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3 Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Strasse 3,

79104 Freiburg, Germany

Abstract. We propose a method to extract predictions from quantum cosmology for inflation
that can be confronted with observations. Employing the tunneling boundary condition in
quantum geometrodynamics, we derive a probability distribution for the inflaton field. A sharp
peak in this distribution can be interpreted as setting the initial conditions for the subsequent
phase of inflation. In this way, the peak sets the energy scale at which the inflationary phase has
started. This energy scale must be consistent with the energy scale found from the inflationary
potential and with the scale found from a potential observation of primordial gravitational waves.
Demanding a consistent history of the universe from its quantum origin to its present state,
which includes decoherence, we derive a condition that allows one to constrain the parameter
space of the underlying model of inflation. We demonstrate our method by applying it to two
models: Higgs inflation and natural inflation.

1. Introduction
It is generally assumed that the Universe underwent a period of quasi-exponential expansion
very early in its evolution. This phase is called inflation and has the advantage of giving a causal
explanation for structure formation (see e.g. [1] for a textbook introduction). But while the
kinematic features of inflation are well understood, its precise dynamical origin remains unclear.
There exist plenty of different models, mostly phenomenologically devised, and one must at
present resort to observations in order to constrain the class of allowed models [2].

How can one select inflationary models from a theoretical point of view? The ideal situation
would be to have an established fundamental theory at one’s disposal from which one can derive
the dynamics of inflation, for example in the form of an inflaton field ϕ and its potential V (ϕ).
Unfortunately, we do not have a theory of this kind. This is partly related to the open question of
constructing a consistent and empirically correct quantum theory of gravity [3]. While the energy
scale of inflation is most likely separated from the Planck scale by some orders of magnitude,
its origin can probably not be entirely understood without reference to quantum gravity.

A conservative approach to quantum gravity, which should give reliable results at least
somewhat away from the Planck scale, is the direct quantization of general relativity in standard
metric variables [3]. This approach is called quantum geometrodynamics and has the important
feature that it leads back to general relativity in the semiclassical limit. One might then use this
framework to derive the desired constraints on inflationary models. But how is this possible?
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If applied to the cosmic regime, quantum geometrodynamics leads to the framework of
quantum cosmology, with the wave function of the universe as its central concept. This wave
function obeys the Wheeler–DeWitt equation [3]. One could thus attempt to derive constraints
on inflation from this equation. But this is not easy, because the interpretation of the wave
function in quantum cosmology is far from being straightforward. In our contribution to these
Proceedings, we shall review one popular method to obtaining predictions in quantum cosmology
and apply it to two models of inflation.

In the following Sec. 2, we shall briefly discuss how one can envisage predictions in quantum
cosmology and how one can apply them to inflation. In Sec. 3, we present the energy scales
relevant for inflation. In slow-roll models, the relevant energy scale is derived from the
corresponding potential. If primordial gravitational waves can be observed, one can directly
extract the inflationary energy scale, which must then be consistent with the scale derived
from the potential. A third scale is the one obtained from quantum cosmology, which must be
consistent with the two other scales if we adopt the criterion of selection presented in Sec. 2.
In Sec. 4, we apply these considerations to the models of non-minimal Higgs inflation and
natural inflation. In this, we follow closely our earlier papers [4] and [5], where more details and
references can be found. We end with a brief conclusion and outlook.

2. Predictions in quantum cosmology
At the most fundamental level, quantum gravity — and therefore also quantum cosmology — is
timeless [3, 6]. This is a direct consequence of the fact that general relativity does not contain
any absolute notion of time; after quantization, the dynamical spacetime vanishes in the same
way as the classical trajectories do in quantum mechanics. In the Wheeler–DeWitt equation,
there is thus no t, and the notions of probability and probability conservation (unitarity) seem
to lose their usual meaning.

How, then, can one extract predictions from quantum cosmology? So far, only heuristic ideas
are available. It has been suggested that a minimal scheme is to look for peaks in the wave
function and to interpret them as predictions, see, for example, [7, 8]. If the wave function
vanishes in a certain region of configuration space, this means that the corresponding values will
never occur; this property is important for the discussion of singularity avoidance.

Inflation is a (semi)classical concept, so a prerequisite for obtaining inflation from quantum
cosmology is an efficient quantum-to-classical transition. This is achieved by decoherence, a
process that is well understood and experimentally explored in quantum mechanics [9, 10]. It
has been shown that decoherence is efficient at the “onset of inflation”, which thus justifies
the use of robust semiclassical components of the universal wave function and the neglect of
interference terms, see, for example, [3, 11] and the references therein. It has been suggested
that one should interpret the wave function only in the semiclassical limit [12], but we leave this
as an open question. For the purpose of this contribution, we adopt the heuristic proposal that
a strong peak in the wave function is interpreted as a prediction, while we will not attempt to
infer anything from it in the general case. In the semiclassical limit, from the wave function
after decoherence one can get also a restriction on the allowed classical trajectories, that is, one
obtains a selection criterion for trajectories.

In the general case, one could envisage a derivation of probabilities from quantum
entanglement in the manner attempted in [13], see also [10], but this is still an open issue.

The idea to get a probability for inflation from the wave function in this way was entertained
already in [14]. A more precise formulation was obtained in [15] and later papers (see the
references in [4]) by emphasizing in particular the need to go to the one-loop level in quantum
field theory in order to obtain a normalizable wave function. At the tree level, the slow-roll
approximation does, in general, not lead to a peak because of the small field derivatives.

Even in the semiclassical limit, the form of the wave function will depend on the employed
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boundary condition. The two most popular boundary conditions are the ‘no-boundary’ and the
‘tunneling’ conditions; see, for example, [3, 8] for detailed reviews. In general, the no-boundary
condition will not predict the occurrence of inflation. This is why attention is concentrated
on the tunneling proposal. It should be emphasized that ‘tunneling’ is meant here only as a
metaphor because tunneling has no meaning in a timeless context, except in a limited sense in
the semiclassical approximation; see [11, 16, 17] for a more detailed discussion. We shall also
use the tunneling boundary condition in our contribution and shall see in which sense one can
get a prediction for inflation from it. Instead of using the Wheeler–DeWitt equation, we shall
employ the equivalent path-integral formulation and its semiclassical limit.

The issues of probability and probability measure are even more subtle and contrived in the
recently discussed ‘multiverse’ context (consult, for example, [18] and the references therein),
but this will not be addressed here.

3. Energy scales of inflation
In this section, we will summarize how to extract in detail the energy scale of inflation
from inflationary models themselves, from observation, and from quantum cosmological
considerations.

3.1. Slow-roll predictions for the energy scale of inflation
For all inflationary models, the main observables are the power spectra of primordial scalar
and tensor perturbations which are generated during inflation on top of an already existing
homogeneous and isotropic Friedmann-Robertson-Walker background space-time,

Pt := At

(
k

k∗

)nt

, Ps := As

(
k

k∗

)ns−1

. (1)

The mode k∗ corresponds to a pivot scale k−1
∗ (to be chosen according to the observational

window of the experiment) when the mode k∗ first crosses the Hubble scale, k∗ = a∗H∗. Here,
H(t) = ȧ(t)/a(t) denotes the Hubble parameter. Within the slow-roll approximation, deviations
from a perfect de Sitter stage can be parametrized to first order in terms of the two slow-roll
parameters

εv :=
M2

P

2

(
V ′

V

)2

, ηv := M2
P

V ′′

V
, (2)

where MP denotes the (reduced) Planck mass. The amplitudes of the power spectra are given
by At and As. The tensor and scalar spectral indices nt and ns encode the scale dependence of
the power spectra (its slope). These parameters can be entirely expressed in terms of V , εv, and
ηv

At =
2V

3π2M4
P

, As =
V

24π2M4
P εv

, nt = −2 εv, ns = 1 + 2 ηv − 6 εv . (3)

All quantities in (1)–(2) must be evaluated for the value of the inflaton field at Hubble-scale
exit, ϕ∗, which, in turn, can be expressed in terms of the number of e-folds N∗ by integrating
and inverting the relation

N∗ =

∫ tend

t∗

dtH ' 1

M2
P

∫ ϕend

ϕ∗

dϕ
V

V ′
. (4)
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The value of ϕend, where inflation ends, is defined by the breakdown of the slow-roll
approximation, when εv ' O(1), which leads to the convention

εv(ϕend) := 1 . (5)

The energy scale predicted by inflationary slow-roll models is then given by

Emodel
infl := V

1/4
∗ := [V (ϕ∗)]

1/4 . (6)

3.2. Observational constraints for the energy scale of inflation
The observational energy scale of inflation Eobs

inf is unknown and so far there only exists an
upper bound. Observations of primordial gravitational waves that leave their imprint in the
B-polarization spectrum of the cosmic microwave radiation would allow to determine Eobs

inf in a
model independent way. But increasing precision will lead to stronger bounds and eventually
even to a detection that would allow to uniquely fix Eobs

inf . In the following, we will derive how
Eobs

infl can be expressed in terms of observable quantities.
The amplitude of the scalar power spectrum As is fixed by the measured temperature

anisotropies of the CMB, As ∝ (∆T/T )2. For the pivot scale k∗ = 0.05 Mpc−1, the best
Planck fit by the ΛCDM model for the scalar amplitude in the absence of tensor modes and
with lensing and polarization data is [20]

As∗ = (2.139± 0.063)× 10−9 (7)

at the 68% confidence level.
The tensor-to-scalar ratio — to first order in the slow roll approximation — is defined as

r :=
At

As
= 16 εv = −8nt . (8)

The B-polarization spectrum of the CMB is produced only by tensorial perturbations. A
detection of B-modes would allow one to fix At ∗ and with (7) also r∗. Finally, this would allow
us to determine the energy scale of inflation in a model-independent way from observations,

(Eobs
infl )4 :=

3π2M4
P

2
At ∗ =

3π2M4
P

2
As ∗ r∗. (9)

So far, observations managed to obtain only an upper bound on r∗. The current bound
from [19] is r∗ < 0.12 at 95% confidence level at k∗ = 0.05 Mpc−1. Taking the central values
As ∗ = 2.2 × 10−9 and saturating the bound for r, one obtains an upper bound for the energy
scale

Eobs
infl < 1.9× 1016 GeV . (10)

Obviously, all cosmological models have to satisfy the condition

Emodel
infl ≈ Eobs

infl (11)

in order not to be in conflict with observational data.
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3.3. Quantum cosmological energy scale of inflation
As discussed in Sec. 2, we use a heuristic approach and interpret peaks in the tunneling
probability distributions as setting the initial conditions for inflation. The tunneling distribution
in the semiclassical limit is found to be [4, 5]

T (ϕ) := e−Γ(ϕ) = exp

[
−

24π2M4
P

V (ϕ)

]
. (12)

A peak corresponds to a maximum of (12). Finding this peak is equivalent to finding the maxima
of the potential Vmax := Veff(ϕmax). This leads to the simple conditions

dV (ϕ)

dϕ

∣∣∣
ϕ=ϕmax

= 0,
d2 V (ϕ)

dϕ2

∣∣∣
ϕ=ϕmax

< 0 . (13)

The peak ϕmax in (12) corresponds to the value of ϕ that selects the most probable value of
Λeff = V (ϕmax)/M2

P for which the universe starts after tunneling. In this way, the quantum scale
of inflation was obtained in [21, 22, 23, 24, 25]. The predictability of the tunneling distribution
(12) can be quantified by the sharpness of the peak at ϕmax,

S :=
(∆ϕ)2

EQC
infl

. (14)

Here, the variance (∆ϕ)2 is a measure of the width of the peak, while EQC
infl is a measure for the

height of the peak. We can get a rough estimate of the variance by fitting a normal distribution
around the peak ϕmax. Taking ϕmax as the mean value and expanding Γ to second order around
ϕmax, we obtain

(∆ϕ)2 := [Γ′′(ϕmax)]−1 . (15)

In the inflationary slow-roll regime, ϕ ≈ const and the energy density is completely dominated
by Vmax := V (ϕmax). Therefore, the peak value ϕmax allows one to determine the energy scale
of inflation as

EQC
infl := V 1/4

max . (16)

Demanding a consistent quantum cosmological history of the universe, beginning with the
quantum creation via tunneling, we extend the consistency condition (11) and require

EQC
infl ≈ E

model
infl ≈ Eobs

infl . (17)

This implies that the energy scale of the inflationary model must not only agree with present
observations but must also be of the same order as the prediction from quantum cosmology.

Two points deserve further discussion. First, in the presence of multiple maxima of the
effective potential, there might be several (possibly degenerated) peaks in the probability
distribution. In such a case, the environment of these peaks, in particular the neighboring
minima, has to be investigated. Second, it should be noted that in the context of eternal inflation
and the landscape picture [26, 27], such a strong condition as EQC

infl ≈ Eobs
infl might not hold and

one has to resort to the somewhat weaker condition EQC
infl ≥ Eobs

infl . Even if there was only one
global maximum of the effective potential, corresponding to the unique single highest peak in
the tunneling distribution, one must be careful in case the effective potential also features several
metastable minima with different energy densities. Then, starting from the global maximum,
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inflation could happen in a cascade-like process decaying from higher vacua to lower ones step
by step (in the following labeled by ϕmin,n where higher n mean lower values of V (ϕmin,n)) or
decaying directly in some lower metastable (or eventually even stable) vacuum. We would not
be sure whether ‘our inflation,’ which produced our exponentially blown patch of the universe we
can observe today, was due to the initial inflationary phase that started at the global maximum
of the effective potential or due to another inflationary period that started in a lower metastable
minimum of the effective potential. In other words, it is logically possible that, depending on the
structure of the effective potential, the phase of inflation triggered by the quantum creation of
the universe leads to a phase of eternal inflation with V (ϕmax). Then, in this eternally inflating
universe at some moment in time in some region of space, the inflaton field could decay in one of
the metastable vacua ϕmin,n, starting another phase of inflation, with a different initial condition
set by the local minimum of the effective potential V (ϕmin,n) < V (ϕmax) and this can happen
several times. We cannot really say whether the energy scale of ‘our’ inflation is V (ϕmax) or

V (ϕmin,n) . Therefore, we can realistically only demand EQC
infl ≥ E

obs
infl .

In this context, it might be interesting to note that according to [28] inflation can exist only
eternally to the future direction, but not to the past, assuming a universe that is on average
always expanding (not necessarily accelerated). This supports the assumption of an initial
moment of creation, in contrast to an eternally existing inflationary universe with no beginning.

4. Special models
In the following, we will apply the general method presented in the previous sections to two
particular models of inflation: non-minimal Higgs inflation and natural inflation; these two
scenarios are among the class of inflationary models currently favored by observational data
[29, 30]. In the following, we quote the results for the 2013 data release of Planck.

While natural inflation already admits a quantum cosmological analysis at the tree level,
quantum corrections are essential in non-minimal Higgs inflation as they lead to the formation
of a strict maximum in the potential and therefore to a sharp peak in (12).

4.1. Non-minimal Higgs inflation
In the non-minimal Higgs inflation model [31, 32, 33, 34, 35, 36, 37, 38, 39], the Standard Model
Higgs boson and the cosmological inflaton are identified to be one and the same scalar field
ϕ – the Higgs inflaton. The other essential assumption of this model is a strong non-minimal
coupling ξ ∼ 104−105 of the Higgs inflaton to gravity.1 The interactions relevant for cosmology
can be summarized by the graviton-Higgs sector of the model,

S[g, ϕ] =

∫
d4x g1/2

[
U(ϕ)R− 1

2
∂µϕ∂

µ − V (ϕ)

]
. (18)

The coupling to the Ricci scalar R and the Higgs potential are given by

U(ϕ) =
1

2

(
M2

P + ξϕ2
)
, V (ϕ) =

λ

4

(
ϕ2 − ν2

)2
. (19)

Here, ξ is the non-minimal coupling constant, λ the quartic self-coupling, and ν ' 246 GeV
the symmetry breaking scale. The matter sector is given by the Standard Model interaction

1 We note that, for an interacting scalar field ϕ, a non-mininal coupling of the form ∝ ϕ2R will be unavoidably
induced already at the one-loop order. Even within an effective field theoretical approach, where higher order
terms are supposed to be sufficiently suppressed, consistency of the renormalization procedure would require to
include such a term already from the very beginning. Regarding the strength of ξ, we note that in view of the
rather small mass of the discovered Higgs boson MH ' 126 GeV, the condition of a large non-minimal coupling
can be relaxed somewhat; see the discussion at the end of this section and, e.g., [39, 40].
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Lagrangian

Lint = −
∑
χ

1

2
λχ χ

2 ϕ2 −
∑
A

1

2
g2
AA

2
µ ϕ

2 −
∑
Ψ

yΨϕ Ψ̄Ψ. (20)

The sum extends over scalar fields χ, vector gauge bosons Aµ and fermions Ψ. The matter
content can be restricted to the dominant contributions that come from the heavy W± and Z
bosons and the Yukawa top quark qt. Their masses follow from the relations

m2
W± =

1

4
g ϕ2, m2

Z =
1

4
(g2 + g′2)ϕ2, m2

t =
1

2
y2

t ϕ
2, m2

H = λ (3ϕ2 − ν2), (21)

with the electroweak and strong gauge couplings g, g′ and gs as well as the Yukawa top quark
coupling yt. This matter content results in essential quantum contributions to the effective
potential —the quantity that encodes the relevant information for the cosmological analysis.
Since the energy scales of the electroweak vacuum and inflation are separated by many orders of
magnitude, one also needs to take into account the dependence of the coupling constants on the
energy scale. In order to evaluate the coupling constants at the high energy scale of inflation,
one needs to calculate the renormalization group flow that connects the electroweak scale with
the energy scale of inflation [33, 34, 35]. The renormalization group running of the couplings, in
turn, is encoded in the beta functions which give rise to a system of coupled ordinary differential
equations that has to be solved numerically,

dgi(t)

dt
= βgi , gi = (λ, ξ, g, g′, gs, yt),

dZ(t)

dt
= γZ. (22)

Here, t = lnϕ/µ is the logarithmic running scale and µ is an arbitrary renormalization point.
The wave function renormalization Z(t) is determined by the anomalous dimension γ of the
Higgs field.

In order to make use of the standard slow-roll formalism for the cosmological analysis, it is
convenient to transform to the Einstein frame by a conformal transformation of the metric field
and a redefinition of the Higgs inflaton,

ĝµν =
2U(ϕ)

M2
P

gµν ,

(
dϕ̂

dϕ

)2

=
M2

P

2

(
U + 3U ′2

)
U2

, V̂ =
M2

P

4

V

U2

∣∣∣
ϕ=ϕ̂

. (23)

The one-loop renormalization group improved effective potential in the Einstein frame reads [35]

V̂ '
M4

P

4

λ

ξ2

[
1−

2M2
P

ξϕ2
+

AI

16π2
ln

(
ϕ

µ

)]
, (24)

where AI represents the inflationary anomalous scaling [35]

AI(t) :=
3

8λ(t)

[
2g4(t) +

(
g2(t) + g′2(t)

)2
− 16y4

t (t)
]
− 6λ(t). (25)

4.1.1. Slow-roll predictions Using the slow-roll formulas of Sec. 3.1 for the Einstein-frame
renormalization-group-improved effective potential, and taking the derivatives with respect to
the Einstein frame scalar field ϕ̂, one can express the the slow-roll parameters in terms of the
original Jordan frame variables [35]

ε̂ =
M2
P

2

(
1

V̂

dV̂

dϕ̂

)2

=
4

3

(
M2
P

ξ ϕ2
+

AI

64π2

)2

, (26)

η̂ =
M2
P

V̂

d2V̂

dϕ̂2
= −

4M2
P

3ξϕ2
. (27)
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For the expressions of the remaining cosmological parameters, it is convenient to introduce the
abbreviation

x :=
NAI

48π2
, (28)

which can be interpreted as a measure of the strength of quantum corrections, resulting from
AI . In this way, for the scalar amplitude one finds [35]

Âs =
λ

96π2ξ2ε̂
=

N2

72π2

λ

ξ2

(
ex − 1

x ex

)2

. (29)

The scalar spectral index and the tensor-to-scalar ratio are then found to be [35]

ns = 1− 2

N

x

ex − 1
, (30)

r =
12

N2

(
xex

ex − 1

)2

. (31)

All these quantities have to be evaluated at the energy scale of of inflation, the moment of
first horizon crossing, when the inflaton value is ϕ∗. This, in turn, means that one has to
numerically integrate the system of renormalization-group equations (22) from the electroweak
vacuum tew ' 0 up to the scale t∗, corresponding to ϕ∗, and then evaluate all running couplings
at t∗.

Fixing the arbitrary renormalization point at the top mass scale µ = Mt and assuming
a modified convention for the condition of the end of inflation ε̂|t=tend := 3/4 (instead of the
convention (5)), the times t∗ and tend can be determined via the relation ϕ∗/end = Mt exp(t∗/end)
and the estimate for the number of e-folds [32],

N∗ '
3

4

ξ(t∗)

M2
P

(ϕ2
∗ − ϕ2

end) . (32)

In the large ξ approximation, these times read [35]

t∗ = ln
MP

Mt
+

1

2
ln

4N

3ξ∗
+

1

2
ln

expx∗ − 1

x∗
, (33)

tend = ln
MP

Mt
+

1

2
ln

4

3ξend
. (34)

While we have taken into account a running ξ, numerically the running is very slow, i.e.
ξ(tew) ' ξ(t∗). Nevertheless, in view of the fact that there is no initial condition for ξ(tew),
one has to impose a ‘final condition’ ξ(t∗), determined by the correct normalization of the scalar
amplitude (29) evaluated at t∗, i.e. As∗ ∝ λ∗/ξ2

∗ ∝ (∆T/T )2 ∼ 10−10. Note that for N = 50÷60,
the duration of inflation in terms of the logarithmic scale t is numerically very short t∗−tend ' 2
compared to the post-inflationary running tend − tew ' 35 [35].

The numerical predictions for (30) and (31) depend on the details of the renormalization-
group flow and are, in particular, very sensitive to the initial conditions at the electroweak scale.
A more precise analysis including beta functions up to two and three loops has become available,
see e.g. [36, 37] and, since the discovery of the Higgs boson, also the initial conditions at the
electroweak scale (in particular the top mass Mt) are known to a higher precision. Another
aspect is connected to the rather light value of the measured Higgs mass MH ' 126 GeV. As
a consequence, λ(tin) can be very small by itself at the energy scale of inflation and therefore
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allows for much smaller non-minimal couplings ξ(tin); see e.g. a discussion in [39, 40]. For certain
initial values the renormalization group flow can even drive λ to negative values and therefore
lead to an unstable (or meta-stable) vacuum, see e.g. [41]. In general, the precise inflationary
predictions of this model are very sensible to small changes in initial values for the Standard
Model masses.

4.1.2. Quantum cosmological predictions Following the general method presented in Sec. 3.3,
the tunneling amplitude for the non-minimal Higgs inflation model is given by [4]

Γ(ϕ) = 24π2 M4
P

V̂ (ϕ)
' 96π2 ξ

2

λ

(
1 +

2M2
P

ξZ2ϕ2

)
. (35)

The peak position ϕmax is determined by the extrema

ϕ
dΓ

dϕ
=
dΓ

dt
= −6ξ2

λ

(
AI +

64π2M2
P

ξZ2ϕ2

)
= 0, (36)

The solution of this condition in terms of the probability peak reads [4]

ϕ2
max = −

64π2M2
P

ξAIZ2

∣∣∣∣
t=tmax

. (37)

The peak is very narrow, as can be estimated by the sharpness

S =
(∆ϕ)2

EQC
inf

'
d2Γ(t)
dt2

V̂ (t)

∣∣∣∣∣
t=tmax

= − λ

12ξ2

1

AI

∣∣∣∣
t=tmax

∼ 10−10. (38)

In view of AI(tmax) ' AI(tend), the point of the horizon crossing ϕ∗ for the pivot scale k, chosen
to correspond to N = 60, is very close to the point of quantum creation ϕmax. Their ratio for
different modes, corresponding to different N , therefore takes the form [4]

ϕ2
∗

ϕ2
max

= 1− exp

[
−N |AI(tend)|

48π2

]
. (39)

Thus, (39) indicates that, for wavelengths longer than the pivotal one, the instant of horizon
crossing approaches the moment of ‘creation’ of the Universe, but it is always posterior to it
(ϕmax > ϕ∗), as required for a consistent quantum cosmological history of the universe.

4.2. Natural inflation
Another inflationary model which is in agreement with the Planck data is that of natural inflation
[42]. The inflaton potential for natural inflation reads

V = Λ4 [1 + cos (ϕ/f)] . (40)

In this model, ϕ is supposed to be a pseudo Nambu–Goldstone boson taking values on a
circle with radius f and angle ϕ/f ∈ [0, 2π) [42]. The two constants Λ and f determine
the height and the slope of the potential and have physical dimension of mass in natural units.
The interpretation of ϕ as a pseudo Nambu–Goldstone field suggests that f = O(MP) and
Λ ≈MGUT ∼ 1016 GeV.

7th International Workshop DICE2014 Spacetime – Matter – Quantum Mechanics IOP Publishing
Journal of Physics: Conference Series 626 (2015) 012003 doi:10.1088/1742-6596/626/1/012003

9



4.2.1. Slow-roll predictions The cosmological parameters in the inflationary slow-roll analysis
can again be derived from the general expressions in Sec. 3.1. From (2), the first two slow-roll
parameters read

εv =
M2

P

2 f2
tan2 [ϕ/(2 f)] , ηv = −

M2
P cos(ϕ/f)

f2 [1 + cos(ϕ/f)]
. (41)

The scalar spectral index and the tensor-to-scalar ratio then take the form

ns = −
M2

P

f2

3− cos(ϕ/f)

1 + cos(ϕ/f)
, r =

8M2
P

f2
tan2 [ϕ/(2 f)] . (42)

All cosmological observables must again be evaluated at ϕ∗, the field value that corresponds to
the moment where the pivot mode k∗ first crosses the Hubble scale. The number of e-folds N∗
connecting the end of inflation ϕend with the value ϕ∗ is

N∗ =
2 f2

M2
P

ln

sin
(
ϕend
2 f

)
sin
(
ϕ∗
2 f

)
 . (43)

The value ϕend that determines the upper integration bound in (43) is determined to be

ϕend = 2 f arctan(
√

2 f/MP) . (44)

Inserting (44) in (43), solving for ϕ∗ and parametrizing f in units of MP, we find

ϕ∗ = 2MP α arcsin

(
α e−N∗/2α2√

1/2 + α2

)
, (45)

where α := f/MP. Evaluating the potential (40) at ϕ∗ yields

V (ϕ∗) = 2 Λ4 [1− δV (α,N∗)] , (46)

where, following [5], we have defined

δV (N∗, α) :=
2 e−N∗/α2

α2

1 + 2α2
. (47)

The expressions for ns and r evaluated at ϕ∗ can be expressed in terms of δV and α:

ns ∗ = 1 +
1

α2

δV (N∗, α) + 1

δV (N∗, α)− 1
, r∗ =

8

α2

δV (N∗, α)

1− δV (N∗, α)
. (48)

For N∗ = 60, Planck 2013 data [29] constrain α to lie in the interval [43]

5.1 < α < 7.9 (68% CL) . (49)
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Figure 1. The function δV (N∗, α) as a function of α for values of N∗ ∈ [50, 60], taken from [5].
The upper line corresponds to N∗ = 50, the lower line to N∗ = 60. The inset shows the region
with α in the 68% CL range 5.1 < α < 7.9 (see (49)).

4.2.2. Quantum cosmological predictions Following again the general algorithm of Sec. 3.3, we
first have to calculate the extrema of (40),

dV

dϕ

∣∣∣
ϕ=ϕext

= −Λ4

f
sin (ϕext/f) = 0 . (50)

If ϕext is a maximum, peak values correspond to

ϕmax := 2πnf . (51)

The potential at ϕmax has the value

Vmax = 2 Λ4 . (52)

With the width ∆ϕ of the distribution given by

(∆ϕ)2 =
1

Γ′′

∣∣∣∣
ϕ=ϕmax

=
1

6π2

f2 Λ4

M4
P

, (53)

the sharpness of the peak ϕmax is estimated as

S =
(∆ϕ)2

V
1/2

max

≈ 1

6π2

f2 Λ2

M4
P

∼ Λ2

M2
P

∼ 10−4 , (54)

where we have used f ∼MP and EQC
inf ∼ Λ, according to (16) and (52).

As can be inferred from Fig. 2, it was shown in [5] that the requirement of a deviation from
the approximate consistency requirement (17) of not more than one order of magnitude leads
to the following constraint for the parameter α:

α . 710 for N∗ = 50 and α . 780 for N∗ = 60. (55)
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Figure 2. A zoomed-in region of the function V (N∗, α)/(2 Λ4) = 1− δV as a function of α for
values of N∗ ∈ [50, 60], taken from [5]. The upper purple line corresponds to N∗ = 60, the lower
purple line to N∗ = 50. The lower area, colored in light red (in black-and-white printing: light

gray), corresponds to the region where Emodel
inf < 10−1EQC

inf .

Although a quantum cosmological bound on α derived in this way depends on the allowed
tolerance for a violation of (17), this bound is clearly not as restrictive as the constraints on α
coming from the comparison with the observational constraints of the spectral index and the
tensor-to-scalar ratio by Planck. As shown in Fig. 1, in this range δV ≈ 0.1÷ 0.5 is still small
enough to respect the approximate condition (17) to the tolerated accuracy.

Thus, consistency of classical inflationary predictions with observational data (49) result in
a much sharper bound α ∼ O(10) far below the threshold α ≈ 700. We can therefore conclude
that to a good approximation no conflict with the a quantum origin or our universe does arise
in natural inflation, since the consistency condition is satisfied for all experimentally allowed
values of α.

5. Conclusions and outlook
In this contribution, we have presented a general method that allows one to derive predictions
from quantum cosmology by assuming a consistent history of our universe from its initial
quantum creation up to its present state. We have restricted our analysis here to the tunneling
scenario, but the method can also be extended to other quantum initial conditions such as the
no-boundary condition, although this condition does not lead naturally to inflationary initial
conditions.

We have in detail investigated two particular models of inflation: non-minimal Higgs inflation
[31, 32, 33, 34, 35, 36, 37, 38, 39] and natural inflation [42]. We have found that both models
allow for a consistent cosmic history starting from a quantum tunneling process.

In principle, all inflationary single-field models favored by recent Planck data can be
summarized by the general class of scalar-tensor theories with the action

S =

∫
d4x
√
g

[
U(ϕ)R− G(ϕ)

2
(∇ϕ)2 − V (ϕ)

]
, (56)

and the method presented here could, in principle, be applied also to this general class
parametrized in terms of the arbitrary functions U(ϕ), G(ϕ) and V (ϕ). As has been discussed
in the context of non-minimal Higgs inflation, quantum corrections can become important and
modify the shape and the location of the extrema of the effective potential. The one-loop
divergences for the general action (56), necessary for renormalization, were obtained in [44] in

7th International Workshop DICE2014 Spacetime – Matter – Quantum Mechanics IOP Publishing
Journal of Physics: Conference Series 626 (2015) 012003 doi:10.1088/1742-6596/626/1/012003

12



a closed form for an even more general setup of a symmetric O(N) invariant multiple of scalar
fields.

Finally, a note regarding the parametrization dependence of these quantum corrections is in
order. While in the transition from the Jordan to the Einstein frame parametrizations leads
to equivalent formulations at tree level, in the usual quantum field theoretical formalism such
a field transformation will in general induce an off-shell parametrization dependence of the
effective action [45, 46, 47]. In [45], a geometric approach to the effective action was suggested
to overcome the problem with non-covariance (with respect to the configuration space of field)
of the ordinary formalism. Recently, this idea has been adopted in [48] in the context of non-
minimal Higgs inflation.
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