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Summary of the research work

In this research work we study the computational properties of delay-coupled
systems. In particular, we use a machine learning technique known as reservoir
computing. In machine learning, a computer learns to solve different tasks using
examples and without knowing explicitly their solution.

For the study of the computational properties, a numerical toolbox, written
in Python, was developed. This toolbox allows a fast implementation of the
different scenarios described in this thesis.

Using a reservoir computer, we studied several computational properties, fo-
cusing on its kernel quality, its ability to separate different input samples and
the intrinsic memory capacity. This intrinsic memory is related to the delayed-
feedback of the reservoir.

We used a delay-coupled system as reservoir to study its computational ability
in three different kinds of tasks: system’s modeling, time-series prediction and
classification tasks.

The system’s modeling task was performed using the Nonlinear Autoregressive
Moving Average (of ten steps), NARMA10. The NARMA10 model creates au-
toregressive time series from a set of normally distributed random sequences.
The reservoir computer learns how to emulate the system using only the se-
quence of random numbers and the autoregressive time series, but without
knowing the equations of the NARMAI10. The results of our approach are
equivalent to those published by other authors and show the computational
power of our method.

For the time-series prediction tasks, we used three kinds of time series: a model
that gives the variations in temperature of the sea surface that provoke El Nifio
phenomenon, the Lorenz system and the dynamics of a chaotic laser. Different
scenarios were explored depending on the nature of the time series. For the
prediction of the variation in temperature of the sea surface, we perform esti-
mations of one, three and six months in advance. The error was measured as
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the Normalized Root Mean Square Error (NRMSE). For the different prediction
horizons, we obtained errors of 2%, 8% and 24%, respectively.

The classification tasks were carried out for a Spoken Digit Recognition (SDR)
task and a real-world biomedical task. The SDR was used to illustrate dif-
ferent scenarios of a machine learning problem. The biomedical task consists
on the automatic classification of heartbeats with cardiac arrhythmias. We use
the MIT-BIH Arrhythmia database, a widely used database in cardiology. For
comparison purposes, we followed the guidelines of the Association for the Ad-
vancement of Medical Instrumentation for the evaluation of arrhythmia-detector
algorithms. We used a biostatistical learning process named logistic regression
that allowed to compute the probability that a heartbeat belongs to a particular
class. This is in contrast to the commonly used linear regression. The results
obtained in this work show the versatility and efficiency of our implemented
reservoir computer. Our results are equivalent and show improvement over
other reported results on this problem under similar conditions and using the
same database.

To enhance the computational ability of our delay-coupled system, we included
a multivariate scheme that allows the consideration of different variables of a
system. We evaluated the influence of this multivariate scenario using a time-
series prediction and the classification of heartbeat tasks. The results show
improvement in the performance of the reservoir computer in comparison with
the same tasks in the univariate case.
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Resumen del trabajo de investigacion

En esta tesis se estudian las propiedades computacionales de sistemas acoplados
con retraso. En particular la técnica de machine learning, conocida como reser-
voir computing, es utilizada. En esta técnica el ordenador aprende a resolver
tareas a partir de ejemplos que se han dado previamente pero sin indicarle de
forma explicita la forma de resolver estos problemas.

El desarrollo de este trabajo incluye la creacién de una herramienta computa-
cional, escrita en lenguaje Python para la ejecucién de los diferentes escenarios
presentados en este trabajo.

Con la implementaciéon de un sistema acoplado con retraso, hemos estudiado
las propiedades de computo de este tipo de sistemas, interesdndonos princi-
palmente en la calidad del sistema acoplado, su habilidad de separacién de
elementos distintos y su capacidad intrinseca de memoria, la cual esta asociada
a la presencia de una retroalimentacion retrasada.

El sistema se ha usado para demostrar el poder de cédlculo que ofrecen los
sistemas acoplados con retraso. Se utilizaron tres tipos de tareas: modelado,
prediccion de series de tiempo y clasificacion.

El modelado se realiz6 utilizando el sistema Nonlinear Autoregressive Moving
Average de 10 pasos (NARMA10). Este sistema, construye series temporales
autoregresivas a partir de series de nimeros aleatorios. El ordenador basado
en reservoir aprende a emular este sistema (sin conocer de forma explicita las
ecuaciones del mismo) a partir de las secuencias de niimeros aleatorios y las
series temporales autoregresivas. Los resultados obtenidos son equivalentes a
los publicados por otros autores, demostrando el poder computacional de este
método.

Para la prediccion de series temporales se usaron modelos de variacién de
temperatura que provocan la aparicién del fenémeno de El Nifio, el sistema de
Lorenz en régimen caético y la dindmica de un laser cadtico. Las estimaciones de
series temporales se realizaron bajo diversas circunstancias dependiendo de la
naturaleza de las series. Para el caso de El Nifio, se realizaron predicciones a uno,
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tres y seis meses con errores de estimacién, determinados por el Normalized
Root Mean Square Error (NRMSE) de 2%, 8% y 24%, respectivamente.

Como primera tarea de clasificacion, se utiliz6 la tarea de Spoken Digit Recog-
nition y se utilizé para ilustrar diferentes escenarios posibles de un sistema
acoplado con retraso. La segunda tarea de clasificacién y la mas exhaustiva, se
realiz6 en un problema real de origen biomédico: la clasificacién de latidos car-
diacos para el caso de arritmias. Se utilizo la base de datos MIT-BIH Arrhythmia
la cual ha sido ampliamente usada en cardiologia. Por motivos de comparacién
de resultados, se siguieron las recomendaciones dadas por la Association for
the Advancement of Medical Instrumentation para la evaluacién de algoritmos
detectores de arritmias. Se utilizo un método de entrenamiento del reservoir
computer llamado regresion logistica en lugar del comtinmente usado: la re-
gresion lineal. La regresion logistica nos permite obtener como resultado la
probabilidad de que un latido cardiaco pertenezca a una clase u a otra. Los
resultados obtenidos demuestran la versatilidad y eficacia de nuestro método
de calculo, ya que son equivalentes e incluso mejores a los resultados publica-
dos por otros trabajos bajo circunstancias similares de evaluacién y utilizando
la misma base de datos.

Para mejorar la capacidad de computacién del sistema con retraso, se incluyeron
variables dindmicas adicionales en nuestro sistema para evaluar el efecto en
la prediccion de series de tiempo y la clasificacion de latidos cardiacos. Los
resultados mostraron una mejora sustancial en comparacién con el caso en que

s6lo una variable o canal del electrocardiograma fue usado para realizar la tarea
dada.



Resum del treball de recerca

En aquesta tesi s’estudien les propietats computacionals de sistemes acoblats
amb retard. En particular, hem utilitzatla tecnica de "machine learning” coneguda
com reservoir computing. En aquesta tecnica, 1'ordinador aprén a resoldre
tasques a partir d’exemples que s’han donat préviament pero sense indicar-li de
forma explicita la forma de resoldre aquests problemes.

El desenvolupament d’aquest treball inclou la creacié d"una eina computacional,
escrita en llenguatge Python per a I'execuci6 dels diferents escenaris presentats
en aquest treball.

Amb la implementaci6é d"un sistema acoblat amb retard, hem estudiat les propi-
etats de comput d’aquest tipus de sistemes, interessant-nos principalment en la
qualitat del sistema acoblat, la seva habilitat de separaci6é d’elements diferents
i la seva capacitat intrinseca de memoria, la qual esta associada a la presencia
d’una retroalimentaci6 retardada.

El sistema s’ha fet servir per demostrar el poder de calcul que ofereixen els
sistemes acoblats amb retard. Es van utilitzar tres tipus de tasques: modelatge,
predicci6 de seéries de temps i classificacio.

El modelatge es va realitzar utilitzant el model "Nonlinear Autoregressive Mov-
ing Average" de 10 passos (NARMA10). Aquest model, construeix series tem-
porals autoregresivas a partir de series de nombres aleatoris. L’ordinador basat
en "reservoir computing" aprén a emular aquest model (sense coneixer de forma
explicita les equacions del mateix) a partir de les seqiiencies de nombres aleatoris
i les series temporals autoregresivas. Els resultats obtinguts son equivalents als
publicats per altres autors, demostrant el poder computacional d’aquest metode.

Per a la predicci6 de series temporals es van usar models de variaci6 de temper-
atura que provoquen l'aparicié del fenomen de El Nifio, el sistema de Lorenz en
regim caotic i la dinamica d’un laser caotic. Les estimacions de series temporals
es van realitzar sota diverses circumstancies depenent de la naturalesa de les
series. Per al cas d’El Nifio, es van realitzar prediccions a un, tres i sis mesos
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amb errors d’estimacio, determinats pel "Normalized Root Mean Square Error"
(NRMSE) de 2%, 8% i 24%, respectivament.

Com a primera tasca de classificacid, es va utilitzar la tasca de "Spoken Digit
Recognition" i s’han il-lustrat diferents configuracions possibles d'un sistema
acoblat amb retard. La segona tasca de classificacid i la més exhaustiva, es va re-
alitzar en un problema real d’origen biomeédic: la classificacié de batecs cardiacs
per al cas d’aritmies. Es va utilitzar la base de dades "MIT-BIH Arrhythmia", la
qual ha estat ampliament usada en cardiologia. Per motius de comparacié de
resultats, es van seguir les recomanacions donades per la "Association for the
Advancement of Medical Instrumentation" per al’avaluacié d’algoritmes detec-
tors d’aritmies. Es va utilitzar un metode d’entrenament del reservoir computer
anomenat regressio logistica en lloc del comunament usat: la regressio lineal. La
regressié logistica ens permet obtenir com a resultat la probabilitat que un batec
cardfac pertanyi a una classe o a una altra. Els resultats obtinguts demostren la
versatilitat i eficacia del nostre metode de calcul, ja que sén equivalents i fins i
tot millors als resultats publicats per altres treballs sota circumstancies similars
d’avaluaci6 i fent servir la mateixa base de dades.

Per millorar la capacitat de computacié del sistema amb retard, es van incloure
variables dinamiques addicionals en el nostre sistema per avaluar 1'efecte en la
predicci6é de series de temps i la classificacié de batecs cardiacs. Els resultats
van mostrar una millora substancial en comparacié amb el cas en que només
una variable o canal de l’electrocardiograma va ser usat per realitzar la tasca
donada.
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Chapter 1

Introduction

Evolution of computing is facing nowadays what is called the information age,
an era where the amount of digital information is huge and individuals are
free to transfer information and have instant access to knowledge. Managing
and processing big amounts of digital information has become a problem in
computer science demanding processing techniques and novel computational
concepts that go beyond those implemented in traditional computers [1,2]. Even
if processing a large amount of information has changed the way computers
work, this is not new for our brain. In a quiet place, the brain is receiving
information about the environment. Without thinking specifically on that, we
are aware of the temperature of the room, surfaces in contact with us, objects
in front, sounds and smells. The brain processes all this information almost
simultaneously and it is able to produce a response in fractions of a second if
needed. Recognizing a common object can happen without us even noticing
we performed that task. The case of computers is not that straightforward.
Building a traditional piece of code to recognize objects can be a difficult task
and could take a long time to the computer to deliver an answer. Again the
brain proceeds in a different way. Instead of only studying particular features
of objects, it analyzes the full concept by learning from examples of the object.
Traditional Von Neumann computers or Turing approaches [3] are very efficient
when executing basic mathematical instructions. These approaches are usually
much faster than the human brain. However, for highly complex computational
tasks, such as face or handwritten-digit recognition, traditional computers run
into trouble and the brain shows to be more efficient.

The networks of neurons that constitute our brain are in a constant activity
categorizing patterns, making predictions, and silencing stimuli. At this mo-
ment, the reader is not only recognizing the symbols of these words but giving
a meaning to the sentence. At the same time the brain knows that there are
shoes on the reader’s feet however the reader did not notice them until it was
mentioned. This is an example of silencing stimuli that are not needed for the
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task of reading. Teaching a computer to know what is important for a task is
not an easy endeavor.

An alternative to traditional computers is a neuro-inspired scheme of processing
information. Using an artificial neural network (ANN), a computer can learn
how to solve a problem without executing the traditional set of preprogrammed
instructions. The scientific discipline that focuses on designing and implement-
ing algorithms to optimize the learning of machines is called Machine Learning.
The idea behind machine learning is to let the computer extract the rules to
perform a task by showing characteristic examples of the elements to study.

1.1
Machine Learning

The machine learning concept is a branch of artificial intelligence (AI) that fo-
cuses on the construction and study of systems that can learn from examples.
For instance, if we want a computer to recognize alphabetic handwritten char-
acters, we could provide the computer with some handwritten samples. The
machine will learn the patterns during a training process. Then we can provide
unseen samples of handwritten characters and take the answer of the machine
during a testing process. The unseen characters can be interpreted to belong to
one of the categories of characters that was presented during the training pro-
cess. The machine has to be able to generalize to samples that were not present
during the training process in order to be useful.

Machine learning algorithms are also used in data mining. For example, in
medical records learning algorithms can transform raw data related to specific
tests and patient history into medical knowledge where trends of a patient can be
detected improving medical practice. Learning algorithms are currently used in
many applications. During electronic transactions in major webpages, there is
usually alearning algorithm that checks whether a credit card is not being used in
fraudulent transactions by comparing the habits of the user. When using online
stores or movie services on internet, commonly there is a learning algorithm,
named recommender, that learns the preferences of the user and recommends
possibly interesting products to the user. The core of machine learning deals
with: representation and generalization. Representation of data samples into
different spaces with particular properties and the functions to evaluated these
samples are part of every machine learning algorithm. Generalization is the
property that the algorithm will perform well in unseen data instances; the
conditions under which this can be guaranteed are a key object of study in the
subfield of computational learning theory.
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1.1. MACHINE LEARNING

There are two major classes of learning for these kind of algorithms. Supervised
learning is the task of inferring the underlined rules of a particular problem from
data that is already labeled. A simple example is given by a house seller who
wants to know the approximate price of a house. Let us suppose that we have
access to a database of houses of a certain area where prices are available accord-
ing to their size in square meters. We could simply generate a regression (linear,
polynomial, etc.) to estimate the price of a new house. This is a supervised
learning process because we already know the label (prices) of the data (size
of a house) for some samples. This kind of problem falls in what is called a
regression problem. There is another kind of problem named classification problem
where usually the variable we want to predict is discrete rather than continuous.
Imagine the case we collect data about breast cancer and we want to relate the
size of a tumor to its kind, malignant or benign. In this case we are trying to
classify a tumor according to its size making this a classification task. However,
other variables can also be used. For instance, one may choose to include the
age of the patient or other characteristics of the patient. Then, our data can lie in
a 2,3, or larger finite dimensional space. The reader might wonder: what if the
set of features lie in an infinite dimensional space? Some methods in machine
learning actually expand the finite set of features of the data into an infinite
dimensional space in order to discover the patterns that describes best the data.

As mentioned above, in supervised learning algorithms the labels or real an-
swers of a problem are known. In the Unsupervised learning class, we have
access to a database that has not been labeled, i. e. the right answers of our
problem are unknown. Then we ask our algorithm to find structure in the data.
This class of learning algorithm is useful, for instance, in image segmentation.
For this example the algorithm can cluster pixels that have similar properties
and, as an answer, it can return a contour map of objects in the image without
or with little intervention of a user.

A machine learning algorithm is usually divided as follows:

o A feature selection process to select a set of representative data. This step is
extremely dependent on the problem to be solved. The set of features must
be representative of the underlying phenomenon. Here, the old computer
science adage "garbage in, garbage out" could not apply more strongly.
If the training data is not representative the learning algorithm might be
useless.

e A kernel method to process the data. Sometimes a simple linear trans-
formation will be enough. In other cases, more complicated methods are
required to capture the patterns in the set of features. This step helps the
algorithm to separate the features in order to be classified. The most typ-
ical transformation is given by placing a neural network with a sigmoid
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transformation or a self organized feature map (SOFM) network. Some of
these methods include a dimensional expansion of the features set.

e A learning process that represents an optimization problem. It takes the
transformed data and tries to infer the underlying dynamics that describes
it. There are many types of these algorithms, such as linear classifiers (e.g.
linear or logistic regression, naive Bayes classifier, perceptrons, support
vector machines (SVM), among others), quadratic classifiers, K-means
clustering, genetic algorithms, decision trees, neural and bayesian net-
works, etc.

These three ingredients determine the properties of a learning algorithm. In the
next section we focus the attention on two kernel methods: Artificial Neural
Networks (ANN) and Reservoir computing. The latter derives from the former
when recurrence is added to the network. Then, we will focus on the last of
these ingredients: the learning process. Finally, some ways of evaluating the
performance of a learning algorithm will be discussed.

1.1.1 Kernels to process information

Artificial Neural Networks

This kind of networks is inspired by biological neural networks, e.g. based on
the function of the central nervous system of animals and, in particular, the
brain. An artificial neural network is composed of a large number of intercon-
nected elements that are called neurons (to sustain the analogy). There is no
single formal definition of an ANN. However, we could call ANN to the class
of statistical models that consists of sets of adaptive weights, i.e. numerical pa-
rameters that are tuned by a learning process, and are capable of approximating
non-linear functions of their inputs. Recognizing faces, handwriting characters,
trends and patterns are typical tasks for ANNSs thanks to their adaptive nature
(plasticity). Importantly, neural networks and conventional computing are not
in competition but in complement with each other, e.g. arithmetic operations
are more suited to conventional computing and normally conventional comput-
ing is used to supervise neural networks. There is a large number of tasks that
requires algorithms that use a combination of these two approaches in order to
perform at maximum efficiency. Fully automated ANNs have a disadvantage:
their results can be sometimes unpredictable because they find out how to solve
the problem by themselves.

An ANN is usually represented by a set of inputs connected to some processor
elements (neurons) which are also connected to an output set of neurons. The set
of inputs are known as the input layer and the set of outputs as the output layer.
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1.1. MACHINE LEARNING

The set of connected neurons that are not in any of these layers are organized in
what is called the hidden layer as represented in Figure 1.1. The aim of a learning
process is thus to compute the importance (weights) of the links among neurons.

Hidden

Input

Figure 1.1: Schematic representation of an ANN by [4].

A change of paradigm came with the introduction of the idea of connecting
neurons among themselves in the hidden layer. These neurons could create
a cycle introducing recurrence in the network and therefore they are named
recurrent neural networks (RNN). RNNs suffer from training difficulties since
they are highly nonlinear, require a lot of computational power, and the training
algorithm not necessarily converges. Exactly this problem is avoided in the
recently introduced concept of reservoir computing, where only the connections
from the network to the output layer are trained and computed. Using this
procedure the training problem can be solved by a linear learning process.

Reservoir Computing

A neuro-inspired concept of machine learning named reservoir computing
(RC) has changed the way ANNs are implemented. In 1995, Buonomano and
Merzenich [5] presented a framework for neural computation of temporal and
spaciotemporal information processing. Their approach included a hidden ran-
dom recurrent network, which was left untrained. Then the problem was solved
by a simple classification/regression technique. Even though the term of reser-
voir computing was not introduce, this work contains the main ideas behind it.
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The concept of reservoir computing was developed independently under two
approaches: Echo State Network (ESN) [6] and Liquid State Machine (LSM) [7].
Based on these approaches, we can understand a reservoir computer as a RNN
where the connections among neurons are fixed and the weights of the output
neurons are the only part of the network that can change and be trained.

Usually this kind of RNNs or reservoir computer consists of a large number
(10% — 10%) of randomly connected nonlinear dynamical nodes, giving rise to a
high-dimensional state space of the reservoir. The dynamical nodes or artifi-
cial neurons usually have a transfer function with a hyperbolic tangent shape.
However, in recent years, novel approaches are being considered, using differ-
ent nonlinearities and coupling configurations, such as delay-coupled nonlinear
systems [8], photonic crystal cavities [9], or the Mackey-Glass oscillator [10]. In
all cases, the reservoir serves as a core (machine learning kernel) element for
processing information.

The procedureis as follows: input signals, usually low-dimensional, are injected
into the reservoir through an input layer, as illustrated in Figure 1.2. The
connections from the input layer and the nodes of the reservoir are assumed
to have random weights. Via the reservoir, the dimension of the signal is
expanded proportionally to the number of nodes. The input signal provokes
transient dynamics in the reservoir that characterizes the state of the neurons.
The readout process, i.e. the process that reads the response of the network to the
input signal, is usually evaluated through a linear weighted sum that connects
the reservoir nodes to the output layer. The evaluation of the processed data in
the reservoir is possible due to the nonlinear projection of the input signal onto
a high-dimensional state space created by the multiple nodes of the reservoir.

A reservoir has to fulfill some properties in order to perform a task properly. One
of the most important properties is consistency [11], where the system responses
must be sufficiently similar for almost identical input signals. This is also known
as the approximation property. However, if the input signals belong to different
classes, their transient states must sufficiently differ (separation property). These
two properties are complemented by a short-term (fading) memory, created by
the recurrence of the network, that becomes handy when the input information
is processed in the context of past information, like in a time series estimation
task [8].

Reservoir computing is generally very suited for solving temporal classification,
regression or prediction tasks where very good performance can usually be
attained without having to care too much about the reservoir parameters [12, 13].
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Figure 1.2: Schematic representation of a reservoir. The information to be

processed is received by the input layer and sent to the reservoir where it

is projected onto a high-dimensional state space. The dynamical response

of the reservoir is readout in order to set the weights of the connections

between the reservoir and the output layer, which is in charge of performing
the estimation task.

1.1.2 Learning process

There are many ways of teaching an algorithm to perform an estimation task.
Some methods can be used for supervised learning while others are used in
unsupervised learning only. This section does not pretend to give an exhaustive
list of learning methods. Instead, it illustrates the general idea behind a learning
process.

Learning can be defined as the acquisition, modification or reinforcement of
knowledge or skills through experience, study or by being taught. Not only
humans have the ability to learn, but also animals and most recently machines.

For machines, a learning process can be translated to an optimization problem.
The aim is to find the best fit and most parsimonious, efficiently interpretable
model that describes the relationship between a dependent variable (labels) and
a set of independent variables (the input) [14].

There are many mathematical methods to solve this kind of problems, and the
choice depends on the knowledge we can have about the relationship between
the variables. Most of machine learning methods are based on statistics. In the
following section we will introduce a simple but yet powerful method.

Linear regression models

The most simple but yet powerful learning process is a linear regression analysis.
In a regression model (machine learning kernel), one solves the problem of

9
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relating a set of independent variables X to a dependent variable Y through a
function ¢ and parameters . Mathematically, it can be expressed as

Y =~ ¢(X,p), (1.1)

where the bold letters refer to vectors. The above approximation is formalized
as E(Y|X) = f(X, p), where the form of f must be specified. The selection of the
function f is usually based on a priori knowledge about the relationship between
dependent and independent variables.

A good estimation of the regression model depends on the length k of the
parameter vector 8. If the number of observed data points N, of the form (Y, X),
are less than k the system is underdetermined. In case that N = k, and f is
linear, then equations 1.1 can be solved exactly (via normal equations) rather
than approximately. Mathematically the problem is solvable and the solution is
unique. In the last case where N > k the system is overdetermined. This means
that there are several solutions what leads to estimate a unique value for § that
best fits the data.

Normal equations

Let f be a linear function. We could solve the equations 1.1 by rewriting the
system as
X™X)p = X"y, (1.2)

where f3 represents the vector of the optimal parameter values. If the matrix X"X
is invertible, the problem can be solved explicitly. In numerical computation,
if the determinant of the X'X matrix is close to zero, then the problem would
be probably not solvable. We can introduce some methods to make it solvable.
They are known as regularization methods.

Regularization

In mathematics a regularization method is the process of introducing informa-
tion in a system in order to solve an ill-posed problem. In machine learning
the main idea of regularization is to prevent overfitting of the data (see Sec-
tion 1.2.1). Besides, some regularization methods can also be used as a feature
selection process.

First introduced in statistics by Hoerl and Kennard [15], ridge regression is a
regularization method that helps in the solution of normal equations when the
matrix X" X is singular. It is written as

~ridge

B = (X'X+ A Xy, (1.3)

10
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where A > 0is the regularization parameter: the larger the value of A, the greater
the regularization. I is the k X k identity matrix. Ridge regression can also solve
problems when matrix X"X is not of full rank, i.e. a square matrix. Another use
of ridge regression, more relevant in machine learning, is as a feature selector.
This regularization method imposes a penalty on regression coefficients size
forcing them to be small. We can write the residual sum-of-squares in ridge
regression as

RSS(A) = (y = XB)" (y — XB) + AB'B. (1.4)

The rightest term in Eq. 1.4 is a quadratic penalty, denoted by ', and it is
the responsible of the penalization. The penalization term is generalized in a
regularization method named Lasso (Lq) that includes a parameter g to control
the degree of the penalty. For g = 1 the penalty is linear and it is known as L1
regularization. For g = 2 or L2 regularization, the penalty is quadratic, as in
Eq. 1.4. The parameter g can take non-integer values producing what is called
an elastic net [16]. An intuitive and mathematical-elegant explanation about
regularization and feature selection given by Hastie et al. can be found in ref.
[17, p. 57-93].

1.2
Diagnosing learning algorithms

In practice, a big task in reservoir computing and more general in machine
learning involves selecting nonlinearities, parameters and sets of data to opti-
mize the overall results. These features may affect the quality of the results. For
example, when having an error rate larger than expected, one can think that
increasing the training set will lead to better results. However, if the model is
suffering a high variance problem more samples will not improve results. In
this section an overview of different scenarios and measurements are presented
for the recognition of problems in the model. The Scikit-Learn Documentation
[18] follows an interesting approach to explain diagnosing. In this section we
will follow some parts of their approach.

1.2.1 Model complexity, bias and variance

In this thesis we will refer to the complexity of a model (machine learning
kernel) as its degree of nonlinearity. Thus the simplest model is a linear model.
From there we can build more complex estimators using polynomial models,
trigonometric models, and other nonlinear functions. For clarity, let us illustrate
the effect of the model function over the results using polynomial models. Let
us recall the example mentioned in the introduction (Section 1.1) regarding the

11
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price of houses. For this example a house seller wants to know the estimated
price of a new house according to its size in square meters. In order to know the
estimated price of a new house we perform a linear regression using different
models. We will use here a linear, a quadratic and a degree-6 polynomial
function. The dataset is shown in Figure 1.3 as crosses and the continuous lines
represent the best fit of each model.

d = 1 (underfit) d=2 d = 6 (overfit)

price

house size house size house size

Figure 1.3: Linear regression for polynomial models. On the top of each

panel, the value of d shows the degree of the polynomial. The data is rep-

resented as crosses and is the same in each plot. Continuous lines represent
the best fit for each model.

In this figure we notice that a linear model is not the best option for the prediction.
This model under-fits the data meaning that the model is too simple. In machine
learning vocabulary this is known as a high bias problem. The model itself is
biased and this is reflected as a poor fit of the data. At the other extreme is
the degree-6 polynomial function exhibiting a very accurate fit. This model
touches each sample fitting the data perfectly and causing a problem known as
overfitting. Thus, this is not a good feature of the model since it lacks the ability
to generalize to new samples. This problem is known as high variance. The
middle panel seems to be the mid-point between these two types of problems.
One may wonder how to recognize these problems and the mid-point where
a model can perform best. To quantitatively identify bias and variance and
therefore optimize parameters we need to go through a process called cross-
validation.

1.2.2 Cross-validation
In the previous section we recognized the problem of high variance (overfitting)

in a dataset. This set of data is known as the training data because it was the data
used by the model to build the estimator. If we now compute the error rate of

12
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the overfit model, i.e. the degree-6 polynomial function, we will get zero error.
However if we want to know the price of a new house using panel c of Fig.
1.3, the new price can be very different of the rest of the dataset. Therefore the
training error is not a good indicator of the performance. To avoid this problem,
the dataset should be divided into three smaller datasets that we will call: the
training dataset, the cross-validation dataset and the test dataset, see Figure 1.4.

100% available data

Training Test
dataset dataset

60% 20% || 20%

Cross-validation
dataset

Figure 1.4: Scheme of a possible data partitioning to avoid optimistic results.

The reason to split the data into three datasets come from the fact that we can
overfit the data at different levels. The model parameters are learned using
the training data. In our example, these parameters are the coefficients of the
polynomial function. Once the model is trained, we evaluate the error using the
cross-validation dataset and we choose the meta parameters, i.e. the degree of
the polynomial function. As with the training, we could be overfitting the data
respect to the meta parameters, thus the minimal cross-validation error tends to
under-estimate the expected error on a new set of data. Then, the test dataset
is the only one that the model has not seen and is the one used to evaluate the
final model. Note that the test dataset is not used to optimize any parameter of
the model but to evaluate its performance once all parameters are fixed.

By partitioning the available data into three different sets, we drastically reduce
the number of samples which can be use for training the model. However, the
results can depend on a particular random choice for a pair of (train, validation)
dataset. A solution to this problem is the basic approach of cross-validation
(CV), known as k-fold CV where the training set is split into k smaller sets. The
procedure is as follows:

1. The learning algorithm is trained using k — 1 folds,
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2. then, the resulting model is evaluated using the rest of the data.

3. The process is repeated by taking out a different fold of the k folds for the
testing.

The performance of the k-fold CV is the average of the performance measure
computed in the loop. This approach can be computationally expensive, but
does not waste much data.

There are other approaches to CV, however they follow the same principles. For
example Leave-One-Out (LOO) is a simple cross-validation where each learning
set is created by taking all the samples except one, the test set being the sample
left out. Thus, for n samples, we have n different training sets and n different
tests set. This cross-validation procedure does not waste much data as only one
sample is removed from the training set. When we compare LOO with k-fold
CV, one builds n models from n samples instead of k models, where n > k.
Moreover, each model is trained on n — 1 samples rather than @ In both
ways, assuming that k is not too large and k < n, LOO is computationally more

expensive than k-fold cross-validation.

A version of leave-one-out CV is the leave-p-out CV that creates all the possible
training-testing datasets by removing p samples from the complete set.

With a cross-validation method, we can now choose the complexity of our
model. Bringing back the example of the house seller from the previous section,
the 20-fold cross-validation error of our polynomial classifier can be plotted as
a function of the polynomial degree d. Figure 1.5 shows the reason why cross-
validation is important. On the left side of the plot, we have very low-degree
polynomial, which under-fits the data. This leads to a very high error for both
the training set and the cross-validation set. On the far right side of the plot, we
have a very high degree polynomial, which over-fits the data. This can be seen
in the fact that the training error is very low, while the cross-validation error is
very high. Choosing d = 6 in this case gets very close to the optimal error.

It might seem that something is amiss here: in Figure 1.5, d = 6 gives good
results, but in Figure 1.3, we found that d = 6 vastly overfits the data. The
difference is the number of training points used. For Figure 1.3, there were only
eight training points. In contrast for Figure 1.5, we have 100. As a general rule of
thumb, the more training points used we use, the more complicated the model
can be. But how can we determine for a given model whether more training
points will be helpful? A useful diagnostic tool for this are the so called learning
curves.
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Figure 1.5: Model complexity. This figure shows the 20-fold cross-validation

error (blue line) and the training error (green line) as a function of the

polynomial degree d of the model. For low degree, the system suffers high

bias problem. In contrast, for high degree the model suffers high variance

problem. The horizontal dashed line serves as a guide to a possible intrinsic
error.

1.2.3 Learning curves

A learning curve is a graphical representation of the increase in learning as a
function of experience. The concept was first used in psychology of learning by
Ebbinghaus in 1885 [19, 20], although the name was not used until 1909. The
plot of a learning curve depicts improvement in performance on the vertical
axis when there are changes in another parameter (on the horizontal axis), such
as training set size (in machine learning) or iteration/time (in both machine and
biological learning). Then in machine learning, a typical learning curve shows
training and cross-validation (CV) error as a function of the number of training
samples. Note that when we train with a small subset of the training data, the
training error is computed using this subset, not the full training set. These plots
can give a quantitative view into how beneficial will be to add training samples.

Let us describe what is happening and how to interpret a learning curve. Re-
garding the training error, when the number of samples is one or very small, any
model (linear or nonlinear) can fit the data (almost) perfectly. This fact causes the
training error to be zero or very small. As the number of samples in the training

15



CHAPTER 1. INTRODUCTION

cross-validation
error

error

training error

v

number of samples

Figure 1.6: Typical learning curve.

set increases it becomes more difficult to fit all the points in the training set rais-
ing the training error. Eventually the training error will flatten once the number
of training samples is enough to learn the patterns in the training dataset. In
contrast, the cross-validation error is expected to be big for small number of
samples because the parameters of the model are very inaccurate (they were
trained using only one or few samples). As the number of samples increases,
the parameter set of the model gets more accurate and the cross-validation error
decreases until it flattens as the training error does.

Figure 1.6 shows the expected shape of a learning curve. For small number
of samples, the training error is minimal while the cross-validation error is
maximal. As the number of samples in the training set increases, the two errors
tend to flatten at a certain value that is determined by the task and the bias and
variance of the model.

To elaborate this last point, we come back to our example of the house seller.
In Figure 1.5 we showed that using a hundred samples, a linear model shows
high bias (underfitting) problems. In the learning curve this problem is recog-
nized because the training and cross-validation errors converge very rapidly at
a relative high error. We can see this behavior in the left panel of Figure 1.7. If
we continue adding samples to the training set, it is unlikely that the situation
changes. The two errors have converge to a certain value and they become
independent of the number of samples.

In the right panel of the same figure, we have the opposite case, a high variance
problem given by a degree-20 polynomial model. The characteristic features of
high variance (overfitting) is the gap that exists between the training and the
cross-validation errors. If we increase the number of training samples it is likely
that the gap reduces causing the errors to converge in the middle point.
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Figure 1.7: Learning curves depicting high bias (left panel) and high vari-
ance (right panel).

Small note about floating-point precision of a machine

The theory of machine learning is based on statistics and basic mathematical
operations and most of them can be explicitly solved. However, in practice we
usually end up performing those operations using a computer. But there are
limitations that we have to be aware of when using a numerical algorithm.

For a training set with N samples, if N < d, being d the degrees of freedom
of a model, the system of equations is perfectly solvable. This means that we
can expect to have a perfect fit (zero error) between the data and the predicted
model. The right panel of Figure 1.7 shows a degree-20 polynomial function.
For N < 20 the model should be solved exactly, however we can see non-zero
errors before we reach the number of degrees of freedom of the model. This does
not mean that the figure is wrong, in fact, the resulting fit has small residuals
because it needs very large oscillations to fit all the points perfectly, similar to
d = 6 case in Figure 1.3.

1.2.4 Course to follow for high bias or high variance problems

We have seen in this section that there are several tools to diagnose a learning
algorithm. All these tools can be applied to the particular case of reservoir
computing in order to evaluate, diagnose and improve performance. Here we
present some actions that can be taken when a high bias or a high variance
problem is found. When having high bias problems, we can:
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e Add more features. In our example of predicting house prices, including
not only the size of the house but the year it was built, the neighborhood,
and other features may help to a high-biased estimator.

e Increase the complexity of the model. As we studied in section 1.2.1, for
polynomial models we can increase the degree of the polynomial function
to add complexity. Other kind of models will have their own methods for
adding complexity.

e Decrease regularization. Regularization is a technique used to impose
simplicity in some machine learning models by adding a penalty term that
depends on the characteristics of the parameters. If a model has high bias,
decreasing the effect of regularization can lead to better results. Refer to
Section 1.1.2 for more information.

e Use a smaller training set. This is more an advice than a guidance. Re-
ducing the number of training samples will probably not improve the
performance of the estimator since a high-biased model will keep the
same error for smaller training datasets. However, for computationally
expensive algorithms, reducing the training set can lead to improvements
in computational speed.

In contrast, if an algorithm is suffering a high variance problem, some steps we
can follow are:

e Use fewer features. Using a feature selection method may decrease the
overfitting of the estimator.

e Increase the training set. Adding samples can help to reduce a high vari-
ance problem as mentioned in section 1.2.3.

e Increase regularization. Increasing the influence of the regularization pa-
rameter on the model may help to reduce overfitting. This term is intended
to avoid exactly this problem. See Section 1.1.2.

Up to this point of this thesis we have studied how to teach a learning algorithm
such as artificial neural network or reservoir computing, to perform a task.
We have also seen what we can do to optimize and diagnose problems in our
model. We may wonder now how to quantify the goodness of a model, and how
its performance is compared to other approaches. In the following section, we
explore different measures to compare a model.
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1.3
Evaluation of performance

There are many measures of performance that have been traditionally used in
machine learning. None of them being the measure that correctly shows how
good or bad a model performs. These measures highlight the goodness or
badness of some of model’s features. In this section, we introduce and discuss
the pros and cons of some of the available measures of performance. This is
not an exhaustive list since each kind of problem may have a particular set
of measures that fits better for its evaluation. For example, measuring the
performance of a time series estimator will use a different set of measurements
than evaluating a classification algorithm.

We will now describe measurements commonly used for classification tasks.
Most of these measurements are based in a statistical tool named contingency
table that can display the uni- or multi-variate frequency distribution of the
variables. In machine learning this table is known as error matrix or confusion
matrix. The latter will be the preferred term used in this thesis and it comes
from the fact that this matrix makes it easy to recognize if a model is confusing
two classes.

1.3.1 Confusion matrix

In a classification task, a confusion matrix is a square matrix that allows to
visualize the performance of an algorithm. In supervised learning we know
the true labels of the test data, so a model has to estimate to which class each
test sample belongs to. Having these two sets of labels, the real labels and the
estimated ones, we can build a matrix that in its columns contains the estimation
of the model while in the rows it has the ground truth.

Figure 1.8 depicts a confusion matrix. To understand how it works, let us
consider a 2-class classification task. One of the classes will be named the
positive class, while the other the negative class. In a confusion matrix when a
positive sample is classified by a model as such, it is counted as a True Positive
(TP). In contrast, if the same sample is classified as negative then we have a False
Negative (FN). A similar reasoning applies for a negative sample. If classified
as positive, it is a False Positive (FP), and if classified as negative, it becomes a
True Negative (TN). As a mnemonic technique we can read these terms using:
itis___ thatis ____,i.e. afalse negative can be read as "it is false that is negative",
meaning that the real class of that sample is the positive class.

False positive and false negative are, respectively, what we call type I and type
I errors in statistical test theory.
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Figure 1.8: Confusion matrix for a binary classification task.

Thus, from a confusion matrix we can derive a set of measurements that take
into account different aspects of a classifier. Let us study some of these measures
in the following sections.

Sensitivity

Sensitivity (Se), also known as recall or true positive rate (TPR), represents the
proportion of real positive cases correctly classified as positive. It is defined as

true positive

Se x 100. (1.5)

~ true positive + false negative

To give some intuition about the meaning of sensitivity, let us consider a pop-
ulation of subjects. Some of them are infected with a virus, and the rest are
completely healthy. Imagine that a company designs a blood test to identify the
infected subjects. The new blood test may report a sensitivity of 100% meaning
that all infected subjects are correctly identified. If the test has zero sensitivity,
it means it is unable to recognize any infected subject. This measure is very
important in medicine because it allows to correctly identify medical conditions
in patients. However it has to be taken carefully: If the test identifies not only
all infected subjects but also some (or even all) of the healthy subjects as infected
it will still report 100% sensitivity. This is because sensitivity accounts for the
positive cases disregarding the errors of classifying a healthy subject as infected,
i.e. the false positive cases. Then another measure is needed to quantify those
healthy subjects incorrectly classified as infected.
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Precision

Precision (Prec) or confidence denotes the proportion of predicted positive cases
that are actually real positives. It can be expressed as

true positive

Prec = % 100. (1.6)

false positive + true positive

This measure solves the problem of misclassifying healthy subjects as infected.
It complements sensitivity in the characterization of a classifier. So, a test report
should at least show two performance measures to be meaningful. Note that
precision still suffers the same drawback as sensitivity. It does not take into
account those infected subjects that were not detected by the test, i.e. the false
negatives.

Specificity

Specificity (Sp), also known as inverse sensitivity, inverse recall or true negative
rate (TNR), is the proportion of real negative cases that are correctly classified.
Specificity can be written as

true negative

5P = false positive + true negative x100. (1.7)
Intuitively, if all the healthy subjects are correctly classified as not infected, the
blood test will have specificity of 100%. Note that if some (or all) of the infected

subjects are classified as healthy, the blood test still will be a 100% specific.

There is a complementary measure from specificity called False Postive Rate
(FPR) that is defined as

alse positive
FPR false p

= y —. 1.8
false positive + true negative (18)

Accuracy

Accuracy (Acc) is the combination of the previous mentioned measures. It is

defined as,
true positive + true negative

Acc = , (1.9)

sum of all samples

It can be seen as a weighted average between sensitivity and specificity [21].

Sensitivity and specificity are linked such that changing the sensitivity affects
the specificity of a test. In the following sections we will describe how they
interact.
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1.3.2 The trade-off between sensitivity and specificity

We will illustrate the trade-off between these measures using an example. We
have again a blood test to discriminate healthy from infected subjects. Imagine
that the result of the test is a counter, such as the concentration of a certain
substance in a certain volume of blood. We decide to evaluate the test over
a population that is healthy. Thus we are going to have a certain distribution
of test values for those healthy subjects. If we now perform the test over an
infected population, we will then have the corresponding distribution of test
values for infected subjects. Figure 1.9 depicts this situation.

A Threshold

Infected
subjects

Healthy
subjects

Frequency

I I I * I I I v
50

75 Test value

Figure 1.9: Distribution of test results in a healthy (blue) and infected (red)
population.

Let us say that small concentrations of our substance is a healthy indicator, and
a high concentration means infection. Now, the problem we are facing is to
decide from up to which point the test is going to be considered negative and
from which point it is going to be considered positive. This can be done by
setting a threshold value that separates the two distributions. In this example,
it looks natural to set that threshold at a value of 50 since our two distributions
do not overlap.

Now consider a more interesting scenario where the two distributions overlap,
as shown in Figure 1.10. For this case, setting a threshold is a more difficult
task. To begin with, let us keep the threshold in the middle, as we did in the
previous figure. Now, to identify the true/false positive/negative values in this
scheme we consider one distribution curve at a time. We start considering
only the distribution of the infected subjects. On the right of the threshold
line are those concentrations that we consider positive and come from infected
subjects, so these are true positives (TP). On the left of the threshold line are those
concentrations that we consider negative (because they are in the left side of the
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division line) but are actually positive, i.e. they are in the positive distribution
curve. Then these cases represent the false negatives (FN). If we now consider
the distribution for the healthy subjects, we can identify the true negatives (TN)
as those concentrations in the left of the threshold line and as false positives (FP)
those on the right of the threshold line.

A Threshold

[ )
Infected

subjects

Healthy
subjects

Frequency

1 | "=

o5 50 75 Test value

Figure 1.10: Overlapping distribution of test results in a healthy (blue) and
infected (red) population.

So sensitivity is the proportion of the area under the positive distribution curve
that is at the right of the threshold line with respect to the area under the full
positive distribution curve. Note that if we move the threshold line to the left,
the sensitivity will increase but it also will include more false positives. In the
extreme case, if we set the threshold line all the way to the left, we will get a
100% sensitivity but our test will lack the ability to distinguish healthy from
infected subjects, i.e. it will classify every subject as infected.

On the opposite side, specificity is the proportion of the area under the negative
distribution curve to the left of the threshold line with respect to the area under
the full negative distribution curve. Again, we can increase this proportion by
setting the threshold line to the right. However this will increase the amount of
false negatives.

A similar relationship between sensitivity and precision, or any confusion matrix
derived measure can be established. In conclusion, one has to set a threshold
value for a given test in order to characterize it. This threshold value is going
to define the sensitivity and specificity of the test. There is no general rule
to choose this threshold. It depends on the task and the peculiarities of the
estimator. One way to visualize the general properties of an estimator using
the above mentioned trade-off is the so-called receiver operating characteristics
(ROC) curve.
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1.3.3 Receiver operating characteristics curve

A Receiver Operating Characteristics (ROC) curve is a statistical tool to visualize
the performance of a classifier when the threshold that defines the classes is
varied. It is based on the trade-off between sensitivity and specificity (section
1.3.2). To build a ROC curve, we need to plot the sensitivity of the classifier as
a function of the false positive rate (FPR, shown in equation 1.8) for different
values of the discriminating threshold.
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Figure 1.11: A ROC curve with the line of nondiscrimination. Each step in
the curve corresponds to a value of the threshold that separates one class
from the other. Image by [18].

Figure 1.11 depicts the ROC space. The best classifier will have coordinates
(0,1), representing a 100% sensitivity and a 100% specificity. This point is
also called perfect classification. Departing from this point, the performance of
our classifier describes a curve. The identity line, a straight line that connects
the (0,0) point with the (1,1) point, is called the line of nondiscrimination and
represents a random guess. Curves above this line are considered to exploit
information from the data for a good classification. Curves overlapping the line
of nondiscrimination do not contain information about the classes and make
the classification randomly. Any curve under this line performs worse than
a random classifier. In this case, the classifier contains information about the
classes but it uses this information incorrectly [22]. Another good property of
ROC curves is that they are insensitive to changes in class distribution (class
skew) [23], i.e. they do not depend on the number of instances in each class
(data balance).

24



1.4. OBJECT OF THE RESEARCH WORK

Area under a ROC curve

ROC curves provide a lot of information for characterizing classifiers. However
one can reduce this information in order to give an overall measure of perfor-
mance. A common quantity that fulfills this criterion is the so-called Area Under
the Curve (AUC) [24]. A property of ROC curves is that they are drawn in a
unitary square, so that the AUC ranges from 0 to 1. If the AUC of a classifier
is less than 0.5, it is said that the classifier is unrealistic [23]. If the AUC is 1,
it represents the perfect classifier. From this, we could say that the higher the
AUC the better the classifier. In the example ROC curve in Figure 1.11 the AUC
= 0.79. The AUC should be used to summarize the information on a ROC curve
but it should not substitute it since there are classifiers with high AUC that can
perform worse in a specific region of the ROC space than a classifier with low
AUC [23].

1.4
Object of the research work

The object of this thesis is the study of the computational properties of delay-
coupled systems and their applications. To this end, several tasks are tackled:

1. Build a computational toolbox for the numerical study of delay-coupled
systems.

2. Implement a delay-based reservoir computer for the study of the compu-
tational properties that are intrinsic to this kind of system and are inde-
pendent of the task to be performed.

3. Describe the working principles of a reservoir computer by studying typi-
cal machine learning tasks that are difficult to solve by using conventional
computing.

4. Apply the computational power of delay-coupled systems to a real-world
open biomedical problem.

5. Study the influence on performance of multivariate inputs in a reservoir
computer.

6. Development of a computational framework that allows the tuning of a
hardware implementation based on a semiconductor laser dynamics.

The different parts of our main objectives are developed along this manuscript.
A description of the structure of this research work is given in the next section.
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1.5
Structure of this thesis

This thesis is based on the research developed at the Instituto de Fisica Interdis-
ciplinar y Sistemas Complejos (IFISC) during the period 2011-2015. The results
of the different studies have been published in several international recognized
scientific journals. The related articles are enumerated in the List of Publications.

This manuscript is divided in three parts. The first part called Introduction
is composed of one chapter, Chapter 1, and gives an overview of machine
learning by focusing on a particular kernel type known as reservoir computing.
Standard methods for the diagnostics and evaluation of learning algorithms are
introduced in this part.

The second part, called Methodology, results and discussion contains the core of
this thesis. It is composed of 4 chapters. The first one, Chapter 2, describes the
principles of information processing using delay-coupled systems. This chapter
describes the computational properties of the delay-coupled approach. After
this description, results are presented using the proposed scheme for reservoir
computing, tackling typical machine learning tasks, such as a classification task
(spoken digit recognition), a time-series estimation task and a modeling task.
Each task’s section is self-contained, including its description, aim of the task,
results and discussion. In this way, the reader might jump among the different
tasks without getting lost. The end of this chapter, presents a short exploration
of the reservoir’s performance in different conditions other than the typical
ones. In particular, the spoken digit recognition task is used in the evaluation
of performance of the reservoir with different initial conditions. An evaluation
of the performance when reading out a portion of the dynamical states of the
system, i.e. reading some virtual nodes, is also presented.

The evaluation of a especially designed reservoir computer for the application
in a medical task is presented in Chapter 3. This chapter contains a brief de-
scription of the physiology of the cardiovascular system and, in particular, of
the heart. The reservoir computer utilizes electrocardiographic signals for the
classification of cardiac arrhythmias. The origin of these signals and how they
are prepared to be included in our designed computer is described. A partic-
ular feature of our approach is the learning method. We exploit the statistical
properties of the logistic regression method. This learning procedure is particu-
larly suitable in biostatistical tasks were binary solutions are expected, such as
normal or abnormal heartbeat. Results in internationally recognized format for
the evaluation of arrhythmia classifiers and for clinically relevant scenarios are
presented and discussed at the end of this chapter.
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The computational power found in the delay-coupled system described in the
previous chapters is evaluated using multivariate inputs in Chapter 4. Two
tasks are utilized to demonstrate that a reservoir computer might utilize ben-
eficially information from different variables of the system under study. We
use as examples: a time-series estimation task based on the Lorenz system in
a chaotic regime and the classification task presented in Chapter 3 when using
two electrocardiographic signals recorded simultaneously from different sites
of the chest.

Numerical implementations of the reservoir computer described in this thesis
might be implemented in hardware using optical nonlinearities. Chapter 5 de-
scribes the numerical implementations of a semiconductor laser serving as the
nonlinear node of a reservoir computer. This chapter shows the expected per-
formance of such reservoir under different conditions allowing to tune specific
parameters for a hardware implementation. Only numerical computations are
shown in this chapter. The interested reader in the hardware implementation is
refer to the corresponding article [25] and references there in.

The final part of this thesis is Conclusions part. It is composed of one chapter,
Chapter 6. In this part we summarize what we have accomplished along the
different parts of this research work. We also present some potential changes
in the proposed scheme that we believe are important to understand might be
useful for future applications.

At the end of the manuscript, an appendix related with technical descriptions
of the electrocardiographic database is presented. Also, a small glossary and a
list of the acronyms used in this thesis are described. The bibliography can be
found at the very end of this thesis, showing references in order of appearance.
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Chapter 2

Delay-based reservoir computing

Reservoir computing (RC) [6,7, 13, 26, 27, 28] is a recently introduced paradigm
in machine learning. It is inspired by our understanding of how the brain
processes information. For example, Rabinovich et al. [29] stated that the brain
would process information by the generation of patterns of transients states in
the dynamical activity of neurons when they are excited by a sensory stimulus.
Those transients, that come from billions of neurons, organize in a way that the
brain can deliver a response to the stimulus in fractions of seconds. The aim
is then to extract some information about the stimulus by using the transient
dynamics that it provokes. For example, a doppler radar can determine the
location and velocity of storms by measuring the perturbations that they provoke
in the environment. These radars use the Doppler effect to produce velocity data
about objects at a distance.

As mentioned in the introduction, traditional RC is a kind of recurrent neural
network whose configuration is divided into three layers as shown in Fig 1.2.
Tipical RNNs require the weights of the connections between the nodes to
be computed and adjusted for different tasks, which usually is a very time-
consuming computational task. Therefore RNNs were not very attractive, from
the computational perspective, until the advent of reservoir computing in which
the weights of the reservoir connections are kept fixed and only those weights
from the reservoir layer to the output layer are computed.

The experimental implementation of RC brings, however, a key challenge with
it. Complex networks composed of a large number of randomly connected
nonlinear dynamical elements, as required in traditional RC, define strong lim-
itations in what can, and cannot, be implemented in hardware. Therefore, until
recently, mostly software realizations were considered. To overcome this restric-
tion, the use of delay-coupled systems has been recently proposed and proven
to be as efficient as the traditional reservoirs in certain tasks [8, 30, 31]. The
simplest delay system consists of a nonlinear node subject to feedback, i.e. the
system’s dynamics is influenced by its own output at a certain time 7 in the past.
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CHAPTER 2. DELAY-BASED RESERVOIR COMPUTING

According to the characteristics of the nonlinear function, this kind of systems
can be considered for RC.

In the following sections we will study in depth the characteristics and compu-
tational properties of the above mentioned simple delay-based reservoir com-
puting system.

2.1
Reservoir computing based on delay-dynamical sys-
tems

In 2011, Appeltant et al. [8] succeeded in replacing an entire network of con-
nected nonlinear nodes by one single nonlinear node subject to delayed feed-
back. This approach demonstrated the computational power hidden in simple
delay dynamical systems providing, at the same time, a drastic simplification
of the experimental implementation of artificial neural networks for computing
purposes. The approach is depicted in Figure 2.1 as the equivalent to the reg-
ular RC implementation illustrated in Figure 1.2. In the latter, the connections
among nodes are usually chosen randomly while in the former the connections
are fixed due to a particular coupling (ring) topology. The nonlinear node is
depicted as NLN and a set of important positions in the delay line are known
as virtual nodes. These virtual nodes do not perform any transformation to the
input signal but they provide a state of the transient dynamics at every time in-
terval 0. This interval is determined by the number of nodes N in the reservoir
and the length of the delay line 7 as 6 = 7/N. Thus the position of each virtual
node is kept fixed and equally separated from the other nodes.

When an input is injected into the reservoir, it perturbs the quiescent state of
the nonlinear node (NLN) producing a transient dynamics. The virtual nodes
reflect the evolution of this transient dynamics with a certain resolution. The
resolution of observation is given by the time-interval 0, which is a very relevant
parameter in this configuration. If 0 is very long, the perturbations provoked
by the input signal will vanish and the reservoir will go back to a steady state.
On the contrary, if 0 is very short the reservoir will not have time to react to the
input signal. As a general principle, we typically choose 0.1T < 0 < T, where
T represents the characteristic time scale of the nonlinear node. Appeltant et al.
[8] found that using 6 = 0.2T usually leads to good results. Connecting nodes
in the above mentioned manner emulates a network that fulfills the minimum
requirements for information processing and serves as a reservoir [8, 32].

The reservoir depicted in Fig. 2.1 constitutes a single-node dynamical system
with delayed feedback in which the transient caused by one point of a given

32



2.1. RESERVOIR COMPUTING BASED ON DELAY-DYNAMICAL
SYSTEMS

:npui reservoir
ayer layer

N e N )

L RS
. ® v ‘
AN 0 U

(®@ © © )

Figure 2.1: Schematic representation of a reservoir as a single (NLN) node

dynamical system. All the information is pre-processed to be sent to the

reservoir through a single channel. The response of the nonlinearity is

observed by the virtual nodes (that do not perform any transformation of the

signal). The dynamical response observed by the virtual nodes is readout

in order to set the weights of the connections between the reservoir and the
output layer.

input is re-injected when processing the subsequent point. Mathematically, by
introducing delayed feedback, dynamical systems become infinite dimensional.
This is because its state at time ¢ depends on the output of the nonlinear node
during the continuous time interval [t—7, t) [33], with T being the delay time. The
dynamics of the delay system remains finite dimensional in practice [34], but ex-
hibits the properties of high dimensionality and short term memory, properties
that are required for RC. From the point of view of hardware implementation,
delay systems are very attractive since only few components are required to
build them, e.g. a nonlinear node and a delay loop suffice [8, 30, 31, 35, 25, 36].

Up to this point we have described the reservoir internal dynamics, and we refer
to an input signal as the input. However, when using a ring configuration (Fig.
2.1), we require a uni-dimensional information stream that is injected through
a single channel to the NLN. To achieve this goal, we pre-process every input
signal using a masking process that combines time-multiplexing of the inputs
with imprinting different scaling factors on the input ensuring that the NLN
always resides in the transient regime [37]. The entire process is explained in
detail below in the upcoming sections. After pre-processing the input signals
and injecting them into the NLN, the transient responds are used for training
an estimator. The estimator might be a classifier or a predictor.

In the next sections, a detailed description of the information processing using
delay-based reservoir computing is given.
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CHAPTER 2. DELAY-BASED RESERVOIR COMPUTING

2.1.1 The input layer: pre-processing of the input signal

In the approach presented by Appeltant et al. [8], the aim is to keep every single
sample of an input signal u; into the delay line for a certain time interval .
The delay line of length 7 icontains the virtual nodes. For sufficiently enough
long 7, the dynamical state of the last virtual node might be the steady state
of the nonlinearity because the transient provoked by each sample of 1; might
have disappeared. This is not a desirable feature in the reservoir. To avoid
this situation, each single sample of the input signal u; is modulated to keep
transient dynamics during the whole length of the delay line. This modulation
is achieved by a masking process.

input layer

masking

A
v

-

Figure 2.2: Schematic representation of the masking process.

The masking process takes each sampled point of u; and multiplies it by a certain
sequence of numbers that modulates each sampled value of the input signal. In
Fig. 2.2 we show a scheme of this process. In this scheme, the value of each
sample in the input signal is kept fix for an interval of length 7 (grey horizontal
lines) and then it is modulated. Since there are virtual nodes separated by a time
interval 0, where 0 < 7, the sample point is modulated to change its value every
interval 0 and therefore to provoke a transient in the response of the NLN.
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We will elaborate about the properties of the mask later on. Let us concentrate
now in the practical issues of the process.

For a number N of virtual nodes (vn) and an input signal #; of dimensions
M x C, where M denotes the number of observations (sampled points) and C
the characteristics observed, the mask matrix should have dimensions C X N.
Then performing a matrix multiplication between u; and M results in an input
matrix I of dimensions M X N. Note that the original input is #; while matrix I
represents the expanded version of u; and serves as the input to the nonlinear
node.

a) input signal b) mask c) Input matrix
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Figure 2.3: a) Input signal of M = 100 samples. b) Binary mask. The
multiplication of a) and b) results in the input matrix shown in c).

Let us illustrate the pre-processing with the following example: Consider a
reservoir with N = 25 nodes and a time series of M = 100 sample points. This
represents the simple case where there is only one feature, i. e. C = 1, see Fig.
2.3(a). Then the mask, in Fig. 2.3(b), has dimension 25 X 1 to held each sampled
point for an interval 7. This results in an input matrix I of dimension 100 X 25,
Figure 2.3(c). One row of the input matrix I corresponds to one modulated
(masked) value in the input signal u;. In this example, we have employed a
two-level (binary) mask that consists of 0.1 and —0.1 distributed in a random
fashion, see Fig. 2.3(b). Therefore, if one plots the first column of matrix I, the
original signal multiplied by —0.1 would be recovered.

We can highlight two basic requirements to configure a mask: the level of the
mask and the sequence. In the previous example we illustrated a two-level
(binary) mask. These levels enhance the separation of classes in the hyper-space
created by the mask and the nonlinear transformation [35, 38]. This choice
usually depends on the type of the data to process. The other requirement to
take into account is how the sequence of symbols (mask levels) are organized.
Random masks are widely used in reservoir computing perhaps motivated by
the random connectivity of neurons in RNNs. This randomness of the mask
may cause results to vary across different realizations of the same task. The
variability due to the mask randomness can be eliminated using a technique that
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allows to design the mask. Appeltant et al. [39] presented a way to create the
shortest possible mask that leads to maximum variability in the reservoir states.
Their method utilizes maximum length sequences to define the combination of
symbols in a mask such that sequences are not repeated. In the binary case, this
method produces masks of minimum length of 2" + m — 1 where m is the length
of the basic-sequence to include in the mask. The approach can be extended
to multi-level masks. Designing the mask limit the variability of results to
come is from the cross-validation process, the training samples and the training
algorithm. Controlling these variabilities, it is possible to identify the training
samples that do not significantly contribute to solve a particular task. To define
the levels of a mask and maximize the variability of the transient dynamics of
the reservoir, aperiodic time series, e.g. the values of a deterministic chaotic
time series, can also be used [40].

2.1.2 The reservoir layer: A closer look to the reservoir dynam-
ics

The reservoir is composed by a nonlinear node subject to delay feedback. In a
compact form, the dynamics of the node can be described as [32]

() = —x(t) + f(x(t - 7),I(t, ), x € R. 2.1)

In this system x represents the dynamical variable, x(t — 7) its delayed version at
a certain past time 7, and f is a smooth-real function. Equation 2.1 might exhibit
a wide range of dynamical behaviors. In particular, if equation 2.1 exhibits
chaotic behavior, the system would have a very good separability property since
it would be very sensitive to the initial conditions. However, the approximation
property will not be fulfilled for long time periods, i. e. T >> 0. It will also lack
of memory due to the exponential decay of auto-correlations in the attractor.

The input to be processed by the nonlinear node (Eq. 2.1) is represented by I(t, 1)
with n denoting the virtual node. This is the serial version of the input matrix
I in the previous section. The elements of I are fed into the nonlinear node
sequentially. For a certain time t € M, where M is the number of sampled points
in the input signal u,, the elements n € N are processed by the nonlinearity one
after the other. Each element of I(t, n) creates a transient response on the NLIN.
A full row of I fills the delay line (Left panel of Fig. 2.4). Concatenating the
responses of the NLN to each row of I, another matrix, named state matrix S, is
created as the one shown in the right panel of Fig. 2.4. The state matrix S has
the same dimension as the input matrix I.

In this scheme we can clearly see the recurrence or intrinsic memory of the
system. When the first element of a row in I is processed by the NLN, it is
affected by the transient dynamics of the first element of the previous row.
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Figure 2.4: The left panel shows the NLN response to sample 50 of u; along
the 25 virtual nodes. The right panel shows the state matrix S built out of
all the virtual nodes.

Finally, note that for each input signal u; injected into the reservoir there is
associated a state matrix S.

Figure 2.4 was made by substituting function f of Eq. 2.1 by

n(x(t — 1) + yI(t, n))
1+ (x(t =)+ pIt, n)y’

f(x(t - 1),1(t,n)) = (2.2)

with 77, y and p being parameters for the feedback strength, input scaling and
degree of nonlinearity, respectively.

Itis expected that the degree of nonlinearity of a system is related to the capability
of linearly separate different input signals [41]. The memory of the system can
be detected in the autocorrelation function through the peaks at the multiples
of the delay time 7. The degree of the nonlinearity can cause the autocorrelation
values to approach to zero after few delays, limiting the memory capacity of the
reservoir [42]. The nonlinearity of the NLN has to be chosen according to the
kind of task to be performed, considering memory requirements and separation
property. The limitation on the memory is not strict since there are different
ways of increasing the memory of the system, e.g. by including additional
delay loops [37, 43].

2.1.3 The output layer

This layer receives all the state matrices S. It can be configured in two modes:
training or evaluation mode. For training purposes, the state matrices are com-
bined in order to compute the weights of the connections between the reservoir
layer and the output layer. In practice, we want to know the contribution of
each virtual node, i.e. the weights. This is achieved by using a learning process
as described in Section 1.1.2. The learning process assigns an output weight w
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to each virtual node vn;, such that the state matrices approximate to the desired
output or target value y; as close as possible fulfilling the condition that

N
Yk = Z Wjon;. (2.3)
j=1

The usual practice in RC to estimate the values of the wji is a linear regression
model [26] as those described in Section 1.1.2.

During the evaluation mode, one can process unseen input signals and evaluate
the performance of the reservoir. In this case, the output layer utilizes the
weights wj of the virtual nodes to assign a class to the new input signal u; using,
for instance, the so-called winner-take-all criterion.

Before moving forward, let us introduce a nonlinearity that fulfills the charac-
teristics of the reservoir layer described in Section 2.1.2.

2.1.4 Mackey-Glass delayed feedback oscillator as a reservoir

The Mackey-Glass oscillator [10] is a nonlinear function that has proven to serve
as a reservoir [8]. The original oscillator described in [10] is modified to include
an external input signal. Its new form can be expressed as

n(x(t —7) + yI(t, n))
1+ (x(t— 1)+ yI(t,n)p

(t) = —x(t) + (2.4)

The solutions of this equation are real numbers. Here, x denotes the dynamical
variable, t is a dimensionless time, and 7 is the delay-feedback loop. Parameters
1,y and p represent the feedback strength, the input strength and the degree of
the nonlinearity, respectively. The Mackey-Glass modified oscillator (Eq. 2.4)
follows the standard representation of a node subject to delay feedback (Eq. 2.1)
with function f as in Eq. 2.2. The Mackey-Glass oscillator can exhibit different
kind of dynamical behaviors that can be explored by switching off the input
signal (y = 0) and making its corresponding bifurcation diagram.

Figure 2.5 shows the bifurcation diagram where we can see a fix-point dynamics
for 0 < 1 < 1.39. This fix point is zero for < 1. Beyond the fix-point dynamics,
limit cycles develope a deterministic chaotic dynamics. We can then adjust the
values of 1) to make the system to operate in a stable fixed-point when no input
is injected (y = 0). However, when an input is injected into the oscillator, the
system might exhibit complex transient dynamics.

The Mackey-Glass oscillator has two important advantages: The first one is that
it can be easily implemented in hardware [37, 44, 45] and the second is that it
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Figure 2.5: Bifurcation diagram for the Mackey-Glass delayed feedback

oscillator (Eq. 2.4) with y = 0, p = 7, and delay time 7 = 80. The strength

of the feedback 7 is varied to exhibit the different dynamics. Only extreme
values are plotted.

allows to modity its degree of nonlinearity. This allows to change the operational
point as the reservoir changes from strongly nonlinear to a weak nonlinearity.
The shape of the nonlinearity is illustrated in Fig. 2.6. The left panel shows the
transfer function of the Mackey-Glass oscillator (as in Eq. 2.2) for p = 1 while
the right panel shows the same function for p = 7, both functions with 1 = 0.5.

For p = 1 the transfer function is a monotonically increasing function while for
p = 7 it has an extreme value. For inputs close to zero, the right figure looks
more linear than the left one. Changing the values of the input scaling y, one
can explore different regions of the transfer function. The drawback here is that
for odd values of p, the Mackey-Glass oscillator presents a discontinuity at —1
(see Eq. 2.4).

Other nonlinearities can be used for the purpose of reservoir computing per-
forming similarly to eq. 2.4, for example an optoelectronic oscillator or a semi-
conductor laser [8, 30, 31, 35, 25, 36]. In biology, it has been shown that cortical
areas of the brain exhibit properties of reservoir computing [46], as well as the
DNA as it was recently showed by Goudarzi [47]. These implementations indi-
cate that the exact shape of the nonlinearity is not as crucial as it was assumed
before [48].
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Figure 2.6: Mackey-Glass transfer function. The left panel depicts the shape
for p = 1 whereas the right panel shows it for p = 7. In both cases we use
n=0.5.

2.2
Task-independent properties of reservoirs

In Section 1.1.1, we mentioned some properties that a RC has to fulfill in order
to obtain good performances. In this section we will extend these concepts. We
mentioned consistency as the property of obtaining similar reservoir transient
dynamics for similar input signals. In practice, this is achieved by setting the
system to operate in an asymptotically stable quiescent state (fixed point) in
the absence of input [8]. The separation property states that for two different
enough stimuli, the corresponding transients must differ sufficiently. A system
with these two properties can therefore served as a reservoir computing system.
These two properties are complemented by a short-term (fading) memory [49,
50] due to the recurrent nature of the reservoir. This memory can be exploited
by a reservoir to process information based on past events, which is particularly
useful in time-series estimation tasks.

The separation property can be quantified by computing the distance between
two reservoir states that are driven with different inputs. This measure was
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firstly introduced by Maass et al. (2002) [7] using neural microcircuits and spike
trains. This property can be generalized using the so-called kernel quality.

2.2.1 Kernel quality

This quantity measures the ability of the reservoir to separate instances of differ-
ent classes using a linear decision-hyperplane [51]. It is computed by injecting
N random time series of length g, U = {u;, uy, ..., ux} where N is the number of
nodes in the reservoir. To compute the kernel quality, it is necessary to build a
kernel matrix using the following algorithm:

1. First, input u;, (i = {1,...,N}), is injected into the NLN, but only the
transient of the last sample of u;, i.e. u;, is kept for readout. This transient
has dimensions 1 X N. Processing the N time series results in N vectors of
1 X N.

2. Then, the transient vectors are concatenated to obtain a N XN kernel matrix.

A scheme of this procedure is shown in Fig. 2.7.
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Figure 2.7: Scheme for building a kernel matrix.

To know the kernel quality, one has to compute the number of linearly indepen-
dent eigenvectors (rank of the matrix) of the kernel matrix, i.e. how many input
responses are distinguished using the linear readout. If the rank 7, = N then the
reservoir is able to assign the correct target to each input u; through the readout
process. Thus, the more independent eigenvectors the better the quality of the
reservoir. Smaller values of 7, indicate the degrees of freedom that are actually
available to the reservoir to assign its states to the correct targets, i.e. a measure
of the computational performance of the reservoir.
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Figure 2.8: Parameter space 1 — y showing the kernel quality rank. The
Mackey-Glass oscillator served as the NLN with N = 400 and p = 1. For
this plot a sequence of g = 800 samples was used.

For illustration purposes, we compute the kernel quality for a reservoir with a
Mackey-Glass NLN. The parameter space n — y is explored when p = 1. The
size of the reservoir is N = 400 which represents the maximum rank that can
be found. The rank of the kernel matrices are shown in Fig. 2.8. We can see a
large region with a good kernel quality specially for high values of the feedback
strength and the input scaling.

2.2.2 Generalization property

This property refers to the ability of the reservoir to generalize the learning, i.e.
the reservoir learns from a particular set of data, but it is expected to work with
a different set of data of the same kind. In other words, different input signals
not necessarily must be assigned to different targets if the differences are not
significant. The reservoir should be able to recognize those small differences and
neglect them while keeping the general patterns of the signal. This property is
quantified by the generalization rank which is computed in a similar way than
the kernel quality rank.
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In this case, we need N time-series U’ = {uj,u, ..., u;\]} of random numbers with
length g + [ each, in which [ is a fix value and its sequence is equal for all the !
time series. Thus, we are evaluating the ability of the reservoir to classify the
same inputs while modifying the initial state of the reservoir. A scheme of the
inputs ] is shown in Fig. 2.9. The shaded area is equal for all inputs. As the
reader might already expect, the choice of g and I are important factors. The
generalization rank r, is then given by the rank of the N X N matrix, as explained
in the previous section. If the generalization rank is close to N, the system is not

input layer

~

u'11, Uu'12, .. ,U’1q, U’gs1, U’gs2, w, U g+l
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Figure 2.9: Scheme for building a generalization matrix. The green-shaded
area is an equal sequence to all the inputs.

able to neglect the g4 random time steps, and classifies each signal as different.
So, the smallest the generalization rank the better the generalization capabilities.
This is opposite to the kernel quality rank. Fig. 2.10 shows the generalization
rank in the parameter space 1 — ) using the same conditions as in Section 2.2.1.

In this case we observed a wide range where the evaluated reservoir has a good
generalization property. A tradeoff of kernel quality and generalization rank is
given by the computational ability measure.

2.2.3 Computational ability

For a reservoir to have a good performance, we desire a high kernel quality rank
r, and a low generalization rank r,. When using a highly NLN, the separation
property of the system improves, reducing the generalization capabilities of the
system. We can find an optimal degree of nonlinearity using the computational
ability defined as

fe =1, —7q. (2.5)
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Figure 2.10: Generalization rank for the reservoir used in Section 2.2.1. The
length of the u] signals was 801, with ¢ = 800 and / = 1.

The computational ability is shown in Fig. 2.11. Only when ] —y pairs are close
to zero or close to 1, the reservoir does not have a good computational ability.
The rest of the parameter values seem to be suitable to perform computational
tasks. For an extended range of parameters of the above mentioned properties,
the reader is refered to [37].

2.2.4 Memory capacity and quality

Recurrent neural networks include an intrinsic fading memory due to its char-
acteristic recurrence. However, this memory might not be enough for certain
tasks, e.g. time series prediction, degrading the performance of the reservoir
significantly. To quantify the amount of memory available in the system, Jaeger
(2002) [42, 52] proposed a test called memory capacity. In this test a set of in-
put time series u(t) with samples from an uniform distribution in the interval
[-0.8,0.8] are injected into the reservoir with the aim to map those inputs to an
infinite number of output time series y:. The output signals yi are the u(f) time
series shifted by i steps, such that iy, = u(t —i)Vi = {1,...,00}. Thus memory
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Figure 2.11: Computational ability of the reservoir. Same parameters as in
Fig. 2.8 and 2.10

capacity is defined as

Uo = i m, (2.6)
i=1

where m; is the normalized correlation between the 9}( and y;'(, given by

i i

m; = corr[y., ;] = corr[y;, u(t — i)]. (2.7)
In practice, the sum in Eq. 2.6 is stopped when the scores are very close to zero.
An example of the memory function m; is shown in Fig. 2.12.

The memory capacity is obtained by integrating the curve in Fig. 2.12. This
measure is complemented with a memory quality measure that takes into ac-
count the shape of the curve. This measure was introduced by Hermans and
Schrauwen (2010) [49] as

1 &
Ug = y— Z ™. (2.8)

It indicates how rectangular is the shape of the memory curve which can be
important in tasks that need a minimum of memory to perform well. The
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Figure 2.12: Memory function of the reservoir for different delayed steps of
the input signal. The memory capacity is given by the AUC. The function is
computed with parameter p = 1 and n = 0.5 of the Mackey-Glass oscillator.

maximum value of the y, is one. The closest i, is to one, the more rectangular
the shape of the memory function is. The reservoir used to compute Fig. 2.12
has a p; = 0.8595 indicating a fair rectangular shape.

In the following section we introduce some examples in order to illustrate the
essence of reservoir computing.

2.3
Typical machine learning tasks using Reservoir Com-
puting

In this section we illustrate some benchmark tasks used in reservoir computing.
We make use of the concepts explained in the Introduction and in the current
chapter. For this purpose, we have chosen three different tasks that serve to
show the computational power in a delay-coupled system. The tasks include:

e A classification task, where the system has to learn the differences of pro-
nounced numbers and recognize which number was mentioned.

e A time series prediction task, where the system needs to use its own
memory for the prediction of events in the future, and
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e an emulation of a model, where the system uses the inputs and outputs of
a model to infer its dynamics, without explicitly knowing the equations of
the model.

These three tasks are described in the same ordered as mentioned above.

2.3.1 Spoken digit recognition (SDR)

This task consists on the classification of isolated spoken digits. The database
contains ten spoken digits, from 0 to 9, and it is part of the NIST TI-46 corpus
[53, 54]. Each digit was recorded ten times by five female speakers. Thus, our
dataset contains 500 samples. To extract the best features for the classification
each sample was preprocessed using a cochlear ear model [55] resulting in
samples of the form of matrices of 86 columns (frequency channels) and as
many rows as time steps in each acoustic signal. Using the same nomenclature
as introduced in section 2.1.1, each digit u; contains C = 86 characteristics and
M observations. The number of observations changes between digits due to
the time it takes to pronounce them. As a kernel method we use a delay-based
reservoir computer and as learning process a linear regression model with a
ridge regression (L2) regularization (Section 1.1.2).

We will follow the scheme presented in section 1.2 for the diagnosis of learning
algorithms. We should not forget that tuning an ANN is an optimization process
that requires several iterations. In the following paragraphs we show one or
few of them. We begin by building a cross-validation data set by dividing the
full dataset into 5 non-overlapping sets each of 100 samples, i.e. 10 digits, 1
speaker, 10 recordings. Two sets are used to determine the complexity of the
model, two more to estimate model’s parameters, and the last set for evaluation.
In all steps we use a k-fold cross-validation with k = 10. Note this is the
most difficult scenario for the reservoir to estimate the correct targets. Setting
reservoir parameters is performed by using different speakers than those used
for the evaluation, so not only we include samples that are not used while
optimizing the reservoir but also we introduce a different speaker.

Model Complexity (Section 1.2.1) The first step is to select a model and to
determine the degree of complexity that best fits the data. Very simple models
can lead to high bias problems whereas too elaborated models might suffer
high variance problems. We can determine an optimal degree of complexity by
building a model complexity curve. As model, we choose the Mackey-Glass
nonlinearity (Eq. 2.4) with parameter n = 0.8 and y = 0.5 which ensures the
system to be in a steady state in the absence of inputs. This equation contains
a parameter p that controls the degree of nonlinearity of the system. Note that
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the size of the reservoir also reflects the complexity of the model since each
virtual node represents a delayed-nonlinear transformation of the input in the
new high-dimensional space. So, the size of the reservoir can be considered as
both: a feature (for feature selection) and the level of complexity.

In order to include information from these two variables: nonlinearity degree
and reservoir’s size, the model complexity is split into two plots, one with the
training errors and another with the cross-validation errors. The errors are
computed as error rates, i.e. for a predicted digit different than the original (a
mistake) the system scores 1, otherwise it scores 0. The error rate is then the
average of these scores. The prediction of the reservoir is based on the y, values
from Eq. 2.3. The reservoir selects the class k of the predicted digit using the
winner-take-all (WTA) criterion. In this particular context this error is called
Word Error Rate (WER). The lower the error rate, the better the model. Figure
2.13 shows the training error rate (right panel) and the cross-validation error rate
(left panel) for different reservoir sizes and nonlinearity degrees p. Note that we
have added a constant value of 107 to the errors to make a semi-logarithmic
scale possible. Vertical lines show the standard error of the mean (s.e.m.). The
previous figure shows the errors for four different reservoir sizes. We have
chosen the more representative ones among all the simulated sizes.
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Figure 2.13: Model complexity curves for different reservoir sizes N. The

left panel shows the cross-validation error while the right panel shows the

training error. Vertical lines denote the s.e.m. In order to draw errors in
logarithmic scale, we added a constant value of 107% to all curves.

Results in Fig. 2.13 suggest that N = 400 is the best size for this task. The two
error rates converge to zero for a wide range of p. Note that if the size of the

48



2.3. TYPICAL MACHINE LEARNING TASKS USING RESERVOIR
COMPUTING

reservoir is much larger (N ~ 10%) then the error rate curves do not converge
due to the ability of the reservoir to capture too many features of the inputs that
overfits the data, i.e. the reservoir becomes specialized in the training set but it
is not able to generalize.

From now on, we take p = 7 and N = 400 which implies a delay time 7 = 80
since 0 = 0.2. As an example, the previous computations were performed using
Mackey-Glass parameters 1 and y fixed to 0.8 and 0.5, respectively. To evaluate
the influence of these parameters, we explore the parameter space 1 — y in the
next section.

Exploring parameter space 1 — y. The Mackey-Glass oscillator in Eq. 2.4
includes parameters that account for the scaling y of the input matrix I and the
dynamical state of the oscillator, i.e. parameter 7. Note that an input 1, is always
pre-processed with a mask before reaching the nonlinear node. This causes the
original scales of the input to be modified. Thus, the values of the mask play
an important role in this case. For this example, we are using a randomly
generated mask with dimensions 400 X 86 that contains values of {0,0.41,0.59}
in a proportion of {90, 5, 5}% respectively.

0.04
0.035
0.03
0.025
0.02
0.015
0.01

0.005

Figure 2.14: Mackey-Glass oscillator parameter space n—7y for p = 7. Colors
show the CV error rate for each set of parameter.
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The parameter space is shown in Figure 2.14 in a color scale. Darker colors
represent low cross-validation error rate. In this figure, we see that there is
a wide range of parameters that are optimal to perform this task. Note that
basically the full parameter space is useful since the highest CV error rate is
smaller than 4%. Since we reach an average error very close to zero, further
computations are performed using n = 0.8 and y = 0.5.

We have set the complexity of the model and explored the parameter space of the
nonlinear node. Our system is now ready to classify spoken digits. The question
is: how well does the system recognize the digits? Let us plot a learning curve
for a first diagnosis and then evaluate our designed system.

Learning curve (Section 1.2.3) Using a learning curve we can determined if
the reservoir designed in the previous steps suffers a bias or variance problem.
To build a learning curve, we plot the train and test (CV) errors as a function
of the number of samples (digits) in the dataset. Both sets of data: model
complexity and parameter space databases (beginning of Section 2.3.1), can be
used to build the learning curve since no parameters are being estimated in this
step yet optimistic results are expected because these datasets were used for the
setting of parameters. Therefore our data set includes a total of 400 samples.
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Figure 2.15: Learning curve. The testing WER is represented in blue and
shows the dependency of the number of samples. The curves show the
average over ten realizations shuffling randomly the database (vertical lines

represent the s.e.m.). Training error is always 0 + 0, so a constant value of
10~* was added to both curves to plot them in a semi-logarithmic scale.
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Figure 2.15 shows the learning curve of the designed reservoir. The curve
represents the average of 10 executions of the algorithm including samples in
different order each time. Vertical bars represent the s.e.m. For all realizations,
the training error is 0 + 0. We have added a constant value of 107 to both curves
in order to plot the curves in a semi-logarithmic scale.

The decreasing trend of the test error indicates that the reservoir improves
the classification when more samples are introduced for training. When 270
digits are used for training, the reservoir makes 1 mistake in average and keeps
performing similarly until the full dataset is used. We can exclude a high
variance problem because the difference between error rates is very small (an
average of less than 1 mistake in a 10-fold CV).

The final step is the real proof to the designed reservoir. We evaluate its ability
to generalize to samples that have not been included for training or setting of
any parameter. The evaluation dataset consists of 100 samples from a different
speaker.

Evaluation of performance (Section 1.3) Training is achieved using the same
400 samples used for the learning curve, i.e. 80% of the total available data (4
speakers), whereas evaluation of the reservoir is performed with a new speaker
(20% of data) via the winner-take-all (WTA) criterion. In this case we find a
WER of 9.7%. In comparison with previous results using delay-based reservoir
computing (WER<1%) [8, 25] this WER is worse. It is worth to remember that
the scheme followed in this chapter represents one of the most difficult for this
classification task. Previous results utilized a cross-validation scheme using the
same data utilized for the setting of parameters that yields to better, although
less useful results.

In this classification task there are 10 classes (digits from 0 to 9). Thus the
resulting confusion matrix, shown in Table 2.1, is a 10 X 10 matrix. The confusion
matrix identifies a problem in the classification of the new speaker. The reservoir
confuses digits 1, 3 and 5 with digits 9, 8, and 1, respectively. For the rest of the
digits, the reservoir performs correctly.

In order to compute confusion matrix derived measures, the matrix in Table 2.1
is binarized via one-vs-all (OvA) criterion. Results per class are presented in
Table 2.2. This table shows sensitivity, precision, specificity and accuracy when
only samples of the new speaker are considered.

Using this kind of table one can identify those problematic classes in a classifica-
tion task. As an example, let us go through the measures for class 5. Recall that
sensitivity represents the proportion of positive samples correctly identified.
For digit 5 (the positive class) we have 80% sensitivity because the reservoir is
able to recognize 80% (8 out of 10 samples) of the digits as digit 5. From those 8
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Table 2.1: Confusion matrix for the SDR classification task.

Predicted digit— | 0 1 2 3 4 5 6 7 8 9
Real digit |
0 00 0 0 000 0 0 O
1 o 9 0 0000 0 0 1
2 0 0100 0 0 0 0 0 O
3 0O 0 0 40 0 0 0 6 0
4 0O 0 00100 0 0 0 O
5 0 2 0 0 0 8 0 0 0 O
6 0O 0000 01 0 0 O
7 0o 00000 0 10 0 O
8 0 0 0 0 0 O 0 10 0
9 0o 0000 OO0 0 0 10

samples predicted as digit 5, all of them were actually digit 5 (Precision=100%).
There are not false positives for digit 5 (in Table 2.1, column 5 is always zero for
any digit different than 5), then this classifier is 100% specific. Finally accuracy
shows the sum of the true predictions (positive and negatives) with regards to
all the samples in the dataset that for digit 5 is 97.99%. Digits 8 and 9 represent
the opposite case to digit 5 where sensitivity is maximum but precision and
specificity are less than 100%. Finally, digit 1 is the combination of these two
cases.

To finish this example, we build a ROC curve (Section 1.3.3). To build such a
curve we need to express digits as scores (yx values). These values can be any
real number.

We can set a threshold value to differentiate the score distributions and in this
way build the corresponding ROC curve. Figure 2.16 shows the ROC curve for
the multiclass SDR task. The points of the curve in the left of the space, represent
conservative models, while the points on the right prioritize the sensitivity of
the classifier. The selection of a classifier will require to average ROC curves in
a CV fashion, however it mainly depends on the kind of task that is performed.

The area under the ROC curve on Figure 2.16 is 0.9916. Any value over 0.9500 is
considered a good value. The AUC of a classifier is equivalent to the probability
that the classifier prefers a positive class over a negative one when these classes
are randomly ordered [23]. The particular AUCs per digit are shown in Table
2.3.
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Table 2.2: Confusion matrix derived measures.
Measure — | Sensitivity Precision Specificity Accuracy

Digit |

0 100.0 100.0 100.0 100.0

1 90.00 81.81 97.77 96.99

2 100.0 100.0 100.0 100.0

3 40.00 100.0 100.0 93.99

4 100.0 100.0 100.0 100.0

5 80.00 100.0 100.0 97.99

6 100.0 100.0 100.0 100.0

7 100.0 100.0 100.0 100.0

8 100.0 62.50 93.33 93.99

9 100.0 90.90 98.88 98.99
Average 90.99 93. 52 98.99 98.20

2.3.2 El Nino time-series prediction

The phenomenon of El Nifio is an excellent example of the interaction between
the ocean and the atmosphere evidencing their combined effect on global cli-
mate. El Nifio disrupts the ocean-atmosphere system when strong westward
blowing trade winds subsides and warm water slowly moves back eastward
across the Pacific. This results in a redistribution of rains, the interruption of
upwelling of cool and nutrient-rich waters bringing consequences as flooding
and droughts, the death of fishes and climatic changes in many parts of the
world.

The phenomenon is not completely periodic. It develops in a range of two
to seven years. Therefore the forecast of El Nifio is a challenging and open
problem among climatologists. What is known as El Nifio is one part of the
El Nifio Southern Oscillation (ENSO) phenomenon. The Southern Oscillation
refers to the variations in temperature of the tropical eastern Pacific ocean and
in air surface pressure in the tropical western Pacific. A warm oceanic phase
comes with a high air surface pressure in the western Pacific (El Nifio), whereas
a cold phase accompanies low air surface pressure (La Nifia). The Southern
Oscillation Index (SOI) shows the mean sea-level pressure difference between
Tahiti and Darwing, Australia [56], and it is commonly used for the detection
and prediction of El Nifio.
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Figure 2.16: Multiclass ROC curve for the SDR classification task.

For illustration purposes, we have chosen a simple model described by a scalar
delay differential equation that mimics most of the observed dynamics of the
ENSO phenomenon [57]. The model considers irregular fluctuations of the
sea-surface temperature, and incorporates the full Navier-Stokes dynamics of
El Nifio events by a suitable chosen nonlinearity. This task was developed in
collaboration with the Potsdam Institute for Climate Impact (PIK), Germany.

Using an equivalent procedure as shown in Section 2.3.1, we set a reservoir
computer to predict the ENSO time series using the Mackey-Glass nonlinearity
with parameters 1 = 0.5,y = 0.05, 7 = 80, p = 1, and N = 400. We have scaled
the signal (zero mean and unit variance) and averaged the data monthly. To
perform cross-validation we split the resulting time-series in 4-noncontinous
smaller segments, i.e. three for training and one for testing or 4-fold cross-
validation.

To measure the goodness of prediction, we use the Normalized Root-Mean-
Square Error (NRMSE) which shows how effective a mathematical model pre-
dicts a time-series. The NRMSE is written as

_ |1 Yo (i — yi)?
NRMSE = \/ETy) 2.9)

where m is the number of time steps in the time series, 7 is the predicted time
series and v is the original time series.

We show in the upper panel of Figure 2.17 a sample raw-signal of the modeled
SOI. The lower three panels show two curves each. In blue, the normalized
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Table 2.3: Area under the ROC curve for each class.

Digit | AUC

0 0.9999
0.9878
0.9999
0.9967
0.9999
1.0000
0.9999
0.9999
0.9667
0.9944
average | 0.9916

® 9 O Ul kW N e

]

time-series of the delay-action model [57] and in red, the reservoir computing
predicted (one-point ahead) time-series. From top to bottom, we present one-,
three- and six-month predictions, respectively.

For one-month prediction, i.e. the reservoir is predicting the value of the vari-
ation in temperature for the next month, we computed a (NRMSE + SD) of
(0.02551 +0.00001). As the prediction horizon increases, the error rises due to its
accumulation during previous predictions. We found a (0.07542 + 0.00034) and
(0.24 £ 0.000129) NRMSE for predictions of 3 and 6 months, respectively. The
errors reported are mostly caused by the fast oscillations in the time-series. This
indicates that the occurrence of El Nifio, characterized by the slow oscillation,
can be predicted with a lower error rate.

2.3.3 Modelling: NARMA10

In time series prediction, the dependence of a current value to previous ob-
servations is commonly assumed. This dependence is very well captured in
the autoregresive-moving average (ARMA) models [58]. For the autoregressive
(AR) part, ARMA considers a time series that depend on its lags values. These
models also take into account that an event happening at time t causes mod-
ifications in the dynamical state of the system at time near to instant t. This
accounts for the moving-average (MA) part of the models. These models have
been used as benchmark tasks in machine learning for prediction tasks. The
nonlinear version of ARMA models (NARMA) [59] has been used in reservoir
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Figure 2.17: El nifio estimation for 1,3, and 6 months.

computing [40, 60]. The NARMA receives an input time series u that consists
of scalar random numbers from a uniform distribution in the interval [0, 0.5].
Usually a number at the end of the model identifies the degree of autoregression,
e.g. NARMA10 or NARMAS3O refer to the number of steps that the model is
recursive. For this example, we employ a NARMA10 model which is defined as

9
Yier = 03ye + 0,05y Y yii| + 1.5ue 15 + 0.1 (2.10)
i=0

In this equation, yi. represents the target of the reservoir. The time series 1
is preprocessed with a mask as described in Section 2.1.1 and then fed to the
nonlinear node. The mask in this task consists of a binary mask with values of
{=0.1,0.1}. To perform this task correctly, the reservoir needs to have a memory
of at least 10 steps due to the presence of the term u;_o in the above equation.
To perform this task, we provide the reservoir with the input signals u; and the
target signals y.1. The reservoir needs to learn the internal dynamics of the
NARMA10 model having access only to the input and output.

Table 2.4: Comparing NARMA10 performance with results in literature.

Ref. [37]  [60] This thesis
NRMSE | 0.120 0.099 0.0991 + 0.0056

Performance is measure using the NRMSE between the output signal and the
estimated signal.
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The optimal parameters of the Mackey-Glass oscillator to perform this task are:
n =059 =005and p = 1 with N = 400 nodes and therefore a delay time
of T = 80. With these parameters, the reservoir exhibits a good computational
ability (Fig. 2.11). As mentioned before this task needs at least a memory of
10 time steps to be perform correctly. The memory capacity of this particular
configuration of the reservoir was shown in Fig. 2.12 where more than 15 time
steps are kept in the memory of the reservoir.
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Figure 2.18: NARMA10 time-series. In blue is the original time-series while
in red is the estimated one. The upper panel show an estimation during
training and the lower is computed during evaluation (4-fold CV).

Figure 2.18 shows the original NARMA10 time trace (in blue) and the estimated
trace (in red) during two phases of the learning. The upper panel shows a
signal used during training whereas the lower panel shows the signal used for
evaluation in a 4-fold cross-validation scheme.

We achieve a competitive performance, as indicated by the NRMSE values in
Table 2.4

2.4
Exploration of Reservoir’s features

In this section we explore some of the characteristics of a delay-coupled system
when serving as reservoir. The way we perform the tasks described before
followed a typical path but, what happen when we change this path? Are there
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important consequences from these changes? Let us start with the initial state
of the reservoir.

2.4.1 Initializing reservoir’s states

When a reservoir starts to receive an input signal the typical configuration is to
initialize the delayed states to a fix point of the function. This ensures a steady
behavior of the system. Although we initialize the reservoir states at a stable
point when an input is injected, it causes a jump in the dynamics, followed by
a period of time (transient time) in which the dynamics is dominated by the
input sampled points. This can be seen as a kind of transient of the transients
caused by the input. This means that there are some cycles of length 7 that
might be not useful for the task. One may consider to disregard a few rows
of every state matrix S to avoid this issue loosing some information from the
beginning of the input signal. This drawback is illustrated in Figure 2.19 for
one digit of the SDR task described in Sec. 2.3.1. The digit contains 65 time
steps, each one expanded to a 400 hyper-space. The left panel of the figure
shows the response of the reservoir. In its leftmost part, one can see how the
response of the nonlinearity rises from the initialization state (zero state) to the
real dynamics of the perturbations induced by the input. The first T corresponds
to the initializing vector that in this case is a zero vector. The right panel of Fig.
2.19 shows the transfer function of the Mackey-Glass system for p = 7. The
arrows show the transition from one delay time 7 to the next one. As in the
left panel, we can observe how the dynamical state of the reservoir is modified
by the input signal until it reaches a point where the reservoir operates for the
classification task.

After processing the last sample of the input signal, the reservoir dynamics
relaxes back to a steady point. Then it is ready to start to process a new input.
The phenomenon observed in Figure 2.19 is then repeated in every state matrix.

Going back to brain dynamics, the brain does not go to a steady state before
processing a new sensory signal. We do not pretend to emulate the exact brain
dynamics but some questions can be posed in this matter: what happens when
the reservoir is initialized at a different state?, e.g. the transient dynamics of the
previous input signal, and how this change affects the performance?

Let us illustrate this using the spoken digit recognition task described in Section
2.3.1. We use the optimal set of parameters previously found for this task,
except for n = 0.65 and y = 0.1 to avoid a zero error rate. As a database,
we utilize the 500 samples with a 20-fold CV. This will result in an optimistic
absolute performance, but we are not interested in the overall performance of
the reservoir but in the relative performance. As before, we employ the Mackey-
Glass nonlinearity.
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05 Operating point ¢4,
4

reservoir response
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Figure 2.19: Left panel: Reservoir response to a spoken digit of 65 time

steps. The delayed states of the reservoir were initialized at the zero fix-

point. The dynamics induced by the input is thus found after 6 delay loops.

Right panel: The transfer function of the Mackey-Glass system. The arrow

show the transition from one delay time to the next one. For visualization
purposes not all the delays are shown.

We executed the task 10 times for both cases: the typical initial condition at the
steady state for each input and the initial conditions based on the transient of
the previous input.

Table 2.5: Comparison of the WER between a reservoir initializing at a
steady point and a reservoir initializing at the previous input transient
state.

Steady point Previous input transient
WER + s.em. 0.019 +0.001 0.019 £ 0.001

Results in Table 2.5 show no statistical changes among the evaluated cases.
Results are presented as the word error rate (WER) with the standard error of the
mean (s.e.m.). This could mean that the reservoir is able to extract information
from these transients of transients or that the information of the input signal
contained in the beginning can be disregarded. The consistency in the results
is related to the generalization property (Section 2.2.2). This property modifies
the delayed dynamics of the NLN using random numbers to identify a fix
sequence that is common for all the inputs. Although the way of measuring the
generalization property and the way the reservoir operates to build the states
matrices are different, in both cases, we are studying the statistical differences
when the system is initiated at a point different than the fix point.
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CHAPTER 2. DELAY-BASED RESERVOIR COMPUTING

2.4.2 Quorum sensing: subsampling reservoir’s states

What occurs when, for a certain reason, we can not access all the nodes of the
reservoir to make the readout? Will the implicit redundancy of information of
the network be enough to perform a task?

Let us consider the scenario of an experiment where we have a very large
reservoir but we have limitations to read the state of every single node, i.e.
we only have access to a portion of the reservoir. In 2009, Nikoli¢ et al. [46]
made multi-electrode recordings from a cat primary cortex and analyzed the
evolution of stimulus-related information in the spiking activity of an ensemble
of 100 neurons. They used different stimulus signals constituted by letters of
the alphabet and were able to decode them from the recordings using machine
learning algorithms. In this case it is clear they can not have access to the whole
primary visual cortex network. So, in the case of our reservoir, how this scenario
affects the performance?

10" .
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+ portion of reservoir
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o
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Figure 2.20: Quorum sensing of the reservoir. The blue curve represents a

reservoir with the indicated amount of nodes while the green curve repre-

sents a reservoir of 400 nodes where the portion of nodes indicated in the
x-axis is readout.

Utilizing the optimal configuration for the SDR task, we evaluate the perfor-
mance of the reservoir due to a certain number of the total amount of virtual
nodes. Results are shown in Figure 2.20 as the average of ten executions of the
task. In each execution a certain number of virtual nodes is randomly chosen
to be part of the state matrix. Vertical bars denote the s.e.m. The blue curve

60



2.4. EXPLORATION OF RESERVOIR’S FEATURES

represents the WER when all virtual nodes are accessed and used for readout.
The green curve represents the WER of the portion of the reservoir that is used
in the readout. In this case, the full reservoir is constituted by N = 400 virtual
nodes. The blue curve is systematically higher than the green one, i.e. it is better
to sample a portion of a large reservoir than having a smaller reservoir. Note
that the green curve makes in average 5 misclassifications (out of 500) when it
reads 200 virtual nodes, which is a good result considering that it is reading
half of the total information in the reservoir. But why a reservoir of 200 nodes
performs worse? This might be due to the redundancy of information in the
reservoir. The system contains all the information of the input signals, but this
information might be reducing the degrees of freedoms of the state matrices.
Partially eliminating the information of some nodes (still memory on the sys-
tem) can solve this problem allowing the reservoir to perform better. A solution
for the blue case is to optimize a mask that reduces this dependency. Coming
back to our question in the beginning, a reservoir that can not access the total
amount of its nodes, performs worse than the one that does. However, it still
can have a good performance.

In the next chapter we explore the performance of reservoir computing for the
solution of a time-consuming real-life medical task.
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Chapter 3

Classification of heartbeats using
reservoir computing

The implementation of theoretical concepts that work well with real data al-
ways represents a challenge. In this chapter a real-life time-consuming problem
is presented as an attempt to use reservoir computing in the classification of
heartbeats. International guidelines are followed for the evaluation and com-
parison of classification algorithms in cardiology. The chapter starts motivating
the problem followed by a simple description of the cardiovascular system.
The database, a well-known dataset in cardiology, is described in the upcoming
section. The logistic regression learning process, different than what is usually
utilized in RC, is explained and then results and conclusions are presented.

3.1
Motivation to the classification of heartbeats

Cardiovascular disease (CVD) is the first cause of death and disability all around
the world. In the Western world, it accounts for 24% of all deaths globally [61].
Only in the EU the economic cost is about 196 billion euros per year [62]. How-
ever, the term CVD accounts for many heart-related diseases, some of them
can threaten the life of the patient such as some kind of arrhythmias, ischemia
and strokes are among the most dangerous. The risk of suffering CVDs in-
creases with age, smoking, obesity, low physical activity, high blood lipid levels,
hypertension and diabetes [63, p.18-19]. Therefore, there is a strong positive
relationship between reduction of low density lipoprotein cholesterol (LDL-C)
and the frequency of CVDs [64]. The most widely used test to study heart-related
diseases, as a first diagnose, is the electrocardiogram (ECG). During more than
one half of a century, the ECG has been a powerful and irreplaceable tool in the
exploration and diagnostic of cardiovascular diseases. Its acquisition requires
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only simple and low-cost devices with a minimum impact on the patient. The
ECG is an essential diagnostic tool for common pathologies such as myocardial
ischemia [65, 66], arrhythmia and other rare pathologies as cardiac muscular
dystrophy or Brugada syndrome [67]. These advantages have made the ECG a
preferred tool used in clinical environments and outside by the use of portable
devices such as the Holter monitor. Continuous monitoring in medicine has
given physicians the ability to collect hours and days worth recordings of phys-
iological signals, involving physicians in a time-consuming analyzing process',
where the time for diagnosis increases with the amount of available data. Re-
alistically, a physician can hardly study each heartbeat, but rather gives a look
to the whole time series searching for anomalies in the waveform of the ECG.
Therefore, a reliable automatic classifier of heartbeats can reduce the time of
diagnosis considerably and serve as a relevant tool in a clinical environment.

Several computational algorithms have been proposed to automate the process
of ECG classification. The usual ECG classification solution includes a multistep
procedure. A first step of detecting the heartbeat, usually done by a QRS detec-
tor algorithm, such as the Pan Tompkins method [68]. A second step requires
features extraction, transforming the raw signal to meaningful quantities, such
as the ECG morphology [69], the duration of different intervals on the ECG wave
[70], the separation of landmarks on the waveform among several heartbeats
[69, 70], coefficients of transformation of the original signal, etc. Most of the cur-
rent algorithms rely on a good feature extraction to achieve good performance.
However, this step can be time consuming due to the different waveforms and
the fact that pathological beats not always clearly show the landmarks needed
for the extraction of features. The last step of the processing represents the clas-
sification itself. This step consists of distinguishing the different types of beats
to be classified. Many authors have already studied the heartbeat classification
problem using several different techniques, such as self-organizing networks
(SON) [71], self-organizing maps with learning vector quantization (SOMLVQ)
[72], linear discriminants (LD) [73, 74], signal modeling (SM) [74], support vector
machine (SVM) [75, 76], discrete wavelet transformation (DWT) [77], Bayesian
artificial neural networks (BANN) [78], local fractal dimension [79] and delay
differential equations (DDE) [80], obtaining different performance measures.
Comparing results is difficult though, because of the different measures that
were used, as well as the different partitions of the available data into training,
testing and validation subsets. In 1987, the Association for the Advancement of
Medical Instrumentation (AAMI) published a guideline for grouping heartbeat
types into classes [81] and for evaluating the performance of algorithms [82].
Unfortunately, very few investigators have utilized these standards, making
the direct comparison of results and the identification of pros and cons of the
different methods difficult.

!In 24 hours, a Holter monitor can record over 100 000 heartbeats from one patient.
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In the following sections, we present a especially designed reservoir computer
for the classification of cardiac arrhythmia that adopts the guidelines of the
AAML

3.2
Some generalities about the cardiovascular system

The main function of the cardiovascular system is to guarantee a continuous
flux of life-sustaining blood to organs and cellular tissue in the body in order to:
i) provide oxygen and nutrients, ii) evacuate the metabolic products generated
during organ’s activity, and iii) transport hormones. This system is constituted
by a pump organ, the heart, and a continuous and closed network of pipes that
allows the transport of blood, the vascular system. Figure 3.1 shows the heart and
the vascular system in what is known as the cardiovascular system.

The heart sits in the middle of the chest (slightly to the left), behind the breast-
bone and between the lungs, in a moistened chamber protected all round by the
rib cage. The exact location of the heart can vary from one individual to another
due to the shape of the diaphragm and the heart’s size. The organ speeds up and
slow downs automatically in response to nerve signals from the brain according
to how much the body is being exerted. Normally, the human heart contracts
and relaxes between 70 to 80 times per minute.

The human heart is divided in four chambers (see Figure 3.2). The two superior
chambers are known as the atria, right and left atrium?. They are responsible
of receiving blood from the vascular system and ejecting it to the ventricles.
The two inferior cavities, the right and left ventricle, are in charge of ejecting
blood to the vascular system. The right ventricle pumps blood to the lungs for
the exchange of gases, while the left ventricle pumps most forcefully, pumping
blood to every corner of the body. The ventricles are separated of the atria by the
atrioventricular valves. The tricuspid valve separates the right atrium from the
right ventricle, while the mitral valve separates the left cavities. The function of
these atrioventricular valves is to avoid the return of the blood to the atria once
the blood has been ejected to fill the ventricles. In a similar way, the sigmoide
(pulmonary and aortic) valves avoid the return of blood to the ventricles once
it has been ejected to the pulmonary arteries and the aorta.

The mechanics that characterizes the pumping function of the heart can be
divided in two intervals: systole and diastole. The first refers to the ejection
of blood from the cavities and the second to the interval of relax of the heart
when the cavities are being filled of blood. This mechanic function of the

ZPositions are named from the point of view of the heart and not from the observer.
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Figure 3.1: The cardiovascular system. In red it is the blood that goes out

from the heart to other organs, usually carried by arteries. In blue, it is the

blood that turns back to the heart. It is usually carried by veins. Image by

LadyofHats, Mariana Ruiz Villareal licensed under Public Domain via Wikimedia
Commons.

heart is the consequence of the electrical activation of the myocardial muscle or
myocardium. To fulfill its function as a pump, the myocardium is composed of
two different tissues:

1. The conduction or nodal tissue is constituted of specialized cells with
properties of excitation, conductance and automatism. These properties
allow a regular and spontaneous generation of electrical impulses and
their organized transmission throughout the myocardium.

2. The contractible tissue occupies most of the cardiac muscle and also has
excitation and conductance properties. However, as a difference to the
nodal tissue, it is composed of muscle fibers that are able to contract.
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Figure 3.2: Anatomical structure of the heart. The two atria and the two
ventricles are the four chambers of the heart to fulfill its role as a pump.
Image licensed under CC BY-SA 3.0 via Wikimedia Commons.

3.2.1 The cardiac cycle and the ECG

The depolarization and re-polarization processes of the cardiac structures are
represented on the ECG as a sequence of deflections or superpose waves to
a zero potential line, named isoelectric line. The morphology of these waves
depends on two fundamental aspects: i) the anatomical structure that gives
origin to the electrical impulse, i.e. the sinoatrial node, and ii) the conduction
sequence through the myocardium.

Bachmann's
bundle

Sinoatrial node

Atrioventricular

His bundle
node

Left posterior
bundle

— Purkinje

Right bundle fibers

Figure 3.3: Isolated heart conduction system. Image created by Angelito7,
distributed under the Creative Commons Attribution-Share Alike 3.0 Unported
license.

67



CHAPTER 3. CLASSIFICATION OF HEARTBEATS USING RC

The cardiac cycle has its origin when the autonomous nodal tissue at the sinoa-
trial node (located on the upper wall of the right atrium, see Figure 3.3) de-
polarizes giving rise to a wavefront. This wavefront travels along the atria
via the Bachmann’s bundle provoking their contraction (atrial systole) and the
ejection of the contained blood. The electrical atrial systole is detected in the
ECG as the P-wave shown in Fig. 3.4. The atrial re-polarization is represented
by the Ta-wave (not shown), and its direction is opposite to the P-wave. In
general the Ta-wave is not visible on the ECG because it coincides with the
QRS complex which has a higher amplitude. The wavefront then reaches the
atrioventricular node, the unique electrical connection between the atria and the
ventricles, which delays the impulse for about 100ms and then the wavefront
travels through heart muscle cells specialized for electrical conduction known
as the Bundle of His. The Bundle of His goes until the lowest part of the heart
(the apex) where the electrical path bifurcates in two branches, right and left.
Each branch activates a ventricle throughout the Purkinje fibers, what causes the
depolarization of the ventricles (ventricular systole) at a paced interval. Electri-
cal systole of the ventricles begins at the beginning of the QRS complex (Figure
3.4). The ventricles have a large muscle mass compared to the atria, so the QRS
complex usually has a much larger amplitude than the P-wave. Using the same
electrical paths, the heart recovers (re-polarizes) starting from the ventricles,
what is shown in the ECG as the T-wave. For the interested reader on ECG
analysis, we refer to [83].

Figure 3.4: Typical ECG trace. P wave represets the atria depolarization,

QRS complex takes place at ventricular depolarization and T wave rep-

resents ventricular repolarization. Image created by Agateller for Wikipedia,
Public Domain.

3.2.2 Registration of the electrical activity of the heart
The flux direction and the amplitude of the electrical currents generated by

the depolarization and re-polarization processes of the myocardial cells can be
registered by electrodes positioned at the surface of the thorax. The analysis
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of this electrical activity is considered the main technique for the diagnosis
of cardiovascular diseases and constitutes a fundamental tool for monitoring
cardiac activity. In this section a brief introduction about the relation between the
potentials registered at the surface of the body and the cellular action potentials,
and the way to register them, is given.

Cardiac electrogenesis and the origin of the vectocardiogram

In the external surface of the membrane of each excited cell, two different po-
larities can be observed in each side of the activation front: a depolarized zone,
negatively charged, and an adjacent positive zone (ready to be depolarized).
These two zones constitute a dipole that can be represented, at a time ¢, by a
vector of an electric field 7. The direction of the vector depends on the anatom-
ical axis of the cardiac fiber and its amplitude depends on the action potential
associated to the concerned cell. The same applies to the re-polarization process,
where the dipole has similar direction, but reverse, and amplitude.

The Standard Limb Leads

Standardization

0.1mV

? 120° (’mu y
9
" / i \ P A T
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Left Leg Bipolar limb leads - >

d unipolar >

I:m% leads

Figure 3.5: The vectocardiogram with Einthoven limb leads and Einthoven
triangle. The Einthoven triangle is an approximate description of the lead
vectors associated with the limb leads. Image under CC license.

Since the thorax is a conductor volume, the electrical potentials are propagated
from the surface of the heart to the surface of the body. However, the tho-
rax is an anisotropic, irregular, and dynamical conductor volume that avoids
a uniform propagation and causes distortions on the superficial electrical field.

69



CHAPTER 3. CLASSIFICATION OF HEARTBEATS USING RC

The approach of Einthoven [84] represents a simplification of the problem. It
is based on the notion of an equivalent cardiac dipole and it supposes that an
instantaneous cardiac vector can be estimated at any time ¢ by the vectorial sum
of all instantaneous elementary vectors associated to the active cells in the my-
ocardium. It is also suppose that this vector is equivalent to the vector observed
at the surface of the body. The alignment and direction of the instantaneous
cardiac vector represent those of the cardiac activation front and its module de-
pends on the quantity and type of active cells at time t. This scheme is known as
the vectocardiogram (Fig. 3.5). A representation of the mean electrical activity
in the time interval [t;, t,] (or mean cardiac vector) can be computed by a simple
vectorial sum of instantaneous cardiac dipoles on the interval.

The Einthoven limb leads or standard leads can be defined as (see Fig. 3.5):

Lead I: V[ = (DLA - CDRA (31&)
Lead II: VH = CDLL - CDRA (31b)
Lead III: VIH = (DLL - CDLA/ (31C)

where ©@ represents the potential at the particular location and V the voltage of
the lead. Following Kirchhoft’s law the lead voltages are related by

Vi+ V="V, (3.2)

hence only two of the three are independent.

Aumented and precordial leads

By averaging the measurements of electrodes RA, LA and LL, one gets the so-
called Wilson’s central terminal Vyy [85]. The augmented limb leads aVR, aVL
and aVF (F refers to the left leg) use the same electrodes for the limb leads but
they use Wilson’s central terminal as the negative pole, such that

aVR = RA - %(LA +LL) = %(RA — Vi) (3.3)
aVL = LA — %(RA +LL) = %(LA ~ V) (3.3b)
aVF = LL - %(RA +LA) = %(LL — V). (3.3¢)

The augmented leads are represented in blue in Fig. 3.6.

In the transverse (horizontal) plane Wilson et al. [86] introduced 6 electrodes
(V1,Vy,..., V) located in the left part of the chest. These six electrodes act
as positive pole and are referenced with the Wilson’s central terminal as the
negative pole. Their positions are shown in red in Fig. 3.6.
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ITI

aVF

Figure 3.6: Augmented (blue) and precordial (red) leads. Image by Npatchett
licensed under CC BY-SA 3.0 via Wikipedia.

Currently the 12-lead ECG is the standard way of registering and reporting these
signals for an international interpretation. The 12-lead ECG is composed by the
limb leads (I,II,1II), the augmented leads (aVR,aVL,aVF) and the precordial
leads (V1, V3, V3, Vy, Vs, V). A standard 12-lead ECG report (Fig. 3.7) shows
2.5 seconds of the trace in each lead. These traces are commonly arranged in a
3 x 4 grid. In the first column are the limb leads whereas augmented leads are
represented in the second column. The last two columns show the six precordial
leads. An extra row in the end is sometimes added to include a longer trace of
one particular case. In Fig. 3.7, limb lead II is shown during 10 seconds.

Modifications of leads

The 12-lead configuration is the most used in clinical environments, however
some modifications are used for particular applications. When recording an
ECG, the signal is usually distorted by muscular movements, respiration and
electrode artifacts, e.g. the transpiration of the patient. Mason and Likar (1966)
[87] suggested to reduce the distortion due to muscular activation by placing
electrodes in the shoulder and hips instead of the arms and leg. This is the
most important modification to the limb leads and are known as Modified
limb (ML) leads. In ambulatory recordings, as well as Holter monitoring, the
limb electrodes are usually placed in the surface of the thorax instead of the
extremities.

Additional electrodes might be added to the 12-lead configuration for specific
diagnostic purposes. For instance, right sided precordial leads might help to
study pathologies of the right ventricle.
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3.2.3 Cardiac arrhythmia

Problems in the normal rhythm of the heart, known as cardiac arrhythmias, occur
when the electrical impulses originated at the sinoatrial node are transmitted
faster or slower than normal or they do not follow the usual electrical path. Fast
beating of the heart (more than 100 beats per minute) are called tachycardia
whereas slow beating (less than 60 beats per minute) is known as bradycardia.
These numbers always depend on the physical activity and fitness status of the
subject.

There are four main types of arrhythmias. Two of them are named according to
the location where they occur: ventricular arrhythmias occur in the ventricles
while supra-ventricular usually occur in the atria. The other two are extra beats
and bradyarrhythmias.

Arrhythmias are due to problems with the electrical conduction system of the
heart [88] (Section 3.2.1) and the usual but not unique test for diagnosis include
the ECG and the Holter monitor.

Ventricular fibrillation or tachycardia, two kinds of arrhythmias, are life-threatening
and require immediate therapy with a defibrillator. Other type of arrhythmias,
the most common ones, are not life-threatening but require therapy to prevent
further problems such as cardiac failure or cardiac arrest [89]. These are the
kind of arrhythmias we are interested to detect in this chapter since the early
diagnosis might prevent serious damage to the myocardium.

In the next section, a description of the arrhythmia database used in this appli-
cation is presented.

72



3.3. DATA BASE DESCRIPTION

3.3
Data base description

We employ the MIT-BIH Arrhythmia Database [90] available at Physionet which
contains 48 ambulatory ECG recordings of half hour each, obtained from 47
subjects studied by the Massachusetts Institute of Technology (MIT) and the
Beth Israel Hospital’> (BIH) Arrhythmia Laboratory between 1975 and 1979.
Twenty-three recordings were selected at random from the whole BIH database
including a mix population of inpatients (about 60%) and outpatients (about
40%). The remaining 25 recordings were selected to include less common but
clinically significant arrhythmia that would not be well-represented in a small
random sample. The recordings were digitized at 360 samples per second with
11-bitresolution over a 10mV range. Two cardiologists independently annotated
every heart beat in each record.

Each record was obtained using two leads, denoted as lead A and B. In 45
recordings lead A is the modified limb lead II (MLII) described in Section 3.2.2,
and for the other three is V5 (See Section 3.2.2). Lead B is represented by V1 in
40 recordings, and is either lead II, V2, V4 or V5 for the rest of recordings.

The database includes 15 different heartbeat types that are shown in table 3.1.
This table also shows the mapping of the 15 heartbeat types into the 5 classes
recommended by the AAMI guidelines. In agreement with these guidelines,
the four recordings containing paced beats were removed from the database.
See Tables A.2 and A.3 of Appendix A for the direct mapping of heartbeats
annotations in the MIT-BIH arrhythmia database into the AAMI recommended
classes. This appendix contains technical information of the database.

For this study, we followed the database division used by De Chazal, et al. [73]
in which the database was divided into two datasets containing approximately
the same amount of heartbeats and a mixture of routine and complex arrhythmia
recordings. The first dataset (DS1) is used to train the classifier, while the second
dataset (DS2) is used for testing. Neither record can belong to both datasets,
i.e. they are mutually exclusive. The corresponding identification of records
included in each dataset can be consulted in Table A.1 (Appendix A).

To perform heartbeat classification, the ECG signals were down sampled to half
of its sampling rate (360Hz) and divided into heartbeats using a fixed-length
window of 170 samples around the R-peak (see Fig. 3.4). This particular point of
the ECG is annotated in the database. The window was positioned around the
maximum peak of the QRS complex to extract the waveform. Seventy samples
before the R-peak were extracted to include P waves, and 100 samples after
the R-peak were also included to have information about the T wave and the

3Currently Beth Israel Deaconess Medical Center
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Table 3.1: Heartbeat types included in the MIT-BIH arrhythmia database and their mapping into the AAMI heartbeat

classes
AAMI label N S \Y F Q
Any heartbeat not in Supraventricular Ventricular Fusion Unknown
Description S, V, For Q classes ectopic beat ectopic beat beat beat
normal beat atrial premature beat premature ventricular  fsion of ventricular and paced beat
(Nor) (aP) contraction (PVC) normal beat (fVN) (P)
left bundle branch aberrated atrial ventricular escape fusion of paced and
block beat (LBBB) premature beat (aaP) (VE) normal beat (fPN)
MIT-BIH right bundle branch nodal (juntional) Unclassified beat
heartbeat types  block beat (RBBB) premature beat (nP) U)
atrial escape beats supraventricular
(Ae) premature beat (SP)

nodal (junctional)
escape beat (NE)
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duration of the heartbeat. Each heartbeat time trace was then normalized with
respect to the full ECG signal to have mean zero and variance one. Since anormal
heartbeat lasts about 700ms, using a time window of 170 samples include these
kind of heartbeats and other arrhythmic heartbeats that can last longer than the
normal. Figure 3.8 shows the mean of the heartbeats of random subjects per
AAMI class.
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Figure 3.8: ECG traces of the mean of the heartbeats of random subjects. In
all cases the R-point is located at sample 70. The SD is shown as a shade of
the average heartbeat.

In the next section we describe the particularities of our approach. We start by
describing the learning process and then we provide a description of the setting
of the reservoir.
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3.4
The learning process: Logistic regression

The learning process (Section 1.1.2) is the mechanism of the reservoir to learn
how to perform a task. In standard RC, it is common to use linear regression
methods for this purpose. However, for this particular task we employ a logistic
regression learning process. The logistic regression (LR) [91] is a widely used
learning technique in biostatistical applications in which binary responses occur
quite frequently, e.g. in questions such that a condition is present or absent. LR
is specified in terms of logit transformations, defined as

logit(P) = In(odds) = In (%) (3.4)

where the odds represent the ratio of the probability P that an event will occur
to the probability that the same event will not occur. In the logistic regression,
the aim is to linearly relate the logit function with the data D finding the values
of parameters a and b that satisfy

logit(P) = a+ bD. (3.5)

Consequently, the results can be directly interpreted as the probability of a
condition to be true or false according to the following equations

ea+bD

P = m. (36)

The shape of this function is depicted in Fig. 3.9 and it is known as the logistic
function.

Note that logit functions are linearly related to the data D (Eq. 3.5), but the
probabilities are nonlinearly related to the data D (Eq. 3.6). This is an advantage
since in classical linear models it is usually assumed that the outcomes are
independent and normally distributed with equal variance. These assumptions
are often inadequate in medical applications due to redundancy in the data.

The LR model is well distinguished from linear regression and other types of
binary regression analysis by the way the probability of a particular sample is
linked to the classifier (Eq. 3.5). Besides, the conditional probability p(y|x) of the
classifier is a Bernoulli distribution rather than a Gaussian distribution (linear
regression), because the dependent variable is binary. In this way, we recognize
the logistic regression as a type of generalized linear model (GLM)* [92] with
the logit function as its link function.

%A possible point of confusion is the general linear model that may be viewed as a special
case of the GLM with identity link function and normally distributed responses.
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Figure 3.9: Logistic distribution function.

3.4.1 Estimation of logistic regression coefficients

Note that both the probabilities and the regression coefficients are unobserved,
and the means of determining them is not part of the model itself.

The regression coefficients are usually estimated using maximum likelihood
estimation [93]. This is done using an iterative process that searches the co-
efficient values that best fit the data. Some numerical iterative methods in-
clude: iterative reweighted linear least squares (IRLS) [94] or more commonly a
quasi-Newton method such as the limited-memory Broyden-Fletcher-Goldfard-
Shanno (L-BFGS) [95, 96]. The problem with iterative processesis that they might
not converge. If this is the case, then the coefficients are not meaningful. Failure
to converge may indicate a large ratio of predictors to cases, multicollinearity,
sparseness or complete separation [93]. The iterative process is usually subject
to regularization conditions (Section 1.1.2) that seek to exclude unlikely values.
Due to the iterative nature of these methods, there is a control parameter to be
adjusted that refers to the tolerance to errors of the method and how good a new
solution has to be in order to be accepted as an improvement.

To ensure that the learning process fully uses all the information included in
the input, we reshaped the state matrices (Section 2.1.2) with dimensions M X N
to another matrix with dimensions (M-N) X 1. This modification provides a
fine adjustment of weights. In the previous chapters when we used linear
regression, the total number of weights was the same number of nodes (N). In
our modification of the LR, the total number of weights to be computed is the
number of observations times the number of nodes of the reservoir (M - N). This
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is not a requirement, but we have chosen this methodology for a fine adjustment
of each feature of the input signal.

3.5
Classification of heartbeats using logistic regres-
sion

To perform this classification task, the Mackey-Glass nonlinearity is used as the
NLN of the reservoir. The exponent p is chosen to be p = 7, since we expect
that a high nonlinearity will be beneficial for separating classes while not much
memory is required (See Section 2.3.1). We follow a similar procedure than the
one described before for the diagnosis of learning algorithms (Section 1.2) with
some adaptations to be suited to medical applications.

3.5.1 Results and discussion

The heartbeats to be analyzed in this task (see for instance Fig. 3.8) contains an
abrupt change of trend at the QRS complex. The transitions caused by the QRS
complex can be observed using a similar plot to the one utilized for the SDR task
(Right panel of Fig. 2.19). In Figure 3.10, the Mackey-Glass transfer function for
p = 7is depicted inred. Arrows show the path followed by the input to reach the
operating point. In blue, we show the path when the reservoir is initialized at
the zero state, whereas in magenta we show the path when the reservoir starts
using the transient of a previous heartbeat. The operating point lies around
~ 0.72. This figure shows an approximate position of Q, R and S points. It can
be observed that the QRS complex causes the NLN to create transients that go
outside the transfer function curve during few delay loops. When the NLN goes
back to the transfer function, it is far from the operating point and needs several
delay loops to go back to that point. Similar to what we observed in Section
2.4.1 we found that these transients dynamical paths are used by the reservoir
as a feature to distinguish instances in a classification task.

We now proceed to build the model complexity curve. Since we have already
set the degree of the nonlinearity, we only need to evaluate the number of
virtual nodes needed for a proper heartbeat classification using DS1. To do so,
we compute the error rate (ER), i. e. the number of misclassified heartbeats
over the total number of heartbeats, for different number of virtual nodes. We
utilize logistic regression as the learning process with a tolerance to errors of
107%. As usual, two error rates are computed: the training and the testing ER.
To perform cross-validation, we used a patient oriented scheme consisting in
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Figure 3.10: Mackey-Glass transfer function and the ECG path. Arrows

show the path followed by the input signal. In blue, the path when the

reservoir initializes at zero, whereas in magenta when it initializes at the
transient of a previous input signal.

training with k — 1 patients, where k is the total number of patients in DS1, and
leaving one out. This is equivalent to the leave-one-out (Section 1.2.2) CV but
considering patients instead of samples. The training error rate is the rate of
misclassifications over k — 1 patients used for training. The testing error is then
the ER over the patient that was taking out during the training phase. Figure
3.11 shows the ER as a function of the number of virtual nodes.

For a number of nodes less than 25 the classifier suffers a high bias problem.
This scenario is recognized because both ERs, training (dash line) and testing
(continuous line), are high. In contrast, for a number of nodes greater than
25 the classifier suffers a high variance problem noticeable by the low training
ER and the high testing ER. High variance problem means that the reservoir is
overfitting the training data and it is not capable to generalize. For 25 virtual
nodes, we found a trade-off between these two problems indicating the optimal
number of nodes. The gap between the training and testing ERs at this point
indicates a high variability of ECG morphology that could be, in principle,
reduced by increasing the number of samples. Looking at Table 3.2 however,
we see that the number of samples is sufficient. Therefore, the gap between the
two ER curves is due to the variability in the morphology of the heartbeats that
it is different for different subjects. The DS1 dataset contains only 22 recordings
from different patients causing a gap between the ERs at the optimal point.
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Figure 3.11: Model complexity. Dependence of the training (dashed line)
and testing (continuous line) error rates as a function of the number of
virtual nodes in the reservoir.

This indicates that our approach is sensitive to the number of subjects. In what
follows, a total number of 25 virtual nodes are used for the reservoir.
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Figure 3.12: Test Error Rate as a function of parameters n and y. The
exponent p was chosen to be p = 7. We choose as optimal parameters to run
the reservoir n = 0.8 and y = 0.5.

We now explore the dependence of the testing ER with the Mackey-Glass (Eq.
2.4) system’s parameters 1 and y using DS1 with patient-oriented CV. The
parameter space 1 — ) is shown in Figure 3.12 in a logarithmic color scale.
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In this figure it can be noted that a good performance of the reservoir is obtained,
for a high value of the feedback strength n and a relative high value of the input
scaling. When using parameters 7 = 0.8 and y = 0.5, it results in an error rate
of ~ 8%. In order to illustrate the influence of parameters 1 and y, we have
plotted a state matrix at different values of 1 and y for comparison. Results
are shown in Fig. 3.13. All state matrices correspond to the average normal

a) b)

120 1201

100 100+

80 80F

60 60 -0.4

40 40 -0.6

Figure 3.13: State matrix for different values of nand y. In a), n = 0.4 and
y =0.2. Inpartb),n=0.3and y = 0.8. In partc), n = 0.8 and y = 0.5, and
finally part d) has values of n =1.2and y = 1.2.

heartbeat (Class N) shown in Fig. 3.8. To interpret these matrices, it must be
remembered that the vertical axis represents the time steps of the ECG signal
with the R-point at sample 70 and the horizontal axis represents the state of
the virtual nodes in the reservoir. Color scale is the same for the four matrices.
Figure 3.13.a) illustrates the fact that for this combination of parameters the
reservoir highlights the QRS complex skipping the information in the rest of the
ECG signal. In part b), the reservoir starts to extract information around the
QRS complex and still highlights the points around Q and S while the R-point
has low meaning. Waves P and T start to have significance in the state matrix.
Figure 3.13.c) is at the optimal configuration of the reservoir to perform this
task. In this case, the R-point is not highlighted but the surroundings of the QRS
complex receive higher intensities than before. In addition, another important
point (shown in blue), corresponding to the inflection point between the P-wave
and the Q-point of the ECG. The last state matrix, Fig. 3.13.c), shows a saturation
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on the values of the ECG features. Error rates for this kind of matrices are high.
In the upcoming computations, the parameters 7 = 0.8 and y = 0.5 were used.

To compare the performance with other published results is a difficult task.
One of the difficulties is due to the definition of classes without considering the
recommendations of the AAMI. Another problem is related to the measures of
performance computed and the equivalence among them. Here, we compute
the most common ones for comparison purposes.

In our approach, we use the AAMI guidelines which prompt to combine the
heartbeat types (see table 3.1) into five classes, namely, N, S, V, F and Q. Classes
can contain more than one heartbeat type. Class N refers to normal beats, class
S is the supra-ventricular ectopic (SVEB) class. A ventricular ectopic (VEB) class
is known as class V, while class F represents fusion of ventricular and normal
beats. The last class, class Q, contains the unclassified beat in the database.
For performance reasons, the AAMI recommends to compute some measures
that focus on the ability of the algorithm to distinguish VEB from non-VEB, and
SVEB from non-SVEB. In Fig. 3.14 we show the measures as they are defined by
the AAMI for the evaluation of arrhythmia detectors. In the remaining of the
chapter, the measures are computed using DS2. The results, shown in Table 3.3,
are giving as recommended by the AAMI and characterized by a high accuracy
(Acc > 97%) and low false positive rate (FPR < 2%). Some of the performance
measures were not possible to determine due to zeros in the denominator. In the
last row of this table, we compare our results with the best performance reported
by De Chazal et al. [73] using feature extraction and linear discriminants (LD).
Although their approach is different to the one described here, they utilize the
same database configuration.

Note that the AAMI recommended measures focus the attention on the classifi-
cation of ventricular (VEB) and supra-ventricular beats (SVEB). Table 3.4 shows
the results obtained using the AAMI guidelines for class definition but consid-
ering a multi-class scenario, i.e. considering the 5 possible classes which is a
more clinically significant scenario.

In order to compute performance measures for each class, we separate the multi-
class confusion matrix into binary confusion matrices. Then, measures such as
sensitivity, specificity, accuracy and precision are computed using the typical
definitions, see Section 1.3.

Table 3.4 shows the performance of our system per class. In our approach
all measures are higher than 84%. Sensitivity is particularly significant for
clinical use since it accounts for the percentage of true positive samples that
were classified correctly, i.e. the percentage of arrhythmic heartbeats that were
actually detected by the reservoir computer. It is worth to remember that for
this database no preprocessing or feature extraction were made over the signal,
so a raw, noisy ECG waveform is being used for training and classifying. Table
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Figure 3.14: Binarized measures of performance to (a) discriminate VEB from non-VEB, (b) SVEB from non-SVEB and
(c) the five heartbeat classes. The measures correspond to those described in Section 1.3. The colored cells represent

the groups that are important in each measure.
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Table 3.3: Performance measures (in %) recommended by the AAMI for the
evaluation of classifiers. Measures are calculated using DS2.

number of beats SVEB VEB
Rec N S v F Q| Acc Se Prec FPR| Acc Se  Prec FPR
(%) (%) (%) (%) || (L) (L) (P (%)
100 2239 33 1 0 0196 939 795 04 | 100.0 100.0 100.0 0.0
103 2082 2 0 0 0196 500 125 03 | 1000 - - 0.0
105 2526 0 41 0 51972 - 00 28 || 999 951 1000 0.0
111 2123 0 1 0 0197 - 0.0 03 || 100.0 100.0 100.0 0.0
113 1789 6 0 0 01971 833 89 28 | 1000 - - 0.0
117 1534 1 0 0 0973 1000 24 2.7 | 100.0 - - 0.0
121 1861 1 1 0 0195 1000 3.6 15 | 100.0 100.0 100.0 0.0
123 1515 0 3 0 0196 - 00 04 || 999 66.7 1000 0.0
200 1743 30 826 2 0993 744 209 06 | 996 988 100.0 0.0
202 2061 55 19 1 099 800 803 05 | 998 737 100.0 0.0
210 2423 22 195 10 0] 980 818 286 1.8 || 994 923 1000 0.0
212 2748 0 0 0 01995 - 00 05 [|1000 - - 0.0
213 2641 28 220 362 0| 973 786 227 25 || 997 955 1000 0.0
214 2002 0 256 1 298 - 00 02 || 995 955 1000 0.0
219 2082 7 64 1 01939 8.7 45 6.0 || 994 812 100.0 0.0
221 2031 3% 0 0978 - 00 22 | 93 9.0 1000 0.0
222 2274 209 0 0 0197 58 e6l6 33 (1000 - - 0.0
228 1688 3 32 0 0946 1000 32 54 | 993 961 1000 0.0
231 1568 1 2 0 019.0 1000 31 20 | 999 50.0 100.0 0.0
232 398 1382 0 0 0873 813 1000 0.0 | 1000 - - 0.0
233 2230 7 831 11 0972 984 484 28 | 990 964 100.0 0.0
234 2700 50 3 0 0195 840 560 12 | 1000 66.7 100.0 0.0
sum 44258 1837 3221 388 7
average 974 845 244 18 | 998 877 1000 0.0
Ref
[73] 946 759 385 47 || 974 777 819 12
3.4 also shows the average performance reported by De Chazal et al. [73]

and Llamedo et al. [74] using DS1 for training and DS2 for testing. Reported
performance was computed using their confusion matrices and separating them
into binary matrices to be consistent with our way of computing performance.
De Chazal et al. [73] used feature extraction and linear discriminants (LD) to
construct an automated heartbeat classifier. Although several configurations of
the database were considered, we compare our results with those of the best
performance classifier. Unlike De Chazal et al., Llamedo et al. [74] utilized
feature selection and signal modeling in order to build their classifiers. They
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Table 3.4: Results for the multi-class classification problem using the AAMI
guidelines for class grouping. Comparison with other methods using DS2.

Class Sensitivity ~Specificity Accuracy  Prec

(%) (%) (%) (%)

N 96.82 91.89 96.28 98.98

S 79.37 96.93 96.28 49.80

\Y% 96.06 99.97 99.71 99.49

F 92.26 99.97 99.91 95.47

Q 57.14 100.00 99.99 100.00
average

This thesis 84.83 97.75 98.43 88.75

LD [73] 65.95 96.04 94.35 45.57

LD/SM [74] 83.33 93.67 89.00 58.25

used several databases, including the arrhythmia MIT-BIH database, however
modifying the AAMI guidelines. They discarded AAMI class Q arguing that it
is marginally represented in the database. They also merged AAMI classes F
and V into a ventricular class (V). Llamedo’s work is the first attempt to classify
heartbeats across databases.

In this case and using the approach described in this chapter, the resulting per-
formance of our designed reservoir computer is higher than those in literature
using the AAMI guidelines and the MIT-BIH Arrhythmia database.

Table 3.5: Confusion matrix for the AAMI-classes classification problem
using DS2

Predicted samples

N S Vv F

42852 1406 O 0

379 1458 0 0
53 60 3094 14
10 4 16 358

Q 0 0 0 3

Known samples
mo< »n Z
B~ o o o o0

Table 3.5 shows the multi-class confusion matrix of DS2 using the 5 AAMI
classes. This table provides information on the misclassification of the different
classes and serves as the base for future comparisons.
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3.6
Conclusions

In this chapter, the RC technique was adapted to study the open problem of
automatic classification of heartbeats with cardiac arrhythmia. The adaptation
includes a learning process known as logistic regression that is capable of pro-
viding the probability that a heartbeat belongs to a particular class. For the
MIT-BIH arrhythmia database, no additional pre-processing or feature extrac-
tion of the ECG signal was needed. Only the usual masking was applied to the
input signal to build the input matrix I. Our approach requires an approximate
position of the R-point to lock the time-window that serves to separate the heart-
beats. An extension to a different database that do not have annotations relative
to the R-point will require a computationally inexpensive QRS detector. Since
there is no feature selection step in our algorithm, the classification is based only
on the morphology of the heartbeat.

The drawback of our approach is that the modifications to the way of training
the logistic regression (transformation of the state matrices into vectors), that
provide a fine setting of the weights, also come with a constrain: the heartbeats
must be time-locked one respect to the other. In our approach we did this by
locking the R-point at a particular position of the time window. A generaliza-
tion of our approach to consider for instance heartbeats of people at rest and
while doing exhausting physical activity will need to deal with the problem of
adapting the size of the time window. The solution to this issue might come
from registering the R-R interval, which is the interval of time between two
consecutive R-points in the ECG.

The final configuration used in this classification task uses a reservoir computer
that still suffers high variance problems due to the variability in the heartbeat
wave morphology among the different subjects. This high variance problem
might be diminished including more subjects in the database.

In this chapter, we presented how reservoir computing can identify significant
features in the input signal for the classification of ECG signals with cardiac
arrhythmia. Our results show that the QRS complex is not the most important
feature to consider, but the information in its surroundings. Supra-ventricular
arrhythmia occurs before the QRS complex while ventricular occurs during
and/or soon after it.

We employed international standard recommendations to group heartbeat types
into five classes and several performance quantities were computed. Despite
the different criteria mentioned in this work to facilitate comparisons with other
studies, we consider that using the AAMI guidelines and balanced datasets for
training and testing are essential for comparing algorithm performance among
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research teams. Our results on classifying VEB from non-VEB and SVEB from
non-SVEB are very promising and are equivalent to those reported in literature.

For a more clinically relevant application, we performed a multi-class classifica-
tion with results that indicate an average specificity of 97.75% with an average
accuracy of 98.43%. Sensitivity and precision reach an average of 84.83% and
88.75%, respectively. Giving the significance of sensitivity in clinical applica-
tions, our results are equivalent to the best previously reported results. Part of
the results presented in this chapter was recently published in the article:

M.A. Escalona-Moran, M.C. Soriano, I. Fischer, C.R. Mirasso. Electrocardiogram
classification using reservoir computing with logistic regression. 1EEE J. Biomedical
and Health Informatics, 19, issue 3, pp. 892-898, (2015).

The implementation described in this chapter highlights the potential of the
reservoir computing technique in the heartbeat classification problem and the
hidden computational power contained in a single node reservoir subjected to
delay feedback. The results reported in this chapter were obtained using a single
ECG lead. The analysis of additional leads could provide a better understanding
of the relevance of each lead for a proper heartbeat classification.
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Chapter 4

Multivariate delayed reservoir com-
puters

Estimation and classification of multivariate time series has become a manda-
tory task in many fields of science including neuroscience, genetics, economy,
communications technology, social sciences and others. If the generating system
is deterministic, it may be possible to reproduce or approximate the dynamics
of the system with a constructed model. According to the Takens embedding
theorem [97], a single variable of a multivariate time series is sufficient to recover
the underlying dynamics, given that the variables are coupled. However, due to
noise and other factors, this might not apply for real data and time series estima-
tion and classification might benefit from the use of additional measurements
[98]. In this chapter, we explore the benefits of using multiple data measure-
ments for time-series prediction of the Lorenz attractor and for the classification
of electrocardiographic signals. We present numerical simulations showing that
the use of multiple variables or data measurements can significantly improve
prediction and classification, when using a delayed reservoir computer.

4.1
Time series estimation: the Lorenz system

The prediction of chaotic time series is a demanding task due to the sensitive
dependence on initial conditions and the intricate geometric structures of the
corresponding chaotic attractors. In the this example, we consider time series
generated by the Lorenz system [99] described by

x = oy—x),
= x(p-2)-y, (4.1)
z = xy-pz.
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In our particular case, we choose parameters ¢ = 10, p = 28, and g = 8/3.
Figure 4.1 shows the dynamics of the Lorenz system. The left panel shows its
3D representation while the right panel shows a portion of the time series used
in the left panel. Notice that when the system is in one lobe of the 3D attractor
x and z are positively correlated and when the system is in the other lobe x and
z are negatively correlated.

-20

-15
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Figure 4.1: The left panel shows the lorenz attractor. The right panel shows
part of the time series used in the left panel.

In order to perform the time series estimation, different numerical realizations
of the Lorenz system are computed using random initial conditions and an
integration time step of At = 0.01. Then the time series are down-sampled by
a factor 20, resulting in a final sampling step of 0.2. For our analysis, each time
series has a final length of 10° points. It is worth mentioning that results shown
in this chapter are for the above mentioned length of the time series since results
are dependent on the signal’s length.

To build the estimator, 25 time series were generated from Eq. system 4.1 using
different initial conditions and evaluated in a 25-random-fold cross-validation.

Asitis typical in RC, a linear regression method is used to computed the weights
of the virtual nodes. For this task, 400 virtual nodes were used to capture the
dynamics of the system. We consider two cases: univariate and multivariate
estimators. In the univariate case, the mask contains two values {—0.01,0.01}
assigned randomly to the corresponding virtual nodes. In the case of time series
prediction using two variables of the Lorenz system as input to the reservoir, the
mask then contains three different values {-0.01,0.0,0.01} assigned randomly
following a proportion of [30,40,30]% respectively. Note that the mask is a
matrix of dimensions 2 X N in the case of 2-dimensional input signals.

We use the Mackey-Glass nonlinearity (Eq. 2.4) with exponent p = 1 since it
allows for a long fading memory in the reservoir (described in Sections 2.2.4 and
2.3.2), which is important in the context of time series prediction.
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For the prediction of the Lorenz time-series, the parameter 1 is chosenas ) = 0.45,
after exploring the parameter space n — y and finding a good performance for
this parameter value. To measure the accuracy of our prediction, we compute
the Normalized Mean Square Error (NMSE) which is an estimator of the overall
deviations between predicted and measured values. The NMSE is defined as,

NMSE = 1 Y (targety — input)®
m o> (te)

were m is the number of samples in the time series: input represents the original
input signal and target is the predicted time series. ¢ denotes the standard
deviation (SD).

, (4.2)

Time series prediction is often performed using a single variable since other
variables are usually hidden or not accessible. However, we will show below
that if one has access to other variables of the system, the prediction could be
significantly improved. For the Lorenz system, we concentrate on the variables
x and y since they move between the two wings of the Lorenz strange attractor.

4.1.1 One-step prediction

In this section, we estimate the upcoming value of a time-series A based on two
cases: In the first case, we use variable A to estimate its own evolution, i.e. the
target of the reservoir is the same time series shifted, in this case, by one time
step (see left panel of Fig. 4.2). The second case is to use variable B to estimate
variable A (right panel of Fig. 4.2). By shifting the target time series by one, the
reservoir learns how to predict the next (future) point in the time series given
the current (present) point. We use the scheme depicted in Fig. 4.2 to perform

variable A: input variable B: input
time

\ time
variable A: target ‘—a—e—‘—o variable A: target H—a—‘—’

time time

Figure 4.2: Univariate one-step prediction scheme. The target time series is
shifted by one time step. The input and target time series might belong to
different variables of the system (right).

univariate one-step prediction of the Lorenz system. As variable A we take the
x variable and as variable B we take the y variable.

We study two scenarios: the first one being the case in which variable-x time trace
is used for training and testing. The second scenario considers the time series
of y to predict x. It is worth to remember that during the testing phase the time
series of variable x are different than the time series used for training, since they
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Figure 4.3: NMSE as a function of y for the estimation of variable x. Green

curve corresponds to the NMSE when using only y variable. Blue curve

corresponds to the NMSE of estimating x when using only x variable. Error
bars were computed as the SD of the 25 different folds.

are produced using different initial conditions. To evaluate the performance,
we use the NMSE, Eq. 4.2. In Figure 4.3 we plot the NMSE of the one-step
prediction task as a function of the input scaling y for the prediction of variable
x. The first case, when variable x is used to predict its own dynamics, is shown in
blue. The second case, where variable-y time series is used to predict variable-x
dynamics, is shown in green. Vertical lines denote the SD.

The first observation is that the results do not depend much on the values of
y (< 1). This highlights the robustness of the results to changes in parameter
values. For y > 1, results degrade since the inputs go far away from the fix-
point (vertical section in Fig. 2.5), provoking dynamical transients that take too
long to return to the resting state of the NLN. This fact could be compensated
by reducing the values of the mask, i.e. re-scaling the input matrix I. As it is
expected, predicting variable x using its own dynamics performs better than
using a different variable of the system, y in this case.

One-step multivariate prediction Let us now consider the multivariate time-
series prediction. In this case, several variables can be used to estimate the
values of a time series. The two-variable case is depicted in Fig. 4.4. Despite we
explore the case of two variables in this chapter, the extension of this problem to
several variables is straightforward. In this section, we study the case in which
variables A and C are equal.

In 1981, Floris Takens showed that one can generically reconstruct a shadow
version of the original manifold of a coupled system simply by looking at one
of its time series projection [97]. The reconstructed manifold preserves essential
mathematical properties of the original system, e.g. the topology of the mani-

92



4.1. TIME SERIES ESTIMATION: THE LORENZ SYSTEM

training

variable A: input
time
e

variable B: input

variable C: target a ° a a

time

time

Figure 4.4: Multivariate one-step prediction scheme. Information from

variables A and B are used by the reservoir to estimate the future value

of variable C. The inputs and target time series might belong to different
variables of the system.

fold and its Lyapunov exponent. The associated method of the Takens theorem
represents a one-to-one mapping between the original manifold and the recon-
structed one allowing us to recover states of the original system by using a single
time series. Then, our first approach of the multivariate estimation task is based
on using several delayed versions of one of the variables of a coupled system.
In this case, variable x of the Lorenz system and its delayed versions, denoted
by x(t — T), are used as input of the reservoir. In this case T represents the delay
time associated to the Lorenz strange attractor.

In the reservoir scheme that we are using, i.e. ring topology with delay feedback,
the dynamical degrees of freedom for delay systems are distributed along the
reservoir’s delay line. Due to the feedback of the reservoir, the delay line of an
input sample affects the nonlinear node response of the following input sample
creating an intrinsic memory in the system, the so-called fading memory (Section
2.2.4).

According to Takens theorem, we could reconstruct the dynamical states of a
coupled system using one of its variables and its delay versions. Could we
get better performance in the estimation of a chaotic time series by using delay
versions of variable x? Is the intrinsic fading memory of the reservoir playing an
important role in the estimation task? In Fig. 4.5 we show a scheme of a reservoir
with recurrence (left), e.g. ring topology with feedback, and a reservoir without
recurrence (right), i.e. no feedback. This means that the transients generated by
previous input samples are not re-injected into the nonlinear node eliminating
the intrinsic memory of the reservoir.

We perform numerical simulations under two different conditions: our normal
configuration of the NLN as stated in Eq. 2.4 (Fig. 4.5, left), and a reservoir with
no feedback, i.e. x(t — 7) = 0in Eq. 2.4 (Fig. 4.5, right).
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reservoir with recurrence reservoir without recurrence
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Figure 4.5: Left: reservoir with recurrence, i.e. as it has been used in all this
thesis. Right: reservoir with no recurrence, i.e. the transient dynamics of the
previous input samples do not affect the dynamics of new input samples.

F X with feedback
F X no feedback

0 5 10 15 20
delay steps (n)

Figure 4.6: NMSE for different delay steps for a reservoir with feedback
(blue line) and another reservoir with no feedback (red line). Error bars
were computed as the SD of the 25 different folds.

Figure 4.6 shows the NMSE for the prediction of variable x with and without
feedback using x and a delayed version of x, i.e. x(t —nT) with T being the delay
time associated to the Lorenz system. Note that the simulations are always
using two variables (x(t) and x(f —nT)) and not the accumulation of all the delay
versions of x. The horizontal axis represents the number of points, 1, taken
for delay, i.e. 0 means x(t — 0T), 1 means x(t — 1T), and so on. In the case of
x(t —0T) = x(t) a univariate estimation is performed to avoid the determinant of
the observable matrix to be zero in the learning process (Section 1.1.2). In red we
plot the results for a reservoir with no feedback, whereas in blue is the NMSE
for our standard configuration of the reservoir, i.e. with feedback. We observe
that the NMSE in the standard configuration (blue line) is consistently lower
than the reservoir without feedback. Interestingly, it can be seen that the NMSE
when using x(t) with delay feedback (blue curve at n = 0) is comparable to the
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NMSE when using x(t) and x(t — T) without feedback (red curve at n = 1). This
means that the intrinsic fading memory caused by the feedback of the reservoir
already includes equivalent information than the one carried out by x(t — T).

Prediction with a different variable Could the introduction of variable y add
essential information to the prediction of x? In Fig. 4.3, we showed that y
predicting x yields relatively large prediction errors. But what if we estimate
variable x from the combination of x and y? In Figure 4.7, it is shown that the
NMSE significantly reduces with respect to Fig. 4.3, reaching values of around
1077 for y < 1. When comparing the results of predicting variable x using x time
trace (Fig. 4.3, blue) and using x and y traces (Fig. 4.7, red), it can be seen that
the NMSE is reduced by about three orders of magnitude. It is worth noting that
the prediction shown in Fig. 4.3(blue) can also be improved if a delayed version
of variable x is given as an input to the reservoir (blue line in Fig. 4.7). However,
in this case, including x and y variables is more significant than including the
variable x and its delayed version.
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v
Figure 4.7: NMSE as a function of y for the estimation of variable x. Red
curve corresponds to the NMSE when using x and y variables. Blue curve
corresponds to the NMSE of estimating x when using x and x(t—1) variables.
Error bars were computed as the SD of the 25 different folds.

4.1.2 Multistep prediction

To substantiate our results further, we compute the prediction error of x for more
than one time step ahead. An scheme of the two-step prediction task is shown
in Fig. 4.8. Predicting more than two steps ahead means to shift the target signal
by the amount of steps to be predicted.
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Figure 4.9 shows the NMSE as a function of the number of predicted points.
Two curves are shown: the univariate and the multivariate curve. It can be
observed that the NMSE remains below 1% (horizontal-dashed line) up to 11
predicted points ahead for the multivariate case (blue curve), i.e. when using
both x- and y-variable time series to estimate the x variable. When using only
the time series of variable x (red curve), i.e. the univariate case, only 7 points
ahead can be predicted within the same error bounds. Therefore, the prediction
of x is clearly improved when both x and y variables are presented as input to

variable B: input e
time

variable A: target 0 ° ° °

Figure 4.8: Univariate two-step prediction scheme. The target time series is
shifted by two time steps. The input and target time series might belong to
different variables of the system.

time

the reservoir.

Time series prediction is one of the most common tasks in machine learning as
well as classification tasks. In the next section we present an extension to the

96

0.1 o
. 4\//* + e N
e ke
0.0 prmmm e x’( 777777777777777777777777777777777777777777 ]
W 0.001 AT e
(é) . ,,4/:xx
Z  0.0001 F ]
;
1e-05 ]
1e-06 F | ]
1e-07 & ! ‘ ‘
0 5 10 15 20

points predicted

Figure 4.9: NMSE as a function of the predicted steps for the variable x.

Red curve (plus signs) corresponds to the NMSE of x when using only its

own time series. Blue curve (stars) corresponds to the NMSE of x when

using both x and y time series. Error bars were computed as the SD of the
25 different folds.



4.2. MULTIVARIATE ARRHYTHMIC HEARTBEAT CLASSIFICATION
WITH LOGISTIC REGRESSION

Table 4.1: MIT-BIH Arrythmia database recording names used for training
(DS1) and testing (DS2) datasets. Records in gray do not contain precordial
lead V1 and are extracted from the datasets.

Dataset MIT-BIH Arrhythmia record names
DS1 101,106, 108, 109, 112, 114, 115, 116, 118, 119, 122,
124,201, 203, 205, 207, 208, 209, 215, 220, 223, 230.
DS2  100,103,105,111,113, 117,121, 123, 200, 202, 210,
212,213,214, 219, 221, 222, 228, 231, 232, 233, 234.

real-world classification problem described in Chapter 3. We apply a similar
multivariate analysis to study the classification of ECG signals when a single or
two channels are taken into account to classify healthy and pathological subjects
with a delay-based reservoir.

4.2
Multivariate arrhythmic heartbeat classification with
logistic regression

This task consists on the classification of heartbeats from the MIT-BIH Arrhyth-
mia database. The univariate classification problem is described in detail in
Chapter 3.

In the following, we choose the MIT-BIH Arrhythmia Database [90] which con-
tains 48 ambulatory ECG recordings of half hour each, in order to test our
methodology with this real-world problem. For this multivariate classification
task, at least two channels of the ECG are required. The most common channel
in the database is the modified limb lead IT (MLII), present in 41 recordings. This
is the lead used in Chapter 3 for the univariate case. The second most common
channel is the precordial lead V1 (See Section 3.2.2) present in 37 recordings.
Thus, we constrain the database to 37 recordings in order to include these two
channels for our multivariate analysis. Table 4.1 shows the records of the train-
ing and testing datasets. Records in gray do not contain the precordial lead V1
and were extracted from the databases. These records are part of the univariate
case developed in Chapter 3.

As before, the ECGs were down-sampled and divided into heartbeats using a
fixed-length window of 170 samples locking the R-peak at sample 70. Each
heartbeat was normalized with respect to the full signal to have zero mean and
variance one. Figure 4.10 shows the beginning of an ECG of a normal subject.
Both, MLII and V1 channels are represented. Blue vertical lines represent the
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position of the R-peak. The N in the plot means that the heartbeats are normal.
Note that in V1, the R-point causes a negative deflection because it lies in the
perpendicular plane of the limb and augmented leads plane, see Fig. 3.6.
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Figure 4.10: ECG traces of the two main derivations, namely MLII and V1,
for a normal subject. Vertical lines represent the position of the R-peak.
Figure taken from Physionet.org

In this application, we use logistic regression (Section 3.4) for the learning pro-
cedure.

For the classification of the heartbeats, we again utilize the Mackey-Glass non-
linearity with delay feedback as the reservoir with the same configuration de-
scribed in Chapter 3. We have numerically checked that, for this task, the
optimal number of virtual nodes is 25 (see Fig. 3.11 and its analysis).

In Chapter 3, Fig. 3.12, we have also explored the parameter space of the
Mackey-Glass model finding a richer dynamics on the state matrices for n = 0.8
and y = 0.5. In addition, we choose parameter p = 7 in Eq. 2.4, because for this
value the NLN exhibits a short memory and a high degree of the nonlinearity,
which we believe is more convenient for a classification task.

For a clinically-relevant, univariate, multiclass, heartbeat classification problem
of 44 subjects from the MIT-BIH Arrhythmia Database the average performance
of the classifier is shown in Table 3.4. However, and in contrast to Chapter 3, we
construct the classifier from two channels, namely the MLII and the V1 channels.
These two channels are only available for a reduced set of patients (37 subjects),
leading to a smaller usable database and a degradation in performance, due to
the high variability problems of the classifier (see Fig. 3.11 and its analysis).
Table 4.2 shows the typical measures of performance (average along all classes)
of the classifier for the univariate and multivariate case for the restricted database
containing both derivations. The classification for a single channel is performed
using channel MLII alone (37 subjects). Then a combination of channels MLII
and V1, denoted as MLII-V1, is used to build a multivariate classifier. It can
be observed that the sensitivity increases about 9% when using two variables
in comparison with the case of one variable. De Chazal et al. [73] reported an

98



4.3. CONCLUSIONS

improvement in accuracy of 7% in a multivariate configuration of their approach
to solve this classification task.

Table 4.2: Performance of the classification of ECGs using one or two
channels.

Channel Sensitivity (%) Specificity (%) Accuracy (%) Precision (%)
MLII 76.15 97.82 98.02 78.15
MLII-V1 84.87 97.92 98.36 88.67

The accuracy is a global estimator that was not specially affected by the inclusion
of another channel in the inputs. However we can see that the sensitivity, i.e.
the ability of the classifier to recognize the positive cases, was improved by the
inclusion of channel V1.

As discussed in the analysis of Fig. 3.11, this task is particularly sensitive to the
number of records in the database because the classifier suffers of a high variance
problem. Reducing the number of records from 44 to 37 causes a degradation in
the performance, e.g. sensitivity drops from 84.83 to 76.15. It is worth noting that
when using the combination MLII-V1 the sensitivity rises to comparable values
of the full usable database. For future comparisons, we provide the confusion
matrices of the two cases discussed in this section. Table 4.3 shows the confusion
matrix of the classifier when using MLII over 35 subjects. Table 4.4 shows the
confusion matrix of the classifier when using the combination MLII-V1. Note
how despite the improvements shown in Table 4.2, the associated confusion

matrix for MLII-V1 performs worse in the recognition of the ventricular class
(V).

More tests have to be done to verify the usefulness of including more channels
into the reservoir. For example, maybe including only V1 would perform better
than including MLII. We leave the completion of this task as a future work.

4.3
Conclusions

In this chapter we have numerically shown the ability of reservoir computing,
based on delay-coupled systems, to perform time series prediction and classi-
fication tasks following a multivariate analysis. We have concentrated on two
tasks, the prediction of a chaotic time series, given by the Lorenz system, and
the classification of heart beats, obtained from ECG derivations.

99



CHAPTER 4. MULTIVARIATE DELAYED RESERVOIR COMPUTERS

Table 4.3: Confusion matrix for the AAMI-classes classification problem
using MLII (37 patients) over DS2

Predicted samples

N S \Y F Q
35265 1623 O 0 0
306 1465 26 0 0
1

0

1

38 53 3114 11
9 4 16 359
0 2

Known samples
O m < »w Z

Table 4.4: Confusion matrix for the AAMI-classes classification problem
using MLII-V1 over DS2

Predicted samples
N S \Y% F
35706 1182 0 0
294 1503 0 0
79 115 2991 32
8 4 12 364
0 0 0 3

Known samples
o m < » Z
B~ o o o o0

For the one-step prediction task of the Lorenz system, we found a significant re-
duction (~ 3 orders of magnitude) of the normalized mean square error (NMSE)
when using two variables to predict one, than when using only one variable.
Moreover, we found that the NMSE remains smaller than 1% when predicting
11 steps ahead when using the two variables compared to only 7 steps for using
one variable. We expect the results obtained for the well-known Lorenz system
in the chaotic regime to be valid for similar multivariate dynamical systems.

We have also applied the multivariate approach to the classification of heart
beats. We found an improvement of 9% in sensitivity when using two channels
of the ECG as compared to the case when the classification was performed using
a single channel.

Our results highlight that the use of more than one variable can significantly
improve predictions when using reservoir computing techniques [100]. More
tests with real-world data are however needed to explore the full potential of
our approach.
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It is worth noting that the fading memory present in recurrent networks resem-
bles the time-delay embedding in Takens theorem. This fading memory implies
that information about previous inputs is still present in the reservoir after a
number of delay times 7. In the Lorenz time-series prediction case, adding
explicitly a delayed version of the same input does not provide as much in-
formation as adding the y variable. Thus, we find a significant improvement
in the prediction capabilities of reservoir computing when using an additional
variable.
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Chapter 5
Reservoir computing using semicon-
ductor laser dynamics

The amount of information that is generated nowadays not only requires new
paradigms for the solution of difficult tasks but also needs these solution to be
efficient in time. In previous chapters we studied how reservoir computing is
able to solve computational problems that are difficult for standard computa-
tional techniques. Optical computation is an interesting approach to increase
the rates of information that can be processed by a reservoir computer since it
has properties such as high speed, energy efficiency and true parallelism.

In this chapter we perform a thorough numerical study of the performance of
a single-mode semiconductor laser subject to all-optical feedback and demon-
strate how the rich dynamical properties of this delay system can be beneficially
employed for processing time dependent signals. Parts of the content of this
chapter is based on a collaboration published in the article:

K. Hicke, M.A. Escalona-Moran, D. Brunner, M.C. Soriano, I. Fischer and C.R.
Mirasso. Information processing using transient dynamics of semiconductor lasers
subject to delayed feedback. IEEE ]. Selected Topics in Quantum Electronics, 19,
issue 4, 1501610, (2013).

We have implemented the dynamical behavior of a semiconductor laser as the
nonlinear node (NLN) of a reservoir computer for the processing of two tasks:
a classification task and a time series prediction task. The implementation is
depicted in Fig. 5.1. In this figure the general representation of the nonlinear
node (NLN) is replaced by a semiconductor laser dynamics denoted as SL.

Results presented in this chapter were obtained in close collaboration with Kon-
stantin Hicke, specialist in the semiconductor laser dynamics. The numerical
results were complemented by experimental results implemented in hardware,
developed by Daniel Brunner in collaboration with Miguel C. Soriano, showing
the robustness of the proposed scheme. This work was made under the super-
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Figure 5.1: Schematic representation of a reservoir computer using a semi-
conductor laser (SL) as the nonlinear node (NLN) This figure is equivalent
to the general implementation of reservoir computing described in Chapter

2, Fig. 2.1.

vision of Ingo Fischer and Claudio R. Mirasso [8]. The current chapter presents
only the numerical studies associated to the different tasks that were carried out
by the author of this thesis.

5.1

Semiconductor laser rate equations

We consider the following model [101, 102], describing the dynamics of a semi-
conductor laser subject to delayed feedback. It comprises equations for the
slowly varying complex electric field amplitude (in both parallel & and perpen-
dicular polarization direction &, respectively) and the carrier number 7 in the
laser cavity:

&E(t)

&L

10

%(1 +ia) (G)(Ey, 1) — 1) E(E) + 1 &yt — Tec)

Sinj(i’)emwt + Pgn, (51)
—iAQE, (t) + %(1 +ia) (GL(E,n)—y.)EL®D)

KJ_8||(t - Tec) + Pgl, (52)
I(t) 2

— ~Yen(t) — Gi(&,m) &(t)|

G.(EyL,n) |8J_(t)|2 ’ (5.3)

with the gain functions
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Gi(&,n) = g”LnTZ’ (5.4)
1+e€ |8||(t)|
G.Em) = gD (55)

el OF

Here, a is the linewidth enhancement factor, y, are the photon decay rates of
the polarization modes, x|, the feedback rates, 7.. is the external cavity round-
trip time, Aw denotes the detuning between the laser and the optical injection,
AQ is the detuning between &;(t) and & (), I(t) is the time-dependent injection
current, e is the elementary charge, y, denotes the electron decay rate, g, are
the differential gains, nr is the carrier number at transparency and € is the gain

saturation coefficient. |8||(t)|2 and |&.(H) represent the number of photons in
the parallel and perpendicular polarization direction, respectively. The output
power is computed as P = [hc*a,,/ (QugA)] |EF* where h is the Planck constant,
¢ the speed of light, A the emission wavelength, a;,, the facet losses and 1, the
group refractive index. The chosen values for these parameters used for the
simulations are shown in Table 5.1. the model we consider, as well as the ration
of the differential gains, are chosen according to [102].

The spontaneous emission noise is implemented as a complex Gaussian white
noise term Fg in the field equations:

Fgl‘,J_:Fl'l'in, (56)

where the real and imaginary parts are independent random processes with
zero mean

(Fey. (1) =0 (5.7)

and a variance given by
<F5m (O)Fs,. (t’)> = 2By, y.n(H)o(t = t'). (5.8)

By, are the spontaneous emission factors, describing the fraction of sponta-
neously emitted photons coupled into the respective lasing modes.

The delayed optical feedback is modeled for two configurations: polarization-
maintained optical feedback (PMOF) and polarization-rotated optical feedback
(PROEF). For PMOF, with the polarization direction being defined by the axis of
the laser cavity yielding a higher optical gain, the optical feedback goes from
the dominant mode (&) back to itself. For PROF, the feedback goes from the
dominant polarization mode (&) to the weaker polarization mode (&,). For
simplicity we assume that, due to the characteristics of edge emitting lasers, the
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Table 5.1: Laser parameter values used in the numerical simulations.
Parameter Value
a 3.0
VI=7Vi 200 ns™!
i =Ps 10°°
K| =Ky 10 ns™
Tec 80 ns
Aw 0.0
AQ 0.0
Ve 1ns™
g 10° ns™!
g1 8.4-10° ns™!
€ 1077
1.5 ym
Ay 45 cm™!
s 4
nr 1.8-10%
X 0.4
Pjyj 436uW
Lipy 32.0 mA

dominant field component is &;(t) and consequently only the delay term of the
parallel component appears in the equation for &, (). In the case of PMOF the
feedback rate x, is zero and in case of PROF x| is zero. We also assume that
both polarization components have the same frequency, i.e. AQ = 0.

5.1.1 Input signal injection into the laser dynamics
For the injection of an input signal S5(f) we consider two different methods:

electrical injection and optical injection. In the case of electrical injection, the
injection current is modulated with S(t) around a bias current, corresponding to

I(t) = In + X1 S(t), (5.9)
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with S(f) being normalized, the bias current being I, and the signal scaling
Xl Here, Iy, denotes the solitary laser threshold current. For electrical signal
injection, the signal S(t) is positive for all t.

In case of optical injection the signal is injected via &;,i(t). For practical reasons,
and to compare to the experimental implementations (see Ref. [25, 36]), we
assume external modulation of the injected light via a Mach-Zehnder electro-
opticmodulator. The inputis then modeled via an injected power P;,; modulated
with a sine-square function around a mean value P?n]. yielding the signal:

inj inj

Pini(t) = P2+ PS sin? (a%S(t) ; cpo). (5.10)
We set P?n]. = Pjyj/4 and P =3/ 2P;,j so that
Poi(t) = Pi [1 J4+3/2sin (a3 5(0) + @o)] , (5.11)

which means that the injected power is modulated +75% around the average in-
jected power P;,;. For the optical injection, we distinguish between two different
modulation methods. We consider symmetric modulation with S(f) normalized
between +1, 2 = 1 and @) = 7 and asymmetric modulation with S(t) positive,
a=2and ®y =0.

52
Numerical results

In this section we present numerical results obtained from the simulations of
a semiconductor laser subject to delayed optical feedback. We study both
polarization-maintained and polarization-rotated feedback, respectively. For
comparison, we use electrical and optical injection for the input signal. In order
to compare our results with previously reported studies, we elaborate on two
well accepted tasks in the machine learning community: spoken digit recogni-
tion (SDR) and time series prediction. While the former does not require much
memory, and consequently the feedback is expected not to play an important
role, the latter is memory dependent and feedback is expected to be essential.
In our numerical analysis, the reservoir consisted of N = 400 virtual nodes,
resulting in a virtual node spacing of ® = 200 ps (7../N).
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5.2.1 Spoken digit recognition task

We first evaluate the performance of the system for the spoken digit recogni-
tion task. The spoken digit data set consists of five female speakers uttering
numbers from zero to nine with a tenfold repetition for statistics (500 samples in
total) [53]. Before injecting the information into the laser, we perform standard
preprocessing, creating cochleograms using the Lyon ear model [55]. The infor-
mation injected into the laser (5(t)) is given by the product of the cochleograms
(R(t)) and the mask matrix M [8, 30]. For the characterization of the classification
performance, we evaluate the word error rate (WER) as a function of some key
laser parameters and operating conditions. It is important to note that for the
WER evaluation, we choose 20 random partitions of 25 samples each out of the
500 spoken digits, using 475 samples for training the readout weights, keeping
the remaining 25 for testing. Following this procedure, each random partition
and each sample are used exactly once for testing (20-fold-cross-validation).

008 1 11T 17 111 1T 17 1T 1T 17T 1T 7 T 1T T T 717 T T T T T T T T T T

0.9 1 1.1 1.2 1.3 14 1.5
o/ lthr

Figure 5.2: Word error rate (WER) for the spoken digit recognition task
versus the bias current I, for electrical injection. Black circles denote the
results for feedback with parallel polarization (PMOF) for a feedback rate
of k; = 10 ns™!. Blue diamonds are the results for polarization-rotated
feedback (PROF) for a feedback rate of x; = 10 ns™!. Red squares represent
the WER for the case without any feedback. The other parameters were set

as in Table 5.1. Note that the lines are only guide to the eyes.
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Figure 5.3: Word error rate (WER) for the spoken digit recognition task
versus bias current [;, for optical injection. Black circles denote the results for
feedback with parallel polarization (PMOF) with a feedback rate of x| = 10
ns~l. (Red) squares are the results for polarization-rotated feedback (PROF)
with a feedback rate of ¥, = 10 ns™!. (Blue) diamonds are the resulting
word error rates for the case without any feedback. The other parameters

were set as in Table 5.1. Note that the lines are only guide to the eyes.

Our numerical simulations allow us to consider two types of information injec-
tion. We can either inject the input information electrically by modulating the
laser current or optically by injecting an externally modulated optical signal.

Figure 5.2 depicts the WER as a function of the laser bias current for the case of
electrical input injection and for three different feedback conditions, in particular
PMOF (circles in Fig. 5.2), PROF (diamonds in Fig. 5.2) and in the absence of
feedback (squares in Fig. 5.2). We find that the best classification is found for
bias currents around the solitary lasing threshold, independent of the feedback
conditions. For the three feedback schemes, performance with WER of 0.008,
0.008 and 0 for the PMOF, PROF and the laser without feedback, respectively, is
obtained. It is worth noting that bias currents around threshold ensure that the
laser starts its dynamics from a steady state. Interestingly, we find that, for the
semiconductor laser dynamics, the best performance is obtained in the absence
of optical feedback due to the strong nonlinearity of the semiconductor laser.
No significant differences are found between PMOF or PROF conditions in the
case of electrical input injection for bias currents below and close to threshold.
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However, for larger bias currents I, > 1.02I, the PROF configuration performs
significantly better than PMOF.

The classification performance, as function of the bias current normalized to the
threshold value is illustrated in Fig. 5.3 for he case of optical input injection.
We again find that the WER depends on the laser bias current. We observe
that the classification performance is qualitatively similar for PROF (squares
in Fig. 5.3) and in the absence of feedback (diamonds in Fig. 5.3), with even
better WER when compared to the case of electrical input injection shown in
Fig.5.2. In contrast, the classification error for PMOF (circles in Fig. 5.3) increases
significantly above threshold. For optical injection, the classification error is
minimum, reaching a 0 WER, for bias currents slightly below the solitary lasing
threshold independent of the feedback conditions.

5.2.2 Santa Fe time series prediction task

The second task that we tackle is time-series prediction. In this task, we evaluate
the performance of our scheme in predicting the respective next point of a
chaotic time series. We specifically employ data from the Santa Fe time series
competition, data set A [103]. For the evaluation of the prediction error, we take
4,000 data points of this data set, created by a far-Infrared laser operating in a
chaotic regime [104]. We use 75 % of the points for training and 25 % for testing.
The information injected to the laser is given by the product of the samples in
the Santa Fe time-series competition data set A and the one-dimensional mask
matrix M [8, 38].

To characterize the performance of the system for this task, we compute the
normalized mean square error (NMSE, Eq. 4.2) of the prediction, defined as the
normalized difference between the predicted and its target value, and study its
dependence with the laser bias current and the feedback rate. Similar to the
case of spoken digit recognition, we find the performance of the system to be
better over a wider range of laser bias currents when the information is optically
injected. Therefore, we only concentrate on results for optical information injec-
tion in the time series prediction task. This prediction task requires the system
to have memory, i.e. optical feedback is essential for this task.

In Fig. 5.4, we show the NMSE as a function of the laser bias current for two
different values of the optical injection power. The first one corresponds to a
large average power of the injected light, compared to the power of the laser
subject to feedback, ij = 436uW. In this case, the NMSE for the Santa Fe
time-series prediction task is below 0.2 both for PMOF (see squares in Fig. 5.4)
and PROF (see circles in Fig. 5.4) for laser bias currents above threshold, with
a minimum NMSE for PMOF and I, = 1.251, of 0.036 and 0.087 for PROF at
I, = 1.51y,. We also present the results for a smaller average power of the optical
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Figure 5.4: Normalized mean squared error (NMSE) for the Santa Fe time
series prediction task versus the bias current I, for polarization-rotated
feedback with 151-,1]- = 436uW (black circles), polarization-maintained feed-
back with P;,; = 436uW (red squares), polarization-maintained feedback
with Pj,; = 11uW (blue diamonds) and polarization-rotated feedback with
Piyj = 11uW (magenta triangles), respectively. The feedback rates were set
to x; = 10 ns™! and x, = 10 ns™}, respectively, while the respective other
was set to zero. The other parameters were chosen as in Table 5.1. Note that

the lines are only guide to the eyes.

input injection, P;,; = 11uW. In this case we find that for PMOF low prediction
errors are restricted to laser bias currents close to the solitary lasing threshold
(see diamonds in Fig. 5.4), with a minimal NMSE value of 0.164 for I, = Iy,.
The prediction error increases significantly for higher bias currents due to the
onset of delayed feedback instabilities. For PROF and low injection power the
bias current range for good performance is significantly broader (see triangles in
Fig. 5.4) with the minimal NMSE being 0.206 for I, = 1.11y,. The error increases
less with increasing bias current for PROF. In the case of high injection power,
however, the prediction hardly changes with the bias current (above threshold)
for both feedback configurations. On the contrary, the prediction errors strongly
increase for low injection current for both low and high injection powers. This
is because we move far from the nonlinear region of operation of the laser.
Nevertheless, in both cases, competitive prediction errors can be achieved. It is
interesting to note, though, that a larger average optical injection power allows
for a wider range of bias currents providing good performance.
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Figure 5.5: Colour-coded normalized mean squared error (NMSE) for the
Santa Fe time series prediction task as a function of (left) the PMOF feedback
rate x| and (right) the PROF feedback rate x, and different average relative
injected powers Pj, j (y-axis). The bias current was set to I, = 1.011y,,. The

other parameters were chosen as in Table 5.1.
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Figure 5.6: Colour-coded normalized mean squared error (NMSE) for the
Santa Fe time series prediction task as a function of (left) the PMOF feedback
rate x| and (right) the PROF feedback rate x, and different average relative
injected powers Pj, j (y-axis). The bias current was set to I, = 1.18Iy,. The

other parameters were set as in Table 5.1.

As the Santa Fe time-series prediction requires the presence of memory in the
system, we also evaluate in detail the influence of the feedback strength on the
prediction performance. Figures 5.5 and 5.6 present the NMSE, coded in gray
scale, for two different laser bias currents, namely a current close to threshold
(Iy = 1.011,) and a current clearly above threshold (I, = 1.181y,). Furthermore,
we distinguish two different feedback conditions for each laser bias current.
The left panels in Figs. 5.5 and 5.6 are calculated for polarization maintained
teedback (PMOF), while the right panels are calculated for polarization rotated

feedback (PROF).
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In the case of a bias current close to threshold (I, = 1.011,) shown in Fig. 5.5(left),
we find that PMOF yields low NMSE values for feedback rates below x; = 20
ns~! independently of the average power of the injected signal Pj,;, reaching
the minimum value of 0.099. In addition, Fig. 5.5(right) shows that with PROF
and a small bias current the error is almost independent of injection power and
teedback strength. The minimum NMSE value is 0.161 while the overall average
for the considered parameters is 0.201.

In the case of a current well above threshold (I, = 1.181,) shown in Fig. 5.6(left),
we find that PMOF yields low NMSE values for intermediate feedback rates
and high average powers of the injected signal P;,j, with a minimum value of
0.021. Interestingly, an increase in the laser bias current requires an increase in
the average injection power and feedback rate to achieve a low prediction error
in the case of PMOF. This result suggests that a balance between laser emission
power and the average injection power is needed. As shown in Fig. 5.6, PROF
yields low NMSE values (minimum value 0.022) for high average powers of the
injected signal and for large feedback rates.

Overall, the results obtained with the delayed feedback scheme are very com-
petitive compared to traditional reservoir computing techniques. All the so far
presented results have been obtained considering spontaneous emission factor
of 107°. In order to evaluate the influence of different noise levels in more detail,
we discuss in the following section the performance of our scheme for different
spontaneous emission factors.

5.2.3 Influence of spontaneous emission noise

In this section we evaluate the influence of spontaneous emission on the per-
formance of the system for the two tasks described previously. In the case of
spoken digit recognition, we find that the task is extremely robust against spon-
taneous emission noise. As shown in Fig. 5.7, the classification error remains
almost constant up to f = 0.0001, which is two orders of magnitude larger than
a realistic value for the spontaneous emission, both for electrical (circles) and
optical (squares) input injection.

In contrast, in the case of the Santa Fe time-series prediction, the NMSE degrades
already for realistic values of the spontaneous emission. Figure 5.8 illustrates the
degradation on the performance as a function of the spontaneous emission noise
for polarization-maintained (circles) and polarization rotated (squares) optical
feedback. The prediction error increases when the noise term is included in the
numerical simulations, with a gradual degradation at realistic values (8 = 107°)
and a sudden increase at § = 0.0001. The difference in sensitivity originates
from the different nature of the two tasks. While spoken digit recognition is
a classification task which only requires a winner-take-all criterion, time series
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prediction actually requires the precise approximation of a nonlinear transfor-
mation. Furthermore, time series prediction tasks are more sensitive to noise
than classification tasks [38].

5.3
Conclusion

In conclusion, we have studied the computational capabilities of a semicon-
ductor laser subject to delayed optical feedback. Our numerical simulations
highlight the potential and robustness of the proposed scheme. Moreover,
the modeling provides guidelines for the experimental implementation of the
scheme.

We find that this configuration offers, in a hardware implementation, excellent
computational performance with low hardware requirements, high bandwidth,
and low power consumption. The results obtained for the spoken digit recogni-
tion task (WER=0) are better to those obtained with a system based on Hidden
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Figure 5.7: WER for the spoken digit recognition task versus the sponta-

neous emission factor f for electrical (black circles) and optical injection (red

squares), respectively. The feedback rate was set to k), = 0. Bias current

was set to I, = 1.0I,,. The other parameters were set as in Table 5.1. Note
that the lines are only guide to the eyes.
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Figure 5.8: NMSE for the Santa Fe time-series prediction task versus the

spontaneous emission factor g for parallel polarization (black circles) and

polarization-rotated feedback (red squares), respectively. The feedback

rates were set to x = 10 ns~! and x, = 10 ns7}, respectively, while the

respective other was set to zero. The bias current was I, = 1.18Iy,. The

other parameters were set as in Table 5.1. Note that the lines are only guide
to the eyes.

Markovian Models (0.00168) [105] and with a traditional reservoir computing
system (0.005) [106] under similar cross-validation configurations.

For the case of time series prediction, our numerical results of NMSE=0.02 for
both PMOF andPROF configurations, a bias current of I, = 1.25]y, and a high-
power signal injection, are of the order of those obtained with more traditional
techniques (<0.01 [107]), although in the latter additional memory is artificially
added into the input data.

Many parameter dependences and opportunities that this configuration offers
remain unexplored so far. Nevertheless, the given examples represent a spot-
light on the capabilities that this system provides. We expect that the full poten-
tial of this information processing scheme will become practical for photonics
applications.

In addition to highlighting the potential of photonics for reservoir computing
schemes, in this chapter we showed a different nonlinear function other than the
Mackey-Glass system. This highlights the versatility of delay-based reservoir
computing implementations.
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Chapter 6

Conclusions

New trends in information processing require unconventional computing meth-
ods to solve challenging tasks. Along the different chapters of this thesis we
have developed different aspects of delay-coupled systems in an information
processing context.

This research work has served to implement a computational suite for the fast
numerical implementation of reservoir computing. The suite, written in Python,
is able to evaluate different nonlinear function dynamics and the many different
scenarios presented in this thesis, e.g. search of optimal parameters, differ-
ent measures of performance, cross-validation schemes, several learning pro-
cedures, etc. This computational tool is able to run sequentially or in parallel
according to the needs of the task and the available computational resources.

Using the implemented Python module, we studied the computational proper-
ties of a delay-coupled system, emulating the functionality of a reservoir com-
puter. This type of computational paradigm exploits the information contained
in the transient dynamics when the dynamical state of the system is subject to an
external input signal. Among the computational properties of the reservoir, we
studied the intrinsic computational quality that such a computer has, indepen-
dently of the realization of a particular task. These kind of properties highlight
the computational power that a single node system subject to feedback delay
contains. Among these properties, we studied the quality of the computational
kernel and its capacity to generalize. A combination of these two properties was
summarized as the computational ability that a reservoir computer has. We also
explored the memory capacity of the delay-based system. Memory is an intrin-
sic characteristic of systems with recurrence. However, different tasks require
different memory capacities. Not only the memory capacity of the system was
evaluated but also its quality. We found wide range of parameters where the
proposed reservoir computer exhibits good computational abilities. This allows
us to predict the parameter regions were a good performance of the reservoir
is expected. After characterizing the computational properties of the proposed
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reservoir computer, we tested its ability to solve several typical machine learning
tasks, e.g. classification tasks, time-series prediction and system’s modeling.

In terms of classification, we evaluated two main tasks: the spoken digit recog-
nition (SDR), a well-known task in machine learning community, and a world
round medical problem, namely the automatic classification of heartbeats for
the detection of cardiac arrhythmias. For the SDR task, we applied a standard
procedure of machine learning in one of the most difficult classification scenar-
ios. This standard procedure allows to detect posible problems of the reservoir
computer, e.g. bias or variance problems. We used the word error rate (WER)
as a measure of performance. We found a WER of 9.7% using the machine
learning procedure to avoid high variance problems, in which the database was
divided into subsets and optimal parameters were estimated using different
non-overlapping subsets of the database. When neglecting the machine learn-
ing procedure and using the cross-validation method over the full database, our
results (WER~ 0.2%) were equivalent to those reported in the literature under
similar conditions.

We also utilized an especially designed reservoir computer for the automatic
classification of arrhythmic heartbeats. Our approach differs from the typical
learning procedure in reservoir computing, a linear regression, by using a lo-
gistic regression learning algorithm that provides the probability that a certain
heartbeat belongs to a particular target class. This learning method is widely
used in biostatistics where binary answers are expected, such as a condition is
present or absent. The approach presented in this thesis requires computational
inexpensive pre-processing of the ECG signals since it is based on the morphol-
ogy of the heart’s electrical activity. For comparison purposes, the guidelines
of the Association for the Advancement of Medical Instrumentation for the
evaluation of arrhythmia detector algorithms were followed. In order to avoid
overfitting of the reservoir, we implemented a patient-oriented cross-validation
method similar to the k-fold cross-validation but leaving out all the heartbeats
from a patient instead of the k samples. Our results show improvements over
previously reported performance under similar conditions of evaluation and
using the same database. For instance, in a clinically relevant configuration
of distinguishing the 5 classes of heartbeats in the database, we computed an
average sensitivity of the reservoir to detect arrhythmias of 84.83%, more than
one percent higher than the best configuration of previous reports.

By inspecting the state matrices that the reservoir produced, we were able to rec-
ognize which parts of the ECG were relevant for the classification. We realized
that, for this particular task and dataset, the QRS complex was not as relevant
as its surroundings for the classification of arrhythmias. This procedure, com-
bined with the L1-regularization (that sets to zero the weights of the reservoir
that are not relevant to perform the task), might be used as a feature selection
method for this task. The use of an inexpensive pre-processing of heartbeat
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signals combined with the fast processing of the reservoir computer leads to a
real-time solution for the classification of cardiac arrhythmias.

The second widely explored family of tasks in this thesis was the time-series
prediction tasks. We evaluated the performance of the reservoir for two different
cases: the prediction of temperature variations that indicate the development
of El Nifio events, and the prediction of chaotic time-series given by the Lorenz
system.

The first task consisted in the prediction of El Nifio phenomenon using the
Southern Oscillation Index (SOI) which gives an indication of the development
and intensity of El Nifio or La Nifia events in the Pacific Ocean. The data for
this task was obtained from a model described by a scalar delay differential
equation that mimics most of the observed dynamics of the phenomenon. In
collaboration with the PIK, a reservoir computer was set to estimate the temper-
ature changes that provoke El Nifio in a prediction horizon of 1, 3 or 6 months.
We computed the NRMSE and found errors of about 3, 8 and 24%, respectively.
The errors reported are given for the estimation of the full temperature changes
that are described by fast oscillations in the temperature trends. However, the
occurrence of El Nifio phenomenon is described by slow oscillations that were
predicted by our approach even for the 6-month prediction horizon.

We also evaluated the prediction capabilities of the reservoir computer by esti-
mating chaotic time series. We used the well-known Lorenz system operating
in a chaotic regime. We performed the estimation using two different inputs to
estimate the future values of variable x of the Lorenz system. When the time
trace of variable x is used to predict another time trace of the same variable
from different initial conditions, we found a NMSE of about 10~%, whereas when
using variable y to estimate variable x the error was of the order of 10~%. For
this case, we see that using the same variable yields better results than using a
different variable of the system. The introduction of several variables of a sys-
tem as inputs in the reservoir computer was considered to evaluate its influence
in the performance. For the time-series estimation task of the Lorenz system,
the combination of the time traces from variables x and and its delay version
x(t —nT), with n as the number of delay embedding steps and T as the time step
of the Lorenz system, were used. In this case better results, than those obtained
when using only the time series of x, were obtained. However, when estimating
the values of variable x from the combination of variables x and y, the NMSE
are about three orders of magnitude lower than when using the delay version of
variable x. These two multivariate examples of time-series estimation already
indicate that the reservoir computer is able to extract relevant information con-
tained in the other variables of the system.

The multivariate scenario was also implemented for the electrocardiographic
classification task. This presented some drawbacks since the database including
two ECG channels is smaller (37 records) than the database used in the uni-
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variate case (44 records). We also reported that the univariate case suffers from
high variability, i.e. the reservoir has problems to generalize to new subjects.
This problem is due to the few amount of records from different subjects in the
database. The high variability problem causes a drop in performance of the
univariate case when using the 37 records in common with the multivariate
case. Finally, adding a different ECG channel, that lies in the perpendicular
plane of the previous one, improves the results. The multivariate results rise
to values that are comparable to the univariate case when using 44 records. A
much patient-rich database is needed for the evaluation of this task. A bigger
database should help to reduce the high variance problem of the reservoir.

To demonstrate the versatility of reservoir computing, the nonlinear node used
in the previous tasks, i.e. the Mackey-Glass oscillator, was replaced by the dy-
namics of a semiconductor laser. This allowed us to numerically study a system
that can be implemented in photonics. Simulations under several different con-
ditions of the laser parameters were carried out leading to similar results than
those obtained with the Mackey-Glass oscillator.

The importance of the delay line in the reservoir, and thus its intrinsic memory,
was studied along the different evaluated tasks. For instance, in the SDR task
using the Mackey-Glass oscillator, we found that the reservoir does not need
much memory to classify the digits (indicated by the operational point and the
parameter value p = 7). Due to the particularities of the semiconductor laser
dynamics, simulations yield to the minimum error rate when the feedback of
the reservoir is switched off. This is because the SDR task does not require con-
siderable memory capacity in the reservoir and the transient dynamics already
contains the relevant information.

The time-series estimation requires very different characteristics in the reservoir.
For this kind of tasks, memory capacity in the reservoir plays an important role
in the accuracy of the estimations. In the case of the chaotic laser dynamics,
e.g. the Santa Fe time-series prediction, we found that in the absence or under
small memory in the reservoir, the prediction errors rise. However, when the
available memory was higher, the reservoir estimated the time series with low
error rates.

The feedback of the reservoir was also switched off intentionally to study its
influence in the multivariate prediction task of the Lorenz system. The results
showed that the best performance was obtained when the fading memory of the
reservoir was present. These results were better than the case in which there was
no fading memory in the reservoir but the input was the multivariate input of
x variable and its delay version x(tf — T), which is a way of introducing memory
in the system via the input signal.

We briefly explored the effect of noise in the reservoir states using the spe-
cific integration method for delay equations subject to noise included in the
computational suite. The influence of noise is important in real hardware im-
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plementations. Using the semiconductor laser dynamics, we found that the
noise degraded significantly the results for the Santa Fe estimation task. On the
contrary, for the SDR task, the presence of noise did not play an important role.
The sensitivity of the time-series prediction task comes from the fact that very
precise transients are needed to accurately estimate future values of the time
series. The SDR task, on the contrary, uses the winner-take-all criterion to make
the classification.

The numerical simulations presented in this thesis shed some light on the un-
derstanding of the computational power contained in delay systems. Usually
seen as a problem, delays in a system can be used beneficially for the execution
of different tasks, e.g. chaos control and communications. This research work
demonstrated, by means of real world applications, the usefulness of delay-
coupled systems in the processing of information.

6.1
Future perspectives

A promising continuation of this work is centered around the ECG classification
task. Many challenges are still present, e.g. the acquisition of more data, the
study of different features of the heartbeat, the use of multiple reservoirs, etc.
For instance the inclusion of more features of the heartbeat might be considered
beneficial from the fact that arrhythmic heartbeats occur faster or slower than the
normal ones, then the interval of time that goes from the R-peak of one heartbeat
to the R-peak of the immediately successive heartbeat, the R-R interval, might
include relevant information for the classification, thus improving the results.
The technique that we employed defines a general classifier that can be applied
for many different users. However, a classifier that is patient specific might
give better performance and could be achieved using a combination of the
classification results of two different reservoirs: a general one trained with
several patients and a specific reservoir of the patient under study.

Regarding the fundamental properties of the reservoir, future works should
consider to study the design of mask matrices. There exist different methods
to design masks that exploit the variability of the input signals, however it can
sometimes happen that random masks perform better than deterministically-
designed mask matrices. The reason for this remains unclear.

A different line of research to face in the future might be the study of different
forms to add memory into the reservoir when the task requires more memory
than the one the delay line can provide. This could be achieved by including mul-
tiple delay lines or an additional feedback connection from the output/readout
layer into the nonlinear node.
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Appendix A
Supplementary material for Chapter
3

The information in this appendix was extracted directly form the documents of
the MIT-BIH arrhythmia database from Physionet.

AA
MIT-BIH arrhythmia database

The database is constituted by 48 recordings from 47 subjects. The subjects were
25menaged 32 to 89 years, and 22 women aged 23 to 89 years. The identifications
of the ECG records is made by 3-digit non-continuous numbers ranging from
100 to 234. Records 201 and 202 come from the same male subject. There are
two leads in each record. Lead A is modified limb lead II in most records, and
lead B is usually modified lead V1 (occasionally V2 or V5, and in one instance
V4). The modification to both leads A and B comes by placing the electrodes
on the chest. A notable exception in the order of leads A and B is record 114
for which the signals are reversed. According to the AAMI recommendations,
records including paced beats were removed from the study. Then the database

Table A.1: MIT-BIH Arrythmia database recording names used for training
and testing datasets

Dataset MIT-BIH Arrhythmia record names
DS1 101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122,
124, 201, 203, 205, 207, 208, 209, 215, 220, 223, 230.
DS2 100, 103,105, 111, 113, 117, 121, 123, 200, 202, 210,
212,213, 214, 219, 221, 222, 228, 231, 232, 233, 234.
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was divided into two datasets named: DS1 for training and DS2 for testing. The
record identification used in each dataset are shown in Table A.1.

A.1.1 Annotations

Each heartbeat was initially labeled by a simple slope-sensitive QRS detector
and marked as normal beat. The labeled recordings were then given to two
cardiologists who worked on them independently adding additional beat labels
where the detector missed beats, deleted false detections, and changed the
labels for all abnormal beats. They also added rhythm labels, signal quality
labels and comments. The annotations of the cardiologists were automatically
compared beat-by-beat and return to them with the annotations in the margin
and discrepancies highlighted. Each discrepancy was reviewed and resolved
by consensus. Finally, cardiologists annotations were analyzed by an auditing
program, which checked for consistency.

Table A.2: Physionet annotations: Beat annotations

MIT-BIH Meaning AAMI
symbol label

N Normal beat
Normal beat
Left bundle branch block beat
Right bundle branch block beat
Atrial escape beat
Nodal (junctional) escape beat
Bundle branch block beat (unspecified)
Supraventricular escape beat (atrial or nodal)
Atrial premature beat
Aberrated atrial premature beat
Nodal (junctional) premature beat
Supraventricular premature or ectopic beat (atrial or nodal)
Premature ventricular contraction
Fusion of ventricular and normal beat
Ventricular escape beat
R-or-T premature ventricular contraction
paced beat
Fusion of paced and normal beat
Unclassified beat
beat not classified during learning
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This database has suffered several modifications and adaptations to new def-
initions. For example the rhythm labels have been revised and now include
notations for paced rhythm, bigeminy, and trigeminy. In October 2001, an er-
ror in the beat labels was discovered and corrected in record 209, among other
modifications.

The usual annotations found in this database and their corresponding mapping
to the AAMI 5 classes are shown in Table A.2.

Also, some annotations that are not labels to particular beats but related to
rhythms are shown in Table A.3.

Table A.3: Physionet annotations: Non-beat annotations

MIT-BIH Meaning AAMI
symbol label
[ start of ventricular flutter/fibrillation
! Ventricular flutter wave
] End of ventricular flutter/fibrillation
X Non-conducted P-wave
) Peak of P-wave
|
+
S

Isolated QRS-like artifact
Rhythm change
ST segment change

oy oN oy of ON OR ON @
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Glossary

A

artificial neural network is a network of artificial neurons. An artificial neuron
is a computational model inspired in biological neurons. The synapses of
these artificial neurons are represented by the weight of the link among
them. 4

C

cardiovascular disease is the term that refers to a broad class of diseases related
with the heart and the cardiovascular system. Some of them include
coronary heart disease causing arrhythmias, stroke, peripheral arterial
and aortic disease. 63, 69

cross-validation is a way of measuring the predictive performance of a statis-
tical model. This is done by computing an error measure on a set of data

not used in estimation of parameter. 12, 13, 36, 47, 50, 51, 54, 79, 90, 108,
115,120

D

doppler radar is a radar tracking system using the Doppler effect to determine
location and velocity. 31

E

electrocardiogram is a time series representing the electrical activity of the
heart. 63
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Glossary

generalized linear model is an statistical tool that provides a flexible general-
ization of regular linear regression. It allows a linear model to be related
to the outcome variable via a link function. 77

H

Holter monitor is a battery-operated portable device that measures and tape
records of the heart’s activity continuously for 24 hour or longer. The
device is the size of a small camera with wires ending in electrodes that
attach to the skin. 64

@)

one-vs-all is a strategy used in multi-class classification machine learning algo-
rithms that consists on training a single classifier per class considering the
samples of that class as the first class and a mix of all other classes as the
other class. 51

P

Physionet is a web page that concentrates many databases use in electrophysi-
ology. It can be found at www.physionet.org 73, 125

R

recurrent neural network is a kind of artificial neural network where connec-

tions between neurons can form a loop introducing recurrence. 7, 31,
44

reservoir computing is a type of RNN where the connections between neurons
are kept fixed and only the connections to the output layer are trained. vii,
ix, xi, 6-8, 11, 17, 18, 26, 31, 35, 39, 40, 46, 55, 61, 63, 103, 122

S

standard error of the mean is the standard deviation of the sample means di-
vided by the square root of the sample size. 48, 59

W

winner-take-all When comparing scores of a classifier, it refers to the competi-
tion among different classes. The resulting class will be the one with the
highest score. 38, 48, 51, 113, 123
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Acronyms

A

AAMI Association for the Advancement of Medical Instrumentation 64, 65, 73,
76, 83,86, 87,125, 127

Al Artificial Intelligence 4
ANN Artificial Neural Network 4, 6,7, 47, Glossary: artificial neural network

AUC Area Under the Curve 25, 46, 52

B
BANN Bayesian Artificial Neural Networks 64
BIH Beth Israel Hospital 73

C
CV Cross-Validation 13-15, 50-52, 59, 80, 81, Glossary: cross-validation

CVD Cardio vascular disease 63, Glossary: cardiovascular disease

D

DDE Delay Differential Equations 64

DS1 Data set 1 (use for training purposes) 73, 79-81, 85, 97, 126
DS2 Data set 2 (use for evaluation purposes) 73, 83, 85, 86, 97, 126

DWT Discrete Wavelet Transformation 64
E
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Acronyms

ECG Electrocardiogram 63, 64, 68, 71-73, 76, 80, 82, 83, 87, 88, 97-100, 120-123,
125, Glossary: electrocardiogram

ENSO El Nifio Southern Oscillation 53, 54
ER Error rate 79-81

ESN Echo State Network 8

F
FN False Negative 19, 23
FP False Positive 19, 23

FPR False Postive Rate 21, 24

G

GLM Generalized linear model 77, Glossary: generalized linear model

I

IRLS Iterative Reweighted Least Squares 78

L

L-BFGS Limited-memory Broyden-Fletcher-Goldfard-Shanno 78
LD Linear Discriminant 64, 83, 85

LDL-C Low Density Lipoprotein Cholesterol 63

LOO Leave-One-Out 14

LR Logistic Regression 77,78

LSM Liquid State Machine 8

M
MIT Massachusetts Institute of Technology 73
MLII Modified Limb lead II 73, 97-100

N
NLN NonLinear Node 32-34, 36, 37, 41-43, 59,79, 92, 93, 98, 103, 104
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Acronyms

NMSE Normalized Mean-Square Error 91, 92, 94-96, 100, 110-113, 115, 121

NRMSE Normalized Root-Mean-Square Error viii, x, xii, 54-57, 121

(@)

OvA One-versus-all 51, Glossary: one-vs-all

P

PIK Potsdam Institute for Climate Impact 54, 121

PMOF Polarization-Maintained Optical Feedback 105, 106, 108-113, 115
PROF Polarization-Rotated Optical Feedback 105, 106, 108-113, 115

R

RC Reservoir Computing 7, 31-33, 40, 63, 77, 87, 90, Glossary: reservoir com-
puting

RNN Recurrent Neural Network 7, 8, 31, 35, Glossary: recurrent neural network

ROC Receiver Operating Characteristics 23-25, 52

S

s.e.m. Standard error of the mean 48, 50, 51, 59, 60, Glossary: standard error of
the mean

SD Standard Deviation 55, 76, 91, 92, 94-96

SDR Spoken Digit Recognition viii, 47, 52, 58, 60, 79, 107, 120, 122, 123
SL Semiconductor Laser 103, 104

SM Signal Modelling 64

SOI Southern Oscillation Index 53, 54, 121

SOMLVQ Self-Organizing Maps with Learning Vector Quantization 64
SON Self-Organizing Networks 64

SVEB Supra-Ventricular Ectopic Beat 83, 88

SVM Support Vector Machine 64

T

133



Acronyms

TN True Negative 19, 23
TNR True Negative Rate 21
TP True Positive 19, 22

TPR True Postive Rate 20

\Y

VEB Ventricular Ectopic Beat 83, 88

A%
WER Word Error Rate 48, 50, 51, 59, 61, 108-110, 114, 120
WTA Winner-take-all 48, 51, Glossary: winner-take-all
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