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Complex quantum networks 
as structured environments: 
engineering and probing
Johannes Nokkala1, Fernando Galve2, Roberta Zambrini2, Sabrina Maniscalco1 & Jyrki Piilo1

We consider structured environments modeled by bosonic quantum networks and investigate the 
probing of their spectral density, structure, and topology. We demonstrate how to engineer a desired 
spectral density by changing the network structure. Our results show that the spectral density can be 
very accurately detected via a locally immersed quantum probe for virtually any network configuration. 
Moreover, we show how the entire network structure can be reconstructed by using a single quantum 
probe. We illustrate our findings presenting examples of spectral densities and topology probing for 
networks of genuine complexity.

Recently, the study of dissipative or decohering environments as engineered reservoirs has received considerable 
attention. Reservoir engineering aims at turning the environment from an enemy to an ally by modifying the 
properties of the unavoidable noise in order to optimally preserve quantum features such as coherence or entan-
glement. It is nowadays generally recognised that the initial belief of the environment as the major enemy of all 
quantum technologies must be reconsidered. Theoretical and experimental results show indeed that the inter-
action with the environment, when suitably tailored, can be used to generate or protect quantum resources, and 
holds great potential as a method to increase the feasibility and scale of quantum applications1–5.

On the other hand, the extraction of relevant information about a complex quantum system by means of a 
localised quantum probe has also enjoyed growing attention. Besides being generally a less invasive technique, 
this approach might significantly reduce the resources and effort needed to detect, e.g., the complex system’s tem-
perature6, communities7, state8 or dimensionality9.

In this work we apply concepts and techniques of open quantum systems theory to investigate complex bos-
onic quantum networks, thus bridging the gap between these two fields. More precisely, we consider a bosonic 
probe system locally immersed in the network and investigate the control and probing of the network spectral 
density J(ω), a quantity embedding both the environment structure and the interaction between system and envi-
ronment10,11. Notably, we demonstrate that not only J(ω) but the entire structure and topology of the network can 
be obtained by quantum probing, and we give a detailed method to accomplish this task. We consider the probe 
as an open quantum system whose dynamics arises from the interaction with a nontrivial quantum environment.

The study of the spectral density of bosonic quantum systems has been addressed before only for the simple 
cases of either non-interacting oscillators or oscillator chains12–16. This leaves the determination and especially 
control of spectral densities of complex quantum networks a largely unexplored area. Previous investigations 
include using the Landau-Zener transition probabilities of a qubit to detect global features of J(ω)17, the center 
of mass motion of a michromechanical oscillator in the high temperature limit18, the Stokes shift response func-
tion of a spin system immersed in a proteomic scaffold and in contact to a solvent19 and the statistics of photons 
scattering from an open quantum system coupled to a zero temperature reservoir20. In comparison, our probing 
scheme has the advantage of being local and of making no assumptions about the temperature or the structure 
of the environment. Networks of spins as well as bosonic/fermionic networks have been also investigated in 
refs 21–23 in the context of structure probing. However, these methods require a known topology and full state 
tomography to detect the coupling and local field strengths21,22, or can probabilistically reveal an unknown topol-
ogy but are limited to small networks only23. On the contrary, our approach is not based on state tomography, 
requires minimal post-processing of measured data, is in principle deterministic, and can be used for complex 
quantum networks having hundreds of nodes.
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After introducing the model in detail, we calculate spectral densities of quantum networks of genuine com-
plexity, e.g., small-world24 and ErdHös-Rényi25 configurations, and show how to control some features of their 
structure, such as the number of gaps. Numerical simulations based on exact diagonalization show that the 
scheme is very accurate for virtually any network configuration and temperature. While probing is done in the 
weak coupling regime, the detected J(ω) can be scaled to any coupling strength once its shape is known. Finally, 
we prove that the whole structure and topology of the network can be obtained with a single quantum probe by 
scanning over the network nodes with single and pair-node couplings.

Results
The microscopic model. The probe is a quantum harmonic oscillator of unit mass coupled linearly with 
coupling strength k to a node in the quantum network. The probe Hamiltonian, in units of  , is 

ω= +H p q( )/2S S S S
2 2 2 , where pS and qS are the probe momentum and position operators and ωS is the probe fre-

quency. The network plays the role of a finite environment in a thermal state of temperature T and consists of N 
quantum harmonic oscillators of unit mass coupled via springlike couplings, each having the same bare frequency 
ω0. We assume that the probe and the network are initially uncorrelated.

The Hamiltonian of a generic oscillator network can be given as = +H p p q Aq/2E
T T , where 

= ...p p pp { , , , }N
T

1 2  and = ...q q qq { , , , }N
T

1 2  are the vectors of momentum and position operators and the N ×  N 
matrix A has elements δ ω δ= − −A h/2 (1 ) /2ij ij i ij ij

2 , where ωi is the effective frequency of oscillator i, and hij is 
the strength of the springlike coupling between oscillators i and j. Matrix A is the adjacency matrix (including 
diagonal terms) of the network and as such completely characterizes it. For any network configuration, the net-
work Hamiltonian is quadratic in position and momentum and can therefore be diagonalized with an orthogonal 
transformation K as KTAK =  D, where the diagonal matrix D has elements = ΩD /2ii i

2 , where Ωi are the eigenfre-
quencies of the network.

By defining new variables P =  KTp and Q =  KTq, the diagonalization allows us to move into an equivalent 
eigenmode picture of independent oscillators, each interacting with the probe with a coupling strength directly 
proportional to k. The network Hamiltonian in the eigenmode picture is of the form = ∑ + Ω=H P Q( )/2E i

N
i i i1
2 2 2 , 

where Pi and Qi are the position and momentum operators of the network eigenmodes which have frequencies Ωi. 
The Hamiltonian of the total system is = + +H H H kHS E I, where HI is the interaction Hamiltonian. In the 
eigenmode picture it is of the form = ∑ =H q g QI S i

N
i i1  where the dimensionless constants gi describe the coupling 

strengths between the probe and the eigenmodes and are just elements of a row of K. This can be seen by writing 
the position operator of the node directly coupled to the probe in terms of Qi and identifying the weights given by 
the elements of K with gi. Further details about oscillator network diagonalization can be found in, e.g., Appendix 
A of reference13 by Vasile et al.

The reduced dynamics can be described exactly by a generalized quantum Langevin equation. In particular, 
the dissipation and memory effects are accounted for by the damping kernel γ = ∑ Ω Ω=t k g t( ) ( / )cos( )i

N
i i i1

2 2 2 . The 
spectral density of the environmental couplings is defined as

∑ω π δ ω=
Ω

− Ω .J
k g

( )
2

( )
(1)i

i

i
i

2 2

The spectral density and the damping kernel are related as

∫ω ω γ ω= .J t t t( ) ( )cos( ) d (2)
t

0

max

For finite networks, the interaction time between the probe and the network controls the crossover between 
smooth and discrete spectral densities. For tmax in eq. (2) smaller than a characteristic recurrence time τf, propor-
tional to the size of the network, the spectral density will be a smooth function of frequency. In this regime, finite 
size effects are avoided and reduced dynamics correspond to a probe interacting with a continuum of frequencies, 
similar to that calculated from eq. (1) in the limit N →  ∞ . In tmax >  τf regime, finite size effects start to play a 
prominent role.

In what follows, eq. (2) will be used to calculate J(ω) throughout. We will work in the continuum regime when 
probing and engineering the spectral density, but it will be seen that when probing the topology, one must work 
in the discrete regime instead.

Engineering of the spectral density. We consider several different network configurations and calculate 
the respective spectral densities. By going beyond simple chain networks a very rich variety of different spectral 
densities arises. Schematics of network configurations considered in this work are presented in Fig. 1, and the 
corresponding spectral densities are presented in Fig. 2.

A simple homogeneous chain with springlike couplings has a single band. The lowest frequency where J(ω) 
is non-vanishing coincides with ω0 and the highest frequency increases as the stiffness of the chain is increased, 
while the magnitude is directly proportional to k2. Band gaps can be created by periodically tuning some of 
the couplings in the chain to be weaker, which splits the single band to two or more bands13. We have checked 
that the number of bands coincides with the number of network oscillators in a strongly coupled group: an 
example is the trimer chain in Fig. 1A where several groups of three oscillators are weakly coupled as a chain, 
resulting in three bands as in Fig. 2A. A bigger difference between strong and weak network couplings leads 
to wider bandgaps.

Instead of tuning many couplings periodically, a similar effect can be achieved by adding just one additional 
link, or a shortcut, to a homogeneous chain, as in Fig. 2B. This leads to a structured J(ω) with spikes. The amount 
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of spikes coincides with the number of oscillators before the shortcut, while the depth of the pseudogaps between 
the spikes depends on the coupling strength of the shortcut with stronger shortcut leading to deeper pseudogaps. 
An example with three spikes is shown in Fig. 2B.

We also considered a small-world network and a random network. The former has a single band with a lot 
of fine structure. On the other hand, the random network produces highly structured spectral densities that can 
change completely from node to node. In the example presented in Fig. 2D, the probe is coupled to a node with 
high connectivity, resulting in a J(ω) with a wide frequency range. Coupling to a node with low connectivity 
instead might result in a very narrow J(ω).

The ability to controllably engineer a wide variety of spectral densities highlights that complex quan-
tum networks are ideal testbeds for fundamental studies on open quantum systems where, especially in the 
non-Markovian regime, a number of fundamental questions remain still unanswered.

Probing of the spectral density. We consider the case of a network with an unknown configuration but 
known temperature and show that the local value of the spectral density can be probed by measuring the expec-
tation value of the probe number operator = †n a a , where a† and a are the system creation and annihilation 
operators. This is proportional to the average energy of the probe. It has been experimentally measured for spe-
cific systems such as trapped ions; see, e.g.26, for a review. In the examples, we calculate the evolution of n  by 
diagonalizing the network, solving the Heisenberg equations of motion in eigenmode picture, and returning to 
old variables.

Provided that the network size is not too small, one can easily check by comparison with the exact numerics 
that, for weak probe-network couplings and for times greater than the initial non-Markovian time in the contin-
uum regime tmax <  τf, the mean value of the probe number operator is well approximated by the expression 

ω= + −−Γ −Γn t e n N e( ) (0) ( )(1 )t
S

t , with ω ωΓ = J ( )/S S and where ω = −ω −N e( ) ( 1)S
T/ 1S  is the thermal 

average boson number, T being the temperature of the environment, in units of the Boltzman constant kB
27. The 

spectral density can be obtained by probing the network scanning over different frequencies ωS via the formula

ω
ω

=




∆
∆






J
t

n
n t

( ) ln (0)
( )

,
(3)S

S

where ω∆ = −n t N n t( ) ( ) ( )S  and t a suitable interaction time. We stress once more that t can be chosen 
within a wide interval, i.e. it should be in the continuum regime and longer than the initial non-Markovian time. 

Figure 1. Schematics of the network configurations. The white circle is the probe, coupled to a single node 
with a coupling strength k. Couplings between network oscillators are either strong (solid line) or weak 
(dashed line). Example (A) is a periodical chain where every third coupling strength is weaker. Example (B) 
is a homogeneous chain with one short-cut, with all coupling strengths equal. Example (C) is a small-world 
network constructed from a chain by adding several weak shortcuts and example (D) is an Erdős-Rényi random 
network.

Figure 2. The spectral densities (solid line) of the configurations presented in Fig. 1 for a system-network 
dimensionless coupling strength k =  0.01. All networks have N =  200 nodes with a frequency ω0 =  0.25. The 
spectral densities are probed (circles) with a constant interaction time t =  500. Each circle corresponds to a 
different value of the system frequency, which is varied to sample the underlying J(ω). The system is initially 
in vacuum state and the network temperature is T =  5. In the periodic chain (A), strong and weak couplings 
between network oscillators are 0.1 and 0.06, respectively. In the chain with a shortcut (B), all network couplings 
are set to 0.1. In the small-world network (C), the strong and weak couplings are 0.1 and 0.003, respectively. The 
random network (D) has equal couplings set to 0.05.
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A rough estimate of the non-Markovian correlation time τR is given by ω τ  1max R , where ωmax is the largest 
frequency where the spectral density is non-vanishing: for weak couplings it is typically very short.

In Fig. 2 we test the effectiveness of the probing scheme for the spectral densities of the networks presented 
in Fig. 1 by calculating the r.h.s. of eq. (3) with exact numerics for many different values of ωS. All quantities, 
namely coupling strengths, times and temperatures, are given in arbitrary units as referred to a fixed frequency 
unit. The probing scheme works well for all four examples. In particular it is seen that while the rich struc-
ture of Fig. 1C,D would require dense sampling to resolve, the samples themselves are accurate. Beyond the 
examples presented here, we checked the accuracy of the probing for a wide range of spectral densities and 
parameter ranges and found similar results. We also tested probing with different states of same energy, finding 
no differences.

Probing of the network topology. The spectral density alone does not allow one to determine all proper-
ties of the underlying quantum network. It can be shown14–16 that any spectral density that can be produced by a 
diagonal Hamiltonian can be reproduced by a linear harmonic chain with nearest-neighbor couplings only. Since 
any network configuration, no matter how complex, can be presented in the eigenmode picture with a diagonal 
Hamiltonian, this means that the network shape is never unique to a given spectral density.

In the following we present a general approach allowing for the full characterisation of the network structure 
and topology. Remarkably, our detection method only relies on the use of a single quantum probe and on the 
measure of the mean excitation number n t( )  at a certain time within a broad characteristic time interval. 
However, in order to retrieve the complete information on the network we need to (i) couple the probe to more 
than a single node; (ii) measure the excitation number in the discrete regime τ>tmax f . The latter point is related 
to the fact that short-time reduced dynamics are not determined by the entire network28. This technique is, inev-
itably, much more expensive than the probing of the spectral density. However, to the best of our knowledge, it is 
the first demonstration that the full information on the network can be extracted by means of a single quantum 
probe.

We will assume to have some preliminary knowledge on the size of the network, i.e., on the number of nodes 
N. As explained when introducing the microscopic model, a generic oscillator network is determined by matrix 
A, which provides the oscillator frequencies as well as the structure of the network. We will show how to recon-
struct both the matrix D and K from which matrix A can be obtained via A =  KDKT.

To construct D, one needs to detect the eigenfrequencies Ωi, which can be done using an approach similar to 
J(ω) probing. As explained before, for sufficiently short interaction times, the detected J(ω), given by eq. (3), is a 
smooth function of frequency as if the network had a continuum of eigenfrequencies. With longer interaction 
times the discrete spectrum emerges. This is essentially caused by differences in the heat flow between the probe 
and the network in the long interaction time regime, leading to a significantly larger values of ∆n t( ) when ωS is 
close to an eigenfrequency. The sensitivity of the eigenfrequency detection depends on coupling strength k, with 
weaker values leading to more accurate results. We stress that this behaviour is universal to all finite networks. An 
example is shown in Fig. 3, which also demonstrates the accuracy of the eigenfrequency detection when k is weak. 
Typically eigenfrequency detection is the most robust part of topology probing.

While Ωi do not depend on the node the probe is coupled to, the probe must interact with all eigenmodes to 
detect all Ωi, which is not always the case. On the other hand, the couplings to eigenmodes can be changed by 
coupling the probe to different node(s), which allows one in principle to always detect all of them. If Ωi are all 
distinct, as is the case for generic networks, knowing N gives the number of Ωi, and consequently one knows when 
all eigenfrequencies have been found.

The elements of K are detected in two steps. First step is to detect the modulus of K. The coupling strengths to 
eigenmodes are related to the rows of matrix K as =g j K( )i ji, with gi describing the coupling between the probe 
and the eigenmode i and j the index of the node the probe is coupled to. In other words, each node j corresponds 
to a different HI and therefore, different set of coupling strengths. Thus, the elements Kji can be obtained by prob-
ing sequentially each node j of the network at the eigenfrequencies Ωi, i.e. evaluating decay of n t( )  at ωS =  Ωi, 

Figure 3. An example of eigenfrequency probing with a homogeneous chain. In (A), the detected spectral 
density is shown for τ≈ .t 0 9 f , where t is the interaction time and τf the recurrence time. The result is a smooth 
function of frequency. In (B), detected spectral density is shown for τ≈t 3 f . The discrete spectrum emerges 
and reveals the eigenfrequencies marked by dots. In (C), the evolution of n t( )  is compared for ωS at an 
eigenfrequency (squares) and just 2% off (circles). The difference is clear and causes the emergence of discrete 
spectrum in (B). Also depicted is the time τthermal, after which the energy flow is reversed even for a system at an 
eigenfrequency. The chain, initially in vacuum state, was 50 oscillators long, with bare frequency ω0 =  0.25 and 
coupling constant g =  0.1, with a system-network coupling strength k =  0.0025. The probe was initially in 
squeezed vacuum with squeezing parameter r =  1 and phase space angle φ π= /2.
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and using eq. (3) to determine J(Ωi). From eq. (1), it can be seen that ∫ ω ω ω = ∑
π

∞ J k g( ) d i i0
2 2 2. Keeping in mind 

that we wish to have a value for each of the gi, we approximate the integral with a finite sum using J(Ωi) and Ωi. By 
identifying the terms in the summations on both sides and solving for gi we arrive at π= Ω Ω ∆Ωg J k2 ( ) /( )i i i i

2 , 
where ∆Ω = Ω − Ω +i i i 1 is the sampling interval.

Second step is to detect the signs of the elements of K by probing pairs of nodes in the same way as previously, 
e.g. nodes 1 and 2. In this way one detects +K Ki i1 2  (with probe frequency Ωi) and, by comparing it to the values 
obtained by the single node probing, namely +K Ki i1 2 , one can reveal whether the elements have same or 
opposite sign. In principle, the choice for the tolerance value used here can create some ambiguity, but this can be 
done after probing is over and the final result remains mostly unchanged for a wide range of choices. Running 
over the eigenfrequencies Ωi and running over N −  1 pairs of nodes completes the relative signs of the complete 
matrix. The knowledge of relative signs is sufficient since the adjacency matrix A =  KDKT is invariant under a 
global sign change of K.

Even small errors in the previous steps easily destroy the orthogonality of K, leading to large errors in the 
reconstruction to the overall network structure and topology. To counter this, the orthogonality needs to be 
enforced. This is straightforward to do since it can be shown29 that any matrix M which has a singular value 
decomposition M =  WNV† has a unique nearest orthonormal matrix, and it is WV†.

To summarize, one first needs to detect the eigenfrequencies Ωi. This determines matrix D. Then, all N nodes 
are probed at eigenfrequencies individually, followed by the probing of N −  1 pairs of nodes, which determines 
matrix K up to a global sign which can be arbitrary. The nearest orthonormal matrix to detected K is calculated 
and used to calculate the adjacency matrix from A =  KDKT. The method above can be used for a full reconstruc-
tion of a large oscillator network of an unknown topology. As an example we show in Fig. 4 a comparison between 
the original and reconstructed adjacency matrices of a small-world network similar to that of Fig. 1C. The accu-
racy of the reconstruction depends mostly on the magnitude of the adjacency matrix elements and the used 
interaction time t: accuracy improves for larger values of matrix elements and using an interaction time in the 
range τ τ< <tf thermal, where τthermal is the time before energy flow is reversed for a system at an eigenfrequency, 
see Fig. 3C. In particular, links that are very weak relative to others can be missed, while a network where all cou-
plings are strong leads to best results. The biggest drawback of the method is that the amount of measurements 
one needs to do scales with N2. This is a consequence of having an unknown topology with unknown and possibly 
distinct coupling strengths. Whether it is possible to do better without making additional assumptions about the 
network is still very much an open question.

Discussion
We have explored bosonic complex networks from two complementary perspectives. We have shown how, having 
access and control of the network structure, we can engineer a wide variety of ad hoc structured environments. 
We have demonstrated that even small changes in the connectivity of the network, such as the introduction of 
an additional link, may cause a dramatic change in the shape of the spectral density. Highly structured spectral 
densities are found, e.g., in biological systems and, very recently, approaches of open quantum systems theory 
have been used to understand the loss of coherence in these systems30,31. As biological systems are very difficult 
to test in the laboratories, it is highly desirable to develop ways to simulate their dynamics in a controllable way. 
Possible experimental implementations of the model considered here include optical modes in cavities32, ions in 
segmented traps33, mechanical resonator arrays34, and cluster states created from an ultrafast frequency comb35. 
While implementing an arbitrary oscillator network is still beyond the reach of experimentalists, simple networks 
have been implemented with all three platforms and the realization of more complex networks is under active 
research.

With a shift in perspective to a complementary view point, we have investigated the possibility of revealing 
unknown properties of a complex quantum network by means of a single quantum probe suitably coupled to the 
network. We have developed and illustrated a method for efficient detection not only of the spectral density but, 
in principle, of the entire network structure, showing its effectiveness for virtually any network configuration. Our 

Figure 4. The detected matrix A (left), compared to the original one (right) for a smallworld network of 
60 nodes. The initial state for the probe is squeezed vacuum with squeezing parameter r =  1 and phase space 
angle φ π= /2, while the network is initially in vacuum state. The chain couplings have a coupling strength of 
0.2 while the seven extra links have a coupling strength of 0.1. Bare frequencies are ω0 =  0.25.
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results are the first demonstration of the power of quantum probing for complex quantum networks going beyond 
toy models consisting of tens of nodes. While the present results are still a proof-of-principle demonstration, 
due to the generality of the system considered, they pave the way to the study of quantum probing in a variety of 
physical scenarios.
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