave-packet.

FIG. 10. Same as Fig. 9 but for the H2+H+2 (v = 2)→ H+3 +H collision.

remains in the ground electronic state, and the inverse Massey
parameter, Eq. (25), only gets significant values for R < 20 a.u.

When starting in H+2(v = 2), in Fig. 10, the situation
changes dramatically. The amplitude of the H+2 vibration
increases, and in this case, r1 and r2 may get the same value.
For time <200 a.u., it can be seen that the red and blue curves
exchange between them, i.e., an electron transfers between
the two diatoms. This is already surprising since it happens
at distances R > 30 a.u. and in one single adiabatic electronic
state. Such exchange of charge occurs when r1 ≈ r2.

When the distance R decreases, and r1 ≈ r2, the non-
adiabatic couplings become larger, as illustrated by the inverse
Massey parameter in the third panel from bottom in Fig. 10.
This makes that electronic transitions may take place even at
relatively long distances, R ≈ 30 a.u., promoting the system
to the first excited electronic state. In this state, the motions
of the two diatoms become in perfect phase, as shown in the
second panel of Fig. 10 between 200 < time < 300 a.u. This
result is observed in all trajectories analyzed. The Massey
parameter is always large, being able to induce a transition
back to the ground state.

In reactive trajectories leading to H+3 , the energy difference
between the two electronic states in the products channel gets
apart and the non-adiabatic couplings decrease. Thus, for these
trajectories, the electronic transitions do not occur once the
H+3 is formed. The four H+3 + H product channels are separated
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by a barrier of ≈0.25 eV which hinders the exchange among
them in low temperature H+3 + H collisions.57,58

For those trajectories leading to diatomic fragments,
either in the inelastic or the exchange channels, the two
electronic states remain close and the coupling is large.
Therefore, the maximum number of transitions happens for
these kind of trajectories.

The behavior of the two trajectories shown in Figs. 9
and 10, with similar initial conditions, is quite analogous, both
leading to the same H+3 product. A careful analysis of many
other trajectories leads us to conclude that the trajectories
do not vary very much due to electronic transitions, and this
is the reason why the reaction cross section does not vary
significantly. The most affected trajectories are those leading
back to any H+2 + H2 channel, and this explains why vibrational
excitation affects more significantly this channel.

Once the H+2 is vibrationally excited, the number of
electronic transitions increases with decreasing collision
energy, simply because it takes longer time for the two
fragments to approach and therefore, r1 = r2 occurs many
times. For v = 0, there are no electronic transitions even
at E = 1 eV, with energy enough to allow transitions to
excited electronic states. Thus, the collision dynamics of
H2(v = 0) + H+2(v = 0) can be studied on a single electronic
state.

E. Isotopic effect

H+3 is the universal protonator in cold molecular clouds.
It is also responsible for the high deuterium fractionation
of many hydrides in space, much higher than the natural
abundance of the D with respect to H. It is therefore important
to analyze how the reaction changes whenever one deuterium
substitutes one hydrogen atom in either H2 or H+2 reactants.
Here, we present results for the H2D+ system, where the D
is initially either in the ion or the neutral. As demonstrated
above, considering the ground rovibrational state of the two
reagents, the dynamics proceeds in a single adiabatic surface,
and the usual QCT approach is used.

The total cross sections to form triatomic products, either
H+3 or H2D+, are compared in Fig. 11. The cross sections for

FIG. 11. Total reaction cross sections for the isotopic variants: H2+H+2 (v
= 0), HD+H+2 (v = 0), and H2+HD+(v = 0) collisions.

the three reactions considered are very similar, with the same
dependence on energy, which can be explained by the capture
model of Eq. (27).54 There are only small differences at low
and high energies.

In the two cases, there are three channels leading
to H2D+ fragments and only one to H+3 . Thus, assuming
unbiased statistical scrambling, the cross section for the
formation of the deuterated H2D+ is approximately 3 times
that of H+3 in H2 + HD+ or H+2 + HD collisions. The role
of quantum effects, especially at low energies, may change
this.

The differences arise when considering the possible
mechanisms, i.e., the jump of neutral H or D or of a H+

or a D+, indicated in different channels of Eq. (26). These
mechanisms are distinguished in Fig. 12 and are not equivalent
when there is a deuterium. The channel which presents larger
differences is that involving the hop of a deuterium, charged or
neutral, for which at E > 0.1 eV is always smaller. This may
be explained by an impulsive mechanism, in which heavier
atoms are more difficult to deviate.

FIG. 12. Cross section for the 4 different rearrangement channels leading to
triatomic products, in Eq. (26) for the HD+H+2 (v = 0) and H2+HD+(v = 0)
collisions.
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For low collision energies, however, the situation changes.
In HD + H+2 collisions, the 4 channels present similar cross
sections, while for H2 + HD+ collisions, the hop of a proton
always prevails, probably because it combines the lower mass
with the most elongated bond.

IV. CONCLUSIONS

In this work, we have developed analytical potential
derivatives and non-adiabatic couplings for H+n systems
for TRIM+MB multi-state model potentials, allowing the
accurate description of H+3 fragments and the inclusion of
long range interactions. This procedure has been applied to the
study of H2(v ′ = 0, j ′ = 0) + H+2(v, j = 0) reactive collisions,
considering the effect of collision energy, vibrational
excitation of H+2 , and non-adiabatic and isotopic effects, using
an implementation of the MDQT method of Tully.29 The
calculations have been restricted to the ground rotational levels
and therefore do only explore the charge-induced dipole term
of the long range interactions. The calculated cross sections
are in good agreement with the available experimental data35

and are slightly larger than those obtained with a Langevin
model. The reason of that is that the effective average potential
does not vary as R−4 for distances between 10 and 20 a.u.,
because the charge is distributed in the H+2 molecule and
cannot to be centered at its center of mass.

There are small changes in the cross section when
increasing the vibrational excitation of H+2 reactants, in
agreement with the experimental data of Koyano and Tanaka,32

which are attributed to non-adiabatic transitions to the first
excited electronic state. These electronic transitions occur in
the entrance channel when the two internuclear distances of
the two diatomic species (H2 and H+2) are equal, leading to
a charge transfer between them, but with rather low cross
sections at the energies studied here.

We conclude that for energies below 1 eV and starting
in the ground vibrational states of reactants, the non-adiabatic
effects are negligible. Then, pure QCT calculations are
performed to study the isotopic effects in the HD + H+2 and
H2 + HD+ collisions. Again, the cross sections are governed
by the long range interactions. The different mechanisms
(proton or atom hops, H or D) are distinguished and the D or
D+ hop mechanism is found to be the one with lower cross
sections at E > 0.1 eV.

ACKNOWLEDGMENTS

F.N. acknowledges UOIT for the support of a sabbatical
stay at IFF-CSIC, Spain. We acknowledge the support
of Ministerio de Economía y Competitividad (Spain), for
Grant Nos. CSD2009-00038 and FIS2014-52172-C2. The
calculations have been performed in CESGA and CSIC
computing centers, which are acknowledged. We also
thank the support from the European Research Council
under the European Union’s Seventh Framework Programme
(No. FP/2007-2013)/ERC Grant Agreement No. 610256
(NANOCOSMOS). We also acknowledge the COST Action
No. CM1401 “Our Astrochemical History.”

1E. Herbst and T. J. Millar, “The chemistry of cold interstellar cloud cores,” in
Low Temperatures and Cold Molecules, edited by I. W. M. Smith (Imperial
College Press, London, 2008), p. 1.

2J. Tennyson, Rep. Prog. Phys. 58, 412 (1995).
3E. Herbst, Philos. Trans. R. Soc., A 358, 2523 (2000).
4T. Oka, Philos. Trans. R. Soc., A 370, 4991 (2012).
5D. Gerlich, P. Jusko, Š. Roučka, I. Zymak, R. Plašil, and J. Glosík,
Astrophys. J. 749, 22 (2012).

6T. Oka, Chem. Rev. 113, 8738 (2013).
7Special Issue on “Chemistry, Astronomy and Physics of H+3 ,” edited by T.
Oka, Philos. Trans. R. Soc., A 370(1978) (2012).

8D. Gerlich, J. Chem. Phys. 92, 1141 (1990).
9D. Gerlich and S. Schlemmer, Planet. Space Sci. 50, 1287 (2002).

10T. J. Millar, A. Bernett, and E. Herbst, Astrophys. J. 340, 906 (1989).
11L. Pagani, M. Salez, and P. G. Wannier, Astron. Astrophys. 258, 479 (1992).
12B. J. McCall and T. Oka, Science 287, 1941 (2000).
13F. O. Ellison, J. Am. Chem. Soc. 85, 3540 (1963).
14F. O. Ellison, N. T. Huff, and J. C. Patel, J. Am. Chem. Soc. 85, 3544 (1963).
15J. C. Tully, Adv. Chem. Phys. 42, 63 (1980).
16P. J. Kuntz, “Interaction potentials. II. Semiempirical atom-molecule poten-

tials for collision theory,” in Atom-Molecule Collision Theory: A Guide
for Experimentalists, edited by R. B. Bernstein (Plenum Press, New York,
1979), p. 79.

17A. Aguado, O. Roncero, C. Tablero, C. Sanz, and M. Paniagua, J. Chem.
Phys. 112, 1240 (2000).

18A. Aguado, M. Lara, M. Paniagua, and O. Roncero, J. Chem. Phys. 114,
3440 (2001).

19L. Velilla, B. Lepetit, A. Aguado, J. A. Beswick, and M. Paniagua, J. Chem.
Phys. 129, 084307 (2008).

20L. P. Viegas, A. Alijah, and A. J. C. Varandas, J. Chem. Phys. 126, 074309
(2007).

21C. Sanz-Sanz, O. Roncero, M. Paniagua, and A. Aguado, J. Chem. Phys.
139, 184302 (2013).

22A. Aguado, P. Barragan, R. Prosmiti, G. Delgado-Barrio, P. Villarreal, and
O. Roncero, J. Chem. Phys. 133, 024306 (2010).

23T. González-Lezana, O. Roncero, P. Honvault, J. M. Launay, N. Bulut, F. J.
Aoiz, and L. Bañares, J. Chem. Phys. 125, 094314 (2006).

24E. Carmona-Novillo, T. González-Lezana, O. Roncero, P. Honvault, J. M.
Launay, N. Bulut, F. J. Aoiz, L. Bañares, A. Trottier, and E. Wrede, J. Chem.
Phys. 128, 014304 (2008).

25S. Gómez-Carrasco, L. González-Sánchez, A. Aguado, A. Zanchet, and O.
Roncero, J. Chem. Phys. 137, 094303 (2012).

26K. Park and J. C. Light, J. Chem. Phys. 126, 044305 (2007).
27E. Hugo, O. Asvany, and S. Schlemmer, J. Chem. Phys. 130, 164302 (2009).
28K. N. Crabtree, C. A. Kauffman, B. A. Tom, E. Becka, B. A. McGuire, and

B. J. McCall, J. Chem. Phys. 134, 194311 (2011).
29J. C. Tully, J. Chem. Phys. 93, 1061 (1990).
30J. R. Krenos, K. K. Lehmann, J. C. Tully, P. M. Hierl, and G. P. Smith, Chem.

Phys. 16, 109 (1976).
31G. Ochs and E. Teloy, J. Chem. Phys. 61, 4930 (1974).
32I. Koyano and K. Tanaka, J. Chem. Phys. 72, 4858 (1980).
33S. L. Anderson, F. A. Houle, D. Gerlich, and Y. T. Lee, J. Chem. Phys. 75,

2153 (1981).
34J. E. Pollard, L. K. Johnson, D. A. Lichtin, and R. B. Cohen, J. Chem. Phys.

95, 4877 (1991).
35T. Glenewinkel-Meyer and D. Gerlich, Isr. J. Chem. 37, 343 (1997).
36C. W. Eaker and G. C. Schatz, J. Phys. Chem. 89, 2612 (1985).
37J. K. Badenhoop, G. C. Schatz, and C. W. Eaker, J. Chem. Phys. 87, 5317

(1987).
38J. R. Stine and J. T. Muckerman, J. Chem. Phys. 68, 185 (1978).
39F. Calvo, F. Y. Naumkin, and D. J. Wales, J. Chem. Phys. 135, 124308

(2011).
40F. Calvo, F. Y. Naumkin, and D. J. Wales, Chem. Phys. Lett. 551, 38 (2012).
41F. Y. Naumkin and D. J. Wales, Mol. Phys. 93, 633 (1998).
42N. L. Doltsinis, P. J. Knowles, and F. Y. Naumkin, Mol. Phys. 96, 749 (1999).
43F. Y. Naumkin and D. J. Wales, Mol. Phys. 96, 1295 (1999).
44R. K. Preston and J. C. Tully, J. Chem. Phys. 54, 4297 (1971).
45A. Aguado and M. Paniagua, J. Chem. Phys. 96, 1265 (1992).
46A. Aguado, C. Suarez, and M. Paniagua, J. Chem. Phys. 101, 4004 (1994).
47C. Sanz, O. Roncero, C. Tablero, A. Aguado, and M. Paniagua, J. Chem.

Phys. 114, 2182 (2001).
48C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A.

Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H. D. Meyer, N. Lipkin,
O. Roncero, and R. Kosloff, J. Comput. Phys. 94, 59 (1991).

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  161.111.22.69 On: Thu, 04 Aug

2016 09:50:28

http://dx.doi.org/10.1088/0034-4885/58/4/002
http://dx.doi.org/10.1098/rsta.2000.0665
http://dx.doi.org/10.1098/rsta.2012.0243
http://dx.doi.org/10.1088/0004-637X/749/1/22
http://dx.doi.org/10.1088/0004-637X/749/1/22
http://dx.doi.org/10.1021/cr400266w
http://dx.doi.org/10.1098/rsta.2012.0243
http://dx.doi.org/10.1063/1.457980
http://dx.doi.org/10.1016/S0032-0633(02)00095-8
http://dx.doi.org/10.1086/167444
http://dx.doi.org/10.1126/science.287.5460.1941
http://dx.doi.org/10.1021/ja00905a002
http://dx.doi.org/10.1021/ja00905a003
http://dx.doi.org/10.1002/9780470142615.ch2
http://dx.doi.org/10.1063/1.480539
http://dx.doi.org/10.1063/1.480539
http://dx.doi.org/10.1063/1.1340564
http://dx.doi.org/10.1063/1.2973629
http://dx.doi.org/10.1063/1.2973629
http://dx.doi.org/10.1063/1.2566770
http://dx.doi.org/10.1063/1.4827640
http://dx.doi.org/10.1063/1.3454658
http://dx.doi.org/10.1063/1.2336224
http://dx.doi.org/10.1063/1.2812555
http://dx.doi.org/10.1063/1.2812555
http://dx.doi.org/10.1063/1.4747548
http://dx.doi.org/10.1063/1.2430711
http://dx.doi.org/10.1063/1.3089422
http://dx.doi.org/10.1063/1.3587246
http://dx.doi.org/10.1063/1.459170
http://dx.doi.org/10.1016/0301-0104(76)89028-3
http://dx.doi.org/10.1016/0301-0104(76)89028-3
http://dx.doi.org/10.1063/1.1681826
http://dx.doi.org/10.1063/1.439824
http://dx.doi.org/10.1063/1.442320
http://dx.doi.org/10.1063/1.461704
http://dx.doi.org/10.1002/ijch.199700039
http://dx.doi.org/10.1021/j100258a036
http://dx.doi.org/10.1063/1.453649
http://dx.doi.org/10.1063/1.435481
http://dx.doi.org/10.1063/1.3641895
http://dx.doi.org/10.1016/j.cplett.2012.09.013
http://dx.doi.org/10.1080/00268979809482250
http://dx.doi.org/10.1080/00268979909483012
http://dx.doi.org/10.1080/00268979909483074
http://dx.doi.org/10.1063/1.1674676
http://dx.doi.org/10.1063/1.462163
http://dx.doi.org/10.1063/1.467518
http://dx.doi.org/10.1063/1.1336566
http://dx.doi.org/10.1063/1.1336566
http://dx.doi.org/10.1016/0021-9991(91)90137-A


234303-12 Sanz-Sanz et al. J. Chem. Phys. 143, 234303 (2015)

49L. F. Shampine and M. K. Gordon, DDEABM is a driver for a modification
of the code ODE written by L. F. Shampine and M. K. Gordon, Sandia
Laboratories Albuquerque, New Mexico 87185.

50M. Karplus, R. N. Porter, and R. D. Sharma, J. Chem. Phys. 43, 3259
(1965).

51H.-J. Werner, P. J. Knowles, J. Almlöf, R. D. Amos, A. Berning et al.,
, version 2012.1, a package of ab initio programs, 2012, see
http://www.molpro.net.

52J. D. Shao and C. Y. Ng, J. Chem. Phys. 84, 4317 (1986).
53M. Baer and C. Y. Ng, J. Chem. Phys. 93, 7787 (1990).

54R. D. Levine and R. B. Bernstein, Molecular Reaction Dynamics and Chem-
ical Reactivity (Oxford University Press, 1987).

55J. D. Burley, K. M. Ervin, and P. B. Armentrout, Int. J. Mass Spectrom. Ion
Processes 80, 153 (1987).

56S. Gómez-Carrasco, B. Godard, F. Lique, N. Bulut, J. Klos, O. Roncero,
A. Aguado, F. J. Aoiz, M. Etxaluze, J. F. Castillo, J. R. Goicoechea, and J.
Cernicharo, Astrophys. J. 794, 33 (2014).

57G. E. Moyano, D. Pearson, and M. A. Collins, J. Chem. Phys. 121, 12396
(2004).

58A. Alijah and A. J. C. Varandas, J. Chem. Phys. 129, 034303 (2008).

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  161.111.22.69 On: Thu, 04 Aug

2016 09:50:28

http://dx.doi.org/10.1063/1.1697301
http://www.molpro.net
http://www.molpro.net
http://www.molpro.net
http://www.molpro.net
http://www.molpro.net
http://www.molpro.net
http://www.molpro.net
http://www.molpro.net
http://www.molpro.net
http://www.molpro.net
http://www.molpro.net
http://www.molpro.net
http://www.molpro.net
http://www.molpro.net
http://www.molpro.net
http://www.molpro.net
http://www.molpro.net
http://www.molpro.net
http://www.molpro.net
http://www.molpro.net
http://www.molpro.net
http://dx.doi.org/10.1063/1.450053
http://dx.doi.org/10.1063/1.459359
http://dx.doi.org/10.1016/0168-1176(87)87027-1
http://dx.doi.org/10.1016/0168-1176(87)87027-1
http://dx.doi.org/10.1088/0004-637X/794/1/33
http://dx.doi.org/10.1063/1.1810479
http://dx.doi.org/10.1063/1.2953571

