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Abstract
Mapping and understanding of the protein interaction networks with their key modules and hubs can provide
deeper insights into the molecular machinery underlying complex phenotypes. In this article, we present the basic
characteristics and definitions of protein networks, starting with a distinction of the different types of associations
between proteins. We focus the review on protein^protein interactions (PPIs), a subset of associations defined
as physical contacts between proteins that occur by selective molecular docking in a particular biological context.
We present such definition as opposed to other types of protein associations derived from regulatory, genetic,
structural or functional relations. To determine PPIs, a variety of binary and co-complex methods exist; however,
not all the technologies provide the same information and data quality. Away of increasing confidence in a given pro-
tein interaction is to integrate orthogonal experimental evidences.The use of several complementary methods test-
ing each single interaction assesses the accuracy of PPI data and tries to minimize the occurrence of false
interactions. Following this approach there have been important efforts to unify primary databases of experimen-
tally proven PPIs into integrated databases. These meta-databases provide a measure of the confidence of inter-
actions based on the number of experimental proofs that report them. As a conclusion, we can state that
integrated information allows the building of more reliable interaction networks. Identification of communities, cli-
ques, modules and hubs by analysing the topological parameters and graph properties of the protein networks
allows the discovery of central/critical nodes, which are candidates to regulate cellular flux and dynamics.
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HOLISTIC APPROACH TO
BIOLOGICAL SYSTEMS: FROM
BIOMOLECULAR ENTITIES
TONETWORK BIOLOGY
Many large-scale and high-throughput experimental

techniques—mostly applied in the last decade—are

producing an outstanding advance in molecular and

cell biology, moving biological research into a new

global scenario. Genomics, transcriptomics, prote-

omics and all the new ‘omic’ technologies prove

that we are in a new research era that comprehends

global biological systems.

To understand a biological system at molecular

level, we need to identify and characterize all bio-

molecular entities—e.g. genes, proteins—that play a

role in the particular system. However, it is not

enough to obtain the complete list of elements that

define a living system (e.g. identify the whole

genome and the whole proteome), but we need to

build biomolecular maps to show the relative
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location and movement, the paths and ways, the

links and crosstalks between the constitutive entities.

The aim of achieving such ‘relational maps’ defines

the new research field called ‘network biology’ [1].

Moreover, most biological processes arise from com-

plex interactions between the cell’s numerous con-

stituents, such as proteins, DNA, RNA and small

molecules. Therefore, a key challenge for biology

in the 21st century is to understand the structure

and the dynamics of the complex intercellular web

of interactions that contribute to the structure and

function of a living cell [1].

THE PROTEIN INTERACTOME,
BITACORATOUNRAVELTHE
COMPLEXITYOF THE
BIOMOLECULARNETWORKS
Proteins are macromolecular structures that build the

nanoscopic working machinery of a living system.

Biochemical and biomolecular research for over a

century have produced a remarkable compendium

of knowledge about the function and properties of

many individual proteins. But proteins do not act

alone, they team up into molecular machines and

complex structures with intricate physicochemical

connections to undertake specific functions. The

complete map of protein interactions that take

place in a living organism is the ‘interactome’ [2].

The collection, verification and validation of the

interactions among molecules inside a cell pose con-

siderable challenges and together form an active field

in bioinformatics research. Certainly, interactions

will not occur all the time and under all conditions.

Nevertheless, understanding which proteins interact

with one another will give us deeper insights into the

molecular machinery underlying complex pheno-

types [3].

To draw a comprehensive atlas of all possible pro-

tein interactions within a living system is a first-step

needed to building its interaction network and to

identifying its ‘central nodes’. Complete interactome

maps can be most relevant for current biomolecular

research, because it is clear that the location of the

proteins in their interaction network will allow the

evaluation of their centrality and the definition of

their role in a relational context. In the case of the

human interactome, the identification of protein

‘hubs’ can be a key step to find potential targets,

which can be activated or inhibited using drugs to

modulate certain pathways altered in specific diseases.

Finally, in the study of the interactomes, we have

to consider the dynamic nature of living systems.

Each cellular function requires the precise coordin-

ation of a large number of events, and the identifi-

cation of temporal and contextual signals underlying

specific protein interactions is a crucial step to under-

stand such functions [4]. Network dynamics can

describe, e.g. how cells respond to environmental

cues or how a protein network evolves during de-

velopment or differentiation [4]. Measuring interac-

tome dynamics is much more complicated than

obtaining static snapshots of the protein interactions

at different times and conditions. However, the con-

struction of reliable protein networks derived from

comprehensive mappings is a required step before

unraveling the interactome dynamics.

TYPES OF PROTEIN
ASSOCIATIONS: PHYSICAL,
REGULATORY, GENETIC,
STRUCTURAL, FUNCTIONAL
Before analysing the protein interactome, we need to

describe the types of relations between proteins that

can be found in a biological system [5]. Cellular

complexity and cellular dynamics obey many differ-

ent internal forces and links between the biomole-

cular entities acting inside an organism. The most

common relationships and associations can be

organized into the following categories: (i) physical

interactions: direct or indirect physical contact be-

tween biomolecules; for instance, protein–protein

interactions (PPIs) present in processes such as

macromolecular protein complex assemblies, protein

ligand–receptor activation, signal transduction phos-

phorylation cascades, etc.; (ii) regulatory associations:

activation or inhibition events between biomolecules

mediated by intermediate cellular processes; for

instance, gene-expression regulation mediated by

transcription factors (TFs), regulatory links between

extracellular signals and gene response, or transcrip-

tomic regulation denoted by gene-to-gene

co-expression correlation [6]; (iii) genetic inter-

actions: connection between gene-pairs whose con-

current genetic perturbation leads to a phenotypic

result different than that expected from a combin-

ation of single gene effects; for instance, synthetic

lethal interactions which connect genes that weakly

affect an organism viability when are individually

deleted, but provoke lethality when are both

deleted; (iv) structural similarity: links between two
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biomolecular elements that are similar according to a

structural attribute; for instance, protein/gene se-

quence similarity, protein 3D structural similarity,

etc. and (v) functional associations: links between

two biomolecular elements that have a functional

connection because they are involved in the same

signalling/metabolic pathway or in the same biomo-

lecular process; for instance, two enzymes that work

in the glycolysis pathway or in the Krebs cycle, two

proteins enrolled in the WNT signalling pathway,

co-location in the same organelle or macrostructure

of the cell (e.g. endoplasmic reticulum).

Note that the categories described above are not

exclusive. For example, some regulatory associations

can include physical interactions as it is the case for

allosteric regulation of enzymes and some functional

associations can also include in some cases physical

proximity and interaction. Therefore, different types

of association can be assigned to the same protein–

protein pair.

All the described relations and associations can be

used to decipher the function of genes and proteins

and to identify groups of proteins that work together

controlling specific biological processes [7]. Different

types of links are sometimes difficult to combine be-

cause, usually they have different biological meanings

[8]. The strength of each type of protein–protein link

depends very much on the experimental data and

biological information that support it, but it is clear

that the determination of the global map of physical

PPIs present in a given biological system will provide

a good view of the molecular network that drives the

behaviour of such living system.

PPIS: SPECIFIC PHYSICAL
CONTACTS BETWEEN PROTEINS
THATOCCUR BYSELECTIVE
MOLECULARDOCKING
PPIs are commonly defined as physical contacts

involving molecular docking between proteins that

occur in a living organism invivo. Such physical con-

tacts are specific but they can be ‘direct’, embracing a

molecular interface between two proteins, or ‘indir-

ect’, when the protein–protein contact is mediated

by other or others intermediate protein molecules

building a complex. The question of whether two

proteins share a ‘functional association’ is quite dif-

ferent from the question of whether two proteins

have ‘physical contact’ with each other [9]. Any pro-

tein in the basal transcriptional regulatory apparatus

shares a functional association with the other proteins

in these large structures, but certainly not all the pro-

teins involved in the function of a particular cellular

system have physical interactions. As indicated in the

previous section, it is interesting to explore all types

of ‘links’ between proteins in living organisms, but

these associations should not be confused with pro-

tein physical interactions. Moreover, identification of

different types of protein physical interactions that

involve contact with other molecules (i.e. protein–

DNA, protein–RNA, protein–cofactor, protein–

ligand) is also important for a comprehensive study

of the interactome, but again these types of data

should not be confused or mixed if we want to

build an atlas of PPIs. In conclusion, considering

the ideas exposed, we provide a definition of PPIs

as: specific, direct or indirect physical contacts be-

tween proteins that occur by selective molecular

docking in a particular biological context [9].

EXPERIMENTALDETERMINATION
OF PHYSICAL INTERACTIONS
BETWEEN PROTEINS: BINARY
METHODSAND CO-COMPLEX
METHODS
The experimental determination of a given PPI in a

biological system is not always easy. Several research

groups have indicated that it is not acceptable to

conclude that two proteins interact directly, pro-

vided only that their interaction is demonstrated by

pulldown or co-immunoprecipitation (co-IP) ex-

periments [10, 11]. A positive result with these

methods does not imply a direct interaction between

two proteins, since the binding can occur by inter-

mediate hidden partners. In addition, there is a wide-

spread misconception that co-IPs from cellular

extracts provide ‘in vivo evidence’ of the existence

of an interaction. This is not accurate, particularly

when the experiments are carried out using over-

expressed proteins in cell lines. Pull-down assays

that rely on glutathione-S-transferase (GST) or

other affinity tags can also give rise to problems.

For example, it has been reported that interactions

found with GST pull-downs using bacterial-

expressed protein domains could not be detected

using other biophysical techniques [10]. These ob-

servations bring about the need to use adequate ex-

perimental methods in PPI studies taking into

account that not all the methods provide the same

information.
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The experimental methods to determine PPIs can

be divided in two major classes: (i) binary methods:

methods that interrogate direct pair-wise PPIs, de-

signed to test each specific interaction between a

pair of proteins, (ii) co-complex methods: methods

that tag one specific protein (bait-protein) and inter-

rogate its interaction with a group of proteins

(prey-proteins) finding direct and indirect physical

associations. These methods are designed to find

interactions between the tagged protein and a

group of proteins without a clear dissection of the

pair-wise interactions that occur between each pro-

tein pair [9].

In large-scale high-throughput studies, the

most common binary methods are the two-hybrid

systems, yeast two-hybrid (Y2H) being the most

widely and successfully used methodology [12, 13].

Currently two-hybrid (2H)-based methods include

a large series of different technologies to be used

not only in yeast-cells but also in mammalian-cell

systems and in bacterial systems [14, 15]. Also new

variants of 2H methodologies have been developed

regarding the compartment and the cell type to

overcome the limitations of the classic ‘nuclear’

Y2H [14]. A review focused on benchmarking

binary interaction assays have been published re-

cently [16].

Large-scale automated 2H approaches have been

crucial to achieve global interactome studies that try

to cover whole organisms’ proteomes. Matrixes with

thousands of open reading frames (ORFs) cloned

into bait and prey vectors were used to generate

the first overviews of the yeast Saccharomyces cerevisiae
protein interactome network [17, 18]. Since then,

similar comprehensive 2H screens have been under-

taken on two metazoan organisms: Drosophila melano-
gaster [19] and Caenorhabditis elegans [20]. Later on,

several landmark studies addressed the initial map-

ping of the human interactome [21, 22]. These stu-

dies are still partial, but have identified thousands of

PPIs.

The most common co-complex method, which

has produce large-scale datasets, is tandem affinity

purification followed by mass spectrometry (TAP–

MS) that was first applied to systematic analysis of

multi-protein complexes in yeast S. cerevisiae [23,

24]. In this technique a protein mixture—usually a

lysate from the cell or tissue of interest—is passed

through the matrix where a single protein (bait) is

affinity captured, and interacting partners (preys) are

retained by interaction with the bait. Proteins that do

not interact, pass through the matrix and are dis-

carded. The captured protein complexes, composed

of bait and preys, are analysed by mass spectrometry,

identifying interaction participants from their peptide

signatures [25]. Mass spectrometry is capable of iden-

tifying hundreds of potential interactors simultan-

eously at subpicomole concentrations [25]. Some

recent reviews discussing the capabilities and limita-

tions of AP–MS technology, describe improvements

achieved combining multiple biological replicates,

and dealing with data generated using different tag-

ging strategies [26, 27]. There are several alternative

methods to the affinity purification (AP) step, the

most common ones being protein immunoprecipita-

tion (IP) and pull-down of epitope-tagged molecules

[28]. The final result of all these approaches is the

identification of interactions between multiple pro-

teins, i.e. ‘n-ary interactions’. For this reason they can

be called co-complex methods. In these results, each

binary PPI between bait and prey cannot be directly

deduced without producing some false positive esti-

mations. This is a disadvantage of the co-complex

methods. A review about the strengths and weak-

nesses of mass spectrometry applied to map PPIs can

be found in reference [27].

An advantage of AP versus 2H technique is that

isolated prey proteins can be in concentrations more

similar to the in vivo status and can keep the folding

native state better than the proteins expressed from

cDNAs in the 2H systems. However, it is important

to underline that none of the two approaches is able

to interrogate the PPIs in their natural in vivo cellular

context. Both types of techniques require in vitro
assays where proteins are tested separately, since it

is the only way to prove specific interactions.

PPI DATABASESANDRESOURCES:
WHERE ANDHOWTOQUERY
FOR INTERACTIONSTO
BUILD SPECIFIC PROTEIN
NETWORKS
An analysis and comparison of public PPI data

resources according to the types of interactions

included allows them to be divided into three

major types: (i) primary databases, which include ex-

perimentally proven PPIs coming from either

small-scale or large-scale studies, that have been pub-

lished and are manually curated by experts of the

database; (ii) meta-databases, which include only ex-

perimentally proven PPIs obtained by consistent
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integration and unification of several primary data-

bases (sometimes including small sets of original PPI

data); (iii) prediction databases, which include mostly

predicted PPIs obtained using different bioinformatic

analysis or combine many predicted PPIs with ex-

perimentally detected PPIs [9].

Some well known and highly used PPI primary

databases are: BioGRID [29], DIP [30], HPRD [31],

IntAct [32] and MINT [33]. PPI meta-databases—

developed due to the lack of overlap between pri-

mary databases and due to the need of using unified

non-redundant datasets—are also resources in

demand, e.g.: APID [34], iRefWeb [35] and the

work done by the IMEx international consortium

[36]. These databases provide integrated web access

where unified experimental protein interactions can

be easily queried and explored. With respect to the

third type of PPI databases, one of the most used

resources developed by experts in computational

prediction methods is STRING, which also includes

experimental data on different types of protein asso-

ciations [37].

In 2010, a challenging project from the HUPO

initiative was promoted to unify the access to the

main PPI databases [38]. This project, called

PSICQUIC, relies on the previous establishment of

a controlled vocabulary and a common representa-

tion standard developed by the Molecular Interac-

tions group of the HUPO Proteomics Standard

Initiative (PSI-MI) [39]. This standardized access

allows simultaneous interrogation of a series of asso-

ciated databases and the search of many types of

interactions. All the above described PPI resources

and services are designed to facilitate the construction

of specific interaction networks for any given protein

set of interest.

IMPROVING RELIABILITYOF
THE PROTEIN NETWORKS:
INCREASING CONFIDENCE
AND COVERAGE
Despite the fact that all PPIs included in the primary

resources mentioned above come from experimental

data, they are sometimes noisy and still incomplete.

There are multiple reasons that can bring about

errors in the determination of protein interactions.

For example, the isolation of the proteins from its

natural native environment to test the interactions

can give rise to multiple types of artefacts and mis-

takes in the experimental detection. Other common

reasons provoking error are failures in the consider-

ation of the specific cellular location of the proteins,

or lack of specific biomolecular partners needed for

the interactions that are lost during isolation. These

difficulties are present in all types of techniques

though the bias and error propensity are different

for each type of experimental approach. However,

it has been shown that the error levels are similar in

high- or low-throughput systems [11]. We need

ways to estimate the error rates in a given PPI net-

work or, at least, ways to assign a confidence level to

each interaction present in a network obtained for a

given study. It is still a challenge to minimize the

occurrence of false positives (FP), resulting in the

improvement of confidence in the detected inter-

actions and the minimization of the occurrence of

false negatives (FN), while increasing the coverage of

the PPI networks built.

Since no single experimental approach has opti-

mal sensitivity (i.e. no FN) and optimal specificity

(i.e. no FP), probably one of the best ways to in-

crease the confidence in a given protein interaction is

to integrate orthogonal experimental evidences.

Several studies have demonstrated a confidence im-

provement by considering the use of complementary

experimental methods applied to test each single

interaction [34, 40, 41]. Some strategies based on

distances and weights calculated according to the

number of experiments have proven that each

interaction has been applied quite successfully [42].

Also an empirical framework for assessing com-

pleteness of binary interactome mappings has

been proposed based on this type of strategy [43].

These efforts to increase the number of experimental

methods that validate the interactions are leading to

the construction of more accurate interactome net-

works, which provide more complete and reliable

PPI maps.

In these strategies, only experimental detection

interaction methods are taken into account, although

other simple criteria like the number of supporting

publications, the co-expression of the participant

genes, co-occurrence in the same biological process

or pathway can be used to increase the confidence of

the interactions [37]. These types of information

about the interaction partners have to be always

used as a complementary approach to the experi-

mental PPI data, because none of them is a direct

proof of a physical interaction.

Finally, in many studies it can be useful to com-

pare the interactome networks obtained for a set

Protein-protein interaction networks 493
 at C

entro de Inform
aciÃ

³n y D
ocum

entaciÃ
³n C

ientÃ
­fica on June 28, 2016

http://bfg.oxfordjournals.org/
D

ow
nloaded from

 

http://bfg.oxfordjournals.org/


of query proteins in different organisms by integrat-

ing information about orthologous partners (i.e.

interologs). Comparative analysis of the conserva-

tion of interactions among different species can

introduce evolutionary insights about the architec-

ture of the PPI networks, helping to identify essen-

tial interactions that are maintained during

evolution.

PPI NETWORKS: FINDING
PROTEIN ‘COMMUNITIES’,
PROTEIN ‘CLIQUES’AND PROTEIN
‘HUBS’ IN THE CELLULAR
LANDSCAPE
Network representation has been widely used in

many scientific disciplines (sociology, physics, tele-

communications, biology, etc.) where it is necessary

to explore and compare large complex datasets that

include relationships between elements. A great ad-

vantage of networks is that they can be studied by

applying graph theory and other powerful analytical

techniques. Protein interaction data can be repre-

sented as a network diagram where nodes corres-

pond to proteins and edges to interactions between

protein pairs. These networks are undirected when

there is no experimental information about the

source or destination nodes. Directed graphs can be

produced including, e.g. identification of the bait

and prey proteins or information about the enzyme

and target relationship. The networks are un-

weighted by default, although weights can be as-

signed to the edges according to the confidence of

the interactions or to other properties scored.

As mentioned before, there are still technical

problems that need to be solved in order to

reduce the FPs and FNs in PPI datasets.

However, several studies on interactome networks,

even though incomplete, have led to a consensus

on several characteristics common for these inter-

actome networks based on their topology [17–20].

According to Barabasi et al. [44], it seems that PPI

networks are ‘small world’ networks characterized

by a low connectivity [1, 44]. This means that the

average distance between each pair of nodes is small

and that the major part of the nodes are not directly

linked, but the length of the shortest path between

them is small. These observations lead to the pro-

posal that the protein interactomes are ‘scale free’

networks with a degree distribution that follows a

power–law function [1, 44]. This model is still open

to discussion since there are other authors that con-

sider it critically [45, 46]. Despite the lack of clear

model identification, the PPI networks show the

existence of vertices with a degree that greatly ex-

ceeds the average (called ‘hubs’). Several authors

have distinguished between two types of hubs in

the PPI networks: ‘party’ hubs, which interact

with most of their partners simultaneously, and

‘date’ hubs, which bind their partners at different

times or locations [47]. Some studies have linked

hubs with proteins that are essential for the biolo-

gical system. That is because they observed that the

likelihood that a protein is essential correlates with

its connectivity degree [48]. This means that the

cells are more vulnerable to the loss of hubs than

non-hubs, because the disruption of hubs—espe-

cially ‘date’ hubs—causes the breakdown of the

network into isolated clusters. In contrast, random

node deletion does not lead to a major loss of con-

nectivity in scale-free networks, and this confirms

the robustness of cellular networks against random

disruptions [44].

Another common practice in the analyses of net-

works is to find node ‘communities’, ‘cliques’ and

‘modules’. Communities are sets of nodes that have

a dense connectivity between them and can be sepa-

rated from the rest of the network using some topo-

logical criteria. Cliques and modules are smaller

groups of nodes that have similar characteristics and

are closely located in the network. The cliques are

defined as a subset of nodes in a network such that

every two nodes in the subset are connected by an

edge. In this way the cliques are specified by the

parameter k (k-clique) that indicates the number of

nodes that includes, e.g. 5-cliques are groups of 5

nodes, where all are interconnected by edges (i.e.

each one is connected with all the others). The def-

inition of module is more open and different in sev-

eral research forums, but it always try to indicate a

group of nodes that are heavily interconnected, often

following some specific graph pattern. It is interest-

ing to look for communities, cliques and modules in

the PPI networks, because the forming nodes tend to

have related biological functions and many times is a

good way to predict functional association. Since

protein interaction networks are highly connected,

the communities, cliques and modules should not be

understood only as sets of nodes disconnected from

other sets, but rather as nodes that have dense

intra-modular connectivity and sparse inter-modular

connectivity.

494 De Las Rivas and Fontanillo
 at C

entro de Inform
aciÃ

³n y D
ocum

entaciÃ
³n C

ientÃ
­fica on June 28, 2016

http://bfg.oxfordjournals.org/
D

ow
nloaded from

 

http://bfg.oxfordjournals.org/


In conclusion, a proper analysis of the cellular

landscape requires the deciphering of interaction pat-

terns between all elements of its biomolecular ma-

chinery and how such interactions build the complex

networks that operate inside cells. Empirical deter-

mination and mapping cellular protein networks for

a few model organisms and for human is providing

the necessary scaffold toward understanding the

functional, logical and dynamical aspects of cellular

systems. The link between network properties and

phenotypes, including susceptibility to human dis-

ease, appears to be at least as important as that

between genotypes and phenotypes [49].

Key Points

� Holistic approach to biological systems: from biomolecular
entities to network biology.

� The protein interactome, bitacora to unravel the complexity
of the biomolecular networks.

� Types of protein associations: physical, regulatory, genetic,
structural, functional.

� PPIs: specific physical contacts between proteins that occur by
selectivemolecular docking.

� Experimental determination of physical interactions between
proteins: binarymethods and co-complexmethods.

� PPI databases and resources: where and how to query for
interactions to build specific protein networks.

� Improving reliability of the protein networks: increasing confi-
dence and coverage.

� PPI networks: finding protein ‘communities’, protein ‘cliques’ and
protein ‘hubs’ in the cellular landscape.
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