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ABSTRACT: The application of Lamb waves is a promising technique in ultrasonic NDE 
techniques for inspection and fluid characterization due to multimodal and dispersive 
characteristics. When a plate is in contact with a viscous fluid these waves are strongly attenuated. 
However, for most of the Lamb wave modes there is a low attenuation frequency band that could 
be used for non-destructive testing or fluid characterization. In order to explore this feature the 
phase velocity and attenuation curves of Lamb modes are experimentally measured in these low 
attenuation frequency bands, showing good agreement with theory. 
 

INTRODUCTION 

 
Lamb waves propagating in plate-like structures give rise to multimodal propagation which 
provides more information in a measurement process than simple single-mode propagation. On the 
other hand the theoretical analysis and physical interpretation of the experimental results become 
more involved. If the plate is in contact with a liquid, there is strong attenuation due to Leaky 
waves and viscous losses in the fluid (Dayal & Vikram 1989), nevertheless it is observed that for 
each mode there is a low attenuation frequency band that could be used for propagating waves 
through immersed plates. 
 
For the theoretical analysis of  Lamb modes the characteristic equations of wave propagation in 
isotropic solids were derived. The viscous fluid was modeled using the Navier-Stokes equation 
and the global matrix method was used to describe the multilayered media consisting of fluid-
plate-fluid. This method relates the displacement and stress components at each interface resulting 
in a full matrix of which the solutions are obtained by applying the appropriate boundary 
conditions (Lowe, 1995). A spectral method was used to obtain the phase velocity and the 
attenuation coefficient of different Lamb wave modes at low attenuation bands. The experimental 
results show a good agreement with the theoretical curves. 
 

THEORETICAL ANALYSIS 

 
The equations that govern the elastodynamic behavior of immersed plates are expressed in terms 
of the potential of displacements. In this analysis an elastic isotropic solid is considered with Lamé 
coefficients � and � and mass bulk density ��. The plate thickness is 2d and it is unlimited along 
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the y axis. The Lamb waves propagate in the xz plane and are described by the displacement 
velocity vector (Kino, 1987). 
 ���� � 	 
 Ψ����� � 	
�                                                                                                                                          �1� 
 

Considering wave propagation along the x direction and Ψ����� � Ψ���  and that the discontinuity 
occurs only in the z direction, ∂ / ∂ y = 0, the solutions of 
�  and Ψ�  satisfy the Helmholtz´s 
equations resulting in longitudinal and transversal wave equations, respectively (Kino, 1987; Rose, 
1999): 
 	�
� � ���
� � 0                                                                                                                                             �2� 	�Ψ����� � ���Ψ����� � 0                                                                                                                                            �3� 
 

where ��� � �� ���⁄  and ��� � �� ���⁄  are the longitudinal and transversal wavenumber, � is the 
radial frequency and ��   and ��  are the longitudinal and transversal velocity, respectively. The 
equations (2) and (3) are harmonic time dependent and considering a medium which has a finite 
thickness the potential functions (
�, Ψ�) for the solid are given by: 

 
� � �� cosh�$%� � & sinh�$%�)*+,�*-+./ � 0�$%�*+,�*-+./                                                           �4� 2� � �3 cosh�4%� � 5 sinh�4%�)*+,�*-+./ � 6�4%�*+,�*-+./                                                             �5� 
 
where � is the wavenumber of the guided mode, $� � �� 8 ��� and 4� � �� 8 ���. The equations 
(4) and (5) correspond to the pair of partial waves propagating in the positive and negative z-
direction, respectively. Coefficients A, B, C and D must be determined. Therefore, we can obtain 
the displacement velocity equation: 
 �/ � 9
�9: 8 9Ψ�9% � 8;�
� 8 9Ψ�9%                                                                                                               �6� 

�= � 9
�9% � 9Ψ�9: � 9
�9% 8 ;�Ψ�                                                                                                                  �7� 

 
On the other hand, for small displacement velocities in isotropic materials the relationship for 
stresses components are given by the generalized Hooke's law and with the aid of (4) and (5) and � ;�⁄ � 8 ;��� ���⁄  e � � 2� ;�⁄ � 8 ;��� ���⁄ , which leads to: 
 ?= � 8 ;������ ��� � 0��
� 8 2;������ � 9Ψ�9%                                                                                                �8� 

?/= � 8 2;������ � 9
�9% � ;������ ��� � 6�)Ψ�                                                                                               �9� 

 
Fluid modeling 

For the viscous fluid modeling, the equation of motion and the stress tensor are obtained through 
the Navier-Stokes equation, which relates the continuity and the state equations (Landau & 
Lifshitz, 1966). The displacement velocity and the components of the stress tensor can be written 
in the general form as established: 



 � � 8 B 1�C� � 1��C DE � 23FG 	�	�� 8 ;H��C Δ�                                                                                       �10� 

?= � 8J � H K2 9�=9% 8 23 D9�/9: � 9�=9% FL � E D9�/9: � 9�=9% F                                                                �11� 
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Where �C is the density, MC  is the propagation velocity, H and E are the shear and bulk viscosity 
coefficients, �C � � MC⁄  is the wavenumber of the guided mode in the fluid and J is the force 
acting on a point on the surface (Landau & Lifshitz, 1966). Remembering that the displacement 

velocity vector can be written in terms of a vector potential, 2���, and a scalar potential, 
, given in 
(2) for the solid, the longitudinal and transversal wave equations can be obtained for the fluid like 
it was done for the solid (Nayfeh & Nagy, 1997): 
 	�
C � �NC� 
C � 0                                                                                                                                        �13� 	 
 �	 
 ΨO� 8 ��C;H ΨO � 0                                                                                                                        �14� 

where the effective wavenumber is defined as: 
 �NC� � 11�C� � 1��C PE � 23Q                                                                                                                            �15� 

 
From the equations (13) and (14) we can obtain the longitudinal and transversal wave equations 
like for a solid by multiplying the potentials with the coefficients RS� � �� 8 �NC�  and  R�� � �� 8��C ;H⁄ . Using the decomposition in partial waves for the fluid and assuming that the 
displacement velocity vector is given by (1), the displacement equation for fluid is: 
 �/ � 8;�
C 8 9ΨC9%                                                                                                                                      �16� 

�= � 9
C9% 8 ;�ΨO                                                                                                                                          �17� 

 
Assuming that � � �C�� �NC�T  and � � ;H�, it can be proved that (11) and (12) coincide with the 
expressions of the stress tensor for the solid. Developing the equation tensor for the viscous fluid 
analogously to the solid: 
 ?= � H�RS� � R��)
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Dispersion equations 
The characteristic dispersion relations for systems with different layers can be found applying the 
method of global matrix. This technique relates displacement and stress components of the lower 
surface of the last layer with the upper surface of the first layer into a single matrix. In this method 
the matrix is composed of 4(n-1) equations, where n is the number of layers in the system. These 
equations satisfies the boundary conditions of each layer and are influenced, in a particular 
interface, by the waves that come from the lower interface (Lowe, 1995). In this work the system 
considered consists of a solid isotropic plate of thickness 2d completely immersed in a viscous 
fluid. For modeling the plate, equations (6), (7), (8) and (9) are used. For the upper layer the stress 
and displacement velocity are defined by (16), (17), (18) and (19). The solutions are separated into 
symmetric and antisymmetric modes. For symmetrical modes the displacement velocity, �=, and 
stress, ?/= , components vanish when z = 0, then with the boundary conditions imposed at the 
interface z = d, the characteristic dispersion relation is given by: 
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For antisymmetric modes the displacement components, �/, and stress, ?==, vanish when z = 0, 
then it follows that the characteristic dispersion relation for these modes is given by: 
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EXPERIMENTAL SETUP AND RESULTS 

 
An experimental verification was conducted, regarding the measurement of the low attenuation 
values for some symmetric (S0, S1 and S2) and antisymmetric (A1 and A2) modes in several 
frequency bands. Aluminum plates of 1, 2 and 3 mm-thickness immersed in water were tested. The 
Lamb waves are generated and received by two wideband 5 MHz transducers (Panametrics) 
coupled to wedges and operated in pitch-catch. One of the transducers is excited with Gaussian-
envelope tone bursts generated by a function generator (Tektronix AFG 3101). The pulse central 
frequencies are chosen according to the low attenuation frequency bands obtained theoretically.  
 
These bursts are amplified by using a 204L Broadband Power Amplifier (Electronics & 
Innovation) before feeding the emitting transducer. The waves received by the other transducer are 
digitalized by a digital oscilloscope (Agilent MSO7014B) and downloaded to a computer for 
signal processing. The distance between the transducers was varied from 15 to 85 mm, in 1 mm 
steps. The experimental configuration is shown in Figure 1. Symmetric modes are obtained using a 
wedge made of methacrylate with an angle \ � 30° and for antisymmetric modes, \ was chosen 
to be 25°. 
 



 
Figure 1 – Experimental setup for measurement of Lamb wave modes in a plate immersed in a 
viscous fluid. 
 
Dispersion and attenuation curves are obtained using a time-frequency treatment. The S0 
symmetric mode at different positions of the receiver transducer is plotted on Figure 2. It was 
obtained using a central frequency of 1 MHz and the 1 mm-thickness immersed plate. The 
amplitude of the detected signal decays exponentially with the distance. 
 

(a) (b) 
Figure 2 - Propagating pulses at 1 MHz for 1 mm-thickness immersed plate corresponding to the 
S0 mode. a) For 15 mm distance through the plate between both transducers and b) for 45 mm 
distance. 
 
To analyze the signals, a sliding Gaussian window is translated according to the maximum 
amplitude of the signal in order to eliminate undesired frequencies. The spectral components of the 
signals are obtained with successive Fourier Transforms performed with 2048 points. From the 
magnitude and phase of the FFT phase velocity and attenuation curves are calculated. The low 
attenuation frequency ranges studied were around 1 MHz (S0 mode), 4,2 MHz (S1 mode), 8 MHz 
(S2 mode), 2,5 MHz (A1 mode) and 5,5 MHz (A2 mode). Both theoretical and experimental 
results are presented together on Figure 3 for different plate thicknesses and excitation frequency. 
The experimental results are in accordance with the theoretical model.  Small discrepancies found 
for attenuation data may be originated on differences between real and theoretical values of the 
materials used in modeling and imperfections and fluid motion in the plate surfaces. 
 



 

(a) (b) 
Figure 3 – Theoretical and experimental results for the Lamb wave propagation in plate immersed 
in water. a) Phase velocity versus frequency. b) Attenuation versus frequency. 
 
CONCLUSIONS 

 
In this paper an analytical technique to model the propagation of mechanical waves in submerged 
plates in a viscous fluid is described. This technique, can also be used for fluid-coated plates. The 
viscous fluid was modeled using the Navier-Stokes equation and the global matrix method was 
used to model the multilayered media consisting of fluid-plate-fluid. Theoretical calculus was 
carried out to obtain the phase velocity and the attenuation curves as a function of frequency. 
Frequency bands of low attenuation were observed and an experimental verification was 
conducted regarding the measurement of these low attenuation values for some symmetric and 
antisymmetric modes (S0, S1, S2, A1 and A2) in these selected frequency bands. From the 
acquired waveforms the attenuation and velocities were calculated as a function of frequency for 
several modes. The experimental results show a good agreement with the theoretical curves. 
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