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The transmittance and the optical constants of SrF2 thin films, a candidate material for multilayer

coatings operating in the extreme ultraviolet and soft x-rays, have been determined in the spectral

range of 25–780 eV, in most of which no experimental data were previously available. SrF2 films

of various thicknesses were deposited by evaporation onto room-temperature, thin Al support

films, and their transmittance was measured with synchrotron radiation. The transmittance as a

function of film thickness was used to calculate the extinction coefficient k at each photon energy.

A decrease in density with increasing SrF2 film thickness was observed. In the calculation of k, this

effect was circumvented by fitting the transmittance versus the product of thickness and density.

The real part of the refractive index of SrF2 films was calculated from k with Kramers-Kr€onig

analysis, for which the measured spectral range was extended both to lower and to higher photon

energies with data in the literature combined with interpolations and extrapolations. With the

application of f- and inertial sum rules, the consistency of the compiled data was found to be

excellent. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4800099]

I. INTRODUCTION

The demand for novel multilayer coatings for the

extreme ultraviolet (EUV) and soft x-rays (SXR) ranges is

rising since they are required for many applications, such as

EUV lithography, tabletop and free-electron lasers, space

instrumentation for astrophysics and solar physics, synchro-

tron radiation, etc. In order to design multilayer coatings, it

is necessary to use accurate optical constants of suitable

materials, such as materials with low absorption. SrF2 is a

material for which a low absorption band has been reported

in a portion of the EUV range.1 This paper addresses the op-

tical characterization of SrF2 thin films in the EUV and SXR

ranges. Few data have been reported in the literature on thin

films of SrF2. Lukirskii et al.2 measured the reflectance

versus angle of thin films of SrF2 and many other materials

at 5 photon energies between 110 and 525 eV, from which

they calculated the optical constants: the refractive index

decrement d¼ 1-n and the extinction coefficient k. Robin-

Kandare and Robin3 measured the transmittance of SrF2

(along with CaF2 and BaF2) thin films, from which they cal-

culated both absorption (neglecting reflectance) and the

absorption coefficient in the �9–14-eV range; additionally,

they measured reflectance for cleaved monocrystals of these

materials in the 9.5–13.8-eV range. Finally, Frandon et al.4

performed electron energy loss spectroscopy on SrF2

films and calculated their complex dielectric constant in the

5–35-eV range. The scant available data for SrF2 films do

not fully cover the EUV-SXR spectral ranges. The optical

constants of SrF2 up to 35 eV were reviewed and tabulated by

Thomas;5 the review was focused on optical constants meas-

ured on bulk SrF2, such as crystals. Thin films often grow

with lower density, amorphous or nanocrystalline structure,

and larger content of defects and voids compared to

bulk crystals. Dielectric films, particularly some fluorides, de-

posited on substrates at room temperature grow with

considerable porosity,6,7 which results in a reduced density

compared to crystals. This may result in that the optical con-

stants of films and bulk crystals of the same compound are

largely different, particularly in the transparent region, in

which the thin film presents a high loss compared to the crys-

tal, as it has been shown for MgF2.8,9 Furthermore, SrF2 films

have been reported to grow nonuniform in depth (Valeev,10

as cited by Gisin11). El-Shazly and Ebrahim12 found that SrF2

films deposited by evaporation on substrates not hotter than

50 �C were inhomogeneous in depth and they determined two

different refractive indices in the 460–1000-nm spectral

range: a lower one for the film layer adjacent to the air and a

larger one for the film layer adjacent to the glass substrate.

Gisin11 reported the dependence of the refractive index of

SrF2 thin films on film thickness at the wavelength of 4.5 lm

for films deposited at 25 �C; the refractive index continuously

decreased over a range of thicknesses between 0.8 and

7.4 lm. Therefore, the optical properties of SrF2 films are

expected to not only differ from those of the bulk material but

to depend on the film thickness.

This paper reports on the optical properties of SrF2 thin

films in the EUV-SXR ranges. Given that in many applications,

it is desirable not to heat the substrate upon thin-film deposi-

tion, the films were deposited by evaporation onto room-

temperature substrates. Section II describes the experimental

a)Author to whom correspondence should be addressed. Electronic mail:

larruquert@io.cfmac.csic.es. Fax: 34 914117651.
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techniques used in the preparation of the SrF2 samples and in

their characterization. Section III reports the transmittance of

SrF2 films of various thicknesses in the 25–780-eV range.

Transmittance measurements as a function of film thickness are

used to calculate k in the same range; an extrapolation of k to

lower and higher photon energies using data from the literature

and models is used to calculate n, the real part of the refractive

index, with Kramers-Kr€onig (KK) analysis. The consistency of

the determined values of n and k is also examined.

II. EXPERIMENTAL TECHNIQUES

A. Sample preparation

SrF2 films were deposited by evaporation of offcuts of

vacuum-ultraviolet-grade SrF2 crystals; tungsten boats were

used as resistive sources. In the deposition chamber, the base

pressure and the pressure during deposition were �2 � 10�5

and 10�4 Pa, respectively; the chamber was evacuated with a

turbo pump system. The deposition rate was 0.5 nm/s. The

substrates were not intentionally heated or cooled during

deposition. The sample holder had four 12.5� 12.5 mm2

quadrants inside a 40� 40 mm2 square. Two quadrants held

each a multiple thin-film substrate for transmittance meas-

urements; another quadrant held a Si substrate; and the

remaining quadrant held a glass substrate. The Si substrate,

used for reflectance measurements at 13.5 nm, was a piece

cut from a Si wafer. The glass substrate was a piece of pol-

ished float glass; it was used for thickness measurements

with Tolansky interferometry, i.e., through multiple-beam in-

terference fringes in a wedge between two highly reflective

surfaces.13

The thin-film substrates consisted of unbacked, 25-nm

thick Al films supported on a 0.2-mm thick, perforated Cu

plate. On each Cu plate, we drilled five 1.5-mm diameter

holes to place the Al-film substrates. To produce the

unbacked Al films, a collodion film was previously cast on

the perforated Cu plates and the Al film was then vacuum-

deposited on the collodion-coated plates. Finally, the collo-

dion film was thoroughly dissolved leaving the unbacked Al

film substrate over each hole for EUV transmittance measure-

ments. During SrF2 evaporation, two Al film substrates per

Cu plate were masked and the other three were not. In that

way, we could measure the transmittance of both the

uncoated as well as the SrF2-coated Al film substrates for nor-

malization purposes. The EUV transmittance was measured

�4 weeks after deposition.

B. Experimental setup for transmittance
measurements

The EUV/SXR reflectance and transmittance measure-

ments were performed at beamline 6.3.2. of the Advanced

Light Source (ALS) synchrotron at Lawrence Berkeley

National Laboratory (LBNL). The general characteristics of

the beamline have been described in detail earlier.14,15 The

sample chamber allows translation of the sample in three

dimensions, tilt in two dimensions, and azimuth rotation of the

sample holder. The available detectors include photodiodes

and a CCD camera (the latter for sample alignment), which

can be rotated 360� around the axis of the chamber.

For the transmittance measurements, four monochroma-

tor gratings (80, 200, 600, and 1200 lines/mm) were used to

access the photon energy range from 25 eV to 780 eV. The

monochromator exit slit was set to a width of 40 lm. Photon

energy calibration was based on the absorption edges of a se-

ries of transmission filters (Al, Si, Ti, and Cr) with a relative

accuracy of 0.011% RMS and with 0.007% repeatability.

During the measurements, 2nd harmonic and stray light sup-

pression was also achieved with a series of filters (Mg, Al,

Si, Be, B, C, Ti, Cr, and Co). For suppression of higher-order

harmonics, an “order suppressor” consisting of three mirrors

at a variable grazing incidence angle (depending on energy

range) and based on the principle of total external reflection

was used in addition to the filters. The ALS storage ring cur-

rent was used to normalize the signal against the storage ring

current decay. The base pressure in the measurement cham-

ber was in the range 1.3� 10�4 – 1.3� 10�5 Pa. The signal

was collected on a GaAsP photodiode detector with accep-

tance angle of 1�. The reflectance measurements at 91.8 eV

were obtained with the 200 lines/mm grating, a Be filter for

2nd-harmonic suppression, the order suppressor consisting

of three carbon mirrors at 12� grazing angle of incidence,

and the GaAsP photodiode detector.

Atomic Force Microscopy (AFM) measurements were

performed with a Digital Instruments Dimension 5000TM

instrument equipped with an acoustic hood and vibration iso-

lation, reaching a noise level of 0.03 nm rms. The instrument

is operated in tapping mode, which measures topography in

air by tapping the surface with an oscillating probe tip. The

probe tips were etched silicon, with a nominal tip radius of

5–10 nm.

III. RESULTS AND DISCUSSION

A. Transmittance and extinction coefficient of SrF2

The transmittance of SrF2 films with three different thick-

nesses (20.0, 46.0, and 89.5 nm as obtained from Tolansky

interferometry) was measured in the 25–780-eV range. For

normalization purposes, we also measured the transmittance

of Al substrates that were prepared in the same runs as the

substrates used to support the SrF2 films. Fig. 1 displays the

transmittance of the three SrF2 films normalized to the trans-

mittance of each substrate. Transmittance displays a deep

minimum centered around 30 eV, which may be assigned to

the Sr N2,3 edge; the broad minimum centered at �220 eV is

also attributed to Sr; the oscillations at �270 and �290 eV are

assigned to the Sr M3 and M2 edges, respectively.16 The struc-

ture at �690 eV and above is attributed to the F K edge.

In the assumption that multiple reflections in the film are

negligible, transmittance data versus film thickness can be

used to calculate k with the well-known Beer-Lambert law

Tsþf

Ts

� �
i

¼ exp � 4pkxi

k

� �
; (1)

where xi, i¼ 1, 2, 3, stands for the thickness of each of the

SrF2 films; Ts and Tsþf stand for the transmittance of the
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substrate and of the substrate coated with SrF2, respectively,

at wavelength k. Photon energy and wavelength are related

through E(eV)¼ 1239.8/k(nm). From Eq. (1), a linear fit of

the logarithm of the normalized transmittance data versus

film thickness provides k at each wavelength. We will refer

to this procedure as the slope method for k determination.

Fig. 2 displays the normalized transmittance (in log scale)

versus thickness for a selection of photon energies.

At each photon energy, the transmittance data do not

fall in a straight line, and the decrease trend is less pro-

nounced than what is predicted by Eq. (1). Furthermore, we

observed a deviation between the film thickness measured

with the quartz crystal monitor in the deposition chamber,

which measures mass accumulated on the crystal, and the

thickness measured by Tolanski interferometry, which meas-

ures real physical thickness. Such deviation, which was more

pronounced for thicker films, indicated that the real film

thickness was larger than the thickness expected from the de-

posited mass, and that the difference was increasing with

film thickness. Both observations above are consistent with a

progressive decrease of film density with increasing SrF2

thickness, which is also compatible with the dependence of

SrF2 optical constants with thickness reported in Refs. 11

and 12. In those references, this effect was observed for

thicknesses larger than the present ones; density dependence

with thickness is observed here at thicknesses as small as

tens of nm.

Reflectance was measured as a function of the angle of

incidence at 13.5 nm (91.8 eV) on three Si witness samples

that had been coated in the same run that the SrF2 samples

whose transmittance was measured. These measurements

were attempted to fit using the IMD software.17 However, the

fits obtained were not accurate enough as to obtain unambig-

uously the film density and the RMS roughness values of the

interfaces. We believe that this was due to the unknown den-

sity gradient in depth and hence the optical-constant gradient

through the films, which could not be successfully modeled.

In view of this, we calculated the average density of each

SrF2 film using transmittance measurements in the following

way. We compared our experimental transmittance with cal-

culated values in which the density was left as a free parame-

ter. At photon energies larger than �30 eV and away from

absorption edges, the optical properties of a material can be

obtained to a good approximation by summing the effects of

the individual atoms as if they were independent of each

other, because the response of a material is mostly deter-

mined by tightly bound electrons, which are little affected by

molecular binding.18 At photon energies in the EUV and

SXR, the interaction of radiation with a single atom is given

in terms of the atomic forward scattering factors.19 Optical

constants of SrF2 for various densities were calculated in

this approach using the available data on Sr and F. For Sr,

we used the experimental characterization performed by

Rodr�ıguez-de Marcos et al.16 For F, we used the semi-

empirical data of Henke et al.,19 downloaded from the web of

the Center for X-Ray Optics (CXRO).20 For each density, the

contribution of Sr and F to k was weighted according to the

number of atoms per unit volume and then summed up for the

two species. For each film, we varied the density until the

best match between calculated and experimental transmit-

tance values was obtained; the fitted density was interpreted

as the average film density. Fig. 3 shows the fits obtained for

the three films; the fitted range was limited to 70–600 eV, in

order to avoid both low photon energies and the F K edge,

where calculations with the independent-atom approximation

are expected to be less accurate; the low-energy limit was

increased to 70 eV to enable a more accurate fit. The fitted

densities are displayed in Table I; we observe a dramatic den-

sity decrease versus increasing thickness in the present thick-

ness range. The displayed thickness values were measured by

using Tolansky interferometry.

AFM was used to measure the topography of the films in

order to calculate the high spatial frequency roughness (HSFR)

of the surface. The results are shown in Table I. Surface HSFR

was computed from the Power Spectrum Density (PSD) in the

spatial frequency range from 5� 10�4 to 0.05 nm�1, which is

most relevant for reflectance in the EUV. The HSFR measure-

ment of the 20.0 nm-thick sample is expected to be accurate.

The HSFR obtained for the 46.0-nm-thick film is expected to

FIG. 1. The transmittance of three SrF2 films normalized to the transmit-

tance of the substrate versus the photon energy in log scale.

FIG. 2. The transmittance (log scale) of SrF2 films at five selected photon

energies versus the film thickness.
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be underestimated, as it is likely that the real HSFR of this

sample exceeded the upper limit of roughness that the AFM

instrument is able to measure. The 89.5 nm-thick sample could

not be measured with AFM due to excessive roughness. The

increase of roughness with thickness, along with the decrease

of density, indicates an increase of the film porosity with

thickness.

The dependence of SrF2 density on thickness means that

the optical constants of SrF2 must also vary with thickness.

In the independent-atom approximation, k is proportional to

density (q). We modified Eq. (1) to leave it as a function of k

and q

Tsþf

Ts

� �
i

¼ exp � 4pkqqixi

k

� �
; (2)

where kq stands for the extinction coefficient per unit den-

sity: kq¼ k/q. Hence, kq is independent of the specific den-

sity of each film, and transmittance depends on the product

of thickness and density. Fig. 4 displays the normalized

transmittance (in log scale) versus thickness� density for

the same selection of photon energies of Fig. 2; densities

were used as per Table I. In this way, we obtained satisfac-

tory linear fits.

Using the transmittance data plotted in Fig. 1, and the

thickness and density data displayed in Table I, we can obtain

kq with Eq. (2). In the independent-atom approximation, k for

each specific film density is obtained by multiplying kq by the

density. In the following, we will focus on the density of the

thinnest sample (20 nm, M1) because this film thickness is

closer to the range of suitable values for multilayer coatings in

the EUV/SXR range. Hence, in Fig. 5, we plot k¼ kqq1 versus

photon energy. In the calculation of k, we attempted to use the

data from all 3 samples at each photon energy. However, in the

ranges 25–32 and 560–780 eV, the data were not consistent

across the 3 samples. At 25–32 eV, the transmittance of sam-

ples M2 and M3 was larger than what would be expected from

the transmittance of sample M1. This could be attributed to the

large absorption of SrF2 in this range; such excessively high

transmittance of M2 and M3 may be due to either low photon

statistics or to the presence of pinholes in the films. Therefore,

only data from M1 were used at 25–32 eV. When only data of

one sample are available, one cannot calculate k with the

aforementioned slope method; instead, we used Eq. (2) directly

to obtain k from a single transmittance measurement. In the

560–780-eV range, only the data from the M3 sample look

FIG. 3. Log-log plot of transmittance of three SrF2 films versus photon

energy. Black lines: measurements. Grey lines: best fits, with density as the

fitted parameter.

TABLE I. Film thickness, average density, and HSFR of three SrF2 films.

Thickness was determined with Tolansky interferometry. Density was

obtained by fitting EUV transmittance measurements; bulk density is given

for comparison. HSFR was obtained from AFM measurements in the

5�10�4 to 0.05 nm�1 frequency range; the HSFR measurement in parenthe-

ses is considered an under-estimated value.

Sample Film thickness (nm) Density (g/cm3) HSFR (nm RMS)

M1 20.0 3.98 2.3

M2 46.0 3.37 (3.3)

M3 89.5 2.58 N/A

Bulk 4.28

FIG. 4. The transmittance (log scale) of SrF2 films at five selected photon

energies versus the product of film thickness� density.

FIG. 5. Log-log plot of k of SrF2 films versus photon energy for a density of

3.98 g/cm3. The data of Lukirskii et al.2 and the data calculated in the

independent-atom approximation are also plotted.
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plausible. This was attributed to the very low absorption of the

two thinnest films, resulting in reduced accuracy in the absorp-

tion determination. Hence, at 560–780 eV, only data from M3

were used. Fig. 5 also shows the data calculated with the

independent-atom approximation, based on the experimental

data on Sr16 and the semi-empirical data on F.19,20 A good

agreement is obtained, particularly in the 60–400-eV range.

The data of Lukirskii et al.2 are also plotted; a good agreement

is not obtained with the latter data. The optical constants in

Ref. 2. were calculated from reflectance measurements versus

incidence angle; the roughness of the sample, which plays a

much larger role in reflectance than in transmittance measure-

ments, seems to not have been accounted for in the calculation,

which might explain the poor agreement. Reflectance measure-

ments are also more sensitive to surface contamination than

transmittance measurements; in the latter, a contamination

layer common to all measured films is mostly cancelled out

when calculating k with the slope method. k at low photon

energies is plotted in Fig. 6, along with data in the literature.

The data of Nisar and Robin1 were obtained from reflectance

measurements on single crystals of SrF2 that were cleaved in
situ. They performed KK analysis on the reflectance data and

obtained n and k in the 10–36-eV range. They obtained a mini-

mum value of k of �0.03 at 26.9 eV, a photon energy close to

the Ne-like Ar line laser operating at 26.4 eV.21 These reported

low-absorption values were a motivation for this research,

since, if verified, they could render SrF2 a promising material

for multilayer coatings operating near 26.9 eV. Nevertheless, a

much larger k value of 0.45 for SrF2 films was measured at

26.9 eV in the present research. The present results at low pho-

ton energies are not far from the data of Frandon et al.,4

obtained from electron energy loss spectroscopy on SrF2 films.

Fig. 7 displays k in the spectral range around the F K edge;

data calculated with the independent-atom approximation are

also shown for comparison. The shape and position of the F K

edge may be useful for spectroscopy applications. The oscilla-

tion above this edge might be attributed to X-ray Absorption

Fine Structure (XAFS). The peaks at �540 eV are attributed to

the O K edge, and hence to the presence of some oxygen in the

films. A peak near 540 eV is also present in the calculation with

the independent-atom approximation, probably again due to

the presence of some oxygen in the Sr films that were used to

obtain the optical constants of Sr.16

B. Refractive index calculation through dispersion
relations

n, the real part of the refractive index, is calculated with

KK dispersion relations

nðEÞ � 1 ¼ 2

p
P

ð1

0

E0kðE0Þ
E02 � E2

dE0; (3)

where P stands for the Cauchy principal value. In order to

perform this integration, we need to know k in the whole

spectrum. Hence, we extended our data with data from the

literature, along with interpolations, and extrapolations.

From the scant literature available on the optical constants of

SrF2 films, which was reviewed in Sec. I, the research of

Frandon et al.4 provided the largest useful data range and

hence it was selected here; we could read their data down to

8 eV. At photon energies lower than this, no data were found.

This corresponds to the SrF2 range of transparency, at photon

energies below the SrF2 cutoff at �9.8 eV. One choice would

be to use k data values obtained from SrF2 crystals.22–24

However, in the transparent range extending from the far UV

to the far IR, k for crystalline SrF2 is extremely low, such as

�10�6 and below.5 In contrast, for films deposited at room

temperature and in the same range, k is expected to take

much larger values,8,9 on the order of �10�2; for MgF2

films, this excess absorption was attributed to scattering

from inhomogeneities and absorption from the low energy

tail of an exciton band.9 In order to fill the gap of the SrF2

transparency range, we decided to interpolate between litera-

ture data in the adjacent ranges. At photon energies above

this transparency gap, we used the data of Frandon et al.,4

FIG. 6. k of SrF2 films at low photon energies. The data of Frandon et al.4

and the data calculated in the independent-atom approximation are also plot-

ted. The data of Nisar and Robin,1 which were measured on single crystals,

are also displayed

FIG. 7. k of SrF2 films versus photon energy close to the F K edge. One pho-

ton energy measured by Lukirskii et al.2 and the data calculated in the

independent-atom approximation are also plotted.
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which were obtained from SrF2 films. In the far IR, materials

with ionic bonding like SrF2 exhibit the reststrahlen band,

with strong optical constant variation and large absorp-

tion.25,26 Since no data on the reststrahlen band was found

for SrF2 films in the literature, in the interpolation, we used

data on SrF2 crystals by Kaiser et al.27 and Bosomworth,28

as tabulated in Ref. 5. The data of Ref. 4 display several

peaks and valleys; we fitted these data with a set of seven

Lorentz oscillators to reproduce the main seven peaks of

Ref. 4. We added one further oscillator to fit the reststrahlen

band. This totaled a fit with eight Lorentz oscillators, which

is displayed in Fig. 8. Both Kaiser’s data and the fit were

somewhat modified in order to obtain a smooth connection,

as displayed in Fig. 8. We used Lorentz oscillators because

they are complex functions satisfying KK dispersion rela-

tions. Additionally, the real part of the sum of the eight

Lorentz oscillators used here showed a satisfactory match

with the data of Frandon et al.4 and Kaiser et al.27

In the extrapolation to photon energies larger than

780 eV, we used the semiempirical data of Henke et al.,19 as

downloaded from the CXRO’s web site,20 at photon energies

up to 3� 104 eV, and the calculations of Chantler et al.29 in

the 3� 104 to 4� 105 eV range; in both cases, we used a

density of 3.98 g/cm3 for SrF2. The extrapolation to even

larger photon energies was performed by keeping constant

the slope of k(E) from Chantler’s data in a log-log plot. Fig.

9 displays the whole k data set gathered in this research.

The data gathered in Fig. 9 was used to obtain d¼ 1� n

with Eq. (3); d is plotted in Fig. 10. An excellent agreement

with the data calculated with the independent-atom approxi-

mation was obtained at E> 45 eV. Again, the agreement

with the Lukirskii data2 is poor. Fig. 11 shows n at small

photon energies.

C. Consistency of optical constants

Two sum-rules were used to evaluate the consistency of

the above optical constants: the f-sum and the inertial sum

rule. To apply the f-sum rule, it is useful to define the

effective number of electrons per atom neff(E) contributing to

k up to a given photon energy E30

neffðEÞ ¼
4e0m

pNe2�h2

ðE

0

E0kðE0ÞdE0; (4)

where N is the molecule density, which was calculated using

the mass density of 3.98 g/cm3, e and m are the electron

charge and mass, respectively, e0 is the permittivity of vac-

uum, and �h is the reduced Planck’s constant. f-sum rule

expresses that the high-energy limit of the effective number

of electrons must reach the number of electrons in a SrF2

molecule, i.e., 56. When the relativistic correction on scatter-

ing factors is taken into account, the high-energy limit of

integration with Eq. (4) is somewhat modified. The theoreti-

cal effective number of electrons is then reduced to 55.71.31

By integrating k data gathered in the whole spectral range

plotted in Fig. 9, we got 55.71, which is exactly the

FIG. 8. Log-log plot of k at low photon energies and the fit with eight

Lorentz oscillators to Frandon’s data4 and to the reststrahlen band,27,28 along

with a smooth connection to the latter. Inset: k versus the logarithm of

energy showing the fit to Frandon’s peaks.

FIG. 9. Log-log plot of k versus photon energy in the whole spectrum gath-

ered in this research.

FIG. 10. Log-log plot of d¼ 1�n of SrF2 films versus photon energy. The

data of Lukirskii et al.2 and the data calculated in the independent-atom

approximation are also plotted.
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theoretical number. This exact agreement may contain a for-

tuitous component, and in fact any difference within �63%

would have been considered satisfactory. The main contribu-

tion to the integral was found to come from the

�10�2� 104 eV range. The range measured in this research

amounted for �50% of the total effective number of

electrons.

The inertial sum rule is given by

ð1

0

½nðEÞ � 1�dE ¼ 0: (5)

It expresses that the average refractive index over the spec-

trum must be unity. In order to apply the inertial sum rule,

the following normalization parameter of the above integral

was used:30

f ¼

ð1

0

½nðEÞ � 1�dE

ð1

0

jnðEÞ � 1jdE

; (6)

Shiles et al.32 proposed that a good value of f should stand

within 60.005. An evaluation parameter of f¼�1.3� 10�4

was obtained with the n data set obtained in this research. As

with the f-sum rule, the evaluation parameter for the inertial

sum rule resulted in an excellent value, which suggests a

good consistency of the present optical constants of SrF2.

The data are available on request at the following e-mail

address: larruquert@io.cfmac.csic.es.

IV. CONCLUSIONS

The transmittance of SrF2 thin films has been measured

for the first time in a large portion of the EUV and SXR

ranges. The transmittance measurements were used to

calculate the film density, from which it was observed that

the density decreased with increasing film thickness. The

extinction coefficient was obtained from the linear depend-

ence of the logarithm of transmittance versus the product of

thickness and density. Noteworthy features of these data

include the F K absorption edge and the Sr M2,3 and M4,5

absorption edges fine structures. The SrF2 refractive index

was obtained with the Kramers-Kr€onig analysis of the

extinction coefficient (k) data, which were extended to a

larger spectrum using literature data, interpolations, and

extrapolations. A lack of data for SrF2 films in the transpar-

ent region of SrF2 was filled with a fit involving the combi-

nation of eight Lorentz oscillators. The consistency of the

optical constants was found to be excellent with the use of f-
and inertial sum rules. The optical constants of SrF2 films

obtained herein in the 25–780 eV range are the first reported

experimental data above �35 eV, except for earlier data at

five individual photon energies (Ref. 2).
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