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Summary
The AMP-activated protein kinase (AMPK) is a central regulator of cellular energy homeostasis, which, in response to a fall in
intracellular ATP levels, activates energy-producing pathways and inhibits energy-consuming processes. Here, we report that fission

yeast cells lacking AMPK activity are unable to advance entry into mitosis in response to nitrogen starvation and cannot undergo proper
G1 arrest and cell differentiation. We also show that AMPK is important in the promotion of the nuclear localization and accumulation
of the Ste11 transcription factor. As in animal cells, the fission yeast CaMKK ortholog (Ssp1) phosphorylates and activates the catalytic

subunit of AMPK (Ssp2) in its activation loop (Thr189) when cells are starved for nitrogen or glucose. Interestingly, we found that the
phosphorylation of Ssp2 on Thr189 is required for nuclear accumulation of AMPK. Our data demonstrate the existence of a signal
transduction pathway activated by nutrient starvation that triggers Ssp2 phosphorylation and AMPK redistribution from the cytoplasm to

the nucleus. This pathway is important to advance fission cells into mitosis and to establish a timely pre-Start G1 cell cycle arrest for
mating.
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Introduction
The AMP-activated protein kinase (AMPK) is a conserved

multisubstrate kinase that is activated in response to a variety of
metabolic stresses to regulate cell energy homeostasis. AMPK
activity helps to adapt the cell metabolism to match available

energy resources (Hardie, 2008). Its activation depends both on
its phosphorylation on Thr172 by upstream kinases (Hawley et al.,
2003) and on the cellular ATP and AMP concentration (Hardie,
2003). AMP is an allosteric activator of AMPK and makes

AMPK a better substrate for the upstream kinase. The tumour
suppressor LKB1 and CaMKK (calcium/calmodulin-dependent
protein kinase kinase) activate mammalian AMPK by

phosphorylation of the a-subunit at a specific threonine residue
(Thr172) (Hawley et al., 2005; Hurley et al., 2005; Woods et al.,
2005). AMPK phosphorylation causes at least a 100-fold

activation, whereas allosteric activation by AMP is about 10-
fold. AMPK is stimulated by AMP and ADP and is inhibited by
high concentrations of ATP (Hardie, 2011; Hawley et al., 1996;

Xiao et al., 2011). When intracellular ATP levels drop, active
AMPK inhibits ATP-consuming processes. When ATP levels
increase, inactive AMPK allows energy usage for biosynthetic
pathways and processes that consume ATP. This is how

eukaryotic cells adapt their metabolism to the intracellular
energy status (Hardie et al., 2006).

Fission yeast AMPK forms a abc heterotrimer between the

catalytic subunit Ssp2 and the bc regulatory subunits Amk2 and
Cbs2 (Townley and Shapiro, 2007). In general, the a-subunits
include a typical serine-threonine kinase domain characteristic of

AMPKs. The b-subunits are required for trimer assembly and the
subcellular localization of the AMPK complex (Vincent et al.,
2001; Warden et al., 2001). The heart of AMPK regulation by

adenylate binding is thought to reside in the c-subunit (Adams

et al., 2004), where ATP or AMP binds. Another catalytic
subunit, Ppk9, has been described in Schizosaccharomyces

pombe. Ppk9 also interacts with Amk2 and Cbs2 (Hanyu et al.,

2009). In S. pombe, ADP is also able to bind to the b-subunit,
suggesting a possible role for ADP in regulating AMPK (Jin et al.,
2007). Ssp2 (the a-subunit) contains the ubiquitin-associating

UBA domain immediately adjacent to the kinase domain (Hanyu
et al., 2009). This feature resembles the mammalian AMPK-
related kinases MARK or BRSK, which are the substrates of

LKB1 (Jaleel et al., 2006). Recently, Ssp1 has been described as
the orthologue of CaMKK protein in S. pombe that contains the
kinase domain and a putative CBD region (calmodulin-binding
domain) (Hanyu et al., 2009). Interestingly, Ssp1 and Ssp2 were

described originally to be required for growth polarity and actin
localization in fission yeast (Matsusaka et al., 1995).

In spite of the importance of AMPK in signaling the cellular

energy status, and despite the simplicity of S. pombe as a
eukaryotic model organism, very little is known about AMPK
regulation in fission yeast. Here we show that the AMPK
complex (Ssp2–Amk2–Cbs2) is needed for the correct transition

from cell proliferation to cell differentiation under low-energy
conditions and that it is regulated by two different mechanisms:
phosphorylation of the catalytic subunit and subcellular

localization of the AMPK complex.

Results
Fission yeast AMPK is required for proper cell cycle exit
and sexual differentiation

Crystal structure analysis revealed that fission yeast AMPK is
comprised of a-, b- and c-subunits corresponding to Ssp2
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(a-subunit), Amk2 (b-subunit) and Cbs2 (c-subunit) (Townley

and Shapiro, 2007). To check whether the three AMPK subunits

indeed interact in vivo, cells co-expressing epitope-tagged

versions of Ssp2 (Ssp2–HA) and Amk2 (Amk2–TAP) or Cbs2

(Cbs2–TAP) were generated. TAP-epitope-tagged proteins were

pulled down from extracts obtained from exponentially growing

yeast cells using IgG–Sepharose beads and the presence of Ssp2–

HA in the pellets was examined by western blot. Ssp2 was pulled

down with Amk2 or with Cbs2 (Fig. 1A). We also were able to

detect Amk2 and Cbs2 in pull downs of Ssp2. These results

indicated that Ssp2 interacts physically with Amk2 and Cbs2 in

vivo, showing that AMPK is indeed a abc heterotrimer and that

these three subunits interact even under optimal growth

conditions. This result is in agreement with previous mass

spectrometry analyses reported by (Hanyu et al., 2009).

Ssp2 (the catalytic a-subunit of AMPK) was identified in a

systematic deletion analysis of fission yeast protein kinases. Loss of

the ssp2 gene in a homothallic h90 strain showed partial iodine

staining in the sporulation medium, indicating a defect in cell cycle

exit and/or sexual differentiation (Bimbó et al., 2005). Therefore,

we analyzed the role of the three subunits of AMPK in mating and

sexual differentiation. In animal cells, AMPK is activated by

phosphorylation by two upstream kinases: LKB1 and CaMKK. The

CaMKK orthologue in S. pombe is Ssp1 and it can be considered

functionally similar to mammalian LKB1 (Hanyu et al., 2009).

Accordingly, we also analyzed the mating efficiency of the ssp1D
mutant. As shown in Fig. 1B,C, deletion of the genes encoding any

of the three subunits of AMPK or of Ssp1 showed a similar

phenotype, a decrease in the percentage of zygotes (Fig. 1B), and a

reduction in staining with iodine vapour (Fig. 1C), indicating that

mating efficiency is diminished in all of them. We therefore

conclude that each of the three subunits of AMPK and Ssp1 are

required for proper sexual differentiation in S. pombe.

When fission yeast cells are starved of nitrogen, G2 cells are

advanced into mitosis and eventually arrest in the G1 phase of the

cell cycle after two rounds of division with a small cell size (Fantes

and Nurse, 1977). This G1 arrest is a prerequisite for mating and

meiosis (Egel and Egel-Mitani, 1974; Nurse and Bissett, 1981). To

study whether AMPK plays a role in cell cycle exit and G1 arrest,

we compared the FACS profile and the cell size of the wild-type

and the ssp2D mutant cells after nitrogen starvation. Flow

cytometry analysis revealed that ssp2 cells arrested in G1 more

slowly and showed a G2 population with a larger size than the

wild-type cells (see Fig. 1D, 2–6 hours). However, cell cycle

arrest before S phase was not completely abolished and the cells

eventually arrested with a 1C DNA content (Fig. 1D, 10–

14 hours). After nitrogen withdrawal, cells arrested in G1 were

small. To test whether there were differences in the decrease in cell

Fig. 1. Effects of the AMPK complex on G1 cell cycle arrest and sexual differentiation. (A) The catalytic subunit of AMPK (Ssp2) interacts in vivo with the

b- (Amk2)- and the c- (Cbs2) subunits. Amk2–TAP and Cbs2–TAP were pulled down using IgG–Sepharose and Ssp2–HA was detected by blotting. Ssp2–HA was

immunoprecipitated with anti-HA antibodies and Amk2–TAP and Cbs2–TAP were detected by western blot. (B,C) Wild-type, ssp1, ssp2, amk2 and cbs2 mutant

cells of the opposite mating were grown to mid-exponential phase, spotted onto malt extract plates and incubated for 24 hours at 25 C̊. The percentage of zygotes

was determined (B) and the spores were stained with iodine vapour (C). (D,E) Wild-type and ssp2 cells were grown to mid-exponential phase in minimal medium

at 25 C̊, washed several times, and incubated in minimal medium lacking nitrogen. Wild-type and ssp2 mutant cells were harvested at the indicated times and the

DNA content and cell size were determined by flow cytometry (D) and microscopy (E). To measure the size of dividing cells, we stained the cell wall with

calcofluor to identify dividing cells containing a septum.

Journal of Cell Science 125 (11)2656

J
o
u
rn

a
l
o
f

C
e
ll

S
c
ie

n
c
e



length, we measured wild-type and ssp2D dividing cells every hour
after nitrogen starvation. ssp2D cells showed a delay in the
reduction in cell size compared with wild-type cells (Fig. 1E;

supplementary material Fig. S1 for additional images taken every
hour during the nitrogen starvation experiment), suggesting that
AMPK is required for proper advance entry into mitosis in
nitrogen-starved cells and arrest in G1 before Start.

Fission yeast AMPK regulates Ste11 levels under
nitrogen deprivation

The Ste11 transcription factor is a key regulator of the switch

from mitotic cell division to sexual differentiation (Sugimoto
et al., 1991). During mitotic growth, Ste11 is inhibited by Cdk1
phosphorylation (Kjaerulff et al., 2007). Nitrogen limitation

inactivates Cdk1 and induces the expression of ste11+ mRNA
and that of many other genes required for conjugation and
sporulation in fission yeast (Sugimoto et al., 1991).

Because AMPK is required for proper sexual differentiation,
we compared the levels of ste11+ mRNA and protein in wild-type

and ssp2D mutant cells. As shown in Fig. 2A, ste11+ mRNA
induction was reduced in ssp2D cells, suggesting that AMPK
activity was required for full induction of ste11+ mRNA
transcription. We also compared Ste11 protein levels after

nitrogen starvation in wild-type and ssp2D cells by western
blot. As shown in Fig. 2B, the levels of Ste11 protein were
clearly reduced in ssp2D cells. These observations indicated that

AMPK is required for the proper induction and accumulation of
Ste11 transcription factor under nitrogen deprivation, which is
probably the reason why ssp2 cells do not mate correctly. To

corroborate this, we overexpressed ste11+ mRNA in ssp2D cells
and found that ste11+ overexpression rescued the sterility
phenotype of the ssp2D mutant (Fig. 2C), confirming that
AMPK is acting upstream of Ste11.

How can AMPK regulate Ste11 levels after nitrogen
starvation?

The expression of ste11+ is under the regulation of the cAMP-

dependent protein kinase (PKA). PKA plays a key role in sensing
the nutritional environment, promoting cell growth and

repressing sexual differentiation by inhibiting and preventing

the nuclear accumulation of the Rst2 transcription factor that is
required to activate the expression of ste11+ (Higuchi et al.,

2002). To test whether the lack of AMPK activity was able to
delocalize Rst2 to the cytoplasm to prevent ste11+ transcription,

we looked at Rst2–GFP localization by fluorescent microscopy in

wild-type and ssp2D mutant cells. As shown in supplementary
material Fig. S2, Rst2–GFP localized to the nucleus, both in the

presence and in the absence of nitrogen, in wild-type and in
ssp2D mutant cells, indicating that Ssp2 does not regulate Rst2

subcellular localization. This result might explain why ste11

mRNA and protein levels were not completely abolished after
nitrogen starvation (Fig. 2A,B).

We next wondered whether Ste11 was active in ssp2D mutant
cells. In wild-type exponentially growing cells, Ste11 was present

at low levels and was pancellular (Fig. 3A, time 0 hours). Ste11
stimulates its own transcription (Kunitomo et al., 2000) when it

accumulates in the nucleus after nitrogen starvation, generating a

positive-feedback loop (Qin et al., 2003). We analyzed Ste11–GFP
subcellular localization in wild-type and ssp2D mutants after

nitrogen starvation and determined the percentage of cells with
Ste11 nuclear staining. As shown in Fig. 3A,B, the percentage of

cells with Ste11 protein present in the nucleus was higher in the

wild type than in the ssp2D mutant. Moreover, the intensity of the
Ste11–GFP nuclear signal was higher in the wild type than in the

ssp2D mutant, suggesting that AMPK activity is required either to

increase Ste11 protein levels (Fig. 2) or, alternatively, that AMPK
promotes nuclear accumulation of Ste11 in nitrogen-starved cells.

AMPK is essential in the regulation of the response to
nitrogen starvation

AMPK is activated when the ATP:ADP ratio falls below a certain
threshold level in the cell, switching on ATP-generating catabolic

pathways and switching off ATP-consuming anabolic processes,

to adapt to the nutritional stress. Because Ssp2 seems to be
required for the nuclear accumulation of the Ste11 transcription

factor, we performed microarray analysis in wild-type and ssp2D
cells after nitrogen starvation. Supplementary material Tables S1

and S2 list the genes that were not properly induced and

Fig. 2. Ste11 expression is impaired in the ssp2 mutant. (A) Northern blot showing levels of ste11+ mRNA after nitrogen starvation (hours) in wild-type and

ssp2D cells. rRNA was used as loading control. (B) Western blot analysis showing Ste11 protein levels in wild-type and ssp2 cells after nitrogen starvation (in

hours). Tubulin was used as a loading control. (C) Mating efficiency of wild-type, ssp2D and ssp2D pREP-ste11+ cells. Cells were grown to mid-exponential

phase, spotted onto malt extract plates, and stained with iodine vapour.
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repressed in ssp2D cells under nitrogen starvation. Ssp2 was

required to repress the transcription of genes involved in

metabolic processes that require ATP, such as DNA replication

and translation (including histones and translation factors) and to

activate the genes required to complete the current cell cycle,

such as regulators of mitosis and cytokinesis and the genes

required for sexual differentiation (including ste11 and its

targets). In sum, AMPK drives the adaptation to nitrogen

starvation by means of activating completion of the current cell

cycle (entry into mitosis and cytokinesis) and sexual

differentiation (G1 arrest, mating and spore formation).

Importantly, the fact that Ste11 and its targets were not

properly induced in ssp2D cells confirms the notion that Ssp2

would be essential for Ste11 activity, as mentioned above. Thus,

after nitrogen starvation AMPK becomes active and drives the

cell through mitosis and cell division to promote sexual

differentiation.

AMPK moves into the nucleus upon nitrogen starvation

In eukaryotic cells, AMPK is present both in the nucleus and in

the cytoplasm. Environmental stress regulates the intracellular

localization of AMPK; for example, in mammalian cells AMPK

accumulates in the nucleus upon recovery from heat shock or

oxidative stress (Kodiha et al., 2007). However, the mechanism

that regulates the intracellular localization of AMPK is poorly

understood.

To examine AMPK subcellular localization, we tagged each

subunit of AMPK with green fluorescent protein (GFP) in the

chromosome. We determined the subcellular localization of

Ssp2–GFP, Amk2–GFP and Cbs2–GFP in complete minimal

medium and after glucose or nitrogen starvation (Fig. 4). All

three subunits showed the same localization pattern. In complete

minimal medium, they were excluded from the nucleus and were

only present in the cytoplasm. However, upon glucose or nitrogen

starvation AMPK was evenly distributed in the nucleus and the

cytoplasm. This finding suggested that inactive AMPK is

excluded from the nucleus and, upon activation by glucose or

nitrogen starvation, part of the AMPK moves into the nucleus.

Ssp2 is phosphorylated in vivo by Ssp1

Activation of human AMPK depends on a marked decrease in

intracellular ATP levels and phosphorylation by the upstream

kinase LKB1 at Thr172 (Thr189 in S. pombe), located in the

activation loop of the catalytic a-subunit. This phosphorylation is

quantitatively more important (100-fold) than the allosteric

activation by AMP (10-fold) (Hawley et al., 1996). To analyze

the phosphorylation status of each AMPK subunit in fission

yeast, protein extracts were prepared after nitrogen starvation,

subjected to SDS-PAGE, and examined by western blot. No clear

shifts in mobility were observed for Amk2 or Cbs2 (data not

shown). However, Ssp2 showed three slow-migrating bands that

disappeared after treatment with protein phosphatase (Fig. 5A),

indicating that Ssp2 is hyperphosphorylated in vivo, as described

previously (Hanyu et al., 2009). The upper band accumulated in

both nitrogen- and in glucose-starved cells (Fig. 5A), suggesting

that Ssp2 is hyperphosphorylated under nutritional stress.

To check whether the CaMKK protein kinase orthologue

(Ssp1) was responsible for this phosphorylation, we tagged wild-

type Ssp2 and a mutant in which Thr189 had been replaced by

alanine [Ssp2(T189A)] with HA, both in the wild-type and in the

Fig. 3. Nuclear localization of Ste11. Ste11–GFP was observed by fluorescence microscopy in wild-type and ssp2D cells during exponential growth and at

different times (in hours) after nitrogen starvation. (A) Ste11–GFP is pancellular during exponential growth and accumulates in the nucleus after nitrogen

starvation in wild-type cells. In ssp2D cells, the amount of Ste11–GFP localized in the nucleus is reduced, especially after 5 hours. Nuclei are stained with Hoechst

33342. (B) Percentage of cells with nuclear staining of Ste11–GFP at different times after nitrogen starvation. After 5 hours, the percentage of ssp2D cells

accumulating Ste11–GFP in the nucleus did not increase to the same intensity as in wild-type cells. Scale bar: 10 mm.
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ssp1D mutant. The Ssp2 band with the slowest migration

disappeared both in cells lacking Ssp1 and in cells expressing

Ssp2(T189A) (Fig. 5B), suggesting that Ssp2 is phosphorylated

in vivo on Thr189 and that Ssp1 could be the kinase responsible

for this phosphorylation.

Ssp2 phosphorylation is required for its nuclear entry in

nutritionally stressed cells

The results described above suggested that in cells stressed for

nutrients Ssp2 is phosphorylated on Thr189 by Ssp1 and moves

from the cytoplasm to the nucleus (Fig. 4, Fig. 5A,B). Next, we

tested whether phosphorylation of Ssp2 is the signal for its

nuclear localization after nutritional stress or whether AMPK

is able to localize to the nucleus independently of its

phosphorylation status. We analyzed Ssp2–GFP localization

after nitrogen starvation (Fig. 6A) in wild-type and ssp1D
mutant cells. After 1 hour of nitrogen starvation, we were able

to observe Ssp2–GFP inside the nucleus in wild-type cells, but

not in the ssp1D mutant, indicating that Ssp2 phosphorylation by

Ssp1 is required for the nuclear localization of Ssp2 after nitrogen

deprivation.

We also examined Ssp2–GFP localization after glucose

starvation. In this case, the nuclear translocation of Ssp2

occurred even faster than under nitrogen starvation; by 30

minutes we were able to observe Ssp2–GFP in the nucleus

(Fig. 6B). Therefore, Ssp1 is essential for the nuclear localization

of Ssp2–GFP after glucose starvation. This result shows that Ssp2

phosphorylation by Ssp1 is required to trigger the nuclear

Fig. 4. AMPK subcellular localization. Ssp2–GFP, Amk2–GFP and Cbs2–GFP were observed by fluorescence microscopy in exponentially growing wild-type

cells and after glucose (1h) and nitrogen starvation (2h). All the subunits of the AMPK complex show a cytoplasmic localization in exponentially growing cells,

but under nutritional stress they also localize to the nucleus. Nuclei are stained with Hoechst 33342. Scale bar: 10 mm.

Fig. 5. Ssp2 phosphorylation. (A) Cells expressing Ssp2–HA were grown to mid-exponential phase in minimal medium (2% glucose) and then shifted to

medium with low glucose (0.2% glucose) and medium lacking nitrogen. Cells were collected under these three different nutritional conditions. Protein extracts

were immunoprecipitated with HA antibody and resolved by SDS-PAGE in the presence of a phos tag. Each sample was preincubated with alkaline phosphatase

(PPase, +) or only in buffer (2). (B) Wild-type cells, ssp1D cells expressing Ssp2–HA and wild-type cells expressing Ssp2(T189A)–HA were collected and

protein extracts were resolved by SDS-PAGE in the presence of a phos tag. The most hyperphosphorylated band of Ssp2–HA is not observed in ssp1D or in the

inactive version of Ssp2.
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accumulation of the former upon nitrogen or glucose starvation,

and that if Ssp2 is not phosphorylated it remains in a cytoplasmic

localization, regardless of the nutritional conditions of the cell.

Is Thr189 phosphorylation essential for AMPK activity?

Finally, we tested whether phosphorylation of Ssp2 by Ssp1 in S.

pombe is required for AMPK activity in vivo. We integrated

inactive (ssp2-T189A) and phosphomimetic (ssp2-T189E) ssp2

alleles expressed under their own promoters in the ssp2D
background. As a control, we used the ssp2+ gene. Wild-type

cells responded to nitrogen starvation by advancing entry into

mitosis and cell division, generating small G1 cells (Egel and

Egel-Mitani, 1974; Nurse and Bissett, 1981). ssp2D cells arrested

in G1 with a slow kinetic and with a larger cell size than wild-

type cells (see also Fig. 1D,E; supplementary material Fig. S1).

We tested the cell size of the active and the inactive forms of ssp2

after nitrogen starvation (Fig. 7A). ssp2+ cells or cells expressing

the phosphomimetic version of Ssp2 [ssp2(T189E)] arrested in

G1 with a cell size similar to that of wild-type cells. However,

cells expressing the inactive form of Ssp2 [ssp2(T189A)] showed

a larger cell size, similar to that of ssp2D cells. Moreover,

Ssp2(T189A)–GFP was localized in the cytoplasm and no

nuclear localization was observed (Fig. 8), indicating that

Thr189 phosphorylation is essential for nuclear accumulation of

Ssp2 under glucose and nitrogen starvation. We also determined

the mating efficiency, as an indicator of AMPK activity

(Fig. 7B,C), and found that ssp2D cells or cells expressing the

inactive form of Ssp2 [ssp2(T189A)] underwent a reduction in the

mating rate compared with wild-type cells. However, ssp2+ or

cells expressing phosphomimetic Ssp2 [ssp2(T189E)] underwent

sexual differentiation at a similar level to wild-type cells. We also

tested whether cells expressing ssp2(T189E) were able to bypass

the Ssp1 requirement to promote sexual differentiation. We

observed that ssp2(T189E) ssp1D cells were able to rescue the

sterility phenotype of ssp1D cells (Fig. 7D,E). These results

strongly suggest that the phosphorylation of Ssp2 on Thr189 by

Ssp1 is essential for AMPK to carry out proper cell cycle exit and

sexual differentiation in fission yeast.

Discussion
The control of cell growth and differentiation is a complex

process governed by nutrients and growth factors that are sensed

by specialized signal transduction pathways. The AMP-activated

protein kinase functions as a canonical suppressor of cell

Fig. 6. Subcellular localization of Ssp2. Ssp2–GFP was observed by fluorescence microscopy in wild-type and ssp1D cells during exponential growth

(0 minutes) and under nitrogen (A) or glucose starvation (B). In wild-type cells, Ssp2–GFP localizes to the nucleus upon nitrogen (A) or glucose (B) starvation,

whereas in ssp1D cells, Ssp2–GFP localizes only to the cytoplasm. Nuclear accumulation takes place earlier (after 30 minutes) after glucose starvation than after

nitrogen starvation (1 hour). Scale bars: 10 mm.
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Fig. 7. Activation of AMPK by Ssp2

phosphorylation on Thr189. (A) Wild-type, ssp2D,

ssp2+, ssp2(T189A) and ssp2(T189E) cells were

grown to mid-exponential phase in EMM, washed

several times and shifted to minimal medium

lacking nitrogen. After 4 hours of nitrogen

starvation, cell size was analyzed by microscopy.

(B,C) Wild-type, ssp2D, ssp2+, ssp2T189A and

ssp2(T189E) cells of opposite mating types were

grown to mid-exponential phase and spotted onto

malt extract plates and incubated for 24 hours at

25 C̊. The percentage of zygotes was determined by

microscopy (B) and spores were stained with iodine

vapour (C). (D,E) Mating efficiency in malt extract

plates of opposite mating type wild-type, ssp1D and

ssp1D ssp2(T189E) cells. The percentage of zygotes

was determined by microscopy (D) and spores were

stained with iodine vapour (E). Scale bar: 10 mm.

Fig. 8. Nuclear localization of Ssp2 depends

on Thr189 phosphorylation. Ssp2–GFP and

Ssp2(T189A)–GFP were observed by

fluorescence microscopy during exponential

growth (0h), under low glucose (1h) and after

nitrogen starvation (2h). Ssp2–GFP localizes

to the nucleus upon nitrogen (A) or glucose

(B) starvation, whereas Ssp2T189A-GFP

localizes only to the cytoplasm. Scale bar:

10 mm.
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proliferation to avoid nutritional or energy stress that may trigger

cell death. When exposed to nutritional stress, fission yeast cells
undergo cell cycle exit, G1 arrest and sexual differentiation,

followed by meiosis and sporulation, to generate four resistant
spores that remain dormant until optimal nutritional conditions

have been re-established.

Here we show that AMPK is required for the normal response to

nutritional starvation in fission yeast. Fission yeast cells lacking

AMPK do not respond by shortening the G2 phase of the cell cycle
and entering into mitosis with a reduced cell size (Fig. 1),

indicating the importance of AMPK in the adaptation of fission
yeast cells to nutritional stress. As a consequence of this abnormal

adaptation, cells lacking AMPK activity are unable to arrest in G1

before Start and do not undergo proper sexual differentiation.
Microarray analysis (supplementary material Tables S1, S2)

indicates that AMPK controls the expression of a large number

of genes in response to nutritional stress that are important for
arresting cell growth by repressing genes that encode ribosomal

proteins, histones, initiation and elongation translation factors, and
genes that induce sexual differentiation by activating genes

involved in mating, spore biogenesis, etc. It might be concluded

that in fission yeast, as in other eukaryotic organisms, AMPK acts
as a sensor that promotes cell cycle exit and sexual differentiation

in response to a drop in energy levels.

Sexual differentiation is crucial in the adaptation to nitrogen

starvation because it allows cells to remain dormant until their
original nutritional conditions are restored. The Ste11 transcription

factor is crucial in this process. In cells lacking AMPK activity
(ssp2D), the amount of Ste11 protein present in the nucleus is

reduced compared with levels in wild-type cells. Moreover, in our

hands, microarray analysis revealed a reduction in Ste11 target
genes, indicating low Ste11 activity. Because Ste11 is able to induce

its own transcription in cells arrested in G1 with low Cdk activity,

the most likely explanation for this reduction in Ste11 levels is that
in ssp2D cells this feedback loop does not work properly.

In all eukaryotic cells, AMPK is present both in the nucleus

and the cytoplasm. Environmental stress regulates its nuclear

localization in mammals (Kodiha et al., 2007) and in
Saccharomyces cerevisiae (Hong and Carlson, 2007). Here we

describe that in fission yeast, the three subunits of AMPK are

present in the cytoplasm and are excluded from the nucleus
during exponential growth in rich medium. Under these

conditions, the ATP:AMP ratio is high and AMPK is inactive.
After nutritional stress (induced by glucose or nitrogen

deprivation), the ATP:AMP ratio falls and AMPK begins to

accumulate in the nucleus. This redistribution of AMPK occurs
faster in conditions of glucose starvation than of nitrogen

starvation (Figs 4, 6), suggesting that the ATP:AMP ratio falls

Fig. 9. Hypothetical role of AMPK in fission yeast. During exponential growth, the AMPK complex is inactive. Under nutritional stress, Ssp1 phosphorylates

the Ssp2 catalytic subunit on Thr189, activating the complex and triggering its nuclear translocation. Through an unknown molecular mechanism, AMPK allows

Ste11 nuclear accumulation to promote sexual differentiation. In addition, AMPK regulates other processes of the adaptation to nutritional stress, inhibiting

processes requiring ATP (protein synthesis, mRNA biosynthesis, etc.).
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more dramatically upon glucose withdrawal. To explore the

mechanism by which Ssp2 is preferentially translocated to the

nucleus under glucose or nitrogen starvation, we searched for

nuclear localization signals (NLSs) and nuclear export signals

(NESs) in Ssp2. The minimum requirement for an NLS is Lys-

(Lys/Arg)-X-(Lys/Arg) (Hodel et al., 2001) and two amino acid

sequences in Ssp2 met this criterion: Lys237-Lys240 and

Lys282-Arg285. Moreover, a putative NES could also be

present in the C-terminus of Ssp2. Recently, a functional NES

in the C-terminal 22 amino acids of human AMPK a catalytic

subunit has been described (Kazgan et al., 2010). The fission

yeast Ssp2 C-terminal sequence matches the consensus sequence

of highly enriched bulky hydrophobic amino acids (f5 Leu, Ile,

Phe, Val and Met), with the following spacings (f-x-2/3-f-x-2/3-f-

x-f) in a helix (Kutay and Güttinger, 2005). Further experiments

are required to establish the functional significance of these

putative NLS and NES sequences in the regulation of S. pombe

Ssp2 function in response to starvation.

The AMPK a-subunit is phosphorylated and activated by

phosphorylation on Thr172 by LKB1. Here we show that this

residue is conserved in S. pombe (Thr189) and that the Ssp1 protein

kinase is responsible for this phosphorylation (Fig. 5). When fission

yeast cells are under nutritional stress, Ssp1 phosphorylates Ssp2 on

Thr189 and promotes its activation. This phosphorylation seems to

be required to localize the AMPK complex in the nucleus (Figs 6,

8), because cells lacking Ssp1 or expressing a non-phosphorylatable

version of Ssp2(T189A) are unable to accumulate AMPK in the

nucleus and, as a consequence, they do not adapt to nutritional

stress. It is tempting to speculate that the phosphorylation of AMPK

a-subunit on Thr189 might regulate the function of the NLS or

NES. However, the molecular details and the functional

significance of this redistribution of AMPK are currently unknown.

In summary, the data presented in this paper demonstrate the

role of AMPK in the adaptation of fission yeast cells to

nutritional stress (Fig. 9). When fission yeast cells are exposed

to a drop in energy levels, Ssp1 phosphorylates and activates

Ssp2, allowing the redistribution of AMPK from the cytoplasm to

the nucleus. This response is important to advance cells into

mitosis and establish a correct pre-Start G1 cell cycle arrest.

Materials and Methods
Fission yeast strains and media

All S. pombe strains used in this study are listed in supplementary material Table S3.

Standard methods were used for growth, transformation and genetic manipulations
(Moreno et al., 1991). The fission yeast tagged strains ssp2-HA, ssp2T189A-HA,

ssp2-gfp, amk2-TAP, amk2-gfp, cbs2-TAP, cbs2-gfp, rst2-gfp, rst2-HA and ste11-gfp

were generated by a PCR-based method, followed by yeast transformation (Bähler

et al., 1998). Except where specifically indicated, all experiments in liquid culture
were carried out in Edinburgh Minimal Medium (EMM) containing the required

supplements (except when mentioned), starting with a cell density of 2–46106 cells/
ml, corresponding to the mid-exponential phase of growth. In the case of glucose

starvation medium, the concentration of glucose was 0.2%.

Flow cytometry

Approximately 107 cells were collected by centrifugation, fixed in 70% cold
ethanol and processed as described (Moreno et al., 1991). Flow cytometry analysis

(FACS) was performed on a Becton-Dickinson FACScan device, using cells
stained with propidium iodide. Cell size measurements were accomplished using

the forward light scatter (FSC) data of the FACS.

RNA extraction and Northern blots

Total RNA was isolated by breaking the cells with glass beads in the presence of
phenol (Moreno et al., 1991). 5–10 mg of RNA from each sample was separated on

a formaldehyde–agarose gel. Northern blotting was carried out using Gene
ScreenPlus (NEN, Dupont), following the manufacturer’s instructions. DNA

probes were labeled with [a-32P]dCTP using the Rediprime II Random Prime
Labelling System kit (Amersham).

Protein extraction, immunopurification and western blots

Protein extracts were obtained using trichloroacetic acid (TCA) extraction, as
described previously (Foiani et al., 1994). For immunopurification, 109

exponential growing cells were lysed in HB buffer [25 mM MOPS, 60 mM b-
glycerophosphate, 15 mM MgCl2, 1 mM DTT, 1% Triton X-100, 5 mM EGTA
and 15 mM pNPP, supplemented with the complete protease inhibitor cocktail
tablets (Roche)]. Extracts were incubated with anti-HA 12CA5 antibody for
2 hours with shaking and were pulled down with Protein-A–Sepharose CL-4B
(Amersham) for 1 hour. For western blots, 75–100 mg of total protein extract were
resolved by 7.5% SDS-PAGE, transferred to a nitrocellulose filter (Amersham),
and probed with mouse anti-HA 12CA5 (Roche Applied Sciences), mouse anti-
ste11 (a gift from Olaf Nielsen, Department of Biology, University of Copenhagen,
Denmark), anti-TAP Peroxidase-antiperoxidase soluble complex PAP (Sigma),
and mouse anti-tubulin (a gift from Keith Gull, Sir William Dunn School of
Pathology, University of Oxford, UK) primary antibodies and, as secondary
antibodies, NA 931, anti-mouse IgG, Horseradish Peroxidase (Amersham).
Immunoblots were developed using the enhanced chemiluminescence procedure
(ECL kit, Amersham). Phos-tag AAL-107 gels (NARD Institute) were used for
shifts in the mobility of phosphorylated Ssp2 at a final concentration of 100 mM,
following the protocol suggested by the manufacturer.

Microarrays and data analyses

Wild-type and ssp2D cells were exponentially grown in EMM and transferred to
EMM without nitrogen for 4 hours. RNA was purified and cleaned using the
RNeasy kit (Qiagen). RNA was analyzed with a 2100 Bioanalyzer (Agilent).
Double-strand cDNA synthesis kit (Affymetrix) was used for the synthesis and
purification of cDNA, and a Nanodrop spectrophotometer was used for cDNA
quantification. cDNA was labeled and hybridized with a S. pombe Tiling 1.0FR
Array, following the Affymetrix protocol. All the probes included in the arrays
were aligned according to the fission yeast genome of the Pombe Sanger Institute
Project (http://www.sanger.ac.uk/Projects/S_pombe/). To calibrate the sequence-
specific probe effect, all data were background-corrected and quantile-normalized.
To analyze different levels of transcription, all the normalized data were located in
the correct genomic position and were visualized using Artemis (www.sanger.ac.
uk/resources/software/artemis/). Initially, we determined the genes regulated by
nitrogen by comparing the expression profile of wild-type cells growing
exponentially and after nitrogen starvation. We selected those genes in which
expression was upregulated or downregulated at least twofold in nitrogen
starvation with respect to exponentially growing wild-type cells. Second, to
determine which of those genes were not properly upregulated or downregulated in
ssp2D cells under nitrogen starvation, we analyzed the expression profile of those
genes previously selected as upregulated or downregulated under nitrogen
starvation. We selected those genes whose expression changed at least twofold
in ssp2D cells with respect to wild-type cells, in both cases under nitrogen
starvation. This way, we identified genes not properly induced in ssp2D cells
(twofold downregulated with respect to wild-type cells) or not properly repressed
in ssp2D cells (twofold upregulated with respect to wild-type cells). The results
were organized in Representative Gene Ontology (GO) categories selectively
associated with the groups of genes that were regulated by Ssp2 according to the
biological process described in Gene DB (http://old.genedb.org/).

Epifluorescence microscopy of GFP fusion proteins

Epifluorescence microscopy was carried out using an Olympus IX71 fluorescence
microscope improved with Delta Vision equipment by Applied Precision. Hoechst
33342 was used to stain DNA. To identify dividing cells, the septum was stained
with calcofluor (5 mg/ml). ImageJ 1.410 software was used to process the images
and to measure the length of the cells.
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