
Applying IRON to a Virtual Community
Scenario 1,2

Javier Morales a,b and Iosu Mendizabal c and David Sanchez-Pinsach b

and Maite Lopez-Sanchez b and Juan A. Rodriguez-Aguilar a

a Artificial Intelligence Research Institute (IIIA-CSIC). Bellaterra, Spain.
b MAiA Department, Universitat de Barcelona. Barcelona, Spain.

c University of Mondragon. Mondragon, Spain

Abstract. Normative systems (norms) have been widely proposed as a
technique for coordinating multi-agent systems (MAS). The automated

synthesis of norms is a complex problem that remains open. iron (Intel-

ligent Robust On-line Norm synthesis mechanism) is a novel mechanism
for the on-line automated synthesis of norms for MASs. iron produces

conflict-free norms that characterise necessary conditions for coordina-

tion, without over-regulation. In the past, iron successfully regulated
a traffic scenario even in the presence of non-compliant agents. In this

paper, we apply iron to synthesise norms for a virtual community sce-

nario, where agents are users that share contents within the community.
As a result, iron synthesises norms that prevent users from uploading

undesirable contents (i.e., those that users complain about).

Keywords. multi-agent normative systems, virtual communities

1. Introduction

Norms have been widely proposed as a technique for coordinating multi-agent
systems (MAS). A norm can be understood as an established, expected pattern
of behaviour [18]. Typically, these behavioural patterns impose constraints on the
behaviour of individuals in order to avoid conflicts (e.g., user complaints in a
virtual communities scenario).

Since the seminal work of Shoham and Tennenholtz [16], the problem of norm
synthesis (i.e., determining the set of norms that avoid conflicting states) has
attracted considerable attention. We differentiate two strands of work tackling this
problem: the off-line and on-line norm synthesis approaches. On the one hand,
off-line approaches (such as [16,5]) aim at synthesising norms for a MAS that
constrain the behaviour of agents while ensuring the achievement of global system
goals. Off-line approaches require detailed knowledge of a MAS (i.e., its full state
space) at design time. Some refinements to the basic approach have included the
implementation costs of norms and multiple design goals with different priorities

1This work was funded by AT (CONSOLIDER CSD2007-0022), EVE (TIN2009-14702-

C02-01/02), COR (TIN2012-38876-C02-01/02), MECER (201250E053) and the Generalitat of
Catalunya (2009-SGR-1434). Thanks to the ACIA fellowship for assistance to CCIA’2013.

2This paper has been selected by the CCIA’2013 scientific committee for an extended version

in a special issue on AICommunications journal.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/45451188?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

[2]. Following [16], the complexity of the norm synthesis problem is high (NP-
complete). This has recently spurred research to better cope with the size of the
state space [3].

Nonetheless, off-line design is not appropriate to cope with open MAS, whose
composition and state space change with time. On-line norm synthesis approaches
(such as [13]) try to overcome such limitations by synthesising norms that regulate
a MAS at run-time instead of at design time. More recently, norm emergence has
become a popular technique for on-line norm synthesis (e.g., [8,12,14,15,17]). It
does not require any global state representation or centralized control. Instead,
it considers that agents collaboratively choose their own norms out of a space of
possible norms. A norm is considered to have emerged when a majority of agents
adopt it and abide by it. Nevertheless, approaches based on norm emergence
suffer from several drawbacks. Firstly, convergence is highly sensitive to the initial
conditions in the MAS. Secondly, there is the assumption that agents collaborate
during the norm synthesis process and that agents are endowed with the necessary
machinery to participate in the emergence process. Third, regarding the norm
synthesis process, although the utility of norms is eventually considered, there
are further aspects that, to the best of our knowledge, have not been taken into
account yet. On the one hand, it is not considered whether a synthesised norm
is truly necessary or not (because, for example, its regulation is subsumed by
another norm). Thus, it might be the case that a norm within a normative system
(the set of active norms in the MAS) is not really necessary, and hence it leads to
over-regulation: agents must handle more norms than needed. On the other hand,
the generalisation of a set of norms into a more general one is not considered
either as part of the norm synthesis process.

Against this background, the work in [10] proposes a novel mechanism called
iron (Intelligent Robust On-line Norm synthesis machine) for the on-line syn-
thesis of norms. iron produces norms for the agent population in a MAS that
characterise necessary conditions for coordination, while avoiding over-regulation.
iron synthesises norms that are both effective and necessary. On the one hand,
effectiveness computes how norms manage to avoid conflicts whenever agents
comply with these norms. On the other hand, necessity computes to what extent
norms are necessary to regulate conflicts whenever agents do not comply with
them. Furthermore, iron is endowed with the capability of generalising norms.
By generalising norms and discarding unnecessary norms, iron allows iron to
yield concise normative systems.

In previous work [10], iron was empirically evaluated in a traffic junction
scenario where agents were travelling cars and the goal of the MAS was to avoid
collisions between cars. These empirical results showed that iron automatically
synthesised concise normative systems that avoided collisions despite a high per-
centage of violations (up to 50%). In this work, we use iron to synthesise norms
for a simulated virtual community scenario, where agents are users that share
contents within a virtual community. The goal of the MAS is to avoid conflicting
situations that make users to feel uncomfortable within the community. These
conflicting situations can be identified based on the complaints users report about
conflicting contents. Consequently, resulting synthesised norms prevent users from
uploading conflicting contents to the virtual community. The contributions of this

paper are (i) a simulator to simulate the interactions of users within a virtual
community, and (ii) the application of iron to a virtual community scenario.

Regarding virtual communities, the work in [9] presents Comtella, a frame-
work to simulate the overall behaviours of participants in the communities. Other
works like [4] study how to refine norms in a virtual community by observing
individuals’ behaviour regarding a set of pre-defined norms. However, to the best
of our knowledge, no previous work has tackled the automatic synthesis of norms
for virtual communities.

The paper is thus organised as follows. Next Section 2 briefly introduces iron.
Section 3 describes our virtual community simulator so that Section 4 can detail
the application of iron to the synthesis of norms for this virtual community sce-
nario. Finally, Section 5 draws some conclusions and sets paths to future research.

2. Background

In this section we survey the Intelligent Robust On-line Norm synthesis mecha-
nism (iron), a norm synthesis approach aimed at synthesising effective (conflict-
avoiding) normative systems for MASs. iron is based on four main components:
(i) a grammar to synthesise new norms; (ii) the normative network (a data struc-
ture to represent normative systems and explored norms); (iii) a set of operators
that make it possible to transform one normative system into another; and (iv)
a strategy that specifies when to use such operators. We describe below each
component together with iron’s architecture.

2.1. A Grammar for norm synthesis

iron employs a grammar to synthesise norms. Norms are constructs of the form
〈ϕ, θ(Ac)〉, where ϕ is the precondition of the norm and θ(Ac) is a deontic oper-
ator that establishes an obligation or prohibition over an action in the set Ac of
agents’ available actions. As mentioned above, norms are described from a local
individual’s perspective. Hence, whenever the local perception of an agent satis-
fies the precondition ϕ of a norm, then the obligation or prohibition described
by θ(Ac) holds for it. iron adapts its grammar from [6], using as building blocks
atomic formulae of the form pn(τ1, . . . , τn), p being an n-ary predicate symbol
and τ1, . . . , τn terms of an agents’ language LAg .

Norm ::= 〈ϕ, θ(Ac)〉
ϕ ::= ϕ & ϕ | α
θ ::= obl | prh
Ac ::= ac1 | ac2 | . . . | acn

α ::= pn(τ1, . . . , τn)

2.2. The Normative Network

iron uses the so called Normative Network: a data structure that represents
normative systems and explored norms. Specifically, a Normative Network is a
graph-based data structure where nodes stand for norms and whose relationships
stand for (generalisation) relationships among them. Norms can be active or inac-
tive. The set of active norms in the normative network constitutes the normative
system that is provided to the agents in the scenario.

2.3. Operators for normative networks

iron includes four different operators O = {create, deactivate, generalise, and
specialise} to transform the normative network, leading from one normative sys-
tem into another. Operator create synthesises a new norm and adds it to the
normative network. Operator deactivate sets the state of the norm as inactive in
the normative network, hence removing it from the normative system. Operator
generalise joins several norms into a more general unique norm (hence reducing
the cardinality of the normative system). Finally, operator specialise undoes a
norm generalisation, splitting a general norm into a set of more specific norms.

2.4. iron’s strategy

Previous operators are invoked by following a specific strategy. The strategy that
iron follows to perform the norm synthesis is as follows. Given a mas, iron op-
erates by continuously iterating the following steps: (1) it monitors the MAS op-
eration through its sensors, searching for conflicts. It represents perceived agents’
interactions in the form of views, which are descriptions of the scenario from a
global, external observer’s perspective; (2) whenever a new non-regulated conflict
is detected, a norm generation process is carried out, which generates a new norm
aimed at avoiding that conflict in the future. This generation process is based
on an unsupervised version of classical Case-Based Reasoning (CBR) [1]. iron
synthesises norms to regulate agents’ behaviour. Therefore, since agents must be
able to understand norms, iron describes norms from an agent local perspective;
(3) next, it performs a norm evaluation process, which computes the performance
(in terms of effectiveness and necessity) of the norms that have been applied and
violated during current time step; (4) afterwards, it applies a norm refinement
process that generalises, specialises or even discards norms according to their ef-
fectiveness and necessity ranges during a given period of time T (decisions are
made based on specific thresholds); (5) finally, if the normative system has been
changed, iron sends it to the agents in the regulated MAS scenario.

Specifically, the proposal of [10] is to monitor the evolution of the system at
regular time intervals (i.e., ticks) and apply operators under certain conditions.
Initially, during the synthesis of new norms, for each detected conflict, the strategy
invokes operator create which generates a new norm aimed at avoiding the conflict
in the future. The new norm is added it to the normative network and its state
is set to active. Afterwards, the norm evaluation process retrieves those norms
that have been applied and violated during the current step. Moreover, it also
determines which norms led to conflicts during the current time step. As a result,
it obtains a partition of applicable norms into: (i) applied norms that led to
conflicts; (ii) applied norms that did not lead to conflicts; (iii) violated norms that
led to conflicts; and (iv) violated norms that did not lead to conflicts. Then, the
strategy computes: the effectiveness of norms at current time step t (µeff (n, t)) by
considering successful applications (i.e., applications not leading to conflicts) at
time step t; and their necessity at current time step t (µnec(n, t)) based on harmful
violations (violations leading to conflicts). These effectiveness and necessity values
(µeff (n, t) and µnec(n, t)) are then aggregated over a period of time T to compute

Figure 1. iron’s architecture.

E(n, T) and N (n, T), the corresponding performance ranges. Finally, the norm
refinement process yields a new normative system by transforming the normative
network via deactivating ineffective or unnecessary norms, and performing norm
generalisations and specialisations. Specifically, if the effectiveness or the necessity
range of a norm has been under a specialisation threshold αspec during a period
of time T , then the norm is specialised (or deactivated if the norm does not
generalise any other norm) by invoking the specialise (or deactivate) operator.
If that is not the case, then the strategy tries to generalise the norm (by means
of the generalise operator) whenever its effectiveness and necessity ranges have
been over a generalisation threshold αgen during the time period T .

2.5. IRON’s architecture

Figure 1 depicts the architecture that [10] proposes for performing this norm
synthesis process. iron is an abstract, domain independent mechanism for the
synthesis of norms. However, in order to apply iron to different scenarios, it
requires some domain-dependant inputs: (i) a function fconflict to detect conflicts
in agents interactions; (ii) a grammar G to define norms; (iii) a function fapply to
determine whether a norm applies to the agents in a given view; (iv) evaluation
functions to compute the effectiveness (µeff) and necessity (µnec) of norms in the
normative network; (v) Θ, a set of satisfaction degrees and thresholds that define
the acceptable range of effectiveness and necessity for norms; as well as (vi) the
time interval (T) to consider.

3. The Virtual Communities Simulator

This section introduces our Virtual Communities Simulator. It is based on Repast
Simphony [11] and allows to perform discrete agent-based simulations of virtual
communities. Within a virtual community, agents represent users that interact
and share different types of contents.

Our simulator represents a virtual community as a grid (see bottom of Fig-
ure 2) where each cell corresponds to a position where a user can upload a content.
Columns in the grid are grouped into three different content sections: Forum, Mul-

timedia and The Reporter. Each row corresponds to an agent in the virtual com-
munity user population. The simulator has a pre-defined set of contents for each
user. Thus, whenever a user uploads a new content to a section of the community,
it is displayed into the next empty cell for that section in the corresponding user’s
row. Additionally, contents are assumed to be previously categorised, so that we
distinguish contents to be correct (displayed in green in the figure) from (red
coloured) conflicting ones, which can actually correspond to spam, troll, rude, or
violent contents. Users are considered to be moderate or conflictive depending
on the majoritarian content type they upload. Moderate users (displayed with
an M label) are modelled to complain about conflicting contents. Complaints for
conflicting contents are displayed below them in blue as exclamation sign labels.

Briefly, the simulator works as follows. At each tick, community users: (1)
upload new contents to some section of the virtual community; (2) view some
uploaded contents; and (3) complain about seen contents that are considered to
be conflictive (this action is just performed by moderate users). Each user has
a user profile that describes how often they upload, view and complain about
contents. Moreover, it also describes what sections and type of contents they
choose to upload, view and complain about. According to the type of contents that
they upload, users can be divided into six main types: moderate, spammer, troll,
pornographic, violent and rude. While moderate users upload correct contents,
spammer, trolls, pornographic and violent users tend to upload contents that lead
to user complaints, decreasing the overall user satisfaction of the community.

Our simulator provides some components to configure, execute and monitor
simulations: (i) an agents’ population design tool that allows to design populations
of agents with different user profiles; (ii) a scenario display (shown in Figure 2)
that allows to visualise the virtual community, as well as the contents that users
upload and their associated complaints; and (iii) a set of tools to analyse the
results of simulations, including statistical tools based on JFreeChart [7] that
generate charts as well as output file functionalities that record the evolution along
time of any property of users or contents. Next, we describe the tool provided for
defining user populations.

3.1. Designing Agents’ Populations

Our virtual communities simulator provides a tool that allows to design different
user (agent) populations. Top of Figure 2 depicts its graphical user interface. A
population is composed of different types of agents, which in turn have three
interaction profiles that state the frequency of performing actions in the virtual
community: upload content, view content and complain about a content.
The upload profile describes: (1) the upload frequency, which is the probability of
the user to upload a content at a given time step (tick); and (2) the probability
of the user to upload each one of the six different content types at a given tick.
For instance, we may design a pure moderate agent type by assigning 1 to the
probability of uploading correct contents and 0 to all the probabilities of uploading
conflicting contents (e.g. spam).
The view profile defines users’ preferences in terms of the probability to view
contents from each section of the community. Moreover, the view profile also
considers the view mode, which describes three different ways to choose contents to

Figure 2. Virtual Communities Simulator: (top) Population design tool; (bottom) Grid repre-
sentation of the virtual community scenario.

view: by order (which chooses last uploaded contents), most viewed (which chooses
most visited contents and randomly, according to a uniform random distribution.
The complain profile describes the probability of a user to complain about each
type of visited content. Thus, to design moderate users we should configure it to
complain about any conflicting content with a probability of 1.

4. Synthesising Norms for Virtual Communities

iron is an abstract, domain independent mechanism for the synthesis of norms.
Hence, in order to apply its norm synthesis to a specific scenario, iron requires
the set of domain-dependant inputs enumerated in Section 2. Next subsections
provide the specification of these inputs for the virtual community scenario.

4.1. A function for conflict detection

Function fconflict identifies the conflicts in current MAS state. In our virtual com-
munity scenario, conflictive situations can be identified based on the complaints
users report about contents. Therefore, our implementation of fconflict is devoted
to update the complaint ratio of all contents that have been viewed at current
state (view). The complaint ratio of a content is computed as the ratio of accu-
mulated number of complaints over its total number of views. In this manner, the
function returns the list of those contents that are considered to be conflictive, or
in other words, that have a complaint ratio above a conflict threshold αconflict:

totalNumComplaints(content)

totalNumV iews(content)
> αconflict

4.2. A grammar for norm synthesis

iron norm synthesis approach assumes that a conflict can be avoided if some of
the agent actions that caused it are not performed. Thus, it generates norms that
prohibit agents in the same conflictive context to perform such actions.

By following the grammar specification in previous Section 2.1, we instan-
tiate this grammar as follows. On the one hand, a norm precondition describes
the local perception (i.e., context) of an agent in the conflict. This context is
defined in terms of predicates pn(τ1, . . . , τn) that in our case happen to be unary
p = {user, section, contentType}. Corresponding terms τ for these predicates
are, respectively: all user identifiers (τ={user1, . . ., user10}); section names
(τ={Forum, Multimedia, The Reporter}); and content types (τ={correct,
spam, troll, rude, violent}). On the other hand, a norm consequence specifies
the prohibition (in this case, deontic operator θ = phr) to perform the action
upload of the content in the context.

Therefore, norms establish prohibitions for certain users to upload certain
types of contents in some section of the community. Thus, whenever a user agent
(with a certain id) is visiting a section of the community and it is about to upload
a content of a conflicting type, then a norm should apply to the agent which
prohibits it to upload that content. Norms n1 and n2 are examples of norms that
iron automatically synthesises for our scenario:

n1 : 〈(user(user1), section(Multimedia), contentType(spam)), prh(upload(content))〉
n2 : 〈(user(user3), section(Forum), contentType(violent)), prh(upload(content))〉

Norm n1 prohibits user user1 to upload spam contents on the Multimedia sec-
tion, and norm n2 prohibits user user3 to upload violent contents on the Forum
section.

4.3. A function for detecting norm applicability

During the norm evaluation phase, iron retrieves the norms that have been ap-
plied and violated during the current time step. With this aim, iron requires as
an input function fapply to detect the norms that apply to the agents at a given
state of the MAS.

Our implementation of the applicability function works as follows: given a
state of the MAS, it retrieves the agents that interact within it. Next, it interprets
the local perceptions of each agent in the state. Finally, it retrieves the norms
that apply to the local perception of each agent. As an example, consider norm
n1 described above. Consider now that at a given state of the MAS at time t, a
user with id user1 uploads a spam content to section Multimedia. Formally, its
local perception is:

(user(user1), section(Multimedia), contentType(spam))

Given this particular MAS state, function fapply will first retrieve user1, which is
the agent that interacts with the community in it. Next, it will interpret its local
perception at the given state. Finally, the applicability function will retrieve the

norms that apply to the user. In particular, the local perception of user user1

satisfies the precondition of norm n1. Therefore, at the given MAS state at time
t, norm n1 applies to user user1.

4.4. Time interval and thresholds

As explained in section 2, during the norm evaluation phase iron refines the nor-
mative system deactivating, generalising and specialising norms, based on their
effectiveness and necessity ranges over a period of time T , and a set of thresholds.
In our particular scenario we have established a time interval T = 100, config-
uring iron’s to compute effectiveness and necessity ranges with a great number
of punctual values along time. Regarding the thresholds, we have taken a con-
servative approach to just generalise norms that really perform well (have a high
effectiveness and necessity), and to deactivate norms that really perform poorly.
Thus, the generalisation threshold has been set with a high value (αgen = 0.6),
and the specialisation threshold has been set to a low value (αspec = 0.2).

4.5. An execution of iron’s norm synthesis

As a proof of concept of the application of iron to the virtual community scenario,
in this section we comment on a typical execution of the norm synthesis that iron
performs for it. In particular, we show how, given a population of community
users where the great majority are moderate and some of them are spammers,
iron synthesises norms that prohibit spammers to upload conflicting contents.

Consider a population of 10 users where 8 users (with id’s {user1, . . . , user8})
are moderate and 2 users (with id’s user9 and user10) are spammers. On the
one hand, moderate users upload correct contents with a probability of 0.8, and
wrong placed content with a probability of 0.2. Moreover, moderate users com-
plain about spam with a probability of 0.7. On the other hand, spammers up-
load spam with a probability of 0.7 and correct contents with a probability of
0.3. While executing a simulation with this population, iron rapidly manages
to automatically synthesise a normative system that contains norms prohibiting
users 9 and 10 (spammers) to upload spam contents to any section of the virtual
community, hence avoiding complaints of moderate users:

n1 : 〈(user(user9), contentType(spam)), prh(upload(content))〉
n2 : 〈(user(user10), contentType(spam)), prh(upload(content))〉

5. Conclusions

In this paper we have applied iron, a novel mechanism for the automated syn-
thesis of normative systems, to a particular virtual community scenario, where
agents are users that share contents within the on-line community. Firstly, we
have presented a virtual communities simulator that provides the MAS scenario
for iron to regulate. Our simulator allows to design different populations of users
with different user profiles, which establish the frequency and type of contents
that users upload, view and complain about. Secondly, we have applied iron to
this particular scenario. For this purpose, we have described our domain-specific

implementation of iron inputs. As a result, iron synthesises norms for the users
of the virtual community, preventing them from uploading the type of contents
that other users complain about.

As future work, we plan to further evaluate iron’s norm synthesis for the
virtual community scenario, studying the degree of convergence and the quality
of the resulting normative systems. Additionally, we also plan to extend the sim-
ulator to include punishments for those agents that do not comply with norms.

References

[1] A. Aamodt and E. Plaza. Case-based reasoning: Foundational issues, methodological
variations, and system approaches. AI Commun., 7(1):39–59, 1994.

[2] T. Agotnes and M. Wooldridge. Optimal Social Laws. In Proceedings of the AAMAS2010,

pages 667–674, 2010.
[3] G. Christelis and M. Rovatsos. Automated norm synthesis in an agent-based planning

enviroment. In Proceedings of the 8th International Joint Conference on Autonomous

Agents and Multiagent Systems (AAMAS), pages 161–168, 2009.
[4] C. Danis and A. Lee. The negotiation of norms in an online community, 2002.

[5] D. Fitoussi and M. Tennenholtz. Minimal social laws. In Proceedings of the National

Conference on Artificial Intelligence, pages 26–31. John Wiley & Sons LTD, 1998.
[6] A. Garćıa-Camino, J. A. Rodŕıguez-Aguilar, C. Sierra, and W. Vasconcelos. Constraint

rule-based programming of norms for electronic institutions. JAAMAS, 2009.

[7] D. Gilbert and T. Morgner. JFreeChart, 2003 - 2005.
[8] N. Griffiths and M. Luck. Norm Emergence in Tag-Based Cooperation. In 9th Interna-

tional Workshop COIN, at AAMAS2010. 79-86, 2010.
[9] Y. Mao, J. Vassileva, and W. Grassmann. A system dynamics approach to study virtual

communities. In System Sciences, 2007. HICSS 2007. 40th Annual Hawaii International

Conference on, pages 178a–178a, 2007.
[10] J. Morales, M. Lopez-Sanchez, J. A. Rodriguez-Aguilar, M. Wooldridge, and W. Vasconce-

los. Automated synthesis of normative systems. In Proceedings of the 2013 international

conference on Autonomous agents and multi-agent systems, AAMAS ’13, pages 483–490.
International Foundation for Autonomous Agents and Multiagent Systems, 2013.

[11] M. North, N. Collier, J. Ozik, E. Tatara, C. Macal, M. Bragen, and P. Sydelko. Complex

adaptive systems modeling with repast simphony. Complex Adaptive Systems Modeling,
1(1):3, 2013.

[12] N. Salazar, J. A. Rodriguez-Aguilar, and J. L. Arcos. Robust coordination in large con-

vention spaces. AI Commun., 23(4):357–372, Dec. 2010.
[13] B. Savarimuthu, S. Cranefield, M. Purvis, and M. Purvis. Role model based mechanism

for norm emergence in artificial agent societies. Lecture Notes in Computer Science,
4870:203–217, 2008.

[14] O. Sen and S. Sen. Effects of social network topology and options on norm emergence. In

Proceedings of the 5th international conference on Coordination, organizations, institu-
tions, and norms in agent systems, COIN’09, pages 211–222, 2010.

[15] S. Sen and S. Airiau. Emergence of norms through social learning. In Proceedings of the
20th international joint conference on Artifical intelligence, IJCAI’07, pages 1507–1512,
San Francisco, CA, USA, 2007. Morgan Kaufmann Publishers Inc.

[16] Y. Shoham and M. Tennenholtz. On social laws for artificial agent societies: off-line design.

Journal of Artificial Intelligence, 73(1-2):231–252, February 1995.
[17] D. Villatoro, J. Sabater-Mir, and S. Sen. Social instruments for robust convention emer-

gence. In T. Walsh, editor, Proceedings of the 22nd International Joint Conference on
Artificial Intelligence, pages 420–425. IJCAI/AAAI, 2011.

[18] M. Wooldridge. An Introduction to MultiAgent Systems. John Wiley & Sons, 1st edition,

June 2002.

