
A New Edit Distance for Fuzzy Hashing Applications

V. Gayoso Martínez1, F. Hernández Álvarez1, L. Hernández Encinas1, and C. Sánchez Ávila2
1Information Processing and Cryptography (TIC), Institute of Physical and Information Technologies (ITEFI)

Spanish National Research Council (CSIC), Madrid, Spain
2Telecommunication Engineering School (ETSIT), Polytechnic University of Madrid (UPM), Madrid, Spain

Abstract— Similarity preserving hashing applications, also
known as fuzzy hashing functions, help to analyse the content
of digital devices by performing a resemblance comparison
between different files. In practice, the similarity matching
procedure is a two-step process, where first a signature
associated to the files under comparison is generated, and
then a comparison of the signatures themselves is performed.

Even though ssdeep is the best-known application in
this field, the edit distance algorithm that ssdeep uses for
performing the signature comparison is not well-suited for
certain scenarios. In this contribution we present a new edit
distance algorithm that better reflects the similarity of two
strings, and that can be used by fuzzy hashing applications
in order to improve their results.

Keywords: Edit distance, fuzzy hashing, similarity preserving

hashing

1. Introduction
Similarity Preserving Hashing (SPH) functions, also

known as fuzzy hashing algorithms, try to detect the re-

semblance between two files [1]. There are basically four

types of SPH functions [2]: Block-Based Hashing (BBH)

functions, Context-Triggered Piecewise Hashing (CTPH)

functions, Statistically-Improbable Features (SIF) functions,

and Block-Based Rebuilding (BBR) functions. In any fuzzy

hashing application, files are processed and, as a result of the

analysis performed, a code linked to the content of the file

is generated, so files can be later compared based on their

codes. In this context, the file’s code is indistinctly referred

to as its digest, hash or signature.

In CTPH functions, the length and content of the signature

is determined by the existence of certain special points,

called trigger points or distinguished points, within the data

object. A point is considered to be a trigger point if it

matches a certain property, defined in a way so that the

number of expected trigger points falls within a previously

specified range. Once a number of trigger points large

enough is detected, CTPH applications generate the signa-

ture associated to the file by processing the data portions

located between consecutive trigger points.

Since its first release, ssdeep [3] has been one of the

best known fuzzy hashing applications. When comparing

files, ssdeep generates a matching score after analysing the

similarity of the signatures. In order to do that, ssdeep im-

plements an edit distance algorithm based on the Damerau-

Levenshtein distance between two strings [4], [5]. That edit

distance function compares the two strings and counts the

minimum number of operations needed to transform one

into the other, where the allowed operations are insertions,

deletions, and substitutions of a single character, and trans-

positions of two adjacent characters [6], [7].

Even though the success of ssdeep is quite remarkable,

its edit distance implementation has important limitations

that prevent ssdeep from generating a score that reflects

the percentage of the bigger file that is also present in

the smaller file, which is the definition of similarity better

adapted for some real-world scenarios. With the goal to

improve the quality of fuzzy hashing applications, in this

contribution we present a new edit distance algorithm that

can be used as a replacement of ssdeep’s edit distance or

in new implementations.

The rest of this paper is organized as follows: Section 2

reviews ssdeep’s edit distance. In Section 3, we provide a

complete description of our proposed algorithm. Section 4

includes a comparison of both algorithms when working with

some special signatures. Finally, Section 5 summarizes our

conclusions about this topic.

2. Edit distance in ssdeep
In 2006, Jesse Kornblum released ssdeep [8], one of

the first programs for computing context triggered piecewise

hashes, and that soon became very popular. Since that initial

release, new versions and updates have not ceased to appear,

and the project is still active (at the time of preparing this

contribution, the latest version is 2.12, which was released

in October 2014 [3]). The core of ssdeep is derived from

rsync [9] and spamsum [10], both of them tools developed

by Andrew Trigdell.

As mentioned in the previous section, the similarity mea-

surement that ssdeep uses is an edit distance algorithm

based on the Damerau-Levenshtein distance [4], [5], [6],

[7]. In the original Damerau-Levenshtein algorithm, all

the operation costs are initially 1, though the substitutions

and transpositions decrease their weight to 0 when certain

conditions are met [11]. In comparison, ssdeep defines

the weight of insertions and deletions as 1, the weight of

substitutions as 3, and the weight of transpositions as 5.

326 Int'l Conf. Security and Management | SAM'15 |
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/45452083?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

As an example, using ssdeep’s algorithm the distance

between the strings “emerald” and “overall” is 6, as it can

be checked with the following steps and the computations

of Table 1.

emerald
del−−−−→ merald

del−−−−→ erald
ins−−−−→ verald

ins−−−−→
overald

del−−−−→ overal
ins−−−−→ overall

e m e r a l d
0 1 2 3 4 5 6 7

o 1 2 3 4 5 6 7 8
v 2 3 4 5 6 7 8 9
e 3 2 3 4 5 6 7 8
r 4 3 4 5 4 5 6 7
a 5 4 5 6 5 4 5 6
l 6 5 6 7 6 5 4 5
l 7 6 7 8 7 6 5 6

Table 1: ssdeep edit distance example.

A consequence of assigning the weights 3 and 5 to the

substitution and transposition operations is that, in practice,

the edit distance computed by ssdeep only takes into con-

sideration insertions and deletions. In this way, a substitution

has a cost of 2 (a deletion plus an insertion) instead of 3,

and a transposition has also a weight of 2 (again an insertion

and a deletion) instead of 5.
One of the limitations derived from this design is that,

given a string, a rotated version of the initial string is credited

with many insertion and deletion operations, when in its

nature it is basically the same string (i.e. the content is the

same, although the order of the substrings is different). Con-

sider for example the strings “1234abcd” and “abcd1234”.
As the signature comparison algorithm implemented by

ssdeep is not available in a descriptive way, Algorithm 1

shows our interpretation (made upon inspection of the source

code of ssdeep [3]) of that functionality, where A and B
are one-dimensional arrays containing, respectively, the m
characters of string1 and the n characters of string2,

and where D is a (m + 1) × (n + 1) matrix used in

the computations with all its positions initially set to 0.

During the set-up phase, the first row (respectively, the first

column) of D is initialized with the number corresponding

to the column (respectively, the row) of the position being

processed. The rest of the positions are processed based on

the content of the nearby elements and the characters being

compared. Once the comparison procedure is finished, the

algorithm generates a similarity score in the range 0-100.
The meaning of the functions included in the algorithm is

the following:

• length(string): calculates the number of characters

of the string.

• longestCommonSuString(string1,string2):

provides the longest common substring of two strings.

• min(param1,param2,param3): identifies the mini-

mum value given by the numbers or expressions passed

to the function as parameters.

• floor(value): returns the bigger integer whose value

is equal to or lower than value.

3. Our proposed edit distance
Our edit distance algorithm compares two signature

strings, string1 and string2, and produces a similarity

score in the range 0-100. Algorithm 2 describes all the steps

that must be performed in order to evaluate the similarity

of the strings string1 and string2, where the first

step consists in identifying as string1 the shortest string

and as string2 the longest string, swapping the strings if

necessary. During the procedure, the algorithm manipulates

modified versions of the input strings, using their longest

common substring for deciding which modification to per-

form next and increasing a counter with the differences

found so far. The procedure is repeated until there are no

more common substrings for the modified versions of the

input elements. In the final step, the algorithm compares

the resulting strings character by character in order to add

to the counter the number of difference elements found for

the same positions. It is important to point out that, unlike

ssdeep, our algorithm does not impose a minimum length

for the longest common substring, which allows to compare

a wider range of strings.
The meaning of the functions included in Algorithm 2 and

not presented in the previous section is the following:

• longestCommonSuStringNoHyphen(string1,
string2): returns the longest common substring

which does not contain the hyphen (-) character.

• hyphenString(size): creates a new string of

length size containing only the hyphen character.

• indexOf(string,substring): returns the posi-

tion where the first character of substring is located

inside string.

• replace(string,index,size,substring):

replaces in the element string the existing substring

of size characters starting at index with the

characters of substring.

• abs(number): provides the absolute value of the

input number.

• charAt(string,index): returns the character lo-

cated at position index in the element string.

In order to illustrate the comparison process performed

by Algorithm 2, Table 2 provides an example using two

ad-hoc strings, denoted as string1 and string2. In

the first row of the table, we have included the two initial

strings (renamed as string1temp and string2temp),

the template for the modified version of string2 (called

string2mod), and the score, which initially equals 0.

Starting with the step 1, the element substring identi-

fies the longest common substring of string1temp and

string2temp, which are then updated to show the re-

moval of that substring. Then, we have inserted the common

Int'l Conf. Security and Management | SAM'15 | 327

Algorithm 1 ssdeep edit distance algorithm.

1: if (length(longestCommonSuString(string1,string2)) < 7) then
2: return 0

3: end if
4: λdel ← 1

5: λins ← 1

6: λsub ← 3

7: i ← 0

8: for all i ≤ m do
9: D[i,0] ← i

10: end for
11: j ← 0

12: for all j ≤ n do
13: D[0,j] ← j
14: end for
15: i ← 1

16: j ← 1

17: for all i ≤ m do
18: for all j ≤ n do
19: if (A[i] = B[j]) then
20: λsub ← 0

21: else
22: λsub ← 3

23: end if
24: D[i, j] = min(D[i-1,j] + λins, D[i,j-1] + λdel, D[i-1,j-1] + λsub)

25: end for
26: end for
27: score ← D[m,n]

28: score ← floor
(score · 100
length(string1) + length(string2)

)
29: if (score > 100) then
30: score ← 0

31: else
32: score ← 100 - score
33: end if
34: return score

longest substring obtained in that step into string2mod,

so the position of that substring in string2mod is the same

that it occupies in string1.

As described in Algorithm 2, we only increase the score

if the difference between the initial and final positions of

the substring in string2mod is greater than the length

difference of string1 and string2. With this rule we

avoid to penalize the change of positions derived from the

different length of the strings under comparison (e.g. this

difference could have been produced by the insertion of

some characters at the beginning of the string, which would

displace the rest of the characters that compose the original

string a given number of positions).

The score is increased in one unit if the longest common

substring has more than one character, which means that

common substrings of different sizes would receive the same

penalty (i.e., a penalty of 1.0, but only if they are separated a

number of positions bigger than the difference of the string

lengths). In this sense, what we penalize is the movement

of the string, not its size.

Besides, when the longest common substring has exactly

one character, the quantity to be added to the score is 0.5.

The reason for doing this is not to penalize in excess the

displacement of a unique character. If we do not impose this

rule, the displacement of a single character would receive a

score of 1.0, which would be the same penalty produced

by the substitution of a character by a completely different

character. A topic open for future study is the modification

of this value in order to obtain better results.

After the rearrangement phase, a pair by pair comparison

of the characters elements is performed in the last step

of the procedure. As there are eight different characters

328 Int'l Conf. Security and Management | SAM'15 |

Algorithm 2 Our proposed edit distance algorithm.

1: if (length(string1) > length(string2)) then
2: string1 ↔ string2
3: end if
4: string1temp ← string1
5: string2temp ← string2
6: common ← longestCommonSuStringNoHyphen(string1temp,string2temp)
7: string2mod ← hyphenString(length(string2))
8: diff ← 0

9: while (length(common) > 0) do
10: pos1 ← indexOf(string1temp,common)
11: pos2 ← indexOf(string2temp,common)
12: string2mod ← replace(string2mod,pos1,length(common),common)
13: if (abs(pos1-pos2) > abs(length(string1)-length(string2))) then
14: if (length(common) > 1) then
15: diff ← diff + 1

16: else
17: diff ← diff + 0.5

18: end if
19: end if
20: string1temp ← replace(string1temp,pos1,length(common),
21: hyphenString(length(common)))
22: string2temp ← replace(string2temp,pos2,length(common),
23: hyphenString(length(common)))
24: common ← longestCommonSuStringNoHyphen(string1temp,string2temp)
25: end while
26: for all i such that 0 ≤ i ≤ length(string2temp) do
27: char ← charAt(string2temp,i)
28: if char �= “-” then
29: pos2 ← indexOf(string2mod,“-”)
30: string2mod ← replace(string2mod,pos2,1,char)
31: end if
32: end for
33: for all i such that 0 ≤ i ≤ length(string2temp) do
34: if ((i ≥ length(string1)) or (charAt(string1,i) �= charAt(string2mod,i)) then
35: diff ← diff + 1

36: end if
37: end for
38: return floor

(
100− diff · 100

length(string2)

)

in string1 and string2mod, the score is increased in

eight units from 4.5 up to 12.5. In order to facilitate the

identification of the dissimilar characters, Table 2 displays

in bold font the dissimilar elements of the two strings.

Taking into account that the length of the longest string

(string2) is 27, the comparison between string1 and

string2 provides the following output:

Result = 100−
⌊12.5 · 100

27

⌋
= 100− 46 = 54.

A score of 54 implies that 54% of the longest string,

string2, is also contained in the shorter string, string1.

4. Special signatures
When designing this test, our goal was to check the be-

haviour of ssdeep’s algorithm and our proposed algorithm

when using some special strings, whose pattern could appear

in certain real-world scenarios (for example, when obtaining

the signature of files containing lists of elements such as

names, file paths, etc.).

Even though we are aware that the tests included below

represent extreme cases with ad-hoc strings, we believe

it is worthwhile to test both algorithms in this scenario,

as it represents different degrees of content rotation and

modification.

Int'l Conf. Security and Management | SAM'15 | 329

Step Element Content

0 string1temp ABCDEFGHIJKLMNOPQRSTUVWXYZ
string2temp 1XYZI2JKL3MNOPQ4BCDEFGH5678
string2mod ---------------------------
score 0.0

1 substring BCDEFGH
string1temp A-------IJKLMNOPQRSTUVWXYZ
string2temp 1XYZI2JKL3MNOPQ4-------5678
string2mod -BCDEFGH-------------------
score 1.0

2 substring MNOPQ
string1temp A-------IJKL-----RSTUVWXYZ
string2temp 1XYZI2JKL3-----4-------5678
string2mod -BCDEFGH----MNOPQ----------
score 2.0

3 substring JKL
string1temp A-------I--------RSTUVWXYZ
string2temp 1XYZI2---3-----4-------5678
string2mod -BCDEFGH-JKLMNOPQ----------
score 3.0

4 substring XYZ
string1temp A-------I--------RSTUVW---
string2temp 1---I2---3-----4-------5678
string2mod -BCDEFGH-JKLMNOPQ------XYZ-
score 4.0

5 substring I
string1temp A----------------RSTUVW---
string2temp 1----2---3-----4-------5678
string2mod -BCDEFGHIJKLMNOPQ------XYZ-
score 4.5

6 string1 ABCDEFGHIJKLMNOPQRSTUVWXYZ
string2mod 1BCDEFGHIJKLMNOPQ234567XYZ8
score 12.5

Table 2: String rearrangement example.

The strings included in this test are the following ones:

S01: ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijk
lmnopqrstuvwxyz
S02: ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJK
LMNOPQRSTUVWXYZ
S03: abcdefghijklmnopqrstuvwxyzABCDEFGHIJK
LMNOPQRSTUVWXYZ
S04: 12345678901234567890123456ABCDEFGHIJK
LMNOPQRSTUVWXYZ
S05: BADCFEHGJILKNMPORQTSVUXWZYbadcfehgjil
knmporqtsvuxwzy
S06: CDABGHEFKLIJOPMNSTQRWXUVabYZefcdijghm
nklqropuvstyzwx
S07: EFGHABCDMNOPIJKLUVWXQRSTcdefYZabklmng
hijstuvopqrwxyz
S08: IJKLMNOPABCDEFGHYZabcdefQRSTUVWXopqrs
tuvghijklmnwxyz
S09: QRSTUVWXYZabcdefABCDEFGHIJKLMNOPwxyzg
hijklmnopqrstuv
S10: ghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQ
RSTUVWXYZabcdef

The first string, S01, can be considered the base element

of the set. The second string replaces the second half of

S01 with its own first half. String S03 swaps the two blocks

that form S01. In addition to the previous change, string S04

replaces the first half of the string with digits. Strings S05 to

S10 take as basis the first string and perform transpositions

of blocks whose size is 1, 2, 4, 8, 16, and 32 characters,

respectively.

The results generated when comparing these special sig-

natures are included in Tables 3, 4, and 5. Table 3 shows

the results obtained when using ssdeep with signature files

whose content replies the strings of the tests. As the limi-

tation imposed by ssdeep regarding the minimum length

for the common substrings produces as a result that several

comparisons are not effectively performed (ssdeep directly

assigns a score of 0 in those cases), we have implemented

the logic of ssdeep’s algorithm in Java Standard Edition

[12] and have removed that limitation in our code. Thus,

Table 4 shows the results that ssdeep would provide

if it did not apply the aforementioned minimum length

requirement. Finally, Table 5 displays the results obtained

with our proposed algorithm once implemented as another

Java application.

As it can be observed, our algorithm is able to provide

meaningful results in all the comparisons, which is not the

case in ssdeep. For example, the comparison between S01

and S07, which renders a score of 0 in ssdeep, is evaluated

as having a similarity degree of 77% by our algorithm.

Following that example, the modified version of ssdeep
without the minimum length requirement generates a score

of 55 which, even representing a better result, it still fails

to properly reflect the fact that S01 and S07 share far more

than half of their content.

When inspecting the tables, it can be stated that the results

provided by our algorithm are more realistic according to the

similarity definition given in the Introduction. For instance,

when comparing S01 to S03 and S04, it is clear that S03

is almost the same string as S01, whilst S04 only shares

with S01 half of its string. However, ssdeep is not able

to detect that difference and assigns a value of 50% in both

cases. In comparison, our algorithm computes the similarity

degree as 97% and 49%, respectively.

Even though the modified version of ssdeep provides

higher results than our algorithm in some instances (e.g.,

when comparing S02 and S05 or S04 and S06), those

differences are small and do not imply a representative

difference. However, when our algorithm provides higher

results the difference in some instances is quite important

(e.g., when processing S08 and S09). In fact, the average

difference in the scores of the test when comparing different

strings is 18.96 in favour of our method. We are aware that,

in general, a higher value should not imply a better result;

however, when comparing the test strings, which clearly

share an important part of their contents, a higher result

implies a better similarity detection capability.

330 Int'l Conf. Security and Management | SAM'15 |

S01 S02 S03 S04 S05 S06 S07 S08 S09 S10

S01 100 50 50 50 0 0 0 55 63 63

S02 50 100 50 50 0 0 0 47 50 50

S03 50 50 100 50 0 0 0 36 44 90

S04 50 50 50 100 0 0 0 32 32 50

S05 0 0 0 0 100 0 0 0 0 0

S06 0 0 0 0 0 100 0 0 0 0

S07 0 0 0 0 0 0 100 0 0 0

S08 55 47 36 32 0 0 0 100 32 32

S09 63 50 44 32 0 0 0 32 100 32

S10 63 50 90 50 0 0 0 32 32 100

Table 3: Test results for special cases with ssdeep.

S01 S02 S03 S04 S05 S06 S07 S08 S09 S10

S01 100 50 50 50 50 50 55 55 63 63

S02 50 100 50 50 29 32 36 47 50 50

S03 50 50 100 50 25 29 32 36 44 90

S04 50 50 50 100 25 29 29 32 32 50

S05 50 29 25 25 100 25 29 29 32 32

S06 50 32 29 29 25 100 29 29 32 32

S07 55 36 32 29 29 29 100 32 32 32

S08 55 47 36 32 29 29 32 100 32 32

S09 63 50 44 32 32 32 32 32 100 32

S10 63 50 90 50 32 32 32 32 32 100

Table 4: Test results for special cases with modified version of ssdeep.

S01 S02 S03 S04 S05 S06 S07 S08 S09 S10

S01 100 50 97 49 50 50 77 89 93 97

S02 50 100 49 49 25 25 37 43 47 49

S03 97 49 100 50 50 50 74 85 91 97

S04 49 49 50 100 25 25 37 43 47 49

S05 50 25 50 25 100 50 50 50 50 50

S06 50 25 50 25 50 100 50 50 50 50

S07 77 37 74 37 50 50 100 77 79 75

S08 89 43 85 43 50 50 77 100 87 87

S09 93 47 91 47 50 50 79 87 100 93

S10 97 49 97 49 50 50 75 87 93 100

Table 5: Tests results for special cases with our algorithm.

5. Conclusions
In this contribution we have presented a new edit distance

algorithm that can be used in fuzzy hashing applications. Our

algorithm provides better results than ssdeep’s algorithm

according to a definition of similarity useful in computer

forensics when comparing two files, and that interprets

similarity as the percentage of a file that is also present in

another file. We have implemented both our algorithm and

a modified version of ssdeep in Java, and have used those

two applications together with version 2.12 of ssdeep in

order to test some strings that could represent the signature

of files including a list of elements.

The tests performed with the three applications allow us

to state that our algorithm provides results better adapted

to the aforementioned definition of similarity, so it can be

considered as an alternative for the edit distance currently

implemented in ssdeep and other fuzzy hashing applica-

tions.

Int'l Conf. Security and Management | SAM'15 | 331

Acknowledgment
This work has been partially supported by Comunidad

de Madrid (Spain) under the project S2013/ICE-3095-CM

(CIBERDINE) and by Ministerio de Economía y Com-

petitividad (Spain) under the grant TIN2014-55325-C2-1-R

(ProCriCiS).

References
[1] N. Harbour, “Dcfldd. defense computer forensics lab,” 2002. [Online].

Available: http://dcfldd.sourceforge.net
[2] V. Gayoso Martínez, F. Hernández Álvarez, and L. Hernández Enci-

nas, “State of the art in similarity preserving hashing functions,” in
Proc. of WorldComp 2014 - International Conference on Security &
Management - SAM’14, 2014, pp. 139–145.

[3] A. Tridgell. (2014) Fuzzy hashing and ssdeep. [Online]. Available:
http://ssdeep.sourceforge.net/

[4] F. J. Damerau, “A technique for computer detection and correction
of spelling errors,” Communications of the ACM, vol. 7, no. 3, pp.
171–176, 1964.

[5] V. I. Levenshtein, “Binary codes capable of correcting deletions,
insertions, and reversals,” Soviet Physics Doklady, vol. 10, no. 8, pp.
707 – 710, 1966. [Online]. Available: http://profs.sci.univr.it/~liptak/
ALBioinfo/files/levenshtein66.pdf

[6] M. Karpinski, “On approximate string matching,” Lecture Notes in
Computer Science, vol. 158, pp. 487–495, 1983.

[7] R. A. Wagner and M. J. Fischer, “The string-to-string correction
problem,” Journal of the ACM, vol. 21, no. 1, pp. 168–173, 1974.

[8] J. Kornblum, “Identifying almost identical files using context trigger
piecewise hashing,” Digital Investigation, vol. 3(S1), pp. 91–97, 2006.

[9] A. Tridgell, “Efficient algorithms for sorting and synchronization,”
Master’s thesis, The Australian National University. Department of
Computer Science, Canberra, Australia, 1999.

[10] ——, “Spamsum readme,” 1999. [Online]. Available: http://samba.
org/ftp/unpacked/junkcode/spamsum/README

[11] Wikipedia. (2014) Damerau-Levenshtein distance. [Online]. Avail-
able: http://en.wikipedia.org/wiki/Damerau-Levenshtein_distance

[12] Oracle. (2015) Java SE. [Online]. Available: http://www.oracle.com/
technetwork/java/javase/overview/index.html

332 Int'l Conf. Security and Management | SAM'15 |

