
u-Help: supporting helpful communities with
information technology?

Andrew Koster1, Jordi Madrenas1, Nardine Osman1, Marco Schorlemmer1,
Jordi Sabater-Mir1, Carles Sierra1, Angela Fabregues1,2, Dave de Jonge1,2,

Josep Puyol-Gruart1,2, and Pere Garcia-Calvés1

1 IIIA-CSIC
Bellaterra, Spain

2 Universitat Autònoma de Barcelona
Bellaterra, Spain

Abstract. When people need help with day-to-day tasks they turn to
family, friends or neighbours to help them out. Finding someone to help
out can be a stressful waste of time. Despite an increasingly networked
world, technology falls short in supporting such daily irritations. u-Help
provides a platform for building a community of helpful people and sup-
ports them in finding help for day-to-day tasks. It relies on a trio of
techniques that allow a requester and volunteer to find one another eas-
ily, and build up a community around such provision of services. First,
we use an ontology to distinguish between the various tasks that u-Help
allows people to provide. Second, a computational trust model is used
to aggregate feedback from community members and allows people to
discover who are good or bad at performing the various tasks. Last, a
flooding algorithm, similar to the popular Gnutella algorithm, quickly
disseminates requests for help through the community. This paper de-
scribes these three techniques in detail. This work is implemented as an
iPhone application that we also describe in this paper.

1 Introduction
The web has been evolving into a social space enabling individuals to be pulled
opportunistically into peer communities to achieve both personal and group
goals. This has been possible due to the widespread adoption of software appli-
cations that support and facilitate basic group interaction and collaboration such
as file sharing, instant messaging, blogging, or social networking. These sorts of
applications depend more on social conventions that arise within the community
that uses them than on the particular features offered in the first place.

But, despite the success of certain well-designed social software platforms
such as Flickr, MySpace, LinkedIn, Facebook, or Twitter, current social appli-
cations do not allow a community to form around a specific need. Particularly,
users who are looking for either new, partially formed, or already standing com-
munities whose interactions are much more domain specific and specialised, need
software tools and platforms that support the formation of and the adjustment
to the evolving community.
? AT2012, 15-16 October 2012, Dubrovnik, Croatia. Copyright held by the author(s).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/45451122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An example of such a community, is that of a group of neighbours, friends or
close family who turn to each other for help with performing day-to-day tasks.
According to Beech et al. [1] being late to pick up the children is a major stress
factor for working parents. From one of the interviews they conducted, they
quote a mother: “the worst time is the afternoons, and trying to finish off work
to leave on time to collect my son from the nursery.” A follow-up study [12]
indicates that one of the most severe problems that working parents encounter
is coping with unexpected scheduling issues. We use this community as a proto-
type scenario, but emphasise that there are many other communities in which
similar technologies can be used. For instance, sport schools where people try to
find practice partners, or a group of commuters organizing carpools. The core
characteristic is not so much the activity, but the supporting of a community,
with its own set of rules and expectations.

In this paper we present u-Help, a software application that provides a
fully distributed platform for building and maintaining a local community of
people helping each other with their day-to-day tasks. The aim of u-Help is
twofold. The first is straightforward: we aim to provide an application that finds
a trustworthy member of the community who will help with the required task.
The second aim is longer term: as the community evolves, it may have different
rules and requirements. As such, maybe the tasks to be performed change, the
way in which members’ actions are evaluated change. The aim is to provide the
tools to change the u-Help application together with the users. In this paper
we focus exclusively on the first aim: we describe how the u-Help application
supports a helpful community.

u-Help starts from the pre-existing social relationships between users. We
thus assume the existence of a social network (identities and connections may be
imported from various other social networking applications). However, the social
network is used specifically to allow users to ask for help with picking up, or tak-
ing care of their children. To allow such a request to propagate quickly through
the network, we use a flooding algorithm. After a volunteer has been found and
performs the task, the u-Help application allows the requester to evaluate that
volunteer’s performance. Such evaluations are aggregated in a computational
trust model. Finally, we rely on semantic techniques to describe the tasks for-
mally and define a similarity measure between them, in order to use evaluations
of a volunteer performing one task to estimate his performance at another task.

2 The u-Help Application
The u-Help application provides a platform to build and support a community
to which members can turn to find help with day-to-day tasks. In this section
we describe the three key technologies used in developing u-Help. Underlying
these technologies is the existing social network data. The users of u-Help are
represented as nodes in a graph and social relationships between the users are
the edges of the graph. Such a representation could be imported from one of a
number of social networking applications, such as Facebook, or constructed by
automatically by accessing the address book of people’s telephones when they
join u-Help.

R requests help with
task T

u-Help finds
volunteer V for

task T

R cancels task T

no

END

yes

no

R modifies and re-
requests task T

yes T is assigned to V V performs T

R cancels T

START

R evaluates V's
performance of T

Fig. 1: Diagram of the general workflow for finding help with the u-Help appli-
cation.

When a member of the community needs help for performing a certain task,
the flooding algorithm propagates this request, starting with that member’s di-
rect neighbours in the graph and flooding the request out from there until a sat-
isfactory volunteer for the task is found. The workflow of this process is drawn
in the diagram Figure 1. In order to find a volunteer, the u-Help application
has a number of components, outlined in Figure 2. As seen in this diagram,
the flooding algorithm relies on the community member’s trust evaluations of
one another to decide whether to forward the request or not. Such trust evalu-
ations are calculated automatically by the computational trust model based on
requesters’ evaluations of the performance of the volunteer, in the specific task
requested. The trust model, in turn, relies on the semantics of the task to find
similar tasks, when little to no feedback is available for a task.

We describe these three technologies below. In Section 2.2 we describe how
users’ ratings of specific tasks can be aggregated to obtain a trust evaluations
and in Section 2.3 we describe the flooding algorithm and we start, in the next
section, with a full description of the tasks for which u-Help can be used and
the semantics of these tasks.

Flooding Algorithm
(FA) Trust model

Social Network

Similarity metric on
tasks

Direct experiences
and communicated

ratings

Task ontology

Fig. 2: Abstract overview of the u-Help application’s components

2.1 Tasks

We shall assume that the tasks managed by the u-Help community consist of the
activity the task is about (babysitting, picking up, cooking, etc.) and the child

to whom the activity is applied (baby, toddler, preschooler, etc.). Consequently
we need to handle two separate hierarchies.

On one hand, the different kinds of activities are usually organized in a
meronomy1, specifying which subactivities may be part of a given activity (e.g.,
that changing nappies is a subactivity of babysitting). Here we take inspiration
from the design decisions suggested by the Process Specification Language (PSL)
[7]. The activity meronomy is given in Figure 3a.

On the other hand, the different kinds of children are more naturally orga-
nized in a taxonomy, specifying subclasses of children (e.g., that a toddler is a
baby). To build the child class hierarchy, we have been looking at WordNet [5]
for inspiration. WordNet has situated two of the different senses of child in two
different fragments of its taxonomy, but for u-Help we decided to merge these
two in one taxonomy, as we are treating child both as an offspring and a juvenile
person. The child taxonomy is drawn in Figure 3b.

(a) Meronomy of activities in u-Help (b) Taxonomy of children in u-Help

Fig. 3: Formal description of the tasks, to perform some activity with a child.

A task is a pairing of an activity with a child, for instance (GivingALift,
Schoolchild) or (Playing, Toddler). If the activity specified is not a leaf of the
meronomy, the requester expects the volunteer to perform all the subactivities
involved. For instance, if the activity is GivingALift, the volunteer is expected
to perform both PickingUp and DroppingOff. However, if the child is not a leaf
of the taxonomy it is simply not as detailed a specification: the schoolchild is
either a preadolescent or an adolescent, but clearly not both.

This gives the requester the freedom to specify a task at a more, or less, de-
tailed level, which can affect how the flooding algorithm propagates the request.
Specifically, the specification of the task has a direct effect on the trust model,
because any evaluation of a volunteer’s performance is linked to the task he
1 A meronomy is a type of hierarchy that deals with part-whole relationships, in
contrast to a taxonomy whose categorisation is based on discrete sets.

performed. When evaluating a target for the performance of another task, the
similarity between the new task and previously performed tasks is an impor-
tant factor to take into account for estimating his performance. The similarity is
computed separately for the activity and child types and combined in the trust
model. The “similarity” between activities is considered purely from a trust per-
spective. We use the OpinioNet algorithm [11] to propagate evaluations of other
activities through the meronomy. The similarity over the child taxonomy is con-
sidered from a more semantic perspective and we use the similarity measure
proposed by Li et al. [10] to calculate this similarity.

In OpinioNet, opinions may be assigned by users to nodes of a structural
graph, and the OpinioNet algorithm gives a method for propagating these opin-
ions throughout the graph [11]. In u-Help the opinions are satisfaction ratings
of how a user performed at an activity and the structural graph is the meronomy
of those activities. We argue that a user’s performance at one activity should
influence his trustworthiness for performing similar activities (nearby nodes in
the meronomy). We make use of the OpinioNet algorithm for the propagation
of trust in graphs based on the part-of relation.

The basic idea of the OpinioNet algorithm is that if a node in the graph
does not receive a direct evaluation, then its evaluation may be deduced from
its children nodes’ evaluations. This is because the parent node is structurally
composed of its children nodes. Hence, the evaluations on children nodes must
necessarily influence the deduced evaluation on a parent node. OpinioNet refers
to the direct evaluation on a node or an evaluation of it that is deduced from
evaluations of the parts that compose it as the ‘intrinsic evaluation’ of that node.

Additionally, an ‘extrinsic evaluation’ is an evaluation that is propagated
down from parent nodes to children. In the absence of information about the
node itself, or the parts that compose it, information may be inherited from
what one belongs to. In other words, in the absence of information about intrinsic
evaluation, the evaluation of that node is calculated based on evaluations of its
parents’ nodes.

As an example of how the OpinioNet algorithm propagates evaluations
through the meronomy, consider that if the target performed well at the Prepar-
ingMeal activity, this will affect the evaluation of that target for the activity of
BabySitting. This is an ‘intrinsic evaluation’. An ‘extrinsic evaluation’ would be
to say that performing well at BabySitting carries over to a good evaluation for
the subactivity of ChangingNappies if there is no direct evaluation of the target
performing the ChangingNappies activity.

However, we also argue that many of the activities change, dependent on
the type of child. For instance, preparing a meal for a baby is very different
to preparing a meal for an adolescent. We therefore need to take the similarity
between children into account as well. For this, we rely on the similarity measure
proposed by Li et al. [10], which takes three aspects of taxonomies into account:

– the distance l between two classes in the taxonomy: the closer, the more
similar the classes are;

– the depth h in the taxonomy of most specific subsumer: the deeper in the
taxonomy the subsumer is, the more similar the classes are;

– the local semantic density d of instances of these classes: the greater the
information content of the subsumer, the more similar the classes are.

These three measures are combined in a set of equations that calculates the
similarity between two classes in a taxonomy: in our case the similarity between
two types of children.

In the trust model of the next section we combine the two similarity measures
for tasks. Let t1 and t2 be tasks, then sim(t1, t2) is the similarity (based on
the taxonomy) between the children with who an activity is performed, while
prop(e, t1, t2) propagates an evaluation e of the activity performed in t1 to the
activity in t2.

2.2 Trust Model for u-Help
Every member of the community maintains his own trust evaluations of other
members of the community. These trust evaluations are task-dependent, with
which we mean that a user’s evaluation of another may change, depending on the
task for which he is evaluated. This trust evaluation is crucial in the functioning
of the flooding algorithm, which only forwards a request for help to a neighbour
if the trust level in that neighbour is sufficiently high. This particular use of
trust places a number of requirements on how we treat trust evaluations:

– We assume a trust evaluation is a numerical evaluation of an agent between
zero and one, where zero is the equivalent of completely untrustworthy, one
is the equivalent of fully trustworthy and anything in between is a degree
of trustworthiness. An alternative interpretation of this is the (estimated)
probability that the target of the evaluation will perform the task in a sat-
isfactory manner.

– We assume that these evaluations have a transitive property: if an agent
forwards the request to one of his own neighbours, the trustworthiness of
that neighbour in the requested task to the original requester depends both
on the trustworthiness of the first neighbour, as well as that person’s trust
evaluation of the new target. We assume trust is monotonically decreas-
ing along a single path. This can be modeled using a T-norm and we use
multiplication to model this. a’s trust in c along the path a → b → c is
trust(b, c) · trust(a, b), where trust(a, b) is the function that returns a’s trust
evaluation of b. Note that trust is not strictly transitive and we cannot say
anything about trust(a, c) based on this property: we only use this for prop-
agating trust through the network.

– We assume that if a node receives the same request two times that its trust-
worthiness can increase with regards to that request. This increase in trust
can be modeled by a T-conorm. The requests reaching a node along two dif-
ferent paths are not independent events, however, because the paths taken
may be largely similar and only differ in one or two nodes. We thus cannot
use probabilistic disjunction, and instead choose to use the maximum of the
trustworthiness along both paths.

These assumptions are not uncommon in the trust literature. For instance,
TidalTrust [6] is a trust model that propagates trust evaluations through a social
network relying on similar properties, although a more sophisticated algorithm is
used to compute the trustworthiness of a node. For a more in-depth discussion on
transitivity of trust and considerations that should be taken into account when
propagating trust through a network, see [8,4]. Specifically we are assuming, in
this case, that if agent a trusts agent b to perform a task, a also trusts b to
delegate that task. Additionally, if c was previously unknown, then a’s trust in
b can somehow be seen as an upper bound of the trust a has in c for performing
this task. Consider the case of picking up a child from school: if we trust b to pick
up our child, and b trusts c, we will definitely not put more trust in c than in
b (and in reality, probably considerably less). However, on b’s recommendation,
we may be willing to give c a try (especially when nobody else is available).
Additionally, if c comes recommended by multiple people that we trust, then we
are more inclined to trust c and accept him to perform the task.

The flooding algorithm calls the Trust function, which is a call to the trust
model. Because u-Help is a distributed application and every member of the
community has his own u-Help application, the trust evaluations are different
from user to user. Every u-Help application comes equipped with the same trust
model, but the evaluations it uses to compute evaluations are different. When
the flooding algorithm calls the trust model, it calculates the trustworthiness
of a target with regards to a specific task. The two main problems, inherent in
u-Help, are that:

1. Trust evaluations are task-specific and the target may not ever have per-
formed the required task before.

2. There may be factors outside of the u-Help platform that cause people to
gain, or lose trust, in one another.

For the former, we take the similarity between tasks into account and allow
trust to carry over, to a certain extent, to similar tasks. As explained in Section
2.1, this similarity is measured along a number of dimensions, in order to get
an accurate measurement of the conceptual difference between performing one
task and another. In this way, evaluations of past experiences with one user for a
similar task can be used to evaluate that user for a task he has never performed.

Additionally, some tasks may be more sensitive than others and require more
trustworthy agents to perform them. Therefore we propose that users may specify
a minimum trust level for each task. This allows users to, for example, specify
that to pick up his children, the agent must be trusted with a value of at least
0.8, while for fetching a coffee from the cafe a trust level of 0.4 is sufficient.

Evaluating direct experiences. When a task is performed, the requester can
evaluate its performance by giving a numerical rating between zero and one. A
rating of zero means that the task was performed in a very unsatisfactory manner
and an evaluation of one means the task was performed perfectly. When a trust
evaluation is needed for a new task, these ratings are aggregated together. Let
t be the new task, v be a volunteer and S be the set of past satisfaction ratings

obtained thus far from direct experiences with v. Additionally, let value, task and
time be functions such that, for a rating s, value(s) is the numerical evaluation,
task(s) the task and time(s) the time at which the task took place.

First we select those ratings that are semantically near enough to be con-
sidered. In other words St = {s ∈ S|sim(t, task(s)) > δ}, with δ a thresh-
old for the distance between tasks. The direct trust is computed as follows:

Trust(v, t) =
defaultv +

∑
s∈St

sim(t, task(s)) · prop(value(s), task(s), t) · λnow−time(s)

1 +
∑

s∈St
sim(t, task(s)) · λnow−time(s)

Where λ is a parameter for discounting outcomes of past tasks over time,
defaultv is the default trust value of volunteer v (as specified by the user) and
now is the current time.

This formula calculates the direct trust as a weighted average of the ratings,
after being propagated over the activity meronomy using the OpinioNet algo-
rithm, with the similarity between child types and discount factor over time as
weights. The default value loses importance the more (recent and similar) rat-
ings there are available. When there are few, or no direct experiences the direct
trust evaluation is near the default trust value, but as more ratings get taken
into account, the influence of the default value diminishes.

Communicated experiences. When a volunteer is not a direct neighbour of
the requester, the volunteer was found by the flooding algorithm along a path
of trusted delegators. For community building it is important to disseminate
information about the performance of the members of the community quickly
[2], in order to ensure good performers are kept in the loop, while people who
perform badly at certain tasks are not asked to perform those tasks again.

Specifically, the direct neighbours of the volunteer must be told about the
volunteer’s performance, because they are, ultimately, the ones who recommend
that volunteer to other members of the community. All evaluations of a task
are therefore sent to all neighbours of the volunteer. If there is a central infras-
tructure, this is easy to accomplish, but because the u-Help platform is fully
distributed, we cannot assume the structure of the social network is known to
the requester. The u-Help application thus requires the nodes to always forward
messages reliably. That way the requester’s u-Help client can send the message
to the volunteer’s client, which is guaranteed to forward this message to all its
neighbours. In this sense the u-Help client should be seen as a governor agent
[3]: it mediates the participation of the user, but is not fully under that user’s
control. We do not consider security issues, such as falsifying messages, but these
could be dealt with by using encryption.

The receiving client deals with received outcomes as if they are from its own
user and simply adds them to the set of outcomes it considers when it evaluates
trust. This ignores some of the issues of trust, such as that an outcome is a
subjective evaluation, taking the user’s own criteria into account and may not
be immediately applicable for other users. To deal with this, we propose to
extend the u-Help trust model in the future with a trust alignment module [9],
but for the moment we assume other users’ evaluations of the performance of a
task are directly applicable.

2.3 Flooding Algorithm
The flooding algorithm is the core computational process in the u-Help plat-
form. It ensures requests for help are disseminated through the community. As
stated earlier, we build upon a social network representation of the community:
this is represented by some graph, in which the members of the community are
nodes, and the edges represent friendship relations between two people. When
someone wants to request help with a specific task, the flooding algorithm sends
this request to that person’s neighbours in the graph (i.e. its friends) and from
there it continues to flood through the network. This is similar to a number of
other algorithms designed for rapidly disseminating a message through a graph,
most prominently the Gnutella algorithm for P2P file sharing. The main dif-
ference between existing approaches and the flooding algorithm discussed here
is that the decision to stop forwarding the request is made primarily based on
trust, rather than on other things, like the number of hops the request has made
through the network or the time passed since the initial request was made.

The reason for this is that we not only want to find someone willing to volun-
teer for a task, but he must also be trustworthy when performing this task. The
way we calculate trust is described in the previous section. With the trust evalu-
ation, the flooding algorithm can then propagate a request through the network.
For calculating trust along a path, we recall that we assume trust is transitive,
and thus we can use a T-norm to ensure trust is monotonically decreasing along
a path. As stated in the previous section, we use multiplication. The flooding
algorithm stops propagating the request when the cumulative trustworthiness of
a node falls below a certain threshold τ . Algorithm 1 gives the pseudocode for
the algorithm that performs this flooding.

The algorithm works in a straightforward manner: every time a friend’s re-
quest is received (in Algorithm 1 this is simply a call to the FloodRequest
function on the corresponding node), the algorithm propagates the request to
neighbouring nodes only if the request is either a new request (task 6∈MyTasks),
or the trust level of the path requesting this is sufficiently higher than the trust
level of the previous path that led to the same request (where the decision of
whether a trust level is ‘sufficiently higher’ is determined by the minimum ac-
ceptable change in trust level σ).

When a user wants to request help for task t, the software calls
FloodRequest(t, 1, ∅). The algorithm floods the request through the network.
The Confirmmethod sends a message back to the original requester when the hu-
man user associated with the node in question accepts a request
(HumanUserAccepts). The u-Help platform then filters out possible bad mat-
ches by using the agent’s own trust model to check for volunteers below the
threshold τ (the minimal accepted trust level), and a choice is made out of all
eligible volunteers. There are a number of options for performing this choice. In
general this is up to the user, but he may delegate this to u-Help, that could
automatically select the most trustworthy volunteer, which is outside the scope
of this paper.

Concerning efficiency, we note that the flooding algorithm is not affected by
loops in the graph as flooding is stopped when the node itself is found in the re-

quest path (due to the condtion on line 2 of Algorithm 1). In the worst case, with
σ = 0, for a graph G, the number of messages is

∑
p∈loop_free_paths(G) length(p),

which can be exponential in the number of nodes.

Algorithm 1: The Flooding Algorithm
Input: τ : [0, 1], minimum trust level
Input: σ : [0, 1], minimum change in trust to re-flood the network
Input: me : Node, the identifier of the current node
Input: friends : 2Node, set of neighouring nodes
Data: MyTasks := ∅, a list of tasks that have been requested
Data: OldTrust := ∅ → ∅, a map with the current trustworthiness for every

task requested
1 FloodRequest(task, trustlevel, path): begin
2 if me 6∈ path then
3 if task 6∈MyTasks then
4 MyTasks := MyTasks ∪ task
5 OldTrust(task) := trustlevel
6 Propagate(task, trustlevel, path⊕me)
7 end
8 else if trustlevel −OldTrust(task) > σ then
9 OldTrust(task) := trustlevel

10 Propagate(task, trustlevel, path⊕me)
11 end
12 end
13 end
14
15 Propagate(task, trustlevel, path): begin
16 if HumanUserAccepts(task) then
17 Confirm(task, path)
18 end
19 foreach Node n ∈ friends do
20 trust := Trust(n, task) · trustlevel
21 if trust > τ then
22 n→ FloodRequest(task, trust, path)
23 end
24 end
25 end

Finally, we note that, if needed, the algorithm could be changed to put a
limit on the number of hops by taking a maximum number of hops into account,
in addition to considering the trust level. This can be achieved by adding a pa-
rameter n in Algorithm 1: the maximum number of allowed hops, and changing
the Propagate method to no longer propagate if the number of hops in a re-
quest message is equal to n. This would make our algorithm more similar to the
Gnutella flooding algorithm, but it would still take trust into account.

Because u-Help is designed to run on mobile devices, it is important to take
breaks in connectivity into account. In the implemented version of the algorithm,
there is the option to use a time limit, after which it is assumed that any node
that has not answered was unreachable. This allows the algorithm to deal with

users whose cellphones are switched off, or unreachable for other reasons. Addi-
tionally, at a lower level, the messaging protocol could detect failures to receive
and resend the message when the receiving node is back online.

3 Implementation and deployment
In this section we describe the main implementation details of the u-Help ap-
plication. The implementation was designed for iOS, and is useable on the iPod
Touch, the iPhone, and the iPad. Other possible platforms, such as Android,
were taken into account, but the widespread use of iOS gave the breakthrough.

In order to benefit from u-Help it is necessary for the user to configure her
data. She must set up (or import) her connections in the social network, and
have all settings and data entered correctly. Once this is done, the user can start
to use u-Help to request help, and be contacted by others in the community
who need help in return.

The u-Help application’s usability is designed around four main views:

– The “Help” view: This is where users may request help.
– The “Requests” view: This is the place for users to track, and manage,

their requests for help.
– The “Duties” view: This is the place for users to track, and manage, their

duties, or the tasks that they have volunteered to do.
– The “Settings” view: This view allows the user to change all user-specific

settings, as well as add, edit and remove information in the u-Help appli-
cation. For instance, the names of the user’s children and the locations they
may need to be picked up from, or brought to. Additionally the user may
set a number of parameters, such as the minimum acceptable trust level for
each task, the maximum number of hops in the flooding algorithm and other
parameters discussed in Section 2.

In what follows, we go over each of the u-Help application views in detail.

3.1 Asking for help

Asking for help is done by pressing the “Find Help!” button (see Figure 4).
However, the user must first choose the action that she requires help with from
the list of predefined tasks. This list, and the options given, correspond to the
task ontology in Section 2.1.

In some cases, actions may require additional parameters for the user to fill
in. For example, in the case of picking up a child, the user will need to specify:
(1) which child is being picked up, (2) the location where the child needs to be
picked up from, and (3) on what day and time should the child be picked up.
However, different actions will require different parameters. Hence, to keep the
application user friendly, once an action is chosen from the list, various additional
fields may appear beneath the action list, where the user can either fill in the
details of the requested action or choose the details from a predefined list (such
as the case of the “pick up my child” action, where the children and the possible
locations would be specified in the settings).

Fig. 4: The “Help” view Fig. 5: “Requests” view
Only after selecting the requirements, can the user proceed to pressing the

“Find Help!” button. This button then triggers the flooding algorithm, as de-
scribed in Section 2.3. When a request is received by another user, she receives a
notification and is asked to respond. The answer is used on line 16 of the flooding
algorithm (Algorithm 1), where a confirmation is sent back to the requester if
the user accepts the task.

3.2 Tracking requests
Users can see their current requests for help and their status in the “Requests”
view (see Figure 5).

Again, the presentation of each item in the list is dependant on the semantics
of the action. In the case of the “pick up my child” action, the name of the child,
the location to be picked up from, and the date and time the child needs to
be picked up is presented. In addition to those, the “status” parameter is also
presented to help the user track the progress of its requests.

The status can have one of the following values, which are self-explanatory:
– Looking for a volunteer
– No volunteers found
– Assigned to VolunteerName
– Failed by VolunteerName
– Completed by VolunteerName
– Cancelled by VolunteerName
– Cancelled by RequesterName

The change in the status should sometimes trigger alert messages, informing
the user of important changes. For instance: if the status changes to “No volun-
teers found”, then a message should be sent to the user, notifying him that the
u-Help platform failed to find a volunteer. Other important changes are also
accompanied by appropriate messages.

The only two actions that are permitted in this view are:

– Cancelling requests. The cancel button is active from the moment the
request is made and until half an hour before the task’s deadline. A part of
the future work is to allow different deadlines to be specified for different
tasks. Additionally, deadlines could also be calculated dynamically based,
for instance, on the location of the volunteer. We note that when pressed,
the cancel button will change the status to “Cancelled by RequesterName”
and delete the item from the list of requests. Furthermore, if a volunteer was
assigned to this request, the the item will also be deleted from the volunteer’s
list of duties and an alert message is sent to the volunteer.

– Rating requests. The rating bar is only activated if the status is “Com-
pleted by VolunteerName” or “Failed by VolunteerName”. Note that the
u-Help platform designates a task as “failed” if the task’s deadline has
passed, but the volunteer has not confirmed that the task has been com-
pleted. If the volunteer marks it as completed, the requester can still give
him an unsatisfactory rating. Similarly if u-Help thinks the volunteer failed
to complete the task due to the deadline passing, but the user knows the
task was completed adequately, the volunteer can be given a satisfactory
rating. The completion mechanic thus exists mainly as a way of providing
information to the user and does not affect the rating of the task.

3.3 Tracking duties

In the “Duties” view, a user can see the list of tasks she has volunteered for.
Moreover, she can cancel them, or flag them as completed. The interface is very
similar to that of the “Requests” view, but with the difference that to complete
the task, the volunteer may need extra information, which can be accessed from
this view.

3.4 Settings

The final view for the user is the “Settings” view. This is where the user spec-
ifies all the information needed by the u-Help platform. The main menu (see
Figure 6a) gives a good overview of what can be changed. The most impor-
tant aspects to the user are that information about the social network can be
imported and changed here (see Figure 6b), and the user can edit her profile,
adding information required for the various tasks (see Figure 6c). For instance,
information about her children, activities where they need to be accompanied,
locations where they need to be picked up or brought to, etc.

The Charter gives information about community-specific settings, such as
how long before a task the requester (and volunteer) can cancel and what tasks
are supported by this u-Help community. We aim to extend the charter. One
direction is to add norms to the charter, such as what the minimum requirements
for “completing a task in a satisfactory manner” are. Another direction that can
be explored simultaneously is to allow users to negotiate about changes to the
charter. These changes are needed in order to support a growing and changing
community.

(a) Main menu of the “Set-
tings” view

(b) Add neighbours or
change the trust level

(c) Add children, locations,
etc.

Fig. 6: Various screens in the “Settings” view

4 Discussion and Conclusions

In this paper we have introduced the u-Help application, mainly in its capacity
as a platform for finding help within a community. However, as we said in the
introduction, there is a second aim behind its development, to study how a com-
munity evolves and the methods we presented need to be augmented or changed
over time. The idea is to implement an adaptable community charter, with which
the community can decide on such changes together. To study this, we aim to
roll out the application in a small, controlled, community. In preparation for
this, we are currently running agent-based simulations of such a community, us-
ing the u-Help application. Initial results show that the flooding algorithm and
trust model ensure that untrustworthy members of the community are quickly
ignored for help requests.

A specific extension that we intend to make in the u-Help application is the
design of a charter in which the community’s norms are described. For the tasks
described in this paper, such norms could be that someone picking up children
may never be late. A competing, more relaxed, norm could be that the volunteer
may never be more than five minutes late. The community needs some way of
proposing, and deciding upon such competing norms. Additionally, there must
be some way of measuring norm compliance and identifying norms which need
revising: if volunteers are given mostly satisfactory ratings despite not complying
with a norm, the community may need to rethink that norm.

With this move to a more normative description of when a task is performed
in a satisfactory manner, the incorporation of communicated ratings into the
trust model can also be extended. We briefly mentioned that such ratings are
subjective. If users are asked to give a rating of the volunteer, but additionally
tick any norms that weren’t complied with, this information can be used in the

communication to decide on the importance of the rating: different users give
different importance to the various norms of the community.

However, such future work aside, the u-Help application as it is now, allows
users to ask for help and find a trusted volunteer within their community. This
is a first step towards building applications that explicitly support community
formation around specific activities.

Acknowledgements
This work is supported by the Generalitat de Catalunya grant 2009-SGR-1434,
the CBIT project (TIN2010-16306), the Agreement Technologies project (CON-
SOLIDER CSD2007-0022, INGENIO 2010), and the ACE ERA-Net project.

Author Contributions
The task ontology and similarity measures were conceived by MS and NO. The
trust model was designed by JSM and AK, and the flooding algorithm by CS
and NO. The implementation for iOS was made by JM. AK wrote the initial
versions of this paper with contributions from AF, MS and NO; and prepared
the final version. All authors read and approved the final manuscript.

References
1. Beech, S., Geelhoed, E., Murphy, R., Parker, J., Sellen, A., Shaw, K.: The lifestyles

of working parents: Implications and opportunities for new technologies. Tech. Rep.
HPL-2003-88(R.1), HP Laboratories (2004)

2. Conte, R., Paolucci, M.: Reputation in Artificial Societies: Social beliefs for social
order. Kluwer Academic Publishers (2002)

3. Esteva, M., Rosell, B., Rodriguez-Aguilar, J.A., Arcos, J.L.: Ameli: An agent-
based middleware for electronic institutions. In: AAMAS’04, pp. 236–243. ACM,
New York, USA (2004)

4. Falcone, R., Castelfranchi, C.: Trust and transitivity: a complex deceptive relation-
ship. In: TRUST@AAMAS’10. pp. 43–53. IFAAMAS, Toronto, Canada (2010)

5. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press (1998)
6. Golbeck, J.: Combining provenance with trust in social networks for semantic web

content filtering. In: Moreau, L., Foster, I. (eds.) Provenance and Annotation of
Data (IPAW 2006), LNCS, vol. 4145, pp. 101–108. Springer (2006)

7. Grüninger, M., Menzel, C.: The Process Specification Language (PSL): Theory
and applications. AI Magazine 34(3), 63–74 (2003)

8. Jøsang, A., Gray, E., Kinateder, M.: Simplification and analysis of transitive trust
networks. Web Intelligence and Agent Systems 4, 139–161 (2006)

9. Koster, A., Sabater-Mir, J., Schorlemmer, M.: Trust alignment: a sine qua non
of open multi-agent systems. In: Meersman, R., Dillon, T., Herrero, P. (eds.)
CoopIS’11. LNCS, vol. 7044, pp. 182–191. Springer, Hersonissos, Greece (2011)

10. Li, Y., Bandar, Z.A., McLean, D.: An approach for measuring semantic similarity
between words using multiple information sources. IEEE Transactions on Knowl-
edge and Data Engineering 15(4), 871–881 (2003)

11. Osman, N., Sierra, C., Sabater-Mir, J.: Propagation of opinions in structural
graphs. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) ECAI’10. Frontiers in
AI and Applications, vol. 215, pp. 595–600. IOS Press, Lisbon, Portugal (2010)

12. Sellen, A., Hyams, J., Eardley, R.: The everyday problems of working parents: Im-
plications for new technologies. Tech. Rep. HPL-2004-37, HP Laboratories (2004)

