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Abstract. Sampling is a creative tool in composition that is widespread
in popular music production and composition since the 1980’s. However,
the concept of sampling has for a long time been unaddressed in Music
Information Retrieval. We argue that information on the origin of sam-
ples has a great musicological value and can be used to organise and
disclose large music collections. In this paper we introduce the problem
of automatic sample identification and present a first approach for the
case of hip hop music. In particular, we modify and optimize an existing
fingerprinting approach to meet the necessary requirements of a real-
world sample identification task. The obtained results show the viability
of such an approach, and open new avenues for research, especially with
regard to inferring artist influences and detecting musical reuse.
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1 Introduction

Digital sampling is a creative tool in composition and music production. It can
be defined as the use of a fragment of another artist’s recording in a new work.
The practice of digital sampling has been ongoing for well over two decades. It
has become widespread amongst mainstream artists and genres, including hip
hop, electronic, dance, pop, and rock [20]. Information on the origin of samples
holds valuable insights into the inspirations and musical resources of an artist.
Furthermore, such information could be used to enrich music collections, e.g.
for music recommendation purposes. However, in the context of music process-
ing and retrieval, the topic of automatic sample identification has been largely
unaddressed [8, 21].

In this contribution we introduce automatic sample identification as a new
line of research in Music Information Retrieval (MIR), and present a first ap-
proach to detecting whether a query song samples another song inside a given
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music collection. The next section of this article will state some of the motiva-
tions for developing a sample identification system and lists the requirements
that such a system should meet, in relation to existing research in content-based
music retrieval. Audio fingerprinting techniques are shown to be a good basis
for experiments. In the third and fourth sections, experiments are presented and
discussed.

1.1 Sampling in Popular Music

The Oxford Music Dictionary defines sampling as “the process in which a sound
is taken directly from a recorded medium and transposed onto a new record-
ing” [14]. As a tool for composition, it first appeared when musique concrète
artists such as Pierre Schaeffer started assembling tapes of found field-recordings
and in musical collages. Examples of the use of previously released music record-
ings are James Tenney’s repurposing of Elvis Presley’s Blue Suede Shoes in
Collage #1 (1961), and the Terry Riley composition Bird of Paradise (1965),
which uses the song Shotgun by Junior Walker and his All-Stars as direct source
material [15, 16].

The phenomenon of sampling reappeared in the 1970’s when New York DJs
such as Kool DJ Herc started using their vinyl players to repeat and mix parts
of popular recordings, to provide a continuous stream of music for the danc-
ing crowd. The breakthrough of sampling followed the invention of the digital
sampler around 1980. It allowed producers to isolate, manipulate, and combine
portions of others’ recordings to obtain entirely new sonic creations [10, 23]. The
possibilities that the sampler brought to the studio have played a role in the
appearance of several new genres in electronic music, including hip hop, house
music (from which a large part of electronic dance music originates), jungle (a
precursor of drum&bass music), dub, and trip hop [22]. The first famous sample-
based single was Sugarhill Gang’s Rapper’s Delight (1979), containing a looped
sample taken from Good Times by Chic (1979) [14]. A famous example of sam-
pling in rock music is the song Bittersweet Symphony by The Verve (1997), which
looped a pattern sampled from a 1966 instrumental string arrangement of The
Rolling Stones’ The Last Time (1965) [14].

1.2 Motivations for Computational Research on Sampling

A first motivation to undertake the automatic identification of samples originates
in the belief that the musicological study of popular music would be incomplete
without the study of samples and their origins. Knowledge on the origin of sam-
ples provides a direct insight into the inspirations and musical resources of an
artist, and reveals some details about his or her composition methods and pro-
duction choices. At the level of popular music history, there has been an emerging
interest to study how some of the particular musical properties of contemporary
popular music may be traced back to the influence of the technology that has
been used to produce it, such as song structures, groove (the activating quality
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of music), and rhythm [5, 9, 18]4. To our knowledge, an extensive study of how
harmony, timbre, rhythm, groove and other qualities of sampled music may have
descended from past cultural activity has yet to be performed.

Samples also hold valuable information on the level of genres and communi-
ties, revealing cultural influences and dependence. Many researchers have stud-
ied the way that hip hop has often sampled 60’s and 70’s African-American
artists [10, 18] and, more recently, Bryan and Wang [4] analysed musical influ-
ence networks in sample-based music, inferred from a unique dataset provided
by the WhoSampled web project5. Such annotated collections exist, but they
are assembled through hours of manual introduction in a collaborative effort of
amateur enthusiasts. It is clear that an automated approach could both widen
and deepen the body of information on sample networks, while at the same time
bringing the freedom to individuals to perform their own analysis, so that they
do not need to rely on the collaborative efforts of others, or the platforms that
store them.

Equally interesting opportunities lie alongside recent advances in folk song [27]
and version identification [25] research, where sample identification research can
be applied within a larger effort to trace specific musical ideas and observe mu-
sical reuse in the recorded history of the last century.

As the amount of accessible multimedia and the size of personal collections
continue to grow, sample identification from raw audio also provides a new way
to bring structure to the organisation of large music databases, complementing
a great amount of existing research in this direction [8, 21]. Finally, sample iden-
tification could serve legal purposes. Copyright considerations have always been
an important motivation to understand sampling as a cultural phenomenon; a
large part of the academic research on sampling is focused on copyright and
law [20].

1.3 Requirements for a Sample Identification System

The challenges of automatic sample recognition can be directly related to the
way samples have been manipulated by producers. Typical parameters control-
ling playback in popular hardware and software samplers (e.g. AKAI, Yamaha,
Ableton, Native Instruments) include filtering parameters, playback speed, and
level envelope controls (attack, sustain, decay, release). Filtering can be used
by producers to maintain only the most interesting part of a sample. Playback
speed may be changed to optimise the tempo (time-stretching), pitch (transpo-
sition), and mood of samples. Naturally, each of these operations complicates
the automatic recognition of affected samples. In addition, samples may be as
short as one second or less, and do not necessarily contain tonal information, i.e.
they may consist of only percussive sounds. Finally, given that it is not unusual

4 Talking Heads singer David Byrne also devotes two insightful chapters of his recent
book How Music Works (2012) to the influences of technology on the artistic process.

5 www.whosampled.com.
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for two or more samples to appear at the same time in a mix, the sample’s en-
ergy may be low compared to that of the musical elements that obscure it. This
further complicates recognition.

In the light of these observations, three important requirements for any sam-
ple recognition system should be that:

1. The system is able to identify heavily manipulated query audio in a given mu-
sic collection. This includes samples that are filtered, time-stretched, trans-
posed, very short, tonal and non-tonal, processed with audio effects, and/or
appear underneath a thick layer of other musical elements.

2. The system is able to perform this task for large collections.
3. The system is able to perform the task in a reasonable amount of time.

These requirements allow us to introduce and situate the problem of sample
identification in the field of content-based music retrieval. Like in other fields
of information retrieval, performance in music retrieval is typically expressed in
terms of precision (how good the retrieved results are) and recall (how many good
results are retrieved). It should be noted that, in the context of the applications
proposed above, a good recall is the more important requirement: a musicologist
trying to identify source material in a composition can assess system output
fairly easily. Regardless, we argue that the unseen difficulty of facing these three
challenges at once is in itself an excellent motivation for the proposed research.

1.4 Content-based Music Retrieval

Research in content-based music retrieval can be characterised in terms of the
specificity [8] and granularity [17] of the task. Specificity refers to the degree
of similarity between query and match. Tasks with a high specificity intend to
retrieve almost identical documents; low specificity tasks look for more loosely
associated matches that are similar with respect to some musical properties.
Granularity refers to the difference between fragment-level and document-level
retrieval: audio fingerprinting is an example of a fragment-level (low granularity)
task, while version detection requires a more document-level (high granularity)
approach. Automatic sample recognition has mid-specificity and very low granu-
larity (i.e. very short-time matches that are similar with respect to some musical
properties). Given these characteristics, it relates to audio fingerprinting.

Audio fingerprinting systems attempt to identify unlabeled audio by match-
ing a compact, content-based representation of it, the fingerprint, against a
database of labeled fingerprints [6]. Just like fingerprinting systems, sample
recognition systems should be designed to be robust to additive noise and several
transformations. However, the deliberate transformations possible in sample-
based music production, especially changes in pitch and tempo, suggest that the
problem of sample recognition is in fact a significantly more challenging task.

Audio matching and version identification systems are typical mid-specificity
problems [17]. Version identification systems assess if two complete musical
recordings are different renditions of the same musical piece, usually taking
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changes in key, tempo and structure into account [25]. Audio matching works
on a more granular level and includes remix recognition, amongst other tasks [7,
17]. Many of these systems use chroma features [8, 21]. These descriptions of
the pitch content of audio require the audio to be tonal and are generally not
robust with respect to changes in tonality, as may occur with the addition of
other musical layers. This may be problematic in the case of sampling. We there-
fore claim that sample recognition should be cast as a new problem with unique
requirements, for which the right tools are still to be made.

Potential sample identification tools have been proposed by a small number
of authors. A system capable of fingerprinting pitch-shifted audio is described
by Fenet [13]. The system relies on an existing fingerprinting technique and,
as we propose in [26], uses a logaritmic frequency representation to facilitate
the search for pitch-shifted audio. It performs well on the recognition of radio
broadcast audio, as intended in its design. As a result however, it does not provide
robustness to time-stretching or to pitch shifts up to a semitone and more.
More recently, Dittmar et. al. [11] explicitely addressed sample recognition in the
context of plagiarism assessment. Two approaches are proposed: a brute-force
comparison of spectrograms (again with logaritmically spaced frequencies), and
a method based on non-negative matrix factorization (NMF). The techniques
are claimed to be robust against time-stretching and pitch-shifting respectively,
but have not been formally evaluated yet.

2 Experiments

2.1 Evaluation Methodology

We now present our first approach to the automatic identification of samples [26].
Given a query song in raw audio format, the experiments aim to retrieve a ranked
list of candidate files with the sampled songs first. To narrow down the scope
of experiments, only samples used in hip hop music were considered, as hip hop
is the first and most widely known genre to be built on samples [10]. Regarding
the origins of samples, there were no genre restrictions.

An evaluation collection was established using data from specialized inter-
net sites6. The set consists of 76 query tracks and 68 sampled tracks [26]. It
includes 104 sample relations (expert-confirmed cases of sampling). Addition-
ally, 320 ‘noise’ files, very similar to the candidates in genre and length, were
added to challenge the system as suggested in [24]. This makes a total of 388
candidates. All examples are real-world cases of sampling. Aiming at represen-
tativeness, the ground truth was chosen to include both short and long samples,
tonal and percussive samples, and isolated samples (the only layer in the mix)
as well as background samples. So-called ‘interpolations’, i.e. samples that have
been re-recorded in the studio, were not included, nor were non-musical samples
(e.g. film dialogue).

6 WhoSampled (www.whosampled.com), accessed 02/2011 and Hip Hop is Read (www.
hiphopisread.com, accessed 02/2011)
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Figure 1 shows a visualisation of sample relations between the artists ap-
pearing in the music collection established for the evaluation of our experiments.
The orange nodes represent sampled artists, the blue nodes represent the artists
that sampled them. The diagram shows how the emerging links between artists
quickly give rise to a complex network of influence relations.

Fig. 1. Network visualisation of the connections between some of the artists in the
music collection established for the evaluation of experiments. The light nodes (orange)
represent sampled artists, the dark nodes (blue) represent the artists that sampled
them.

Table 1. Example: two audio tracks and a sample relation as they are represented
in the ground truth dataset. The sample relation S019 is identified by the associated
query Q, the candidate C, and the times TC and TQ at which the sample occurs the
first time. N counts the number of times the sample occurs in Q.

Artist Title Year Genre

T034 Pete Rock & C.L. Smooth Straighten it Out 1992 Hip-hop
T035 Ernie Hines Our Generation 1972 R&B/Soul

C Q TC TQ N Comments

S019 T035 T034 0:40 0:10 48 Vocals

The mean average precision (MAP) was chosen as the experiment’s evalua-
tion metric [19]. The MAP is a common measure in information retrieval and
has been used in several related tasks [12]. With the collection used in this
study, a random baseline of 0.017 was found over 100 iterations, with a standard
deviation of 0.007.
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2.2 Optimisation of a State-of-the-Art Audio Fingerprinting System

In a first experiment, a state-of-the-art fingerprinting system was optimised to
perform our task. We chose to work with the spectral peak-based audio fin-
gerprinting system designed by Wang [28]. A fingerprinting system was chosen
because of the chroma argument in Section 1.4. The landmark-based system was
chosen because of its robustness to noise and distortions and the alleged ‘trans-
parency’ of the spectral peak-based representation: Wang reports that, even with
a large database, the system is able to correctly identify each of several tracks
mixed together. The same system was used by Fenet et al. [13] and has previ-
ously also been adapted for use in version recognition [1]. Table 2 lists some of
the system’s strengths and weaknesses with respect to the current task.

Table 2. Strengths and weaknesses of spectral peak-based fingerprints in the context
of sample identification.

Strengths Weaknesses

– High proven robustness to noise
and distortions.

– Ability to identify music from only
a very short audio segment.

– ‘Transparent’ fingerprints: ability
to identify multiple fragments
played at once.

– Does not explicitly require tonal
content.

– Not designed for transposed or
time-stretched audio.

– Designed to identify tonal content
in a noisy context, fingerprinting
drum samples requires the oppo-
site.

– Percussive recordings may not be
representable using spectral peak
locations only.

As in most other fingerprinting systems, the landmark-based system consists
of an extraction and a matching component [28]. Briefly summarized, the extrac-
tion component takes the short time Fourier transform (STFT) of audio segments
and selects from the obtained spectrogram a uniform constellation of prominent
spectral peaks. The time-frequency tuples with peak locations are paired in 4-
dimensional ‘landmarks’, which are then indexed as a start time stored under a
certain hash code for efficient lookup by the matching component. The matching
component retrieves for all candidate files the landmarks that are identical to
those extracted from the query. Query and candidate audio segments match if
these corresponding landmarks show consistent start times [28].

An implementation of this algorithm was made available by Ellis7. It works
by the same principles as [28], and features a range of parameters to control the
implementation-level operation of the system. Important STFT parameters are
the audio sample rate and the FFT size, determining the frequency and time
resolution of the spectral analysis. Another important quantity is the number of

7 http://labrosa.ee.columbia.edu/matlab/fingerprint/
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spectral peaks to consider. It is governed by the Peak Density parameter (con-
trolling the density of peaks in the time domain) and a Peak Spacing parameter
(in the frequency domain). The number of resulting landmarks is governed by
three more parameters: the peak pairing horizons in the frequency and time
domain, and the maximum number of formed pairs per spectral peak.

A wrapper was written to slice the query audio into short fixed-length chunks,
overlapping with a hop size of 1s and a length around the expected length of the
longest samples. The same wrapper then feeds these chunks to the fingerprinting
system as implemented by Ellis, and uses a distance function to sort the results
into a ranked list. The distance that was used is

da =
1

m+ 1
(1)

a function of the number of matching landmarks m.
As a complete optimisation of the system would have been too time-consuming,

we have performed a large number of tests to optimise the most influential pa-
rameters. Table 3 summarizes the optimisation process, of which more details
can be found in [26]. The resulting MAP was 0.218. Interestingly, better perfor-
mance was achieved for lower sample rates. The optimal density of peaks and
number of pairs per peak are also significantly larger than required in a standard
fingerprinting context, resulting in many more extracted landmarks per second.
This requires more computation time for both extraction and matching, and
requires for a higher number of extracted landmarks to be stored in the system’s
memory.

The MAP of around 0.23 is low for a retrieval task but promising as a first
result: it is well beyond the random baseline and the system retrieves a correct
best match (top 1) for around 15 of the 76 queries. These matches include both
percussive and tonal samples. However, due to the lowering of the sample rate,
some frequency resolution is lost, and much of the spectral information remains
unused. This may affect the scalability of the system: a sufficient number of fre-
quency bins is needed to ensure that the landmarks allow differentiation between
a high number of almost identical spectra.

2.3 Constant Q Fingerprints

As a second experiment, we did a number of tests using a constant Q transform
(CQT) [2] instead of a Fourier transform (FT). We would like to consider all
frequencies up to the default 8,000 Hz but make the lower frequencies more
important, as they contributed more to the best performance so far. The constant
Q representation, in which frequency bins are logarithmically spaced, allows us
to do so. The CQT also suits the logarithmic representation of frequency in the
human auditory system.

We integrated the fingerprinting system with Ellis’ implementation8 of
Brown’s fast algorithm to compute the CQT [3]. A brief optimisation of the

8 See http://www.ee.columbia.edu/~dpwe/resources/matlab/sgram/ and http://

labrosa.ee.columbia.edu/matlab/sgram/logfsgram.m
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Table 3. Some of the intermediate results in the optimisation of the audio fingerprint-
ing system by Wang as implemented by Ellis [26]. The first row shows default settings
with its resulting performance.

pairs/pk pk density pk spacing sample rate FFT size MAP
(s−1) (bins) (Hz) (ms)

3 10 30 8,000 64 0.114
10 10 30 8,000 64 0.117
10 36 30 8,000 64 0.118
10 36 30 4,000 64 0.193
10 36 30 2,000 64 0.176
10 36 30 2,000 128 0.228
10 36 30 2,000 256 0.144

new parameters returns an optimal MAP of 0.21 at a sample rate of 8,000 Hz,
showing that similar precision as before can be obtained. With this sample rate
and with an optimised resolution of 32 bins per octave, the information in the
frequency domain is now restored: at 8000 Hz sample rate and 32 bins per oc-
tave, the CQT spans 224 bins, whereas a 128ms FT at 2000 Hz results in only
128. The use of the constant Q will also prove convenient for reasons explained
in the next section.

2.4 Repitching Fingerprints

In a third and last experiment, a first attempt was made to deal with repitched
samples. As laid out in section 1.3, artists often time-stretch and pitch-shift
samples. This is typically done by changing the samples’ playback speed. As a
result, the samples’ pitch and tempo rescale with the same factor. Algorithms
for independent pitch-shifting and time-stretching without audible artifacts have
only been around for less than a decade, after phase coherence and transient
processing problems were overcome. Even now, repitching is still popular practice
amongst producers, as inspection of the used music collection confirms.

The most straightforward, brute-force method to deal with repitching is to
repitch query audio several times and perform a search for each of the copies.
Alternatively, however, the extracted landmarks themselves can also be repitched
through the appropriate scaling of time and frequency components. This way the
extraction needs to be done only once. We have performed three tests in which
both methods are combined: all query audio is resampled several times, to obtain
N copies, all pitched ∆R semitones apart. For each copy of the query audio,
landmarks are then extracted, duplicated and rescaled to include all possible
landmarks repitched between r = 0.5 semitones up and down. This is feasible
because of the CQT’s finite resolution in time and frequency. Note that the use
of the constant Q transform also provides us with a convenient advantage at
this point: the difference between two peaks’ logaritmic frequency is invariant to
pitch-shifting. In more detail: one of the landmark’s dimensions is rewritten as
the logaritmic frequency difference between the peaks to exploit this property.
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The invariance of this component reduces the amount of landmarks needed to
cover a range of repitch values.

The results for repitching experiments are shown in Table 4. We have ob-
tained a best performance of MAP equal to 0.390 for the experiment with N = 9
repitched queries, all ∆R = 0.5 semitones apart. This results in a total searched
pitch range of 2.5 semitones up and down. A MAP of 0.390 is rather low, yet
it is in the range of some early version identification systems, or even slightly
better [24]. A total of 29 out of 76 queries now retrieve a correct song as their
best match, examples now including several repitched samples, both percussive
and tonal.

Table 4. Results of experiments using repitching of both the query audio and its
extracted landmarks to search for repitched samples.

sample rate bins/octave min. freq. N ∆R r MAP
(Hz) (st) (st)

8000 32 32 1 - 0.0 0.228
8000 32 32 1 - 0.5 0.288
8000 32 32 5 1.0 0.5 0.334
8000 32 32 9 5.0 0.5 0.390

3 Discussion

We have introduced and detailed the first research to fully address the problem
of automatic sample identification. The problem has been defined and situated in
the broader context of sampling as a musical phenomenon and the requirements
that a sample identification system should meet have been listed. A state-of-the-
art fingerprinting system has been adapted, optimised, and modified to address
the task. Many challenges have to be dealt with and not all of them have been
met, but the obtained performance of MAP = 0.39 is promising and unmis-
takably better than the performance obtained without taking repitching into
account. Overall, our approach is a substantial first step in the considered task.

A more detailed characterisation of the unrecognised samples is rather time-
consuming but will make a very informative next step in future work. Further-
more, we suggest performing tests with a more extensively annotated dataset,
in order to assess what types of samples are most challenging to identify, and
perhaps a larger number of ground truth relations. This will allow us to relate
performance and the established requirements more closely and lead to better
results.

Advances in the presented research will eventually pave the road for reli-
able fingerprinting of percussive audio, sample recognition based on perceptual
models, or the analysis of typical features of sampled audio. These can in turn
support many of the proposed applications presented in this contribution, such as



Sample Identification in Hip Hop Music 11

musicological research, music understanding and recommendation and perhaps
even tools for providing musicians with new and inspiring resources. All this will
hopefully allow a greater understanding of sampling as an artistic phenomenon
and help musicologists make sense of the popular music of today.
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