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Abstract

Background: Leishmania infantum is the protozoan parasite responsible for zoonotic visceral leishmaniasis in the
Mediterranean basin. A recent outbreak in humans has been reported in this area. The life cycle of the parasite is
digenetic. The promastigote stage develops within the gut of phlebotomine sand flies, whereas amastigotes survive
and multiply within phagolysosomes of mammalian host phagocytes. The major vector of L. infantum in Spain is
Phlebotomus perniciosus. The axenic culture model of promastigotes is generally used because it is able to mimic
the conditions of the natural environment (i.e. the sand fly vector gut). However, infectivity decreases with culture
passages and infection of laboratory animals is frequently required. Enrichment of the stationary phase population
in highly infective metacyclic promastigotes is achieved by negative selection with peanut agglutinin (PNA), which
is possible only in certain Leishmania species such as L. major and L. infantum. In this study, in vitro infectivity and
differential gene expression of cultured PNA-negative promastigotes (Pro-PNA™) and metacyclic promastigotes
isolated from the sand fly anterior thoracic midgut (Pro-Pper) have been compared.

Results: In vitro infectivity is about 30 % higher in terms of rate of infected cells and number of amastigotes per
infected cell in Pro-Pper than in Pro-PNA™. This finding is in agreement with up-regulation of a leishmanolysin gene
(gp63) and genes involved in biosynthesis of glycosylinositolphospholipids (GIPL), lipophosphoglycan (LPG) and
proteophosphoglycan (PPG) in Pro-Pper. In addition, differences between Pro-Pper and Pro-PNA™ in genes involved
in important cellular processes (e.g. signaling and regulation of gene expression) have been found.
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Conclusions: Pro-Pper are significantly more infective than peanut lectin non-agglutinating ones. Therefore,
negative selection with PNA is an appropriate method for isolating metacyclic promastigotes in stationary phase of
axenic culture but it does not allow reaching the in vitro infectivity levels of Pro-Pper. Indeed, GIPL, LPG and PPG
biosynthetic genes together with a gp63 gene are up-regulated in Pro-Pper and interestingly, the correlation
coefficient between both transcriptomes in terms of transcript abundance is B2 = 0.68. This means that the correlation
is sufficiently high to consider that both samples are physiologically comparable (i.e. the experiment was correctly
designed and performed) and sufficiently low to conclude that important differences in transcript abundance have
been found. Therefore, the implications of axenic culture should be evaluated case-by-case in each experimental
design even when the stationary phase population in culture is enriched in metacyclic promastigotes by negative

selection with PNA.
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Background

Leishmaniasis is a neglected vector-borne parasitic disease
caused by protozoan parasites grouped into the genus
Leishmania (Kinetoplastida: Trypanosomatidae). The esti-
mated prevalence is 12 million people worldwide. The
most severe clinical manifestation is visceral leishmaniasis
(VL), which is fatal without treatment. About 60,000
deaths by VL are declared annually [1, 2]. L. infantum is
responsible for zoonotic VL in the Mediterranean basin
and co-infection with HIV has been reported [3, 4]. Cuta-
neous and visceral signs are observed in the clinical profile
of the canine reservoir. Recently, an outbreak in humans
has been reported in central Spain, being hares reservoirs
probably [5-7]. The life cycle of the parasite involves two
stages: promastigotes and amastigotes. The promastigote
is the fusiform motile extracellular stage with a flagellum
emerging from the cellular body and the amastigote is the
spherical immobile stage with a non-emergent flagellum.
The developmental process of promastigotes is known as
metacyclogenesis [8]. This process takes place within
the gut of hematophagous sand flies (Diptera: Psychodi-
dae, Phlebotominae), where different promastigote
stages are observed (procyclics, haptomonads, necto-
monads, leptomonads and metacyclics) [9]. When a
sand fly vector feeds from a mammalian host, metacyc-
lic promastigotes are injected in the dermis. Of those,
few are internalized by phagocytes and differentiated to
the amastigote stage under nitrosative stress, acidic pH,
increased temperature and the activity of acid hydro-
lases. Phlebotomus perniciosus is the most common sand
fly vector in the center and the West of the Mediterranean
basin [10, 11].

Several proteins are anchored to the surface of promasti-
gotes through glycosylphosphatidylinositol (GPI). The
gp63 surface protein (leishmanolysin) is an important
metalloprotease associated to resistance to lysis by the
complement system [12]. Other major molecules anchored
to the plasma membrane are the lipophosphoglycan (LPG),

the membrane-bound proteophosphoglycan (mPPG) and
glycosylinositol phospholipids (GIPLs). It has been sug-
gested that GIPLs protect the parasite against the hydro-
lytic enzymes of the parasitophorous vacuole (reviewed by
(13]).

The sand fly gut is the natural microenvironment of
promastigote differentiation to more infective non-
proliferative metacyclic forms [14—16]. This process is
often mimicked in vitro by axenization and culture at
26—-27 °C in undefined media containing heat inactivated
mammalian serum [17-22]. The main advantage of axenic
cultures is that plenty of promastigote biomass is pro-
duced. However, attenuation of infectivity and virulence is
observed accross culture passages, which is often remed-
ied by passages through laboratory animals (reviewed in
[21]). Differences between promastigotes in culture and
within the sand fly in terms of promastigote development
to the amastigote stage were already reported [23, 24].

Sacks and Perkins [15] described that procyclic L.
major promastigotes, located in the abdominal gut of
the sand fly, were not infective. Conversely, metacyclic
promastigotes, located in the anterior part of the thoracic
midgut, were able to produce infection in mice. Metacy-
clogenesis also takes place in axenic culture [16, 25]. Isola-
tion of metacyclic L. major and L. infantum promastigotes
is performed in culture on the basis of differential agglu-
tination properties with the Arachys hypogaea lectin, the
peanut agglutinin (PNA). Procyclic promastigotes are
able to agglutinate because the lectin binds to the gal-
actose residues of the LPG. These residues are blocked
by arabinose ones that are added in the ongoing of
metacyclogenesis leading to the loss of the agglutin-
ation capability. A differential centrifugation procedure
allows the isolation of agglutinating procyclic (Pro-PNA™)
and non-agglutinating metacyclic (Pro-PNA”™) promasti-
gotes within the stationary phase of axenic culture. Agglu-
tination is reversible because dilution of the suspension
leads to disappearance of the agglutination complexes. For
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this reason, additional PNA is required to maintain the
appropriate concentration when the pellet is resuspended
during the negative selection procedure of Pro-PNA™ [26].
Genes related with infectivity are up-regulated in the
minor Pro-PNA™ promastigote subpopulation, which is
more infective than the Pro-PNA" in L. infantum [26], as
well as in L. major [25, 27-29].

Transcriptome analysis of metacyclic promastigotes
isolated from the gut of the sand fly (Pro-Pper) is pos-
sible thanks to mRNA amplification [23]. Comparative
in vitro infection and high throughput transcriptome
analyses of Pro-Pper versus Pro-PNA™ has been per-
formed and their infectivity has been compared in vitro.
Herein, we confirm that Pro-Pper metacyclic promasti-
gotes are more infective than Pro-PNA™.

Methods

Ethics statement

Blood samples were extracted from a New Zealand
White rabbit to feed P. perniciosus sand flies during in-
fection with a suspension of phagocytic cells infected
with L. infantum. The protocol was performed according
to the EU (2010/63) and Spain (RD1201/2005) regula-
tions and it was approved by the ISCIII Ethics Commit-
tee for Research in Animal Welfare (license CBA PA73-
2011).

Promastigote axenic culture

Promastigotes of the MCAN/ES/98/10445 isolate (zymo-
deme MON-1) of Leishmania infantum were cultured at
27 °C in RPMI 1640 supplemented with L-glutamine
(Lonza-Cambrex, Karlskoga, Sweden), 10 % heat inacti-
vated fetal bovine serum (HIFBS) (Lonza-Cambrex) and
100 pg/ml streptomycin — 100 IU/ml penicillin (Lonza-
Cambrex). The inoccula were used at the 5 passage
after they had been obtained from the sand fly gut [23].

Negative selection of metacyclic promastigotes with PNA

Stationary phase promastigotes were harvested at 2,000 g
for 10 min and resuspended at a cell density of 2 x 10°
cells/ml in 10 ml complete medium containing 50 pg/ml
PNA [30]. Promastigotes were allowed to agglutinate at
room temperature for 30 min. Then, the sediment and the
supernatant were recovered. The former was diluted to
the initial volume in fresh complete medium containing
50 pg/ml PNA. Both fractions were centrifuged at 200 g
for 10 min and the supernatants obtained were centrifuged
at 2,000 g to obtain PNA™ promastigotes (Pro-PNA"). All
steps were checked at the light microscope.

In vitro infection of the human U937 myeloid cell line

The human cell line U937 (ATCC® CRL1593.2), originally
obtained from a patient with histiocytic leukemia [31],
was infected in vitro with L. infantum promastigotes for
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two different purposes: infection of sand flies to obtain
promastigotes from the stomodeal valve (Pro-Pper) and
evaluation of in vitro infectivity of Pro-PNA™ and Pro-
Pper. First, the U937 cell line was cultured at 37 °C in
complete medium in the presence of 5 % CO, for 72 h.
Then, the cells were centrifuged at 250 g and differenti-
ated in complete medium by stimulation with 20 ng/ml
phorbol 12-myristate 13-acetate (Sigma, Saint Louis, MO)
for 72 h [32]. This step was performed in a 175 cm?® flask
when the resulting infected U937 cells were diluted in
rabbit blood to infect sand flies experimentally (see
below). In the case of evaluation of the in vitro infection
capability of promastigotes, infections of U937 cells were
performed over 8-well cell chamber slides (LabTek, New
York, NY). The cultures were mildly rinsed with RPMI
supplemented with L-glutamine (Lonza-Cambrex). Only,
cells cultured in flasks were detached by vigorous shaking
in the presence of 0.5 g/l trypsin, 0.2 g/l EDTA (Lonza-
Cambrex). Trypsin was inactivated by adding one volume
of complete medium. The differentiated cells were recov-
ered by centrifugation. Then, they were mixed with sta-
tionary phase promastigotes at a promastigote:cell ratio
20:1 and incubated at 37 °C in complete medium in a
water bath for 2 h. The mixture was mildly mixed every
15 min. Once this incubation step was over, the cells were
harvested and incubated again in the culture flasks in
complete medium at 37 °C, in an atmosphere of 5 % CO,
for 72 h. The cultures were rinsed with complete medium
after 2 h and 16 h. Infections were checked at the light
microscope with Giemsa stain prior to sand fly feeding. In
the case of differentiated cells attached to the 8-well
chamber slides, infections were performed at 37 °C at a
promastigote:cell ratio 5:1 in 400 pl complete medium in
an atmosphere of 5 % CO, for 2 h. Next, the cells were
rinsed with complete medium at 2 and 16 h post-infection
as in the previous procedure. The incubations were re-
sumed and samples were taken at 24, 48 and 96 h post-
infection to estimate the percentage of infected cells and
the number of amastigotes per infected cell (100 cells were
counted per sample). For this purpose, three more washes
were performed prior to treatment with hypotonic solu-
tion (180 pl complete medium diluted with 220 ul water
per well) for 5 min. Four washes with 150 pl ethanol-
acetic acid 3:1 were carried out once the hypotonic solu-
tion had been removed. Then, fixation was performed
with the same solution for 10 min and this step was
repeated three times. Finally, cells were allowed to air dry
and the wells removed from the slide. Modified Giemsa
staining was performed with Diff-Quick® Stain Solution I
and II (Dade Behring, Marburg, Germany). The prepa-
rations were washed with distilled water, air dried and
mounted with Entellan® Neu (Merck, Darmstadt, Germany).
The percentage of infected cells and the number of amasti-
gotes per infected cell were estimated in three biological
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replicate experiments and the statistical analysis was based
on the Student’s paired t-test.

Infection of P. perniciosus and isolation of metacyclic
promastigotes from the stomodeal valve

An established colony of P. perniciosus sand flies [33]
was maintained in a climatic chamber at 27-28 °C,
90-100 % relative humidity, 17 h light - 7 h darkness
photoperiod in the presence of a 30 % fructose solution.
About 150-200 sand flies were fed with a suspension of 2
x 10° infected U937 cells in 2 ml of defibrinated rabbit
blood over a chicken skin membrane [34]. Sand fly samples
were dissected daily in order to follow the course of
infection. After 5 days, sand flies were dissected daily with
the additional purpose of extracting the guts for isolation
of mature promastigotes from the anterior thoracic mid-
gut close to the stomodeal valve (Fig. 1) and subsequent
preparation of RNA samples (see below). For this purpose,
the gut was dissected to isolate the anterior part of the
thoracic midgut and recover promastigotes in PBS with a
Pasteur pipette. Three independent samples were pre-
pared. Each one included promastigotes from about
20 infected sand flies. The replicate samples finally used
had been obtained the day before the death phase started
(day 6). This was also applicable for the equivalent
Pro-PNA"™ population (see above).

s N

Fig. 1 Isolation of Pro-Pper. Promastigotes within the stomodeal
valve of P. perniciosus. Sand flies were dissected and the guts separated.
The abdominal gut and the posterior part of the thoracic midgut
were discarded and Pro-Pper were recovered from the anterior
part of the thoracic midgut (discontinuous line). The Pro-Pper
population is enriched in metacyclic promastigotes as they are
near the stomodeal valve (SV). Carryover of leptomonads was
minimized by recovering just promastigotes in suspension and
avoiding gut tissue as much as possible. However, it is assumed that
this population is heterogeneous as expected in any biological
experiment, as well as the Pro-PNA™ population
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RNA isolation, mRNA amplification and synthesis of
labeled cDNA

Total RNA was purified from Pro-Pper and Pro-PNA~
with TRizol® reagent (Life Technologies, Carlsbad, CA)
according to the manufacturer’s instructions. One pg
per ml of glycogen (Life Technologies) was added as
carrier to the aqueous phase just before isopropanol
precipitation. mRNA was doubly amplified (aaRNA)
using MessageAmp' ™ II aRNA Amplification Kit (Life
Technologies) as previously described [24]. RNA quality
was assessed with the Agilent 2100 Bioanalyzer (Life
Technologies) in an RNA 6000 NanoChip according to
the manufacturer's instructions.

The first strand aminoallyl-cDNA was synthesized
using 10 pg aaRNA template. First, aaRNA was mixed
with 6 pg of random hexamer primers (Life Technolo-
gies). The mixture was denatured at 70 °C for 10 min
and immediately cooled. Then, first strand synthesis was
performed at 46 °C in 30 yl final reaction volume for 3 h
with 570 uM dATP, dCTP and dGTP, 230 uM dTTP,
340 pM aminoallyl-dUTP, 10 uM DTT and 600 U Super-
Script® Reverse Transcriptase (Life Technologies). Next,
RNA was degraded at 70 °C in 100 mM NaOH/10 mM
EDTA for 30 min and the solution was then neutralized
with 3 ul of 3 M sodium acetate pH5.2. Aminoallyl-
¢DNA was purified with QiaQuick PCR Purification Kit
(Qiagen, Hilden, Germany) according to the manufac-
turer’s instructions except for two buffers: custom phos-
phate wash (5 mM KPO, 80 % ethanol, pH8.0) and
phosphate elution (4 mM KPO,) buffers replaced those
provided in the kit to avoid blockage of the amino
group. Purified aminoallyl-cDNA was completely dried
in a vacuum centrifuge and resuspended in 10 pl of
water. A solution containing the cyanine monofunc-
tional dyes (Cy3 and Cy5; GE Healthcare, Chalfont Saint
Giles, UK) were prepared at 12 ng/pl in DMSO. Coup-
ling was allowed at room temperature in darkness for
1 h once 5 pl of the Cy3 or Cy5 solution was added to
the respective samples (Cy3 for Pro-PNA™ and Cy5
for Pro-Pper). Finally, labelled cDNA was purified with
QiaQuick PCR Purification Kit (Qiagen) according to
the manufacturer’s instructions.

Microarray hybridization analysis of differential gene
expression

L. infantum shotgun genome microarrays [26] were
washed in 0.1 % N-lauroylsarcosine in 2X SSC, then in
2X SSC. The slides were heated at 95 °C for 3 min and
immediately chilled in 100 % ethanol (10 s after removal
from boiling water) thus denaturing and fixing DNA.
The slide was spin dried in a minicentrifuge and at-
tached upside down over a Hybri-Slip coverslip (Sigma)
containing a 60 pl drop of 3X SSC, 0.3 % N-lauroylsar-
cosine, 60 mMTris-HCl pH8.0, 83 ng/ml denatured
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herring sperm DNA and 1 % BSA. Blocking was allowed
at 42 °C for 30 min using a hybridization chamber sub-
merged in a water bath. Then, blocked microarrays were
incubated at 40 °C for 16 h with a mixture of the Cy3- and
Cy5-labelled ¢cDNA samples (50 pmol dye each) in
hybridization solution (equal to blocking solution except
for 0.1 % BSA, 25 ng/ml poly(T) and 50 % deionized form-
amide). The slide was washed three times, first in 2X SSC,
0.2 % SDS at 40 °C, then in 1X SSC at room temperature
and finally in 0.2X SSC at room temperature.

Hybridized microarrays were scanned with GenePix
4100A (Axon, Foster City, CA). Local feature back-
ground was subtracted from raw fluorescence intensity
values with GenePix Pro 7.0 software. Raw data were
normalized by the LOWESS per pin algorithm and
Student’s t-test contrast considering three biological rep-
licates was performed with AlmaZen software (BioAlma,
Tres Cantos, Spain). Differential expression cutoff values
were applied to obtain the set of clones containing differ-
entially regulated genes: (i) fold change F > 2 (Cy5/Cy3 ra-
tio if Cy5> Cy3) or F < -2 (-Cy3/Cy5 ratio if Cy3 > Cy5),
(ii) total relative fluorescence intensity value > 5000 arbi-
trary fluorescence units and (iii) p* <0.05. The clones
selected on the basis of these conditions were grown and
sequenced with the M13-pUC18 primers and assembled
as described [26]. These clones were classified according
to the following genome alignment outcomes: (i) e-
value < 1e-10 for both ends, (ii) convergent orientation
in the genome sequence and (iii) clone length <11 kbp
[26]. Type a clones were defined by a unique pair of
alignments. Type b clones presented more than a pair
of alignments due to adjoining sequence repeats; the
best sequence identity is considered in this case. Finally,
¢ clones did not completely fulfill all three require-
ments, which is mostly due to the presence of two or
more inserts in the clone or the lack of one of the end
sequences. Clones were then associated to annotated
genes using a Perl script.

Real time quantitative RT-PCR (qRT-PCR)

Synthesis of unlabeled single stranded ¢cDNA was per-
formed as indicated above except for the ANTP mixture
(10 mM each dATP, dCTP, dGTP and dTTP in this case)
The design of primers and FAM-MGB probes (Additional
file 1: Table S1), configuration of 384-well plates and in situ
synthesis was managed by Custom TagMan® Assays-by-
Design (Life Technologies). The qRT-PCR assays were run
in a 7900HT Fast Real Time PCR system (Life Technolo-
gies) once cDNA templates and TagMan® Universal Master
Mix (Life Technologies) were added. Three sample repli-
cates and three 1/10 dilutions of each one were included
(25, 2.5 and 0.25 ng ¢cDNA in 15 pl final reaction volume).
Thermal cycling conditions were: 95 °C for 5 min; 40 x
[95 °C for 30s; 60 °C for 1 min, data acquisition]. A 20 %
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coefficient of variation cutoff was applied and PCR efficien-
cies were calculated by the standard curve best fit method
[35]. Normalized quantities (Q,) were calculated by divid-
ing the efficiency-corrected raw quantity values (equal to
efficiency to the power of —Ct) of the gene of interest by
those of the reference gene (L. infantum gGAPDH). Then,
F was obtained by dividing Q,, of both experimental condi-
tions (Pro-Pper/Pro-PNA") for each dilution. The mean F
value and the SD were calculated considering Q,, values of
all dilutions.

Results and discussion

Isolation of Pro-Pper and evaluation of in vitro infection
In 1985, it was described that L. major PNA™ promastigotes
are more infective than PNA™ [27]. This was corroborated
in L. infantum by us and up-regulated genes involved in
infectivity were found [26]. In this study, Pro-Pper and
Pro-PNA™ have been compared in terms of in vitro infect-
ivity and differential gene expression.

Digestive tracts were obtained from sand flies once they
were dissected. The anterior thoracic midgut was selected
(Fig. 1). Then, Pro-Pper promastigotes in suspension were
recovered and carryover of gut tissue (and therefore
leptomonads) was minimized. Three biological replicates
of the experiments were performed. Pro-Pper samples ob-
tained for evaluation of in vitro infection of U937 cells
were recovered in PBS and immediately resuspended in
200 pl complete medium. The suspension was added to
PMA-differentiated U937 cells attached to 8-well slides
and allowed to infect. After 2 h at 37 °C, 5 % CO,, the cul-
ture was washed to eliminate remaining promastigotes. Fi-
nally, samples were obtained at 24, 48 and 96 h post-
infection. The same procedure was followed for Pro-PNA™.
Then, the percentage of infected cells and the number of
amastigotes per infected cell were estimated. Statistical ana-
lysis was performed by the unpaired Student’s t test. The re-
duction of in vitro infectivity in Pro-PNA™ with respect to
Pro-Pper in terms of rate of infected cells is 38, 22 and
22 % at 24, 48 and 96 h post-infection, respectively (Fig. 2a).
The reduction in terms of average number of amastigotes
per infected cell is 35, 25 and 33 % at 24, 48 and 96 h post-
infection, respectively (Fig. 2b). The differences were statis-
tically significant in all cases (p < 0.001). Therefore, culture
reduces the infection ability of promastigotes even when
metacyclics are obtained by negative selection with PNA.
Hence, this procedure is an appropriate method for isola-
tion of metacyclics in culture but worse than isolation from
the natural environment, i.e. the sand fly anterior thoracic
midgut (Fig. 2).

Transcript amplification and microarray hybridization
analysis

Pro-Pper samples used for gene expression analysis were
immediately washed once in PBS and resuspended in
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Fig. 2 In vitro infection of the stimulated U937 cell line with Pro-PNA™ and Pro-Pper. All differences are statistically significant (unpaired Student's
t-test, p < 0.001). a Infection rate (%). Mean + SD (Pro-PNA"and Pro-Pper, respectively): 13+2 and 21+£1 (24 h); 33+3 and 42+ 1 (48 h); 35+ 3
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TRIzol” reagent (Life Technologies). Then, two rounds of
mRNA amplification were performed to obtain enough
material for the high-throughput gene expression analysis.
Obviously, Pro-PNA™ sample processing was the same.
Several genes had been included in the microarrays as
positive hybridization controls [26]. The stage-specific A2
amastigote gene [36] is not differentially expressed be-
tween Pro-Pper and Pro-PNA™ (Additional file 2: Table S2)
as expected. The fluorescence intensity values (FI) of all
negative microarray hybridization controls are below the
average background level as expected (Additional file 2:
Table S2). The origin of these genes is the extremophile
Leptospirillum ferrooxidans [26]. In total, 174 differentially
regulated genes have been found: 111 are up-regulated
in Pro-Pper and 63 in Pro-PNA™ (Fig. 3, Tables 1 and 2,

Additional file 3: Tables S3-S5). The Pearson correl-
ation coefficient between Pro-PNA~ and Pro-Pper in
terms of normalized fluorescence intensity values is
R*=0.68 (Fig. 3).

qRT-PCR analysis

Most clones overlapping with more than one gene anno-
tation were analyzed by the TagMan Probe qRT-PCR
approach. Therefore, large clones that represent more
than one CDS could be resolved. This approach was also
useful to validate 26.3 % of the microarray results (Tables 2
and 3), together with the internal hybridization controls
already mentioned (Additional file 2: Table S2). Constant
expression values were obtained just in the case of certain
clones overlapping with more than one gene.

Pro-Pper vs. Pro-PNA-
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Fig. 3 M/A scatter plot of the three-replicate Pro-Pper/Pro-PNA™ microarray hybridization experiment. M = (log,Ri - 10g,Gi) and A = [(log,Ri + log,Gi)/
2], where R and G are, respectively, red (Cy5) and green (Cy3) fluorescence intensity values. Red spots represent selected clones that contain a gene
up-regulated by at least 2-fold and green spots represent those down-regulated by at least 2-fold. The Pearson correlation coefficient (R?) is provided
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Table 1 Absolute frequencies of differentially regulated genes
in Pro-Pper/Pro-PNA™

Annotation status

Frequency of differentially regulated genes
in Pro-Pper/Pro-PNA™

Up-regulated

Down-regulated

Genes of known function 53 26
Hypothetical protein genes 56 31
Type c clones 2 6

Total (n=174) m 63

Differential gene expression between Pro-Pper and
Pro-PNA™

In a study of differentiation of promastigotes to amasti-
gotes, Lahav et al. [37] described that relative transcript
levels do not correspond with abundance of the
encoded protein in many cases. Indeed, coincidence
was observed in just about 25 % cases in quantitative
terms (Pearson correlation coefficient). However, quali-
tative coincidences (constitutive expression, up-
regulation and down-regulation) were observed in 65 %
cases (589 out of 902 genes). As we have seen, one of
the purposes of this study is comparing Pro-PNA™ and
Pro-Pper in terms of relative transcript abundance,
focusing on differentially regulated genes. For this pur-
pose, the qualitative information is more relevant than
the quantitative because it provides a picture of the
steady-state transcript levels in both conditions. Hence,
insight into the adequacy of negative selection of meta-
cyclics in culture with PNA compared to the natural
environment (the sand fly gut) is provided herein. Add-
itionally, the different approaches used (e.g. microarray
hybridization analysis and qRT-PCR in this study) have
different dynamic ranges and sometimes provide differ-
ent quantitative results for coincident qualitative re-
sults. In conclusion, the transcriptome analysis is useful
in this study and it is the only possibility to study gene
expression in Pro-Pper so far. In fact, the negligible
amount of parasite material obtained from sand fly
dissections does not allow performing analysis of indi-
vidual proteins and the proteome, whereas it is possible
to amplify RNA. In our case, 174 genes are differentially
regulated between Pro-PNA™ and Pro-Pper. Therefore, we
expect about 113 genes showing the same qualitative
outcome of relative abundance at the transcript and
protein levels.

The comprehensive study of the differences found
in transcript abundance is illustrated in Fig. 4. The
most striking qPCR results are illustrated in Fig. 5.
Provided that unequivocal identification is very im-
portant [38], gene name abbreviations have been in-
cluded in Tables 2 and 3. Unless otherwise indicated,
the term up-regulation refers to Pro-Pper and down-
regulation to Pro-PNA".
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Chromatin structure, nucleocytoplasmic transport and
regulation of gene expression at the post-transcriptional
and post-translational levels

Three up-regulated genes in Pro-Pper involved in DNA
replication and chromatin remodeling have been found:
histone (H3), SNF2/RAD54 helicase and minichromo-
some maintenance protein (mcm). Metacyclic promasti-
gotes are non-dividing forms of the parasite, but H3
gene over-expression is in agreement with independence
of mRNA levels from DNA synthesis [39].

A nuclear movement protein gene (NUDC) is up-
regulated in Pro-Pper, whereas two major vault protein
genes (MVP) are down-regulated. This suggests differ-
ences in nucleocytoplasmic transport and signaling be-
tween Pro-Pper and Pro-PNA™. In fact, MVPs are the
main constituents of vaults, which are protein com-
plexes that may participate in both processes [40] and
they are able to interact with the target of rapamycin
protein 4 (TOR4) in Trypanosoma brucei [41].

A transcription factor-like protein gene (TF-like) and
the RNA helicase Lin].15.0130 are up-regulated in Pro-
Pper. As for translation regulation, several genes are
differentially regulated between both populations of
metacyclics. On the one hand, the elongation factor 1B
(EF1B), the initiation factor 2 (IF2), the 40S ribosomal
proteins S8, S19 and S30, the 60S ribosomal proteins
L14, L36 and L37a and the glycyl-tRNA synthetase are
up-regulated. On the other hand, the diphthine synthase
gene, the ribosomal proteins S2 and L3 are down-
regulated. The EF1p is up-regulated by cadmium [42],
whereas the IF2 is up-regulated in stationary phase pro-
mastigotes with respect to intracellular amastigotes [24].
Diphthine is the direct precursor of diphthamine, a mol-
ecule able to inactivate the IF2 by addition of a residue
of ADP-ribose, as the diphtheria toxin does [43]. Down-
regulation of the diphthine synthase (DpS) in Pro-Pper
(Table 3) is in agreement with up-regulation of the IF2.
Finally, the cyclophilin genes CYP3 and CYP11, involved
in protein folding, are up-regulated.

Proteolysis

The oligopeptidase B gene (OPB) is up-regulated in Pro-
Pper, whereas the calpain-like cysteine peptidase (C2Cp)
LinJ.31.0480 is down-regulated. The results found also
suggest changes in ubiquitin-proteasome protein degrad-
ation pathway between Pro-Pper and Pro-PNAT, as the
ubiquitin activating enzyme E1 gene (UbqA-E1), the E3
activating protein cullin and the ubiquitin hydrolase
(UbH) are up-regulated.

Protein-protein interaction

A leucine-reach repeat protein (LRRP) of unknown func-
tion in the parasite is up-regulated in Pro-PNA™. LRRPs
have been associated to functions generally involving
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Table 2 Genes of known function up-regulated in Pro-Pper/Pro-PNA™
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Clone F  Log;F#SD  p e-value Def. TriTrypDBId.  Annotated gene function GRT-PCR
Fw Rv F£SD
Lin85D§ 3.07 1.6 0.1 0.047 0 0 b LinJ.08.0680 Amastin-like protein + 25%0.1
LinJ.08.0690 Amastin-like protein + 25+0.1
Lin86D3 8.13 3.0+02 0.000 0 9e-37 b Lin].15.0130 ATP-dependent RNA helicase, putative N.D.
Lin89E3 335 1.7£02 0.044 7e-96 0 b LinJ.08.1320 Amastin-like protein + 25%0.1
Lin88E3 220 11402 0.002 0 0 b LinJ.21.1670 2-oxoisovalerate deshydrogenase o subunit, putative (KIVDH) N.D.
Lin96C1 2.88 1.5£04 0.009 0 0 b LinJ.11.0060 Protein kinase. Putative (PK) N.D.
Lin100B12 4.88 23404 0.021 0 0 b Lin].06.0340 Oligopeptidase B/Ser peptidase Clan SC family S19A (OPB) + 312+£25
LinJ.06.0350 NAD(P) -dependent steroid dehydrogenase - 1L1£25
LinJ.06.0360 Hypothetical protein, conserved N.D
Lin121C6 2.68 1.4+0.6 0.006 0 0 b LinJ.28.0940 Minichromosome maintenance complex protein putative (mmc) N.D.
Lin142C8 3.28 1.7+£04 0.025 0 0 a LinJ.21.0790 Hypothetical protein, conserved N.D
LinJ.21.0800 60S ribosomal protein L36. putative + 13813
LinJ.21.0810 Hypothetical protein, conserved N.D.
LinJ.21.0820 ATPase subunit 9, putative (ATPsu.9) + 84102
Lin143C12 224 1.2+0.7 0.004 0 0 b LinJ.22.1360 Hypothetical protein, unknown function N.D.
LinJ.22.1370 Ribosomal protein 408 L14, putative + 2.0£0.0
Linl45A1 3.55 1.8+0.3 0.009 0 0 b Lin].30.0690 408 ribosomal protein S30, putative + 69.5+2.1
LinJ.30.0700 40S ribosomal protein S30, putative + 69.5+2.1
LinJ.30.0710 408 ribosomal protein S30, putative + 69.5+2.1
LinJ.30.0720 Nuclear movement protein NUDC (NUDC) + 5.6+04
Lin146A12 3.07 1.6+0.3 0.003 0 0 b Lin].30.0690 408 ribosomal protein S30, putative + 69.5+2.1
LinJ.30.0700 408 ribosomal protein S30, putative + 69.5+2.1
LinJ.30.0710 408 ribosomal protein S30, putative + 69.5+2.1
LinJ.30.0720 Nuclear movement protein NUDC (NUDC) + 56+04
Lin151C7 201 1.0+£03 0026 0 0 b LinJ27.1170 Ubiquitin hydrolase/cysteine peptidase, Clan CA, family C19, + 135+ 12
putative (UbgqH)
LinJ.27.1180 Hypothetical protein, conserved N.D
Linl55B1 2.29 1.2£02 0.033 0 0 b LinJ.05.1210 Surface antigen-like protein (SALp2) N.D.
Lin158C1 2.82 1.5+0.1 0.004 0 0 b LinJ.21.2140 F1 ATP synthase. subunit y, putative (F1y) N.D.
Lin159D8 2.76 1.5£0.8 0.016 0 0 b LinJ.36.4370 Hypothetical protein, conserved N.D.
LinJ.36.4380 Oxidoreductase, putative (OXR) + 11.8+0.3
Linl169A11 3.89 2.0+02 0.014 0 0 a  LinJ.23.0630 Oxidoreductase-like protein (OXR) + 233+7
LinJ.23.0640 Hypothetical protein, conserved N.D
Lin169G11 235 1.2+0.1 0.039 0 0 b Lin].26.0050 Protein kinase, putative (PK) + 100 £15
LinJ.26.0060 Hypothetical protein, conserved N.D
Lin169E6 2.85 1.5£03 0.015 0 0 b Lin].32.0550 Profilin, putative N.D.
Lin170B7 2.67 1.4£09 0.033 0 0 a  LinJ.23.0860 3-ketoacyl-CoA thiolase-like protein (ACAT) N.D.
Lin175D9 2.84 1.5£0.5 0.018 Se-63 4e-57 a  LinJ.31.2040 Glycoprotein 63-like protein gp63 (leishmanolysin) N.D.
/metallopeptidase Clan MA(M), family M8 (gp63)
Lin177E10 3.50 1.8£0.1 0.021 0 0 b Lin].16.0600 Histone H3, putative (H3) N.D.
Linl177F8 2.14 1.1+0.1 0.032 0 0 a  LinJ.29.0020 Transcription factor-like protein (TF-like) N.D.
Lin178A5 274 14405 0.011 0 0 b LinJ.36.1490 Elongation factor 1p, putative (EF1p) N.D.
Lin179C9 3.42 1.8£03 0.039 0 0 b Lin].23.0140 Cyclophilin-like peptidyl-prolyl cis-trans i putative N.D.
(CYP3)
Linl79E10 3.58 1.8+03 0.042 0 0 b Lin].31.2350 ADP-ribosylation factor (ARF) + 22.1£0.6
LinJ.31.2360 Phosphatidylethanolamine N-methyltransferase-like protein - 5+£03
Lin185G7 5.56 24+04 0.008 2e-28 Tell a  Lin].18.0360 GPI transamidase subunit 8, cysteine peptidase, ClanAD, + 342+15
family C13, putative (GPIT.8)
Linl87C5 3.99 20403 0.028 0 0 b Lin].11.0040 ABC transporter, putative + 9.7£02
LinJ.11.0050 SNF2/RAD54-related DNA helicase, putative (SNF2/RADS54) + 323 +£49
Lin187C7 2.54 1.3+£03 0.040 0 0 b LinJ.26.1680 Sphingolipid 54-desaturase, putative (DECS) + 33£02
LinJ.26.1690 Cytochrome ¢ oxidase, subunit V (COXV), putative 0.2
LinJ.26.1700 Hypothetical protein, conserved N.D
Linl87C10 478 3404 0.006 0 0 b Linl.06.1320 Pteridine transporter, putative (PT) N.D.
Linl88B1 2.50 1.3+0.1 0.044 0 0 a  LinJ.31.1600 Cytochrome ¢ oxidase. subunit VIII, putative (COXVIII) + 21£02
LinJ.31.1610 Hypothetical protein, conserved N.D
Lin188C9 2.11 1.1£0.6 0.000 0 0 a  LinJ.36.4030 Glycyl-tRNA synthetase, putative N.D.
Lin189B12 2.24 1 0.2 0.029 0 0 a Lin].24.1370 Hypothetical protein, conserved N.D.
LinJ.24.1380 Translation initiation factor 2, putative (IF2) + 27+03
Lin196B3 228 12+0.1 0.003 0 0 b Lin).28.0850 Dual-specificity protein phosphatase, putative (DualPP) N.D.
Lin202E4 3.40 1.8+£0.8 0.000 0 0 b Lin].29.1950 Dihydrolipoamide dehydrogenase, putative (DHLDH) N.D.
Lin208F7 3.07 Le+1.1 0.038 0 0 b Lin].30.3640 Serine/threonine protein kinase, putative (PK) N.D.
Lin212G5 2.09 1.1+03 0.009 0 0 b Lin].34.0840 Serine/threonine protein phosphatase 1, putative (PP1) N.D.
Lin215A7 2.68 1.4+.56 0.006 0 0 a  LinJ.32.0710 OSM3-like kinesin, putative (OSM3) + 15+1
LinJ.32.0720 Hypothetical protein, conserved N.D
Lin220A9 542 4+0.5 0.013 0 0 a  LinJ.24.1380 Translation initiation factor 2, putative (IF2) + 2.7+£03
Lin221G3 228 12404 0.035 0 0 b LinJ.36.6360 Hypothetical protein, conserved N.D
LinJ.36.6370 Centrin, putative (CETN) + 7.5£0.7
Lin232G3 235 1.2+£04 0.029 2e-74 5e-72 a  LinJ.21.1590 ATP synthase, putative N.D.
Lin240D3 351 18+07 0039 0 0 ¢ Linl.35.3970 Hypothetical protein, conserved N.D
LinJ.29.0940 Hypothetical protein, conserved N.D
LinJ.29.0950 ADP-ribosylation factor 3, putative (ARF3) + 2+1
Lin250G8 291 1.5£04 0.049 0 0 b Lin].36.6670 Methylentetrahydrofolate reductase, putative - -1.2£03
LinJ.36.6680 408 ribosomal protein S8, putative + 52+03
Lin255D9 3.15 1.7+0.6 0.004 6e-112 2e-111 a  LinJ.23.1400 Coronin, putative N.D.
Lin267E5 230 1.2£05 0.046 0 0 a  Lin].14.1500 P hogl , putative (PG-B-1,3- N.D.
GalT)
Lin272A3 349 18+02  0.036 0 0 b LinJ.23.0040 B-propeller protein, putative 4102
LinJ.23.0050 Peroxidoxin/tryparedoxin peroxidase, putative 2402
LinJ.23.0060 Cyclophilin, putative (CYP11) + 21+02
Lin288H7 3.19 1.7+1.1 0.049 0 0 b Linl.34.2610 Calcineurin-like serine/threonine protein 2+40.0
phosphatase/phosphoesterase
LinJ.34.2620 Ribosomal protein S19, putative + 23x0.1
Lin289A8 256 1305 0034 0 0 b LinJ.07.0010 Ubiquitin-activating enzyme E1, putative (UbqA-El) N.D.
Lin292G5 357 1.8+08  0.000 0 0 a  Linl.17.1460 Hypothetical protein, conserved N.D
LinJ.17.1470 L-gluconolactone oxidase, putative + 92+0.6
Lin296F4 214 11+02 0032 0 0 b LinJ.20.0790 Hypothetical protein, conserved N.D
LinJ.20.0800 Tubulin tyrosine ligase, putative (TubTyrL) + 346 + 44
Lin302E4 302 16404 0002 0 0 a  Linl.36.2080 Hypothetical protein, conserved N.D
LinJ.36.2090 Serine/threonine protein phosphatase 2B, catalytic subunit A2, + 23+0.1
putative (PP2B-A2)
Lin308A8 2.62 1.4+04 0.038 0 0 b Lin].30.0700 408 ribosomal protein S30, putative + 69.5+2.1
LinJ.30.0710 40S ribosomal protein S30, putative + 69.5+2.1
LinJ.30.0720 Nuclear movement protein NUDC (NUDC) + 56%03
Lin312F4 5.31 24404 0.034 0 le-82 b LinJ.21.2180 GPI transamidase GAA1 component, putative (GPIT-GAAI) + 3.0£0.1
LinJ.21.2190 60S ribosomal protein L37a, putative + 30+4
LinJ.21.2200 20S proteasome a5 subunit, putative 8§+03

Features described: clone number, fold change (up-regulation if F> 2.0), log,F and standard deviation (SD), Student's t-test p-value (p), clone definition (Def.; see
Methods), TriTrypDB identifier, annotated gene function (including abbreviations defined in the text) and gRT-PCR outcome. Genes in grey (clones that overlap

with more than one annotated gene): they are not differentially regulated (confirmed by qRT-PCR) or there is no evidence to support that they are differentially
regulated in other cases (not determined by gRT-PCR)
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Table 3 Genes of known function down-regulated in Pro-Pper/Pro-PNA™

Clone F Log,F +SD P e-value Def.  TriTrypDB Id. Annotated gene function qRT-PCR
Fw Rv F £SD
Lin85F11 -2.67 -1.4+02 0.040 le-156 2e-158 a  LinJ.34.4160 Phosphatidylinositol 3-kinase-like protein (TOR2) N.D.
Lin105H12 -2.04 -1.0£0.1 0.012 0 0 a  LinJ.27.1700 Protein kinase-like protein (PK) N.D.
Lin106G6 -2.87 -1.5+1.2 0.021 0 0 a  LinJ.32.0460 408 ribosomal subunit S2, putative + 22403
Lin110G8 -2.02 -1.0+0.2 0.013 0 0 b LinJ.31.0480 Calpain-like cysteine peptidase, Clan CA. family C2, putative N.D.
(C2cp)
Lin125H7 -2.04 -1.0+£0.2 0.035 0 0 b LinJ.28.3110 Dynein-light chain, putative (DynLC) N.D.
Lin139A6 -2.32 -1.2+04 0.008 6e-158 6e-81 b LinJ.02.0100 Phosphatidylinositol 3-kinase-like protein (PI3K) N.D.
Linl44A12 -2.31 -1.2£03 0.029 0 a  LinJ.15.0800 ATP-binding cassete 1-like protein (ABCI) N.D.
Lin148A8 -2.17 -1.1+£0.6 0.042 0 0 b LinJ.21.0720 Nucleotide-binding protein, putative (NBP-MRP) + -7.9+0.1
Lin166ES -2.11 -1.1£0.6 0.030 0 0 b LinJ.20.0970 Protein kinase, putative (PK) N.D.
Lin167D1 -2.38 -1.2+£02 0.037 0 0 b LinJ.20.0970 Protein kinase, putative (PK) N.D.
Lin172C3 -2.23 -1.1+0.2 0.007 2e-71 6e-75 a  LinJ.04.0470 ADP-ribosylation factor, putative (ARF) N.D.
Lin185G3 -2.45 -1.3+02 0.028 0 0 a  LinJ.21.0260 Major vault protein (MVP) N.D.
Lin182D9 -2.28 -1.240.1 0.034 0 0 b LinJ.06.0860 Lipin, putative N.D.
LinI88B3 269 -14+03 0031 0 0 b Linl.30.3230 3-hydroxy-3-methylglutaryl-CoA reductase, putative N.D.
(HMGCR)

Lin197G1 -2.18 -1.1£0.1 0.004 0 0 b LinJ.05.0060 Major vault protein, putative (MVP) N.D.
Lin209G10 -3.80 -1.9+0.6 0.027 1e-60 S5e-63 b LinJ.34.2730 Ribosomal protein L3, putative N.D.
Lin221E12 -2.18 -1.1£03 0.049 a  LinJ.09.0580 Leucine-rich repeat protein, putative (LRRP) N.D.
Lin228H3 2309 -1.6+03 0.007 0 0 a

LinJ.31.3260 Methylcrotonyl-CoA carboxilase biotinylated subunit (MCCbt) + 2.1+£0.3
Lin243A10 -3.18 -1.7+09 0.037 4e-125 le-125 a  LinJ.31.1640 Dipthine synt| ke protein (DpS) N.D.
Lin241A4 -2.84 -1.5+£0.3 0.014 3e-67 le-23 a  LinJ.23.0290 Multi-drug res ce protein, putative (MRP) N.D.
Lin282B9 -8.43 -3.1£09 0.047 Se-177 0 b LinJ.23.0620 Oxidoreductase-like protein (OXR) N.D.
Lin261G3 -2.12 -1.1+£0.3 0.028 0 0 a  LinJ.18.0370 Tubulin tyrosine ligase, putative (TubTyrL) + -10.1 £0.5
Lin264E4 215 -1.1+01 0003 0 0 a  Linl.28.1250 Long chain fatty acid:coenzyme A ligase, putative (LC-FACL) N.D.
Lin289A6 -2.01 -1.0+£0.5 0.011 0 0 b LinJ.11.1240 ABC transporter, putative N.D.
Lin300A3 -2.28 -1.2+£02 0.032 0 0 b LinJ.31.1870 Protein kinase-like protein (PK) N.D.
Lin312B11 -2.15 -1.1+0.2 0.019 3e-169 Se-171 b LinJ.34.3460 Vacuolar ATP synthase a catalytic subunit, putative (VATPso) N.D.

Features described: clone number, fold change (down-regulation if F <—-2.0), log,F and standard deviation (SD), Student's t-test p-value (p), clone definition (Def.;
see Methods), TriTrypDB identifier, annotated gene function (including abbreviations defined in the text) and gRT-PCR outcome. Genes in grey (clones that overlap
with more than one annotated gene): they are not differentially regulated (confirmed by qRT-PCR) or there is no evidence to support that they are differentially

regulated in other cases (not determined by qRT-PCR)

protein-protein interactions in other organisms such
RNase inhibitors, tropomyosin, tropomodulin and toll-
like receptors. Each LRR motif has a sheet-turn-helix
structure [44].

Metabolism, transport and signal transduction

The dihydrolipoamide dehydrogenase gene (DHLDH)
is up-regulated in Pro-Pper, as well as some genes that
participate in the respiratory chain. Namely, the cyto-
chrome oxidase VIII subunit (coxVIII), the ATPase
subunit 9 (ATPsu.9) and the Fly subunit of the ATP
synthetase (F1y).

The up-regulation of the a-ketoisovalerate dehydro-
genase gene (KIVDH) and the down-regulation of the
methylcrotonyl-CoA carboxylase biotinylated subunit
gene (MCCbt) suggest that isoleucine and valine catab-
olism may be favored in Pro-Pper, in agreement with the
EC 1.24.4 and 6.4.14 activities of the KIVDH and
MCCbt (Tables 2 and 3; TriTrypDB) within the KEGG
pathway 1if00280 [45].

A thiolase I gene (ACAT) is up-regulated in Pro-Pper,
thus suggesting that -oxidation of fatty acids is more
active in this population than in Pro-PNA™. On the
opposite, the long chain fatty acid:CoA ligase gene (LC-
FACL) is down-regulated, which suggests that long chain
fatty acids are a more common source for Pro-PNA™ to
feed the B-oxidation degradation pathway or to contribute
to fatty acid, glycerolipid and phospholipid biosynthesis (EC
6.2.1.3. activity in KEGG pathways ec00071 and ec00061,
respectively). The lipin gene is also down-regulated and it is
involved in glycerolipid biosynthesis. Consequently, these

data suggest that p-oxidation is more active in Pro-Pper,
whereas the lipid biosynthetic processes would be favored
in Pro-PNA". Both pathways provide molecules that are
active in signaling processes [46]. The sphingolipid biosyn-
thetic pathway may be more active in Pro-Pper as sug-
gested by up-regulation of the sphingolipid A*-desaturase
gene (DECS). Sphingolipids are also able to develop signal-
ing functions in the parasite [47].

Protein kinases of these parasites have been identified
[48] but most signaling pathways are still not known in
these organisms yet [49]. The genes encoding a serine/
threonine protein phosphatase 1 Lin].34.0840 (PP1), a
serine/threonine protein phosphatase 2 catalytic subunit
A2 (PP2B-A2), a dual specificity protein phosphatase
(DualPP) and three PKs are up-regulated, whereas the
phosphatidylinositol 3-kinase gene (PI3K) and a protein
kinase gene (PK) are down-regulated.

The genes encoding the o subunit of the vacuolar ATP
synthetase (VATPS«) and the ABC transporters ABCE
and ABC LinJ.11.0040 are up-regulated in Pro-Pper,
whereas the multidrug resistance protein (MRP), the
ABC LinJ.11.1240 and the ABC1 are down-regulated.
Finally, a nucleotide binding protein (NBP-MRP), prob-
ably an MRP (see LinJ.21.0720 entry in TriTrypDB), is
also down-regulated.

Cytoskeleton

Several genes encoding actin- and tubulin-interacting pro-
teins (AIP and TIP) are up-regulated in Pro-Pper. The
AlIPs are the profilin, two ADP-ribosylation factors (ARF
LinJ.31.2350 and ARF3) and the tubulin-tyrosine ligase
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(TubTyrL). The TubTyrL is also a TIP, as well as a coronin
and the OSM3-like kinesin. A different ARF gene
(LinJ.04.0470) is down-regulated. The ARF1 has been
characterized in 7. cruzi and in L. donovani, where it is in-
volved in coatomer assembly in budding vessicles in the

secretory pathway and endocytosis [50, 51]. The profilin
may be involved in the actin microfilament polymerization
machinery [52]. Coronins of Leishmania spp., Trypano-
soma spp. and other protozoan parasites are involved
in proliferation, locomotion and phagocytosis [53].
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Surface molecules

Biosynthesis of glycosylphosphatidylinositol (GPI) may
be increased in Pro-Pper, as the genes encoding the
GPI transamidase GAA1 component (GPIT-GAA1) and
the GPI transamidase subunit 8 (GPIT.8) are up-regulated.
The GPI is an essential anchor of important surface mole-
cules, such as the gp63 metalloprotease. One of the genes
encoding a gp63 is up-regulated in Pro-Pper. The gp63
has been traditionally associated to metacyclic promasti-
gotes and increased infectivity [12, 54—56]. The GPI is also
the essential anchor for glycosylinositolphospholipids
(GIPLs) and other surface proteins of the amastigote
glycocalix. GIPLs act as receptors for the host cell and
as a shield for resistance against lysosomal hydrolases
[57]. The GPI anchor is essential for the biosynthesis of
GIPLs, which may partially explain the importance of
up-regulating GPI-biosynthetic enzymes in metacyclic
promastigotes, according to the pre-adaptation hypothesis
[24, 58, 59]. The phosphoglycan B-1,3-galactosyltransfer-
ase (PG P1,3GalT), also up-regulated in Pro-Pper, is in-
volved in the biosynthesis of the lipophosphoglycan (LPG)
and proteophosphoglycans (PPG), which are major surface
molecules of promastigotes. The LPG is modified during
promastigote differentiation, which makes possible nega-
tive selection with PNA.

The amastin superfamily genes LinJ.08.0680/0690/1320
are up-regulated in Pro-Pper vs. Pro-PNA™. They were
described to be down-regulated in logarithmic phase pro-
mastigotes with respect to stationary phase promasti-
gotes [24]. Some of these genes are up-regulated when
temperature is raised and pH decreased both in axenic
and intracellular amastigotes [24, 60]. Initially, these
molecules were thought to be specific of the amastigote
stage, but over-expression was also detected in station-
ary phase promastigotes and metacyclic promastigotes.
Hence, they are up-regulated in advance prior to the

differentiation process of promastigotes to amastigotes,
according to the pre-adaptation hypothesis [24, 58, 59].

Genes related with infectivity and preparation in advance
to life in the phagolysosome

A Zn carboxypeptidase gene from the family M14
(ZnCP) is up-regulated in Pro-PNA™ with respect to
Pro-PNA" [26]. Despite it is not differentially regulated
between Pro-Pper and Pro-PNA~, we found that it is up-
regulated in Pro-Pper with respect to the whole station-
ary phase population [61]. This finding together with the
differences in infectivity (Fig. 2) support that the degree
of differentiation of the Pro-PNA™ subpopulation is
higher than the whole population in stationary phase as
previously reported [26] but lower than Pro-Pper (Fig. 2).
The significantly higher infectivity of Pro-Pper promasti-
gotes in terms of rate of infected cells and number of
amastigotes per infected cell are in agreement with the
higher expression levels of the gp63 gene and GPI, LPG
and PPG biosynthetic genes GPIT.8, GPIT-GAA1, PG-p-
1,3-GalT. Up-regulation of the SALp2 and amastin genes
in Pro-Pper is also probably related. The Pearson correl-
ation coefficient between Pro-Pper and Pro-PNA™ in
terms of differential gene expression (normalized fluor-
escence intensity values) is R*=0.68. The meaning of
this finding is that both populations are strongly corre-
lated. However, it reveals important differences at the
same time because it is not close to the maximum value
(1). This is clearly appreciated in the shape of the M/A
scatter plot (Fig. 3), which is a non-dispersed (rank -4 <
M <4) dot-cloud simmetric about the M =0 line (ie.,
lack of differential expression).

The gp63 gene, the GPI, LPG and PPG biosynthetic
genes and others may be involved in preparation in ad-
vance for differentiation and survival of the amastigote
stage in the phagolysosome according to the pre-adaptative
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hypothesis [24, 58, 59]. This is especially probable in the
case of the amastin and the GPI biosynthetic protein genes.

Conclusions

The mean of amastigote counts per infected cell is sig-
nificantly higher in Pro-Pper than in Pro-PNA~, as well
as the rate of infected cells. Up-regulation of genes in-
volved in GPI, LPG and PPG biosynthesis and a gp63
gene at the transcript level in Pro-Pper supports the dif-
ferences found in infectivity. Consequently, the Pro-Pper
population is more infective than the Pro-PNA™ one.
Therefore, Pro-PNA™ are not as infective as Pro-Pper,
but they are highly infective in any case. This means that
enrichment in metacyclics by negative selection with
PNA in culture is a good approach but not as good as
isolation from the natural environment, i.e. the anterior
thoracic midgut of the sand fly. Indeed, the Pearson cor-
relation coefficient (R*=0.68) between both transcrip-
tomes in terms of transcript abundance supports that
the similarity between both populations is moderate and
the important differences found are presumably related
to increased infectivity in Pro-Pper. In other words, the
correlation is sufficiently high to consider that both sam-
ples are physiologically comparable (i.e. the experiment
was correctly designed and performed) and sufficiently
low to conclude that important differences in transcript
abundance have been found (including genes involved in
chromatin structure, nucleocytoplasmic transport, gene
expression regulation, signaling and other processes).
Therefore, the implications of axenic culture should be
evaluated case-by-case in each experimental design even
when the stationary phase population is enriched in
metacyclic promastigotes by negative selection with
PNA.
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