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ABSTRACT 14	

Why does the severity of parasite infection differ dramatically across habitats? This question 15	

remains challenging to answer because multiple correlated pathways drive disease. Here, we 16	

examined habitat-disease links through direct effects on parasites and indirect effects on parasite 17	

predators (zooplankton), host diversity, and key life stages of hosts. We used a case study of 18	

amphibian hosts and the chytrid fungus, Batrachochytrium dendrobatidis, in a set of permanent 19	

and ephemeral alpine ponds. A field experiment showed that ultraviolet radiation (UVR) killed 20	

the free-living infectious stage of the parasite. Yet, permanent ponds with more UVR exposure 21	

had higher infection prevalence. Two habitat-related indirect effects worked together to 22	

counteract parasite losses from UVR: (1) UVR reduced the density of parasite predators, and (2) 23	

permanent sites fostered multi-season host larvae that fueled parasite production. Host diversity 24	

was unlinked to hydroperiod or UVR but counteracted parasite gains; sites with higher diversity 25	

of host species had lower prevalence of infection. Thus, while habitat structure explained 26	

considerable variation in infection prevalence through two indirect pathways, it could not 27	

account for everything. This study demonstrates the importance of creating mechanistic, food 28	

web-based links between multiple habitat dimensions and disease.  29	

 30	

 31	

 32	
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INTRODUCTION 34	

Parasite infection differs dramatically across habitats. In some cases, parasites exert strong 35	

negative effects on host populations. Yet, severe epidemics occur infrequently and in a relatively 36	

small subset of habitats [1]. For example, epidemics of the virulent amphibian chytrid, 37	

Batrachochytrium dendrobatidis (hereafter, Bd) erupt catastrophically in some habitats and 38	

locations (e.g., geothermal ponds, undisturbed forests) but not others (e.g., non-geothermal 39	

ponds, disturbed forests) [1-8]. Why? It remains challenging to answer this question because 40	

multiple correlated pathways drive disease [9-11]. Furthermore, these pathways may have 41	

contrasting effects, as some factors enhance disease while others diminish it. Thus, disease 42	

dynamics reflect tension between multiple driving factors linked via habitat.  43	

Here, we disentangle multiple pathways governing variation in Bd infection in amphibian 44	

hosts. In a set of alpine ponds, prevalence and severity of Bd infections differ dramatically across 45	

sites and across the ten different species of amphibian hosts inhabiting them [12-14]. Currently, 46	

however, the factors driving this pronounced variation in infection prevalence among sites 47	

remain unknown. We focus on infection prevalence in two native hosts that are highly 48	

susceptible to Bd (fire salamander: Salamandra salamandra and the midwife toad: Alytes 49	

obstetricans)[14-16]. Both species act as key drivers of disease in this system [13, 15]. To 50	

explain variation in infection prevalence, we examine direct and indirect factors that connect to 51	

Bd epidemics via gains and losses of zoospores [14, 16, 17]. Zoospores are free-swimming 52	

propagules, which attach to and then replicate on the epidermis of amphibian hosts [18]. Infected 53	

hosts release new zoospores, which then infect other hosts. Hence, Bd dynamics depend 54	

sensitively on zoospore survival [19].  55	

The first main pathway governing Bd epidemics involves direct and indirect effects of 56	
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ultraviolet radiation (UVR). UVR exposure may either directly damage Bd zoospores or alter the 57	

distribution of key species that influence disease (via multiple food web interactions; Fig. 1, 58	

Pathways 1A-C). In these mountainous regions, variation in UVR exposure starts with 59	

differences in underlying geology (e.g., bedrock, hydrology [20]) that governs pond depth and 60	

hydroperiod (permanent vs. ephemeral). Hydroperiod largely determines the type of habitat and 61	

vegetation surrounding ponds (e.g., moss in bogs vs. grass in knolls). These characteristics then 62	

influence the quality and quantity of dissolved organic carbon (DOC) in ponds. DOC acts as a 63	

natural aquatic ‘sunscreen’ that strongly regulates exposure of aquatic organisms to UVR. 64	

Together, variation in depth and DOC govern attenuation of UVR in the water column [21, 22]. 65	

Hence, hosts and parasites in different ponds experience dramatically different UVR exposures. 66	

Based on previous evidence [15, 23], solar radiation should damage Bd zoospores, thereby 67	

depressing infection prevalence via direct, damaging effects of UVR (Pathway 1A).  68	

Variation in UVR could also indirectly alter disease by modulating the distribution of other 69	

key species (e.g., predators and hosts) that influence disease (Pathway 1B,C; Fig. 1). First, UVR 70	

could constrain predators that consume infectious stages of parasites (Pathway 1B) [24, 25]. 71	

Zooplankton eat Bd zoospores [17, 26-28] and respond sensitively to UVR— especially in alpine 72	

habitats [reviewed by 21]. Therefore, high-UVR ponds could support fewer zooplankton that 73	

consume Bd zoospores. If zooplankton respond more sensitively to UVR than zoospores 74	

themselves, this indirect release from predation could overwhelm the direct mortality effect of 75	

UVR on zoospores (Pathway 1B, Fig 1). In other words, epidemics could become larger in ponds 76	

with more UVR due to the loss of key parasite predators that are sensitive to UVR. Second, 77	

habitat variation could influence the abundance of other host species that also govern disease 78	

(Pathway 1C, Fig 1). Here, habitat-diversity links could arise if hosts selectively oviposit based 79	
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on UVR exposure and/or other species [29-31]. In turn, selective oviposition (which determines 80	

the diversity of larval hosts found in a given pond) could drive variation in disease because hosts 81	

vary in disease competency [14, 16]. These other species, then, could produce a dilution effect 82	

(i.e., reduced disease with higher diversity) if highly competent focal hosts are less common in 83	

more diverse communities [32]. Alternatively, an amplification effect could arise if higher 84	

diversity reflects higher frequencies of more competent (non-focal) hosts [33]. 85	

The second main pathway directly links variation in hydroperiod, stage structure of focal 86	

hosts, and parasite (zoospore) production (Pathway 2, Fig. 1). Here, hydroperiod could influence 87	

the distribution of key host stages that influence disease. Many amphibian species, including our 88	

two focal hosts, can have multi-season larvae. These multi-season larvae can delay 89	

metamorphosis. However, delayed metamorphosis requires a permanent water body since pond 90	

drying will catalyze larvae (which require ample water for respiration) to metamorphose. 91	

Importantly, these multi-season larvae often produce heavy Bd loads — an order of magnitude 92	

higher than single-season larvae [16, this study]. High production of zoospores by these life 93	

stages often explains Bd prevalence better than host density [2, 16, 19]. Here, strong links 94	

between hydroperiod and stage structure of focal hosts might predict infection prevalence better 95	

than any of the UVR-driven mechanisms. 96	

We used an experiment, field observations, and a partition of variation based on partial 97	

regression analysis to evaluate the primary direct and indirect pathways driving infection 98	

prevalence in this system. All of these pathways involve gains and losses of zoospores. An in-99	

situ experiment revealed that incident UVR exposure increased mortality of zoospores. Yet 100	

ponds with more UVR penetration (permanent ponds with low DOC) had higher prevalence of 101	

disease. These results suggest that the direct effect of UVR on mortality was overwhelmed by 102	
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other factors. We explored additional direct and indirect effects with bivariate analyses and then 103	

synthesized them with a regression-based partition of variation in prevalence [34]. (Small sample 104	

sizes and co-linearity problems prevented a path analysis.) This partition supported the dilution 105	

pattern; host diversity alone explained 42% of the variation in disease prevalence. However, 106	

diversity was unrelated to either hydroperiod or UVR, hence it could not explain why disease 107	

was higher in permanent ponds with more UVR. Instead, the combined effects of parasite 108	

predators (zooplankton) and multi-season larvae — both strongly regulated by UVR and 109	

hydroperiod, respectively — explained 33.9% of the variation in infection prevalence (i.e., 110	

rivaling diversity effects). Together, these results highlight that indirect effects of habitat (and 111	

diversity) can outweigh direct environmental constraints on disease.  112	

 113	

MATERIALS AND METHODS 114	

Study system 115	

We examined our different habitat-disease hypotheses using a field survey of amphibian 116	

communities in the Peñalara Massif (Guadarrama Mountains National Park, central Spain: 117	

40º50’N, 3º57’W). Ten different species of amphibian hosts occur in these sites (see Results for 118	

frequencies of each species). However, the outcome of infection varies markedly among host 119	

species and stage [12-14, 16]. Again, we focused on two native hosts, the fire salamander and the 120	

midwife toad, because these hosts act as key drivers of disease in this system [14, 16]. All 121	

samples were collected on site and no animals were harmed during this study. Indiana University 122	

Animal Care and Use Committees and Consejería de Medio Ambiente de la Comunidad de 123	

Madrid approved sampling protocols and provided permits. 124	

 125	
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Determinants of UVR: The environmental component of Pathways 1A-C 126	

Pathways 1A-C start with hydroperiod but all involve variation in penetration of ultraviolet 127	

radiation (UVR) into ponds (left hand side of Pathway 1, Fig. 1). To characterize UVR, we 128	

pooled water samples from three different locations in the pond bi-weekly throughout the 2011 129	

breeding season. We filtered these samples (pre-combusted, Whatman GF/F, 0.7 µm) and 130	

estimated: (i) dissolved organic carbon (DOC; mg C-L, using a Shimadzu TOC-5000 total 131	

Organic Carbon Analyzer) and (ii) the absorption coefficient, ad320 m-1 (using a 132	

spectrophotometer). DOC and ad320 are generally inversely related to UVR penetration [22, 35]. 133	

We then calculated a ‘UVR index’, which combines mean depth of habitat used by larvae, z 134	

(measured at 2-15 locations, depending on pond size) and ad320 (m-1). We estimated the mean 135	

exposure in the water column, p, by integrating UVR penetration from surface, Lin, to depth (z), 136	

L(z), using Lambert-Beer’s law:  137	

𝑝𝑝 = !(!)
!!"

= 1−  !"# (!!")
!"     (eq. 1) 138	

where k is the absorption coefficient (assumed here to equal ad320). This UVR index essentially 139	

assesses the relative exposure experienced by a Bd zoospore suspended in the water column 140	

[based on: 36, 37]. This metric strongly correlates with UVR reaching depth z, L(z) (Pearson r = 141	

0.993, p < 0.0001). We compared variation in depth, DOC, and the UVR index between 142	

ephemeral and permanent sites using unpaired, two-tailed t-tests. We tested the directional 143	

hypothesis that larvae occupy deeper depths in permanent ponds with one-tailed t-tests and 144	

Welch’s heteroscedasticity correction. 145	

 146	

Pathway 1A: UVR Directly Regulates Parasites  147	

Experimental Evidence 148	



	 8	

We used an in-situ field experiment to examine the direct effect of natural solar radiation 149	

(UV-B, UV-A, and photosynthetically active radiation [PAR] combined) on parasite survival 150	

(Pathway 1A, Fig. 1A). Specifically, we exposed parasite zoospores to ambient solar radiation in 151	

two highly transparent ponds [following 35]. We incubated zoospores [collected following 17] 152	

on a standard growth substrate [following 38] in quartz vials (12 replicates per treatment). Vials 153	

received either full exposure to radiation (Aclar sleeves, which transmits 100% of PAR [400-800 154	

nm] and 99% of UVR [250-399 nm]) or no radiation (thick black polyethylene sleeves) [see 35]. 155	

To mimic exposure of zoospores to solar radiation, we suspended vials just below the surface for 156	

48 hours. Both ponds experienced nearly identical water temperatures and PAR levels (see 157	

supplementary material). At the end of the incubation, we looked for differences in parasite 158	

levels (i.e., Bd zoospores) using qPCR [following 39]. We ran each sample in duplicate against 159	

replicated standards of 0.1, 1, 10 and 100 genomic equivalents (GE) of zoospores and two 160	

negative controls. We considered hosts infected if both duplicates amplified with a mean 161	

genomic equivalent ≥ 0.1. From these samples, we calculated infection load (i.e., genomic 162	

equivalents of zoospores per host). We tested for an effect of incubation site with ANOVA, 163	

sequentially dropping non-significant terms [40]. Our results were qualitatively the same with 164	

and without dropping non-significant terms. 165	

 166	

Field Survey 167	

Next, we looked for links between UVR (and hydroperiod) and disease using field patterns 168	

from natural epidemics in eight permanent and six ephemeral ponds. Data on amphibian hosts 169	

(infection prevalence, infection load, relative abundance, and frequency) come from a larger 170	

survey conducted throughout the breeding seasons (after ice-melt in May through September) of 171	
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2009 – 2012. At each pond, we collected Bd samples (from epidermal swabs and tissue samples) 172	

at approximately the beginning and end of the season. (For ephemeral ponds, the end of the 173	

season depended on the hydroperiod of each pond). We estimated the average infection 174	

prevalence (proportion infected/total number sampled) from these samples of focal hosts. For 175	

each sample, we also recorded host species and stage to compare differences in mean infection 176	

load. We fit a linear relationship between UVR and Bd prevalence (i.e., averaged over 2009 - 177	

2012) among sites using a generalized linear model (GLM) with binomial errors [40]. We 178	

assessed GLM model fit with the coefficient of discrimination, D (similar to an R2 for logistic 179	

regression) [41].  180	

 181	

Pathway 1B: UVR Effect on the Parasite Predator (Zooplankton) Community 182	

To characterize zooplankton communities, we collected plankton samples bi-weekly 183	

throughout the 2011 breeding season. From each sampling date at each pond, we collected 1L of 184	

water from three different locations in the pond and then filtered the entire sample with mesh 185	

(153 µm). We preserved zooplankton samples with 70% ethanol for subsequent identification 186	

using a dissecting scope at 20 – 50X magnification [20]. The zooplankton sample from one 187	

ephemeral site was accidentally lost. Univariate relationships involving log-transformed 188	

zooplankton were tested using correlations (where the log-scale preserves normality 189	

assumptions). We examined whether community composition of zooplankton varied with UVR 190	

penetration (or hydroperiod) using constrained ordination methods [34]. We first log(X +1) 191	

transformed these data to help homogenize the variance. Then, we used the Hellinger distance 192	

transformation [following 42] prior to a redundancy analysis using 9,999 permutations to test for 193	

significance of the relationship (RDA; R package vegan). 194	
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Pathway 1C: UVR Effect on the Composition and Diversity of Host Communities 195	

We estimated frequencies of each taxon in the amphibian community using abundance data  196	

from the larger multi-year survey (2009-2012). To account for differences in host richness and 197	

relative abundance among sites, we calculated the mean inverse Simpson’s diversity index 198	

(where larger numbers denote higher diversity) for each site. We tested relationships between 199	

UVR and diversity indices using correlations. We also tested for links between UVR and 200	

community composition (index by Hellinger distance) using the RDA described for Pathway 1B. 201	

 202	

Pathway 2: Hydroperiod, Stage Structure of Focal Hosts, and Parasite Production 203	

We estimated differences in infection load among host stages from the larger multi-year 204	

survey (2009-2012). These larval stages are easily differentiated (based on size and distinct color 205	

patterning). Infection load data (genomic equivalents per host) were overdispersed. Therefore, 206	

we fit zero inflated negative binomial models [43] to log transformed data (R package pscl). We 207	

tested the relationship between pond hydroperiod and presence of multi-season larvae of focal 208	

hosts using a Fisher’s exact test. 209	

 210	

Synthesis of Indirect Effects Using Variation Partitioning 211	

To identify the relative contributions of our three main indirect effects (parasite predators, 212	

host diversity, and multi-season larvae), we used a partition of variation based on partial 213	

regression analysis [44]. The method separates fractions of variation attributable to each driver 214	

alone, independently (a-c), or to fractions shared due to correlation among drivers (d-g). The 215	

remaining fraction, the left-over variation unexplained (h), is also calculated. Estimates of 216	

independent and shared variation use adjusted R2 values, which provide unbiased estimates [45]. 217	
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Negative fractions indicate that shared partitions explain less variation than random normal 218	

variables [34]. Hence, we depict negative fractions of variation in the accompanying Venn 219	

diagram as zero overlap. 220	

 221	

RESULTS 222	

Determinants of UVR: The environmental components of Pathways 1A-C 223	

Permanent and ephemeral ponds differed in two key factors that regulate exposure of 224	

aquatic organisms to UVR: larval depth and dissolved organic carbon (DOC). Larval hosts in 225	

permanent ponds occupied slightly deeper depths relative to hosts in more-shallow, temporary 226	

ponds (t-test; t = 2.05, df  = 9.69, p = 0.03, n = 14, Fig. 2a). Thus, all else equal, hosts in 227	

permanent ponds should have lower UVR exposure. However, permanent sites had lower 228	

concentrations of DOC (t-test; t = -2.57, df  = 7.18, p = 0.04, n = 14, Fig. 2b). DOC correlated 229	

strongly with the absorption coefficient (ad320 m-1) used to calculate the UVR index (Pearson r = 230	

0.77, p < 0.0001). Together, DOC and ad320 overwhelmed larval depth as drivers of mean UVR 231	

penetration, since permanent sites (slightly deeper but lower DOC) had higher mean penetration 232	

of UVR compared to ephemeral sites (UVR index; t-test; t = 2.15, df  = 11.10, p = 0.05, n = 14, 233	

Fig. 2c). Thus, higher levels of UVR penetrated into the water column in permanent relative to 234	

ephemeral sites. 235	

 236	

Pathway 1A: UVR Directly Regulates Parasites  237	

The field experiment confirmed that UVR harms zoospores, but epidemics grew larger in 238	

ponds with more, not less, UVR. In the field experiment, exposure to solar radiation significantly 239	

reduced zoospore levels. There was a main effect of solar radiation (ANOVA, radiation 240	
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treatment: F1,40 = 4.91, p = 0.03, Fig. 3a) but no difference between incubation ponds (pond: F1,39 241	

= 2.82, p = 0.10) or their interaction (radiation treatment x pond: F1,38 = 0.55, p = 0.46). These 242	

experimental results support the hypothesis that UVR exposure could regulate Bd by directly 243	

reducing parasite (zoospore) survival. Yet, sites with higher UVR exposure (permanent sites) had 244	

higher — not lower — prevalence of infection (GLM: χ2 = 39.12, df = 1, p < 0.001, D = 0.357, 245	

Fig. 3b-c). These field patterns contradict the experimental results that UVR directly regulates 246	

parasites via mortality on zoospores. Instead, other factors might overwhelm the direct effects of 247	

UVR on parasite survival. 248	

 249	

Pathway 1B: UVR Effect on the Parasite Predator (Zooplankton) Community 250	

The UVR-zooplankton-disease link of Pathway 1B was supported. As predicted, sites with 251	

higher UVR had lower densities of these parasite predators (Pearson r = 0.611, p = 0.026, Fig. 252	

4a). Sites with fewer zooplankton, then, had higher infection prevalence (GLM, χ2 = 13.45, df = 253	

1, p < 0.001, D = 0.117, Fig. 4d). Zooplankton density, not zooplankton composition, drove 254	

these effects. The community composition of zooplankton was fairly homogenous across focal 255	

ponds. Ceriodaphnia spp. (mean frequency: 45%) and copepods (mean: 34%) dominated 256	

zooplankton communities. Larger Daphnia spp. were present in only two sites. Composition did 257	

not vary with UVR (RDA: F1,11 = 1.65, p = 0.16). Hence, the zooplankton effect involved 258	

depression of density of these parasite predators with higher UVR. 259	

 260	

Pathway 1C: UVR Effect on the Composition and Diversity of Host Communities 261	

Only part of the UVR-host diversity-disease pathway (1C) was supported. UVR was not 262	

related to host composition. Fire salamanders dominated host communities (mean frequency: 263	



	 13	

56%; maximum frequency: 100%). The second focal host, the midwife toad (mean: 2%; max: 264	

33%) was rarer. The introduced alpine newt, Ichthyosaura alpestris, was the second most 265	

common host (mean: 23%; max: 94%). All ‘other’ taxa were considerably less common: the 266	

Iberian green frog, Pelophylax perezi (mean: 5%; max: 49%); the treefrog, Hyla molleri (mean: 267	

5%; max: 60%); the Iberian frog, Rana iberica (mean: 5%; max: 87%); the native newt, Triturus 268	

marmoratus (mean: 2%; max: 17%), and the European toad, Bufo spinosus (mean: 0.04%; max:  269	

6%). Hence, UVR could account for variation in community composition among ponds. 270	

However, overall host composition did not vary along the UVR gradient (RDA: F1,12 = 1.42, p = 271	

0.21). Not surprisingly then, no strong relationships arose between the UVR index and overall 272	

host diversity (Pearson r = 0.216, p = 0.458, Fig. 4b), the frequency of focal hosts (r = 0.391, p = 273	

0.167, Fig. 4c), or frequency of the second most abundant taxa, the introduced alpine newt (see 274	

electronic supplementary material; r = -0.419, p = 0.136, Fig. S1a).  275	

However, strong host composition-disease links did emerge (in the second part of Pathway 276	

1C). Consistent with the dilution effect, sites with high host diversity had lower infection 277	

prevalence (GLM, χ2= 27.19, df = 1, p < 0.001, D = 0.265, Fig. 4e). This diversity-disease 278	

pattern likely arose because higher diversity of host reflects lower frequencies of our focal hosts 279	

(r = -0.847, p = 0.0001, supplementary material Fig. S1c). Indeed, sites dominated by our focal 280	

hosts had higher infection prevalence (GLM, χ2= 28.34, df = 1, p < 0.001, D = 0.269, Fig. 4f). 281	

Whereas, sites dominated by the introduced alpine newt had lower infection prevalence (GLM, 282	

χ2= 9.45, df = 1, p = 0.002, D = 0.083, electronic supplementary material, Fig. S1b). Thus, we 283	

found evidence for potential dilution-like effects (but no amplification effects) unrelated to UVR.  284	

 285	

Pathway 2: Hydroperiod, Stage Structure of Focal Hosts, and Parasite Production 286	
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 Habitat structure, however, did connect with disease through multi-season larvae. Larger, 287	

multi-season larvae produced higher levels of Bd zoospores than conspecific single-season 288	

larvae (planned contrasts: p < 0.001; Fig. 5a) or multi-season larvae of newts and ‘other’ hosts 289	

(both p < 0.001). Within focal hosts, multi-season larvae of rarer mid-wife toads produced more 290	

zoospores than single season conspecific larvae or any stage of salamanders (p values < 0.001; 291	

Fig. 5b). Similarly, for salamanders, multi-season larvae supported higher infection loads than 292	

their single-season counterparts (p = 0.019). Multi-season larvae of our focal hosts were found in 293	

all eight permanent ponds but in none of the six ephemeral ponds (which is very unlikely by 294	

chance alone: Fisher’s exact test: p = 0.0003; Fig. 5c). Thus, multi-season partially explain why 295	

permanent sites have higher infection prevalence (t-test; t = 2.27, df  = 10.98, p = 0.04, n = 14, 296	

Fig. 5d), despite having more damaging UVR penetration (Fig. 2c). 297	

 298	

Synthesis of Indirect Effects Using Variation Partitioning 299	

The variation partition emphasizes a strong effect of diversity on disease, but it also indicates 300	

important, joint effects of parasite predators and multi-stage larvae (Fig. 6).  Infection prevalence 301	

was well predicted by multiple linear regression with parasite predators (zooplankton), host 302	

diversity, and multi-season larvae. Together, all factors explained 64% (R2
adjusted = 0.639; Fig. 6) 303	

of the variation in infection prevalence across these sites. These indirect effects together 304	

overwhelmed the direct damaging effects of UVR on parasite survival. Independently neither 305	

zooplankton [fraction a, 1.6% of variation] nor multi-season larvae [c, 4.1%] explained much 306	

variation in prevalence. However, together these correlated drivers explained considerably more 307	

[f, 28.2%]. Overall, they explained 33.9% of variation in prevalence [a + c + f] — rivaling that 308	

explained by host diversity alone [b, 42.4%]. Additionally, host diversity and multi-season larvae 309	
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jointly explained even more variation [e, 9.74%], despite being uncorrelated themselves. 310	

Together, host diversity and multi-season larvae uniquely explained much variation in 311	

prevalence [b + c + e, 56.2%].  When accounting for the full partition of variation, we found 312	

negative variation explained by diversity and zooplankton together [d, -8.75%] and the joint, 313	

three-way intersection [g, -13.33%]. Again, these negative fractions seem nonsensical, but they 314	

indicate that these shared partitions explain less variation than random normal variables. Hence, 315	

these negative fractions are drawn graphically in the Venn diagram as regions with zero overlap 316	

[Fig. 6; 34]. The essential point here: together, predators of parasites and host stage structure, 317	

linked together via UVR and hydroperiod, explain a similar amount of variation in prevalence as 318	

host diversity alone. For completeness, we repeated the analysis replacing host diversity with the 319	

frequency of focal hosts or the frequency of introduced newts, the second most common taxa; 320	

each additional analysis yielded similar results (see Table S1, electronic supplementary 321	

material). 322	

 323	

DISCUSSION 324	

We examined whether variation in a key habitat characteristic (hydroperiod) could explain 325	

differences in infection prevalence of Bd across natural populations. We tracked factors 326	

governing gains and losses of parasite zoospores through two main pathways, all originating with 327	

hydroperiod. One suite of habitat-based pathways (Pathway 1A-C) started proximately with 328	

variation in penetration of ultraviolet radiation (UVR) into pond water. An in-situ experiment 329	

revealed that incident UVR exposure killed the infectious stage of the parasite (Pathway 1A). In 330	

the field, however, sites with higher UVR exposure had higher infection prevalence; thus, any 331	

direct effects of UVR on zoospores must become overwhelmed by other factors. Indeed, other 332	



	 16	

direct and indirect pathways better predicted prevalence. Permanent, high UVR sites had lower 333	

density of predators of zoospores (zooplankton, Pathway 1B) and harbored multi-season larval 334	

that fueled disease (Pathway 2). Host diversity was unlinked to hydroperiod or UVR (Pathway 335	

1C). Nonetheless, sites with higher diversity of hosts (and thus, lower frequencies of focal hosts) 336	

had lower prevalence of infection. Thus, while habitat structure explained considerable variation 337	

in infection prevalence via pathways involving zooplankton and multi-season larvae, it could not 338	

explain everything. Clearly, a multi-pathway approach was needed here: focus on any one 339	

pathway alone would have prompted incorrect, incomplete, or potentially misleading 340	

conclusions. Armed with additional data, path analysis might further delineate among the 341	

correlated pathways that modulate disease in this and other systems [46, 47]. In the meantime, 342	

these present results demonstrate the importance of creating mechanistic, food web based links 343	

between multiple habitat dimensions and disease [9-11].  344	

Infection reached higher prevalence in ponds with more UVR, despite that UVR reduced 345	

survival of the free-living stage of the parasite (i.e., Bd zoospores) by approximately 50%. 346	

Additionally, UVR potently regulates a wide-array of terrestrial [reviewed by 48] and aquatic 347	

pathogens [see 35 and citations therein]. Could these contrasting results arise because UVR 348	

increased host susceptibility (as sometimes seen in other systems [49, 50])? More detailed 349	

experiments that account for both negative and beneficial effects of UVR (e.g., UV-A used for 350	

photorepair [51]) across a wide range of host species are needed to address this question. 351	

Currently, the only study to address this question (to our knowledge) indicates that natural UV-B 352	

exposure increased survival of Bd infected toads [13]. Further, in other alpine systems 353	

amphibians exhibit behavioral and physiological responses that, combined with natural DOC 354	

‘sunscreen’, drastically reduce the deleterious effects of UVR [52, 53]. Together, these results 355	
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(though admittedly limited) do not suggest that UVR exposure increased host susceptibility. 356	

Instead, our results indicate that the net effect of UVR on disease depends on both direct and 357	

indirect effects mediated through community ecology [10, 35].	 358	

Variation in UVR penetration indirectly influenced disease prevalence by constraining 359	

predators that consume parasites. Sites with higher UVR had lower zooplankton densities and 360	

higher infection prevalence. Lower density of zooplankton matters because they can consume Bd 361	

zoospores; therefore, these parasite predators potentially reduce disease risk for hosts [17, 26, 362	

54]. The field patterns here suggest that smaller plankton (e.g., Ceriodaphnia and copepods) that 363	

dominated these alpine ponds may act as important predators. Bd zoospores [3–5 μm; 18] fall 364	

well within the size range of food particles eaten by these plankton [55, 56]; yet, confirmation 365	

with experiments (as done with Daphnia) remains important. Nonetheless, this study contributes 366	

more broadly to growing evidence that predators play a key role in regulating disease by 367	

consuming parasites [reviewed by 57]. This potential has sparked discussion about using 368	

predators of parasites such as zooplankton as ‘biocontrols’. However, any intentional 369	

introduction of predators could be undermined by environmental (e.g., UV) or food web 370	

constraints [11].  Here, for example, introducing zooplankton in these alpine sites could be 371	

undermined by strong UVR constraints. Such environmental constraints and food web effects 372	

associated with predators of parasites should be taken into account in disease management plans 373	

attempting to use them [11, 57, 58]. 374	

Hydroperiod also influenced epidemic size because permanent ponds supported multi-season 375	

larvae, key producers of parasite propagules.	More specifically, multi-season larvae of the focal 376	

hosts — not the introduced newt or ‘other’ hosts — harbored high infection loads that drove 377	

disease. In a comparable amphibian system in California, multi-season larvae with high infection 378	
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loads also serve as intraspecific reservoirs that maintain Bd infections [2]. Furthermore, this 379	

result adds to mounting evidence that stage structure of hosts matters for disease more broadly 380	

[59-62]. Here, as in other systems, larger hosts produce more parasites, which can increase 381	

disease [63-65]. Thus, stage-specific differences in key epidemiological traits could inform 382	

management strategies in various host-parasite systems. For example, across many sites, Bd has 383	

reached an endemic state. Thanks to successful captive breeding programs, host re-introduction 384	

plans now become feasible. The results here caution that the reintroduction of certain hosts with 385	

extended larval stages could undermine post-epidemic reintroduction efforts if they produce 386	

large numbers of parasites. Thus, management plans that do not consider the effects of host 387	

stage-structure could catalyze reemerging epidemics.  388	

The composition of host communities was linked to lower infection prevalence (potentially 389	

through various mechanisms discussed below). Somewhat surprisingly, UVR did not shaped host 390	

composition, as seen in other alpine-amphibian communities [52]. Perhaps other unmeasured 391	

habitat characteristic structure the host communities focused on here. Regardless, sites with 392	

higher host diversity had lower infection prevalence. This diversity-disease link could arise 393	

through a potential dilution effect whereby highly competent and abundant species (our focal 394	

host species) become less common in more diverse amphibian communities [32]. Future studies 395	

combining experiments and field surveys (with more accurate density estimates of host species) 396	

will help pinpoint the key species and their epidemiological traits that regulate Bd via dilution. 397	

That information would enable a more mechanistic valuation of dilution in this host-parasite 398	

system [66, 67]. 399	

 400	

CONCLUSIONS 401	
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Habitat-mediated indirect effects joined host diversity to shape infection prevalence via 402	

losses and gains of parasites. UVR reduced parasite survival by ~50%. Despite these direct 403	

effects, permanent, high UVR sites likely experienced net gains of parasites due to the reduction 404	

of UV-sensitive predators and high parasite production from multi-season larvae. Therefore, 405	

indirect pathways created double jeopardy for hosts in permanent ponds with higher UVR. Host 406	

diversity may sometimes counter these gains of parasites: more diverse sites had lower infection 407	

prevalence. However, diversity was unconnected to UVR penetration. Thus, while host diversity 408	

may regulate Bd [as seen in 66, 67], it could not explain why Bd became more prevalent in 409	

permanent ponds having higher UVR penetration. More broadly, this work highlights the need 410	

for a more integrative approach to linking habitat variation (e.g., UVR) to disease.  411	
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FIGURE LEGENDS 624	

Figure 1. Hypothesized pathways connecting habitat to infection prevalence of Bd in 625	

communities of amphibian hosts. Hydroperiod (ephemeral vs. permanent) is the ultimate driver 626	

of disease in this alpine system. However, it influences disease via two pathways that modulate 627	

gains and losses of parasite propagules (zoospores). Pathway 1A-C: Permanent ponds are deeper, 628	

but have less dissolved organic carbon (DOC) and therefore higher exposure to damaging 629	

ultraviolet radiation (UVR).  UVR could directly damage zoospores (bottom, pathway 1A), 630	

reduce zooplankton predators of zoospores (1B), or alter host composition (top, 1C). Dilution (—631	

) or amplification (+) effects could arise from UVR-mediated changes in host community 632	

composition. Pathway 2: Permanent ponds harbor multi-season larvae that produce high 633	

densities of parasite zoospores. Positive (+) and negative (—) symbols denote the sign of 634	

predicted relationships.  635	

Figure 2. Environmental components linking habitat features of alpine ponds with changes 636	

in ultraviolet radiation (UVR) —Pathway 1:(A) All else equal, permanent (Perm.) sites were 637	

deeper than ephemeral (Ephem.) ones. (B) However, permanent sites had less dissolved organic 638	

carbon (DOC). (C) Thus, UVR exposure was higher in deeper, permanent sites (large values of 639	

“UVR index” indicate higher mean penetration of UVR in the water column [equ. 1]). Data are 640	

means ± bootstrapped SE. 641	

Figure 3. Pathway 1A, UVR directly regulates parasites: (A) In situ, exposure to solar 642	

radiation (UVR + PAR) reduced survival of zoospores. However, (B) sites with higher UVR had 643	

more disease. (C) Permanent sites have higher UVR exposure and prevalence (E: ephemeral; P: 644	

permanent). Data are means ± bootstrapped SE.  645	

Figure 4. Connections between habitat and disease via parasite predators (zooplankton; 646	
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Pathway 1B) and host communities (Pathway 1C). (A-C) Habitat-composition links: (A) Sites 647	

with higher UVR index (i.e., higher mean levels of UVR) had lower density of zooplankton. 648	

There was no relationship between UVR and (B) overall host diversity or (C) the frequency of 649	

our focal hosts. (D-F) Composition-disease links: Infection prevalence was higher in ponds with 650	

(D) lower zooplankton density, (E) lower host diversity, and (F) higher frequency of focal hosts. 651	

Figure 5. Linking habitat, host stage structure, and disease (Pathway 2). (A-B) Infection 652	

loads from host stages. (A) Infection loads were ~ an order of magnitude higher in multi-season 653	

larvae of focal hosts (triangles) than in their single-season counterparts, newts (squares), or the 654	

‘other’ host species (circles). (B) Infection loads were higher in rarer mid-wife toads than in 655	

more dominant salamander hosts. Different letters indicate significant differences in planned a 656	

priori contrasts. (C) Multi-season larvae of the focal hosts lived in all permanent but no 657	

ephemeral sites. Data are means ± bootstrapped SE. 658	

Figure 6. Variation partitioning of infection prevalence of Bd across 14 alpine ponds 659	

(Pathways 1 and 2). The rectangle represents total variation in prevalence (100%). Together, 660	

parasite predators (zooplankton, Z), multi-season larvae, MSL (M), and host diversity (D) 661	

explained (64%, i.e., R2
adjusted = 0.639) of the variation (filled in circles, accounting for negative 662	

variation). This leaves the fraction h, 36.1%, as unexplained variation (white area). However, 663	

zooplankton [fraction a, 1.6%] and MSL [c, 4.1%] explained only a small fraction of prevalence 664	

themselves. Yet due to habitat-mediated correlation between them, they jointly explained a larger 665	

fraction [f, 28.2%]. Hence, together, they explain 33.9% of variation [a + c + f]. That fraction 666	

rivals the amount explained by diversity alone [b, 42.4%]. Additionally, diversity and MSL 667	

shared variation [e, 13.8%], despite being uncorrelated themselves. Together, diversity and MSL 668	

uniquely explained high variation in prevalence [b + c + e, 56.2%].  The full partition includes 669	



	 28	

negative variation explained by diversity and zooplankton together [d, -4.7%] and the joint, 670	

three-way intersection [g, -17.38%] (see text for explanation). Those regions of negative 671	

variation are drawn here as zero overlap. 672	
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ELECTRONIC SUPPLEMENTARY MATERIALS 

In this supplement we present additional methods, and results from the in situ experiment, the 

field survey, and variation partitioning based on partial regression analysis. We also present two 

additional versions of the variation partitioning first substituting the frequency of focal hosts and 

then the frequency of the introduced alpine newt (Table S1).  

 

ADDITIONAL METHODS AND RESULTS 

Estimates of UVR exposure in the field experiment 

During the incubation period, we measured PAR in the water column and water temperature 

to characterize differences between ponds. Accurately measuring UVR in the field is 

challenging, and due to logistical constraints, equipment was limited. Therefore, to provide an 

index of solar radiation, we measured photosynthetically active radiation (PAR) using a light 

meter (Li-Cor, Lincoln, Nebraska USA). Specifically, we measured (PAR) at three depths in 

each pond, once every hour during mid-day from 11:00 hours – 13:00 hours, then calculated the 

average solar radiation for each pond. There was no significant difference in mean PAR levels 

between the two incubation ponds (PAR t-test; t = 0.72, df  = 30, p = 0.48, n = 33).  

We also measured water temperature in each incubation pond for a portion of the assay. We 

measured water temperature every thirty minutes throughout from 9:30 – 14:00 hours (using a 

hand-held Horiba D55 meter, Southwest Scientific), and calculated the mean temperature. There 

was no significant difference in mean water temperature levels between the two incubation 

ponds (PAR t-test; t = 0.85, df  = 20.78, p = 0.40, n = 23).  

Pathway 1C: UVR Effect on the Composition and Diversity of Host Communities 

 There was no relationship between UVR and the frequency of the introduced alpine newt 



(Pearson r = 0.419, p = 0.136 Fig. S1a). Sites dominated by the introduced alpine newt had lower 

infection prevalence (GLM, χ2= 9.45, df = 1, p = 0.002, D = 0.083, Fig. S1b). Higher host 

diversity reflected lower frequencies of the focal hosts (r = -0.847, p = 0.0001, Fig S1c).  

 

Synthesis: Variation Partitioning  

 In the text, we briefly describe a partition of variation using three potentially correlated 

explanatory variables. The partition using three variables requires an extension of the two 

variable method described previously (Legendre and Legendre 2012). Readers of the recipe 

below must understand the two variable case first, as we merely aim here to describe, in words, 

the strategy used in Legendre’s varpart code for R (part of the vegan package); we borrow that 

code’s strategy directly. Here, we partition variation in prevalence (P) as functions of host 

diversity (D), abundance of zooplankton predators (Z), and presence or absence of multi-season 

larvae (M). The partition involves three steps. 

 Step 1: Five simple or multiple regression analyses (all linear) are needed. The format 

below for the regression models is, e.g., dependent variable ~ sum of independent variables 

 Model 1 (M1), fractions a, f, d, g: P ~ Z      (A1.a) 

Model 2 (M2), fractions c, e, f, g: P ~  M     (A1.b) 

Model 3 (M3), fractions b, d, e, g: P ~ D     (A1.c) 

Model 4 (M4), fractions a, b, d, e, f, g: P ~ Z + D    (A1.d) 

Model 5 (M5), fractions a, c, d, e, f, g: P ~ Z + M    (A1.e) 

Model 6 (M6), fractions b, c, d, e, f, g: P ~ D + M    (A1.f) 

Model 7 (M7), all fractions a through g: P ~ D + M + Z   (A1.g) 



where models M1 to M3 (equs. A1.a-c) are simple linear regression of each biological driver on 

infection prevalence; M4-M6 (equs. A1.d-f) are the various combinations of two of each driver; 

and M7 (equ. A1.g) is the three driver regression model. For each model, we calculate the 

adjusted R2 (hereafter: Ra
2). (The fractions a through g encompassed by each regression model 

are defined below). The variation unexplained by the sum of the three drivers is then 1 - the Ra
2 

value from M7, written in shorthand here and below as ‘1 - M7’. Then, to calculate the first three 

partitions, we must subtract the Ra
2 values of each two-driver model (M4, M5, and M6) from the 

first full, three driver model, M7, each in turn. These first three partitions characterize the 

fraction of variation in infection prevalence explained by each driver  (Z, D, M) alone: 

 fraction a (Z alone): M7 - M6       (A2.a) 

 fraction b (D alone): M7 - M5      (A2.b) 

 fraction c (M alone): M7 - M4      (A2.c) 

The fractions d through f involve variation shared between pairs of drivers, where d is the 

fraction shared between D and Z, e is that between D and M, and f is that between M and Z. To 

calculate them, the second step is needed; this intermediate step calculates the sum of one of the 

driver-alone fractions (a, b, or c) with one of the shared fractions (d, e, or f). Thus, these 

intermediate fractions involve subtracting Ra
2 values from the regressions models (equ. A1) in 

different ways: 

 fraction (a + d): M5 - M3       (A3.a) 

fraction (b + e): M4 - M1       (A3.b) 

fraction (c + f): M6 - M2.       (A3.c) 

These sums of variation then provide the core ingredients to isolate the remaining shared 

fractions in the third step (i.e., by subtracting particular combinations of equs. A1-3): 



 fraction d (shared by D and Z): (a + d) - a     (A4.a) 

 fraction e (shared by D and M): (b + e) - b     (A4.b) 

 fraction f (shared by M and Z): (c + f) - c     (A4.c) 

  fraction g (shared by D, M, and Z): M7 - (a + d) - (b + e) - (c + f)  (A4.d) 

The seven partitions presented in the text (Fig. 6) were calculated using these methods (equ. A1-

A4). The unexplained variation, h, is 1 - M7. 

Below (Table S1), we present results comparing the model presented in the main text with 

two additional variants. First, we exchange host diversity with the frequency of focal hosts 

(Salamandra salamandra and Alytes obstetricans). Then, we exchange diversity with the 

frequency of the introduced alpine newt (Ichthyosaura alpestris). Two main points arise from 

this comparison. First, host diversity and the frequency of focal hosts alone explain similar 

amounts of variation in infection prevalence (0.424 and 0.363, respectively); newts alone explain 

a much smaller fraction (0.148). The similarity between the first and second models likely reflect 

the tight correlations between host diversity and the frequency of focal hosts (Fig. S1c). Second, 

while, the models vary in the weight given to each parameter alone (i.e., a,b,c), their overall joint 

contributions (i.e., zooplankton + multi-season larvae, [a+c+f] and community composition of 

hosts + multi-season larve, [b+c+e]) are similar across all models. 
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SUPPLEMENTARY MATERIAL FIGURE LEGENDS 

 

Figure S1. Habitat-disease connections via composition of host communities (Pathway 1C). 

(A) There was no relationship between UVR and the frequency of the introduced alpine newt. (B) 

Sites dominated by the introduced alpine newt had lower infection prevalence. (C) Relationship 

between host diversity and frequency of focal hosts. As pond communities became more 

dominated by focal hosts (fire salamanders and mid-wife toads), host diversity decreased. Each 

point is the mean of relative abundance surveys collected throughout the breeding season from 

2009-2012. 

 

 

 



Table S1. Three different versions of the multiple regression-based partition that explains variation in 1	
prevalence of Bd infection in focal hosts. The versions differ in the index used to characterize the host 2	
community, D. In model 1, Simpson's diversity characterizes it (as visualized in Fig. 6). In model 2, D is 3	
the closely correlated frequency of focal hosts. In model 3, D is frequency of alpine newts.  4	

*Negative fractions indicate partitions that explain less variation than random normal variables. Hence, 5	
they are interpreted as zeros [2].  6	

Parameter(s) Fractions 
of  

variation 

Model 1 
Host diversity 

Ra
2 

Model 2 
Freq. focal hosts 

Ra
2 

Model 3 
Freq. alpine newt 

Ra
2 

Full model  [a] – [g] 0.639 0.684 0.364 
Zooplankton (Z) alone [a] 0.016 -0.033*  -0.009* 

Multi-season larvae 
(M) alone 

[c] 0.041 0.102 0.327 

Shared Z & M [f] 0.282 0.211 0.027 
Z & M, no D [a+c+f] 0.339 0.314 0.345 

Hosts  (D) alone [b] 0.424 0.363 0.148 
Shared D & M [e] 0.097 0.036 -0.188* 
D & M, no Z [b+c+e] 0.562 0.501 0.475 
Shared D & Z [d] -0.087* -0.038* -0.063* 

Shared D, M, & Z [g] -0.133* -0.063* 0.122 
Residuals [h] 0.361 0.316 0.636 
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