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Instituto de Óptica ‘‘Daza de Valdés,’’

Consejo Superior de Investigaciones Cientı́ficas,
Madrid, Spain

Lucie Sawides $

Laboratory of Visual Optics and Biophotonics,
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The ability of the visual system to compensate for
differences in blur orientation between eyes is not well
understood. We measured the orientation of the internal
blur code in both eyes of the same subject monocularly
by presenting pairs of images blurred with real ocular
point spread functions (PSFs) of similar blur magnitude
but varying in orientations. Subjects assigned a level of
confidence to their selection of the best perceived image
in each pair. Using a classification-images–inspired
paradigm and applying a reverse correlation technique, a
classification map was obtained from the weighted
averages of the PSFs, representing the internal blur code.
Positive and negative neural PSFs were obtained from
the classification map, representing the neural blur for
best and worse perceived blur, respectively. The neural
PSF was found to be highly correlated in both eyes, even
for eyes with different ocular PSF orientations (rPos ¼
0.95; rNeg¼ 0.99; p , 0.001). We found that in subjects
with similar and with different ocular PSF orientations
between eyes, the orientation of the positive neural PSF
was closer to the orientation of the ocular PSF of the eye

with the better optical quality (average difference was
;108), while the orientation of the positive and negative
neural PSFs tended to be orthogonal. These results
suggest a single internal code for blur with orientation
driven by the orientation of the optical blur of the eye
with better optical quality.

Introduction

The human visual system is highly robust, constantly
compensating for changes in the magnitude of blur in
retinal images, thus maintaining a relatively constant
perception of the world despite changes in the
environment (Elliott, Georgeson, & Webster, 2011;
Webster, 2011; Webster, Georgeson, & Webster, 2002;
Webster, Mizokami, Svec, & Elliott, 2006) or in the
subject’s optics (Artal, Benito, & Tabernero, 2006;
Artal et al., 2004; Elliott et al., 2011; Mon-Williams,
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Tresilian, Strang, Kochhar, & Wann, 1998; Poulere,
Moschandreas, Kontadakis, Pallikaris, & Plainis, 2013;
Webster, 2011; Webster et al., 2002). Experiments by
Webster and colleagues showed that even brief (i.e.,
within seconds) exposures to altered blur can result in a
measurable change in the neural adaptation states of
the visual system (Elliott et al., 2011; Webster, 2011;
Webster et al., 2002). Adaptation is measured by shifts
in the perceived best focus (PBF; aftereffects) following
change in stimulation. Another study (Sawides, de
Gracia, Dorronsoro, Webster, & Marcos, 2011b)
showed that the PBF under natural adaptation is highly
correlated with the magnitude of optical blur at the
retina, introduced by the higher order aberrations of
the eye. Furthermore, when the subject’s aberrations
were corrected with adaptive optics, adapting to images
blurred by the subject’s own higher order aberrations
did not produce aftereffects, while adapting to images
blurred by scaled versions of his or her own aberrations
or to the aberrations of other subjects did produce
aftereffects (Sawides, de Gracia, Dorronsoro, Webster,
& Marcos, 2011a; Sawides et al., 2012).

Optical blur may be different across orientations,
such as that produced by astigmatism. There is strong
evidence that exposure to astigmatism produces a
selectivity in perceived blur orientation. Strong after-
effects in the perception of isotropic focus occur
following short-term adaptation to images blurred with
horizontal and vertical astigmatism (Sawides, Marcos,
et al., 2010). Adaptation selectivity for the axis of
astigmatism has been shown to occur in both real and
simulated astigmatic images (Ohlendorf, Tabernero, &
Schaeffel, 2011). These effects have also been shown in
a clinical context such as correction of astigmatism, as
uncorrected astigmats show a preference towards the
orientation of their retinal blur, which shifts towards
isotropy as early as 2 hrs after wearing the astigmatic
correction (Vinas, Sawides, de Gracia, & Marcos,
2012).

Oriented blur also occurs in retinal images as a result
of asymmetric higher order aberrations such as comas.
Several studies have shown that subjects are tuned to
the orientation produced by higher order aberrations.
A seminal work by Artal et al. (2004), where images
blurred with rotated versions of the subject’s (higher
order) point spread function (PSF), showed that images
blurred by the actual subject’s PSF were perceived to
have up to 40% better quality than images blurred with
the rotated PSFs. Sawides et al. (2012) also showed a
stronger bias to the images blurred with the subject’s
natural PSF, as opposed to a 908 rotated PSF, when
compared against 100 images blurred with real PSFs of
similar blur magnitude but with different orientation.
In a later study, Sawides et al. (Sawides, Dorronsoro,
Haun, Peli, & Marcos, 2013) introduced a pattern
classification method, inspired by the classification

images method (Ahumada, 2002), to retrieve the
internal code for blur of subjects, and in particular the
orientation of the internal code. With this technique,
pairs of images blurred with PSFs with similar blur
magnitude but different orientation are presented to the
subject, who selects the image of the pair that is
perceived to be of better quality and assigns a
confidence score. Positive and negative orientation
classification maps were obtained from the weighted
(by the confidence score) averages of the PSFs blurring
the images selected as perceived to be either better or
worse. Since these classification maps correspond to the
shape of the PSF that is perceived better or worse,
respectively, the corresponding positive classification
maps were termed the positive neural PSF, and the
negative classification map termed the negative neural
PSF. Both the shape and orientation of the positive
neural PSF were very similar to that of the ocular PSF.
These results suggest that not only is the internal code
tuned to the overall amount of optical blur, but it is
also tuned to a specific blur feature—the orientation of
the high-order PSF (Sawides et al., 2013). All these
prior studies were performed monocularly, and only
the aberrations of the tested eyes were considered.

Even though the ocular aberrations are dynamic
(Hofer, Artal, Singer, Aragon, & Williams, 2001), the
shape of the PSF tends to remain similar across different
pupil diameters and accommodation (Artal, Manzanera,
& Williams, 2003), enabling strong neural adaptation.
Yet, it is not uncommon to find differences between both
eyes of the same person in the pattern or magnitude of
higher order aberrations (Marcos & Burns, 2000; Porter,
Guirao, Cox, & Williams, 2001). Little is known about
the way the visual system copes with adaptation when
each eye is separately exposed to different adapting
images. A short-term adaptation experiment where right
and left eyes were adapted to different images (either
blurred, focused, or gray, or astigmatic blur with
orthogonal orientation) showed a significant interocular
transfer in adaptation in both isotropic and astigmatic
blur (Kompaniez, Sawides, Marcos, & Webster, 2013).
Also, various other studies suggested that a presence of
sharp components influence largely the adaptation state
in monocular or binocular viewing (Arnold, Grove, &
Wallis, 2007; Radhakrishnan, Dorronsoro, Sawides, &
Marcos, 2014).

In our previous study, PBF was measured monoc-
ularly in both eyes of subjects with similar or different
blur magnitude between eyes. We reported that in
subjects with different blur magnitude between eyes,
the eye with a better optical quality dominates the
perception of blur magnitude, and the differences in the
blur between eyes are addressed by the neural system,
resulting in a single PBF for both eyes (Radhakrishnan,
Dorronsoro, Sawides, Webster, & Marcos, 2015). A
question then arises on how the neural system deals
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with these inputs from eyes with different orientation in
the optical blur of each eye. Here we measured the
internal code for blur in both eyes of subjects with
similar and different PSF orientation between eyes and
investigated the differences in the orientation bias of
the internal code for blur between eyes.

Methods

The internal code for blur of the subjects was
estimated using the pattern classification method
described previously (Sawides et al., 2013). Subjects
selected the better perceived image from each pair of
presented images blurred with equal blur magnitude
but different PSF orientations (and then scored their
confidence in the selection) for a total of 500 pairs.
Measurements were performed monocularly for each
eye of the subject, covering the other eye with a patch.
From the large number of responses, the neural PSF
was estimated for each eye using a reverse correlation
technique. The procedures are illustrated in detail in an
earlier study by Sawides et al. (2013).

Subjects

Both eyes of 10 subjects (22–41 years old) were
measured in this study. The subjects had no clinical
astigmatism and their spherical refractive error ranged
fromþ1.00 D to �5.50 D. All subjects had prior
experience in performing psychophysical tasks. Two
subjects with myopia .4 D performed the experiments
wearing their habitual spherical soft contact lenses.
Sighting dominance was established in subjects using
the Miles test (Roth, Lora, & Heilman, 2002).

Ethics statement

The experiments conformed to the tenets of the
Declaration of Helsinki, with protocols approved by
the Consejo Superior de Investigaciones Cientificas
Ethics Committee. All participants provided written
informed consent after the nature and consequences of
the study had been explained to them.

Setup

Ocular aberrations were measured and corrected
using a custom-developed adaptive optics setup. Ocular
aberrations were measured in both eyes of all subjects
with a Hartmann Shack wavefront sensor (HASO 32
OEM, Imagine Eyes, France). The spherical refractive
error was compensated using a Badal system. All

measurements were done undilated, with 5-mm artifi-
cial pupils. Psychophysical measurements were done
under static closed-loop aberration correction using a
membrane deformable mirror (MIRAO 52e, Imagine
Eyes, France) correcting residual defocus, astigmatism,
and high order aberrations. In the current study an
average correction efficiency of 88.7% (in RMS wave-
front error) was achieved. Visual stimuli were presented
on a CRT monitor through the psychophysical ViSaGe
platform (Cambridge Research Systems, UK). A
detailed description of the setup, quality of the
correction, and psychophysical measurements through
manipulated aberrations with this instrument has been
described in several previous papers (Gambra, Sawides,
Dorronsoro, & Marcos, 2009; Marcos, Sawides,
Gambra, & Dorronsoro, 2008; Sawides, Gambra,
Pascual, Dorronsoro, & Marcos, 2010).

Test stimuli

A face image (480 pixels square, 256 gray levels) that
subtended 1.988 at the retina was used. For each
subject, test images were generated by convolving the
face image with 100 ocular PSFs (only higher order
aberrations; Sawides et al., 2013) that had various
orientations but similar blur magnitude, optimized with
defocus correction. This set of PSFs had been shown to
have isotropic distribution of orientations (Sawides et
al., 2013). The PBF from both eyes of the subjects
participating in the current study had been measured in
a previous study as the amount of Strehl Ratio (SR;
defined as the peak [maximum] of the given PSF,
relative to diffraction-limited PSF) producing a neutral
percept (Radhakrishnan et al., 2015). The blur magni-
tude of all test images used for each subject (in terms of
SR) was matched to that of the subject’s better eye
optical PSF or to that of the PBF (whichever had a
higher SR). In a previous study we found that
generally, the PBF blur magnitude (SR) matched the
optical blur (SR) of the eye with better optical quality.
Except subject S2, all subjects had PBF better than or
equal to optical blur magnitude. The PBF blur
magnitude was used for all subjects except for subject
S2, for whom the better eye optical quality was used to
generate the images. All convolutions were performed
for a 5-mm pupil diameter. In total, 10 sets of 100 test
images were generated, one set for each subject, with
the same set being used for both eyes of each subject.

Psychophysical measurement

The psychophysical measurements were done under
static adaptive optics correction. A gray field adapta-
tion was provided for 30 s at the beginning of the
measurements. The subject was then presented se-
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quentially with a pair of images degraded with two
different PSFs with different orientations but similar
blur magnitude, interleaved with a gray field. Both the
images and the gray field were presented for 500 ms.
The task of the subject was to respond which of the two
images (first or second) of the pair were perceived as
better and to indicate the subject confidence in the
response on a 3-level scale. One session consisted of
presentation of 50 random pairs taken from the 100
images of PSF patterns, ensuring that each image was
presented at least once in a session. Each subject
performed 10 such sessions (500 random image pairs
per eye). A typical experiment involving measurements
on both eyes lasted for approximately 5 hrs. The
subject was allowed to rest between sessions, and the
adaptive optics correction was remeasured after every
session.

Data analysis

Magnitude, contour, and orientation of optical blur

The magnitude of the optical blur was described by
the SR (maximum of the PSF, relative to diffraction
limited PSF). The PSF was calculated from the
monochromatic wavefront (555 nm) aberrations at best
focus, using Fourier Optics and assuming a 5-mm
pupil. Repeated measurements of the PSF in the tested
subjects resulted in an average magnitude variability of
6% SR (SD¼ 6%) difference of .30% SR between eyes
was considered a meaningful difference in optical bur
magnitude between eyes (.5 times the variability of the
measurement).

The PSF contours and orientation axes were
obtained by methods described in a previous publica-
tion (figure 3; Sawides et al., 2013). Briefly, the PSFs
were centered at the center of mass and then sampled in
72 angular sectors of 58 each. The intensity of the PSF
at midangle of each sector was obtained, normalized to
the maximum intensity and was plotted in a polar plot
generating a contour diagram. The orientation axis of
the PSF is given by the main axis of the best-fitting
ellipse.

The orientation of the optical blur, estimated as
indicated above, was highly reproducible across ses-
sions, and marginally affected by fluctuations of
accommodation. Typical fluctuations of accommoda-
tion amplitudes (1 D; Charman & Heron, 1988)
produced differences in the ocular PSF orientation of
0.248 6 0.28. The mean difference in ocular PSF
orientation estimation for intersession measurements in
our study was 0.668 6 0.348 (averaged across both eyes
of 10 patients). In addition, we previously found
(Vinas, Dorronsoro, Cortes, Pascual, & Marcos, 2015)
that chromatic defocus only affected slightly the
orientation axis. The orientation axis difference be-
tween the PSFs estimated for different wavelengths,

based on wave aberration data across the visible
spectrum (450–750 nm), was 3.028 6 0.628. Given that
the state of focus of the eye tends to be similar in the
middle of the visible spectrum and in polychromatic
light (Coe, Bradley, & Thibos, 2014), and the small
differences in orientation across wavelengths, the use of
a monochromatic PSF (555 nm) in the calculations is a
good approximation. Finally, for our subjects the
orientation axis difference between the PSF with only
high order aberrations and the PSF with the residual
low order aberrations (including astigmatism) was 2.728
6 0.958, indicating minimal influence of residual
astigmatism (subjects were selected on the basis of not
having clinical cylindrical error).

Estimation of the neural PSF using a pattern
classification-inspired method

Sawides et al. (2013) presented a method to estimate
the internal code for blur, inspired by the classification
images technique, and based on a reverse correlation
(Ahumada, 2002; Eckstein & Ahumada, 2002), de-
scribed briefly below. Calculation of the classification
maps and extracting the contours of the positive and
negative weights allowed estimation of shape of the
neural PSF.

PSFs corresponding to the images that were
subjectively selected as better perceived were given
positive scores, and the other image in the pair was
given a negative score. The PSF intensities were
multiplied by a score derived from the confidence score.
A score of 10 was given for a very confident response, a
5 to a less confident response, and 1 for the lowest
confidence response to each image of the pair selected
as better focus. Thus, a PSF that when applied to an
image is consistently selected as better focused and with
high confidence will get a score of 100 (score 10 3 10
presentations). Alternatively, scores of�10,�5, and�1
were given to the images not selected as better focused.
The noise effect by some random comparisons of two
rather similar PSFs was countered by the high number
of comparisons being made and by the weighted
scoring system. The weighted score assigned to each of
the PSFs in any pair was very consistent across
sessions. For each subject we calculated the standard
deviation in the scoring of a specific PSF pattern across
different sessions. Pooled variance was calculated as the
average of the standard deviations across subjects, the
square root of which provided the repeatability
parameter. If the scoring were to be random, a PSF
could have a maximum score difference of 20 (from
�10 to þ10). The repeatability across subjects and
between sessions thus measured was 2.3 (15% of the full
score range).

All the weighted responses were then summed to
obtain a pattern classification map (Ahumada, 2002;
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Sawides et al., 2013). The contour of the positive
weights of the classification map was termed as positive
neural PSF, and the contour of the negative weights of
the classification map was termed the negative neural
PSF.

Correlation and orientation-difference analysis

The correlation between the energy distribution of
the ocular PSFs (absolute intensities, not contours) and
the sum weighted average of the PSFs perceived better
and worse was calculated. The difference in orientation
between any two PSF was calculated by rotating the
PSF in 18 steps and calculating the image correlation
coefficient at each step. The relative rotation that
resulted in maximum correlation coefficient was
considered the orientation difference (in degrees)
between the PSFs. For two PSFs to have similar
orientation, the maximum correlation would be ob-
tained for a rotation close to 08. A difference of .208
(mean orientation difference between optical and
neural PSFs) was considered in Sawides et al. (2013) as
a meaningful difference in optical blur orientation
between eyes.

In an alternative analysis, the correlation coefficients
between the ocular PSF contours and the neural PSF
contours was calculated using a circular correlation
coefficient (Fisher & Lee, 1983). This analysis provided
similar results (t¼ 0.7, df ¼ 71, p ¼ 0.27).

Results

Ocular aberrations and PSFs

Figure 1 shows the ocular higher order aberration
patterns, the corresponding PSFs, and the PSF contour
plots in both eyes of the 10 subjects. The RMS for
higher order aberration, the SRs, and the orientation
axes are shown in the insets. Under the criteria defined
above for meaningful differences in blur magnitude and
orientation between eyes, subjects S1–S5 had similar
PSF orientation, but different blur magnitude between
eyes; S6 and S7 had similar PSF orientation and similar
blur magnitude in both eyes; S8 and S9 had similar blur
magnitude but different PSF orientation; and S10 had
both different PSF orientation and different blur
magnitude between eyes.

Interocular similarity

Figure 2A shows examples of the positive and
negative neural PSF contours in comparison with their
respective ocular PSF contours for one representative

subject in each group. Figure 2A reveals that the
orientation of the positive (green) and negative (red)
neural PSFs was strikingly similar between the two
eyes, despite similar or different optical blur magnitude
and/or ocular PSF orientation (blue). There was strong
and significant interocular correlation in the orienta-
tions of the positive neural PSF (r ¼ 0.95, p , 0.001)
and negative neural PSF (r ¼ 0.99, p , 0.001).
Furthermore, the neural PSF orientations were not
statistically significantly different between eyes (p¼ 0.9
and p ¼ 0.36, for positive and negative, respectively).
Across all subjects, the average difference in orientation
between the positive and the negative neural PSFs was
588 6 18.738 and was statistically significant (t ¼ 2.82,
df ¼ 9, p ¼ 0.022).

The orientation differences between eyes in ocular
and neural PSFs for each of those subjects are shown in
Figure 2B. As seen, the high interocular difference in
orientation of ocular PSF (27.18 6 30.48, in blue) was
not found for neither the positive neural PSF (3.38 6
1.958, in green) nor the negative neural PSFs (1.18 6
0.328, in red).

Interocular similarity: Intersubject differences

Figure 3 shows the interocular difference in
orientation in subjects with similar and different PSF
orientations between eyes (Figure 3A) and in subjects
with similar and different blur magnitude between
eyes (Figure 3B). Similar to the trend noted in average
across subjects, the interocular difference between eyes
in the positive and negative neural PSFs (green and
red bars) was insignificant, irrespective of the differ-
ence in ocular blur magnitude or orientation (blue
bars) between eyes. The interocular difference in
orientation (Figure 3A) of the positive neural PSFs in
subjects with similar (S1–S7) and different (S8–S10)
ocular PSF orientations between eyes was 3.78 6 2.038
and 2.338 6 1.538, respectively. The difference was
slightly higher (4.38 6 1.688), yet insignificant in
subjects with different blur magnitude between eyes
(Figure 3B). The interocular difference in orientation
of the negative neural PSF was close to 18 in all groups
of subjects.

Neural PSF versus ocular PSF

Figure 4 shows the average orientation differences
between the ocular and neural PSFs. On average the
largest differences in orientation occur between the
negative neural PSF and the ocular PSF with the better
optics (51.88 6 16.98). The least difference in orienta-
tion was found between the orientation of the positive
neural PSF and the PSF of the eye with better optical
quality (10.58 6 3.88). The positive neural PSF
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Figure 1. Aberration profile of subjects. Wavefront aberration maps (left), ocular PSFs (middle), and PSF contour plots (right) for both

eyes of all subjects. Subjects S1–S7 had similar orientation of ocular PSF between eyes, and subjects S8–S10 had different ocular PSF

orientations (.208 difference in orientation between eyes). In the PSF panel, þ indicates the eye with sighting dominance and *

indicates the eye with better optical quality.
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correlated more with the PSF of the eye with better
optical quality (r¼ 0.60, p¼ 0.002) than with the worse
eye (r¼ 0.53, p¼ 0.008), and the PSFs perceived worse
correlated significantly with the PSF of the worse eye
PSF (r¼0.63, p¼0.002) than with the PSF of the better
eye (r ¼ 47, p ¼ 0.018).

Neural PSF: Intersubject differences

Figure 5A shows orientation differences between the
ocular PSFs and the positive and the negative neural
PSFs, in subjects with similar and different ocular PSF
orientations between eyes. In subjects with similar
ocular PSF orientation between eyes (S1–S7), as

Figure 2. Examples of ocular and neural PSFs in both eyes of one subject in each group (S5, different blur, similar orientation; S6,

similar blur, similar orientation; S9, similar blur, different orientation; S10, different blur, different orientation). (A) Ocular PSF

contours (blue, left columns), positive neural PSF contour (green, middle columns), and negative neural PSF contour (red, right

columns) for both eyes of each subject. (B) Interocular difference in orientation between eyes for ocular PSF (blue), positive neural

PSF (green), and negative neural PSF (red) for the corresponding subjects and average across all subjects. In the ocular PSF contour

panels, þ indicates the eye with sighting dominance and * indicates the eye with better optical quality.
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expected, the positive and negative neural PSF
orientations differed similarly from either eye. In
subjects with different orientations between eyes, the
positive neural PSF differed least from the ocular PSF
of eye with better optics (12.68 6 7.28), while the
negative neural PSF differed the most from the ocular
PSF of the eye with better optics (45.78 6 17.38).

Figure 5B shows differences between the orientations
of the ocular PSFs and the orientation of the positive
and the negative neural PSF in eyes with similar and
different ocular PSF magnitude. While in both groups
of subjects, the orientation difference was least for the
positive neural PSF and the ocular PSF of the better
eye (14.68 and 13.88, for subjects with similar and
dissimilar blur between eyes, respectively), and the
negative PSF differed most from the ocular PSF of the
better eye (31.68 6 13.98 and 58.68 6 29.68, for subjects
with similar and dissimilar blur between eyes, respec-
tively), the actual differences were larger in subjects
with different blur between eyes, indicating the role of
blur magnitude in orientation preference.

Discussion

The physical retinal stimulus is blurred by the eye’s
optical limitations, which are actively compensated for
by the neural system, resulting in improved perceptual
quality. Some reports show that the perception of
stimuli largely depends on the spatial statistics of

Figure 3. Interocular difference in orientation of the ocular PSF (blue), positive neural PSF (green), and negative neural PSF (red). (A)

Subjects with similar ocular PSF orientations (S1–S7) and different ocular PSF orientations (S8–S10). (B) Subjects with similar (S6–S9)

and different blur magnitudes (S1–S5, S10). Despite interocular differences in ocular PSF orientation (blue bars), interocular

differences between positive and negative neural PSFs orientations were negligible.

Figure 4. Difference in the orientation between positive and

negative neural PSFs and the better eye PSF orientation (filled

bars) and the worse eye PSF orientation (open bars). The

corresponding correlation is given in parentheses. All correla-

tions are significant ( p , 0.05).
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natural images (Field, 1987; Field & Brady, 1997).
Additionally, the visual system appears to be naturally
adapted to the native level of blur and able to rapidly
and continuously recalibrate to compensate for intrin-
sic or environmental changes in blur (Artal et al., 2004;
Haun & Peli, 2013; Ohlendorf et al., 2011; Sawides et
al., 2012; Sawides et al., 2013; Webster et al., 2002).
Our results suggest that the locus of adaptation is
cortical.

A recent study reported short-term adaptation to
artificially induced interocular differences in blur and
demonstrated that the sharper images dominate per-
ception irrespective of which eye was exposed to sharp
adaptation (Kompaniez et al., 2013). Interocular
differences in refractive error or ocular aberrations are
not rare, and therefore the short-term adaptation
recreated in the earlier experiment can also occur
naturally over long term. We have recently reported
that in eyes with different blur magnitude, the eye with
a better optical quality dominates adaptation and
perception with either eye (Radhakrishnan, Dorron-
soro, Sawides, Webster, et al., 2014; Radhakrishnan et
al., 2015). In the current study, we further investigated
the subjective bias to specific characteristics of high-
order blur (i.e., the main orientation of the PSF at the
retina) and the relationship between the blur orienta-
tion of the perceived best image and the orientation of
the PSF, when each eye is natively exposed to optical
blur of different orientation. As previously found for
the internal code for blur magnitude, there seems to be
a single internal code for blur orientation for both eyes,

with the preference given to the eye with better optical
quality. This calibration appears to operate both at
short time scales (Kompaniez et al., 2013) and long
time scales (as found in this study, where subjects are
chronically exposed to interocular differences in
aberrations). The spatial selectivity of both blur
magnitude and orientation does not compensate
separately for the two eyes, unlike other effects such as
the contingent aftereffects for color and orientation
known as McCollough effects where the visual system
appears to adjust independently for each eye (Webster
& Malkoc, 2000). Emmetropization is also shown to be
affected by the optical defocus present in either eye
(Rabin, Van Sluyters, & Malach, 1981; Smith, Hung, &
Arumugam, 2014). Our finding supports the hypothesis
that adaptation to spatial blur magnitude and orien-
tation operate at a cortical locus and is controlled by
the eye with better image.

Many studies show (Erkelens, 2000; Hoffman &
Banks, 2010; Ono & Barbeito, 1982; Ono, Mapp, &
Howard, 2002) that people have conscious access to a
cyclopean image but not to the monocular images when
viewing binocularly. It has been shown that during
binocular viewing, the eye with the sharper image has
greater influence on the cyclopean percept than the eye
with a blurrier image (Hoffman & Banks, 2010). We
studied this cyclopean percept by selectively manipu-
lating the blur in the retinal image (after compensating
for the ocular aberrations) in each eye of the subjects,
monocularly. We show that this sensory dominance
persists even when the eyes are stimulated separately,

Figure 5. Difference in orientation between ocular and neural PSFs. (A) Subjects with similar (S1–S7) and different (S8–S10) blur

orientation. (B) Subjects with similar (S6–S9) and different blur magnitudes (S1–S5, S10). Subject S10 with different blur magnitude

and orientation between eyes was included in the group of subjects with different blur between eyes.
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and these PBF matches in magnitude and orientation
that of the eye with least optical defects. These results
support a single cyclopean locus of neural compensa-
tion for the eye’s optical defects, adjusting the neural
signals carried from either eye, but controlled only by
the better eye. This also suggests a close correspon-
dence between subjectively neutral percepts (what looks
focused) and neutral states in the neural code (what
stimulus neural sensitivity is adapted to). The singleness
in the internal code for blur suggests that the visual
system adjusts for input from the eye with the less
blurry image under binocular viewing conditions, as
known from studies of rivalry (Arnold et al., 2007; Kim
& Blake, 2007).

This adaptation driven by the optical magnitude and
orientation of the eye with the better optical quality
appears to be an additional form of ocular dominance.
The optimal method to measure ocular dominance is
not clear. While methods testing aiming dominance
(such as hole-in-the-card) are standard in the clinic, the
lack of correspondence with sensory dominance meth-
ods (such as binocular rivalry or asymmetry in visual
acuity tests) raises questions regarding the practical use
of aiming dominance tests in the clinic (Rice, Leske,
Smestad, & Holmes, 2008). In our study, sighting
dominance and better optical quality matched in most
but not all the subjects. However, in eyes with different
optical quality, the neural code was driven by the eye
with better optical quality, not the sighting dominant
eye. There is interest in developing reliable techniques
for testing ocular (sensory) dominance suited and
reliable in a clinical setting, and some methods based
on polarizing glasses (Peli, 2002) or modified balancing
techniques (Handa, Shimizu, Uozato, Shoji, & Ishika-
wa, 2012) have been proposed. Our results suggest that
binocular measurement of the ocular aberrations
(rapidly done using clinically available wavefront
sensors) of the patient can help identifying the sensory
dominant eye, at least in eyes free of neural pathology.

Our findings may also have implications for binoc-
ular blur perception, and may be related to recent
observations of binocular summation. Some aspects of
binocular visual performance (binocular summation
and maximum disparity) have been shown to decrease
with increasing interocular differences in higher order
aberrations (Jimenez, Castro, Jimenez, & Hita, 2008;
Sabesan, Zheleznyak, & Yoon, 2012). While inducing
asymmetric higher order aberrations (like coma) in
orthogonal orientations between eyes decreased binoc-
ular summation, introducing coma with bilateral
mirror symmetry or matched orientation had signifi-
cantly less impact in reducing binocular summation.
The single code for blur imposed by the internal code of
blur of one eye may impose limitations on the binocular
sensitivity gain in some subjects of our sample who had
different PSF orientations between eyes.

Our results have implications for IOL multifocal
corrections of presbyopia and outcomes following
refractive surgery. While it is true that interocular
differences in blur magnitude and orientation could
exist (Marcos & Burns, 2000; Porter et al., 2001), it is
not uncommon to introduce subtle changes in the
pattern of higher order aberrations following refractive
surgery. Asymmetries in the PSF could also be
introduced by different bilateral decentrations of
implanted intra-ocular lenses (IOLs), or through miss-
and-match techniques providing different IOL designs
or correction alternatives to each eye. Why some
subjects easily adapt to these changes while others do
not may be explained by the selectivity of the visual
system to the native pattern of higher order aberra-
tions. Monovision is an example where much larger
differences in magnitude of blur are introduced
between eyes. Conventionally, in monovision correc-
tion, the dominant eye (sighting dominance usually) is
corrected for distance vision, which largely influences
the success of the correction (Wright, Guemes,
Kapadia, & Wilson, 1999). The selectivity to the
sharper image in sensory dominance, as suggested by
our results, could be a key in the strategies for clinical
treatment, and should be tested prior to providing a
patient with a surgical monovision correction for
presbyopia. We recently reported that the subjective
response to a multifocal pattern depends on the pattern
of aberration in the eye (Dorronsoro et al., 2014). It is
likely that a better monovision and/or multifocal
correction for a patient will be influenced also by prior
adaptation to the magnitude and orientation of the
native aberrations, which as shown here, is driven by
those of the eye with better optical quality, when there
are interocular optical differences.

We show that in eyes that have perceptual preference
for blur orientation, this is largely influenced by the
blur orientation of higher order aberrations in the eye
with better optical quality. The current study focused
on patients without clinical astigmatism. In the
presence of astigmatism, the orientation preference
should be largely influenced by the magnitude and
orientation of astigmatism (Ohlendorf et al., 2011;
Sawides, Marcos, et al., 2010; Vinas et al., 2012). On
the other hand, it is not uncommon to leave residual
astigmatism in patients when there is no significant
visual benefit of its correction (i.e., soft contact lenses
or IOLs). In fact correcting all the astigmatism may
result in decreased visual performance (Villegas, Alcon,
& Artal, 2014), and certain combinations of astigma-
tism and coma (two aberrations with marked oriented
features) may produce better visual quality than coma
or astigmatism alone (de Gracia et al., 2010; de Gracia,
Dorronsoro, Marin, Hernandez, & Marcos, 2011;
Vinas et al., 2013). Interesting subsequent research may
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involve studying the factors influencing orientation
preferences in eyes with residual astigmatism.

Conclusion

In subjects with similar or different PSF orientation
between eyes, we found that an identical neural PSF
exists for both eyes. In most subjects, the positive
neural PSF closely correlated with the PSF of the eye
with better optical quality, and the negative neural PSF
was oriented on average 588 apart from the positive
neural PSF.

Keywords: interocular difference, optical quality,
pattern classification, PSF orientation, neural PSF,
ocular dominance
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