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Abstract 

The new ligand 6-mercapto-2(1H)-pyridone (H2PySO) has been prepared in good yield by reaction 

of 6-chloro-pyridin-2-ol with NaSH. Reaction of the salt K2PySO, generated in situ, with the 

appropriate complex [M(µ-Cl)(diolefin)]2 affords the tetranuclear complexes [M4(µ-

PySO)2(diolefin)4] [M = Rh, diolefin = 1,5-cyclooctadiene (cod) (1), tetraflurobenzobarralene (tfbb) 

(2); M = Ir, diolefin = cod (3)]. The molecular structure of complex 1 has been determined by X-ray 

diffraction methods. The tetranuclear structure is supported by two S,N,O-tridentate ligands 

exhibiting a 1κO, 2κN, 3:4κ2S coordination mode. Carbonylation of the rhodium diolefin complexes 

at atmospheric pressure gives [Rh4(µ-PySO)2(CO)8] (4). The carbonylation of 1 is partially reversible 

and the mixed-ligand complex [Rh4(µ-PySO)2(cod)2(CO)4] (5) has been obtained as a single isomer. 

The reaction of 4 with triphenylphosphine gives the compound [Rh4(µ-PySO)2(CO)4(PPh3)4] (6) 

which also exists as a single isomer of C2 symmetry. The diolefin complexes are redox active and 

exhibit two one-electron oxidations at a platinum disk electrode in dichloromethane separated by 

approximately 0.5 V at potentials accessible by chemical oxidants. The tetranuclear complexes were 

selectively oxidized to the 63-electron mixed-valence cationic complexes [M4(µ-PySO)2(diolefin)4]+
 

(1a+, 2+ and 3+) by using AgCF3SO3 as oxidant and isolated as the triflate salts. Alternatively, the 

oxidation with [Cp2Fe]PF6 gives [Rh4(µ-PySO)2(cod)4][PF6] (1b+). The parameters obtained from the 

simulation of the EPR spectra of the oxidized species strongly suggest that the unpaired electron is 

delocalized over only two metal atoms in the complexes. 
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Introduction 

Polynuclear transition metal complexes have attracted considerable attention due to their potential 

chemical reactivity based on a cooperative action of the metal centers and the promising applications 

as electronic and optoelectronic materials and catalyst.1 The design of suitable polydentate bridging 

ligands plays an important role in the construction of polynuclear transition metal complexes in 

order to control the structure and more importantly, to impart the necessary flexibility to adapt both 

to variations of metal-metal separations and to the coordination geometry about the metal atoms.2-5 

In this context, oligo-(α-pyridyl)amido ligands represent an outstanding example of ligand design 

for the synthesis of extended metal atom chains (EMAC).3 Interestingly, some rigid tridentate 

ligands based on a 2,6-difunctionalized pyridine scaffold, as for example 2,6-

bis(diphenylphosphino)pyridine and 6-diphenylphosphino-2-pyridonate, with a linear disposition of 

the P, N, P and P, N, O donor atoms set imposed by the rigid pyridine and pyridone frameworks, 

respectively, have also met success in the stabilization of linear metal arrays.4, 5 

We have been interested for some time in the application of small bite polydentate ligands for the 

construction of polynuclear complexes.6 In particular, we have been intensively exploring the 

potential of polydentate ligands containing sulfur atoms in the donor set like pyridine-2-thiolate, 

benzothiazole-2-thiolate or benzimidazole-2-thiolate.7 This strategy led to us to study the 

coordination chemistry of the doubly thiolate functionalized pyridine ligand 2,6-pyridinedithiolate 

(PyS2
2-) and the synthesis of [M4(µ-PyS2)4(diolefin)4] (M = Rh, Ir) tetranuclear complexes having an 

unusual structure that results from the coordination of each tridentate 2,6-pyridinedithiolate ligand to 

the four d8 metal centers arranged in a bent-zigzag disposition.8 This coordination mode produces a 

tetranuclear framework that contains available coordination donor sites on the peripheral sulfuur 

atoms oriented in a divergent fashion (Scheme 1, a). 

Metal containing building blocks are of particular interest in supramolecular chemistry and the 

utilization of molecular complexes as ligands is a well-established methodology for the formation of 
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heterobimetallic extended solids.9 However, transition-metal clusters and polynuclear complexes are 

also an attractive class of structural and functional building blocks in supramolecular chemistry.10 

The ability of these tetranuclear complexes to act as S,S coordination entities have been 

demonstrated by the assembly of coordination polymers using the complexes [Rh4(µ-

pyS2)4(diolefin)4] (diolefin = cod, tfbb) as building blocks. Thus, cationic one-dimensional 

coordination polymers as [AgRh4(µ-PyS2)2(diolefin)4]n[BF4]n and [Rh5(µ-PyS2)2(diolefin)4]n[BF4]n 

resulted from the zigzag chain arrangement of alternating [Rh4] tetranuclear units and Ag+ (d10) and 

[Rh(diolefin)]+ (d8) metal fragments.11 In addition, the determination of the structure of the polymer 

[ClCuRh4(µ-PyS2)4(cod)4]n has revealed that the self-assembly process of coordination polymers 

containing trigonal-planar metal fragments as linkers is chiroselective since the one-dimensional 

chains are formed exclusively by homochiral [Rh4] building blocks.12 

The tetranuclear complexes [M4(µ-PyS2)4(cod)4] behave as encapsulating agents for the thallium(I) 

ion through the formation of cationic pentametallic species [TlM4(µ-PyS2)4(cod)4]+ (M = Rh, Ir) 

involving a structural reorganization of the molecular framework that makes possible the existence 

of d8-s2-d8 bonding interactions.13 Besides, these compounds are redox active and the 63-electron 

mixed-valence paramagnetic complexes [M4(µ-PyS2)4(cod)4]+ are easily obtained by chemical 

oxidation of the corresponding tetranuclear complexes using mild one-electron oxidants.14 

On the basis of this interesting coordination chemistry exhibited by these tetranuclear complexes 

we have envisaged the design of tetranuclear O,O coordination entities as structural motifs for 

supramolecular chemistry. These new tetranuclear complexes should be accessible from the doubly 

deprotonated 6-mercaptopyridin-2-ol (H2PySO) ligand (Scheme 1, b). Herein we report on the 

synthesis of 6-mercaptopyridin-2-ol and their application for the construction of new redox-active 

[M4(µ-PySO)2L4] tetranuclear complexes structurally related to [M4(µ-PyS2)4L4] (M = Rh, Ir). In 

addition, a comparison of the chemical behavior of both types of complexes is described. 
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Results and Discussion 

Synthesis and Properties of 6-mercapto-pyridin-2-ol. Several mercaptopyridinol derivatives 

have been described but only the coordination chemistry of 2-mercaptopyridin-3-ol has been 

investigated.15 In contrast, the compound 6-mercaptopyridin-2-ol was mentioned but no 

experimental details were reported.16 The ligand 6-mercaptopyridin-2-ol has been prepared by 

reaction of the commercially available 6-chloropyridin-2-ol with a moderate excess of NaSH in 

refluxing DMF. The compound was isolated as a hygroscopic pale-yellow solid in good yield and 

has been fully characterized by HRMS, IR and NMR. 

Although 6-mercaptopyridin-2-ol can be in equilibrium with the amide and thioamide tautomers,17 

namely 6-mercapto-2(1H)-pyridone and 6-hydroxy-2(1H)-pyridinethione respectively, the 1H NMR 

in DMSO-d6 at RT showed exclusively the presence of the 6-mercapto-2(1H)-pyridone tautomer. In 

addition, the IR spectrum showed several strong absorptions in the region 1650-1530 cm-1 that 

suggests the presence of this tautomer also in the solid state. Interestingly, the compounds 2-

mercaptopyridin-3-ol and 3-mercaptopyridin-2-ol also exist mainly as the tautomers 3-hydroxy-

2(1H)-pyridinethione18 and 3-mercapto-2(1H)-pyridone,19 respectively. 

Synthesis and Characterization of Tetranuclear Diolefin Complexes. The reaction of 6-

mercaptopyridin-2-ol (H2PySO) with two molar-equiv of a solution of KOH in methanol gave a pale 

yellow solution of the salt K2PySO. Further reaction with a dichloromethane solution of complex 

[Rh(µ-Cl)(cod)]2 gave an orange-red suspension of the tetranuclear complex [Rh4(µ-PySO)2(cod)4] 

(1) and KCl as by-product (Scheme 2). Complex 1 was isolated as a red microcrystalline solid in 

high yield after the separation of the KCl by extraction of the crude with dichloromethane. 

The tetranuclear formulation of 1 is supported by the FAB+ mass spectrum in which the molecular 

ion was observed at m/z 1094 (100%). The aromatic region of the 1H NMR spectrum showed three 

characteristic resonances (d, dd and d) for the aromatic protons of both PySO2- ligands. In addition, 

the olefinic protons and carbons (=CH) of the four cod ligands were observed as eight resonances in 



 
Alonso, Benedí, Fabra, Lahoz, Oro and Pérez-Torrente, manuscript for Inorganic Chemistry 
 

 6 

the 1H and 13C{1H} NMR spectra in CDCl3. These data indicate the chemical equivalence of both 

PySO2- ligands and the presence of two types of diolefin ligands, facts that are compatible with the 

existence of a C2 axis in the molecule. 

The related diolefin complexes [Rh4(µ-PySO)2(tfbb)4] (2) and [Ir4(µ-PySO)2(cod)4] (3) were 

obtained as purple and green microcrystalline solids, respectively, in good yield following a similar 

synthetic procedure. The tetranuclear formulation of the complexes is supported by the 

microanalysis data and the FAB mass spectra, which showed the molecular ions at the expected 

values of m/z (1566 and 1452, respectively). In addition, the NMR data strongly suggest that 1-3 are 

isostructural. In particular, the two PySO2- ligands were found to be equivalent and two types of 

diolefin ligands were observed both in the 1H and 13C{1H} NMR spectra, in agreement with 

structures with C2 symmetry.  

Assuming that the tetranuclear complexes [M4(µ-PySO)2(diolefin)4] and [M4(µ-PyS2)2(diolefin)4] 

(M = Rh, Ir) are isostructural, there are for the former complex two different coordination modes 

possible for the S,N,O-tridentate PySO2- ligands that would result in tetranuclear structures of C2 

symmetry: the 1κO, 2κN, 3:4κ2S coordination mode that produces tetranuclear complexes having 

oxygen atoms on the periphery, and the less probable 1κS, 2κN, 3:4κ2O that involve an oxygen atom 

coordinated in a µ2 fashion. In order to establish the coordination mode of the bridging ligands in the 

tetranuclear complexes, the molecular structure of complex 1 has been studied by X-ray diffraction 

methods. 

Molecular Structure of [Rh4(µ-PySO)2(cod)4] (1). The molecular framework of the compound 

consists of four rhodium atoms, arranged in a zig-zag chain disposition, supported by two S,N,O-

tridentate doubly deprotonated 6-mercaptopyridin-2-ol ligands acting as six electron donors (Figure 

1). The molecule exhibits a crystallographic imposed C2 symmetry, with two ‘Rh2(µ-PySO)(cod)2’ 

moieties forming the tetranuclear complex. Each mercaptopyridinol ligand is bridging two rhodium 
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atoms through the pyridinic nitrogen and oxygen donor atoms (1κO, 2κN) and connecting the other 

two metals through a sulfur atom coordinated in a µ2 fashion (3:4κ2S).  

All the rhodium atoms exhibit slightly distorted square-planar environments resulting from their 

coordination to two donor atoms of different bridging ligands and a cod molecule chelated through 

the two olefinic bonds. In agreement with the spectroscopic information obtained in solution, the 

solid state structure displays two different metal co-ordinations: the external rhodium centers, which 

are bonded to sulfur and to an oxygen atom, and the internal ones, which are linked to nitrogen and 

sulfur donor atoms. The differences of these two metal co-ordination spheres are slightly evidenced 

in the dissimilar Rh-S bond distances, 2.3890(10) Å and 2.3716(11) Å, but markedly in the bonding 

of the olefin trans to the oxygen of the bridging ligand (Rh-midpoint distances 1.969(4) vs. 2.021(3) 

Å). 

The whole tetranuclear molecule closely resembles the related 2,6-pyridinedithiolate analogue, 

[Rh4(µ-PyS2)2(cod)4].8 As in this previous structure, the external intermetallic Rh(1)…Rh(2) 

separation is the shortest one, 3.1708(5) Å, being very similar to that reported in the dithiolate 

complex, 3.1435(5) Å; however, with no apparent reason, the internal Rh(2)…Rh(2’) distance is 

markedly shorter in 1, 3.5028(5) Å, than in the dithiolate analogue, 3.9210(6) Å.8 Within the metal 

core the torsion angle Rh(1)-Rh(2)-Rh(2’)-Rh(1’) is 108.11(1)º, while in the dithiolate complex this 

parameter becomes 125.84(1)º. 

The exocyclic C(5)-S distance, 1.777(4) Å, comparable to those observed for the µ2-S atoms in 

[Rh4(µ-PyS2)2(cod)4], 1.789(4) Å,8 and in the hexanuclear structurally related [(PPh3)2Au2)Rh4(µ-

PyS2)2(tfbb)4]  complex, 1.757(10) and 1.790(10) Å,11  is slightly shorter than typical C-S single 

bonds (1.83(3) Å in alkanethiolates,20 for instance) and indicative of the thiolate character of these 

sulfur atoms. On the other hand, the exocyclic C-O distances of 1.299(5) Å suggest weak electron 

delocalization of the oxygen lone pairs into the aromatic ring.  
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Synthesis and characterization of rhodium tetranuclear carbonyl complexes. The reaction of 

complex [Rh4(µ-PySO)2(cod)4] (1) with carbon monoxide under atmospheric pressure in 

dichoromethane gave an air-sensitive deep violet solution of complex [Rh4(µ-PySO)2(CO)8] (4) 

(Scheme 2). However, the isolation of 4 from this solution was not possible due to the interference 

of the replaced cod in the reaction media. An alternative synthetic approach is the reaction of the salt 

K2PySO with the dinuclear complex [Rh(µ-Cl)(CO)2]2 under a carbon monoxide atmosphere. The 

compound was isolated as fairly stable violet microcrystals after the separation of the KCl by-

product. 

The FAB+ spectrum of compound 4 showed the molecular ion at m/z 885 with additional peaks 

resulting from the sequential loss of all the carbonyl ligands, which confirms that the nuclearity is 

maintained upon carbonylation. The available spectroscopic data indicate that 4 also has C2 

symmetry indicating that its structure is identical to those of the parent diolefin complex replacing 

each diolefin ligand by two carbonyl groups. Thus, in the 13C{1H} NMR spectrum the expected four 

resonances for the terminal carbonyl ligands (JRh-C = 72-76 Hz) were observed between δ 185-180 

ppm. The aromatic protons of the equivalent PySO2- ligands showed two resonances at δ 6.82 and 

5.98 (dd) ppm (2:1 ratio) in CDCl3. The complexity of the resonance at δ 6.82 ppm is a consequence 

of second order effects and standard coupling constants were obtained from the simulated spectrum 

(see experimental section).  

We have found that the carbonylation of complex [Rh4(µ-PySO)2(cod)4] (1) is partially reversible. 

When a freshly prepared dichloromethane solution of complex 4, obtained from the carbonylation of 

complex 1, was stirred under argon a deep blue solution of complex [Rh4(µ-PySO)2(cod)2(CO)4] (5) 

that was obtained. The formation of 5 is a consequence of the replacement of four carbonyl ligands 

by two molecules of cod in 4. Obviously, complex 4 can also be obtained by carbonylation of 5 

(Scheme 2). The tetranuclear formulation of compound 5 relies on the FAB+ mass spectrum, were 

the molecular ion was observed at m/z 990. Although 5 can exits as four different isomers resulting 
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from the location of the cod and carbonyl ligands in the molecular framework, the compound is 

obtained as a single isomer having C2 symmetry. Thus, equivalent PySO2- and cod ligands were 

observed both in 1H and 13C{1H} NMR spectra, whereas the four carbonyl ligands exhibited two 

doublets at δ 187.6 (JRh-C = 64 Hz) and 184.7 ppm (JRh-C = 71 Hz) in the 13C{1H} NMR spectrum in 

CDCl3. 

The two structures compatible with the spectroscopic data are shown in Figure 2. Unfortunately, 

neither the magnitude of the JRh-C coupling constant nor the chemical shifts of the olefinic resonances 

(δ 4.98, 4.85, 4.28 and 3.27 ppm) are fully reliable parameters in order to make a precise structural 

assignment. However, the pattern of resonances compares well with that observed for the cod 

ligands coordinated to the outer rhodium atoms in the complex [Ir4(µ-PyS2)2(cod)4], if the shielding 

effect induced by the O atom trans to one of the C=C bonds is taken into consideration.21 The 

proposed structure (Figure 2a) is probably also the preferred on steric grounds as the cod ligands are 

located further apart into the tetranuclear framework. 

The reaction of [Rh4(µ-PySO)2(CO)8] (4), obtained by carbonylation of complex 1 in 

dichloromethane, with four molar-equiv of triphenylphosphine gave the compound [Rh4(µ-

PySO)2(CO)4(PPh3)4] (6) which was isolated as a air-sensitive violet solid in good yield (Scheme 2). 

Compound 6 can be alternatively prepared by reaction of trans-[RhCl(CO)(PPh3)2] with the salt 

K2PySO (2:1 molar ratio). The spectroscopic data for 6 indicate than the compound is tetranuclear 

and exists as a single isomer with C2 symmetry. The molecular ion was observed in the FAB+ mass 

spectrum at m/z 1822 and the broad band centered at 1982 cm-1 observed in the IR spectrum 

evidenced that each rhodium center is coordinated both to a carbonyl and a triphenylphosphine 

ligand. The 31P{1H} NMR spectrum of 6 consisted of two doublets at δ 39.76 and 38.69 ppm (JRh-P = 

163 and 175 Hz, respectively) as expected for a C2 symmetry. The proposed structure for complex 6 

is shown in Scheme 2 and is based on the electronic and steric effects influencing the substitution 

processes. In particular, the replacement of the carbonyl ligands trans to the sulfur atoms in the two 
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inner rhodium centers is driven by the trans effect of the sulfur atom22 and is in agreement with the 

substitution pattern found in related dinuclear complexes having short-bite N,S bidentate ligands.23 

However, the values of the observed JRh-P coupling constants strongly suggest that the substitution on 

the external rhodium atoms takes place trans to the oxygen atoms. Typical values of JRh-P for P trans 

to S in mono- or dinuclear Rh(I) complexes are around 160 Hz7f, 8, 23a whereas the JRh-P for P trans to 

O are 175 Hz.24 This proposal is also supported by steric considerations since the substitution trans 

to the oxygen atoms place further apart the PPh3 ligands on neighboring rhodium atoms. 

Electrochemical Properties of the Tetranuclear Diolefin Complexes. The electrochemical 

behavior of complexes 1-3 and 5 is similar to the exhibited by the tetranuclear complexes supported 

by 2,6-pyridinedithiolato ligands. The cyclic voltammograms (CV) of the complexes recorded in 

dichloromethane at 100 mV s-1 showed two chemically reversible one-electron charge transfers that 

can be assigned to the electrogeneration of the mono [M4(µ-PySO)2(diolefin)4]+ and dicationic 

[M4(µ-PySO)2(diolefin)4]2+ (M = Rh, Ir) species, respectively. The formal electrode potentials (Eo) 

for the processes [M4] → [M4]+ and [M4]+ → [M4]2+ are shown in Table 1. In addition, the complexes 

1 and 3 displayed one additional irreversible anodic process at 1.18 and 1.17 V, respectively. The 

analysis of both waves in complex [Rh4(µ-PySO)2(cod)4] (1) with scan rates varying from 0.05 to 

0.20 Vs-1 was indicative of their reversible character.25 However, the ΔEp of both waves in 2, 3 and 5 

increased by 20-30 mV when the scan rate was increased from 0.05 to 0.20 Vs-1, which is a 

diagnostic of an electronically quasi-reversible one-electron redox processes.26 

The formal electrode potentials are strongly dependent on the nature of both the metallic center 

and the auxiliary ligands. Thus, the formal electrode potentials in complex [Rh4(µ-PySO)2(tfbb)4] (2) 

were anodically shifted 240 and 70 mV from those observed for [Rh4(µ-PySO)2(cod)4] (1) which is 

in agreement with a reduction of the electronic density on the rhodium atoms due the greater 

electron-withdrawing character of the tfbb ligands. This effect was also observed in complex [Rh4(µ-

PySO)2(cod)2(CO)4] (5) which exhibites oxidation waves anodically shifted 160 and 130 mV with 
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reference to those of compound 1, fact that is fully consistent with the presence of four π-acid 

carbonyl ligands. Both oxidation waves in compound [Ir4(µ-PySO)2(cod)4] (3) are cathodically 

shifted 130 mV compared with those of compound 1 as expected for the easiest oxidation of the 

iridium centers.27 Interestingly, similar trends have been observed along the series of complexes 

[M4(µ-PyS2)2(diolefin)4] (M = Rh, Ir; diolef = cod, tfbb) although as can be observed in Table 1, in 

general, the complexes [M4(µ-PySO)2(diolefin)4] were found harder to oxidize. The larger 

differences in the formal electrode potentials, 90 and 190 mV, were observed between complex 1 

and [Rh4(µ-PyS2)2(cod)4]. This observation can be rationalized by the superior donor ability of sulfur 

versus oxygen that facilitates the elimination of electrons from the metal centers. 

Interestingly the two reversible one-electron processes in the [M4(µ-PySO)2(diolefin)4] complexes 

occur at formal electrode potentials that are accessible by chemical reagents. In addition, the large 

difference between the formal potentials of both oxidation processes (350-520 mV) ensures that the 

[M4]+ species should be stable with respect to disproportionation into the [M4] and [M4]2+ complexes. 

In fact, the calculated Kdisp
 values for the disproportionation equilibria are in the range 10-6 - 10-9.28 

Synthesis of Paramagnetic Tetranuclear Complexes by Chemical Oxidation. The oxidation of 

the tetranuclear complexes with mild one-electron oxidants resulted in the formation of cationic 63-

electron mixed-valence paramagnetic complexes [M4(µ-PySO)2(diolefin)4]+. The reaction of 

complexes [M4(µ-PySO)2(diolefin)4] (1-3) with one molar-equiv of AgCF3SO3 in dichloromethane 

gave the cationic complexes [Rh4(µ-PySO)2(cod)4][CF3SO3] (1a+), [Rh4(µ-PySO)2(tfbb)4][CF3SO3] 

(2+) and [Ir4(µ-PySO)2(cod)4][CF3SO3] (3+) which were isolated as deep colored microcrystalline 

solids in good yield. Alternatively, compound [Rh4(µ-PySO)2(cod)4][PF6] (1b+) can be obtained by 

reaction of 1 with [Cp2Fe]PF6 in dichloromethane (1:1 molar ratio). 

The paramagnetic complexes 1+, 2+ and 3+ have been characterized by elemental analyses, FAB+, 

and EPR spectroscopy. The complexes behave as 1:1 electrolytes in acetone and display the peaks 

corresponding to molecular ions [M4(µ-PySO)2(diolefin)4]+ in the FAB+ mass spectra. Furthermore, 
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the formulation of complexes as paramagnetic mono-oxidized species was established 

electrochemically by linear voltammetry at RDE. 

Electron paramagnetic resonance (EPR) spectra of polycrystalline samples of 1a+, 2+ and 3+ have 

been measured at X- and Q band at room temperature. The X-band spectra consist of a slightly 

asymmetric line centred at a g-value between 2.1 and 2.3. On the other hand two clearly resolved 

features appear in the Q-band spectra (see Figures 3 and 4) suggesting that the local symmetry is 

close to axial. In fact the spectra can be associated to an S = ½ paramagnetic entity and a slightly 

orthorhombic g-tensor has to be considered. So, for describing them the following spin-Hamiltonian 

has been used:  

{ }zzzyyyxxxB SlgSlgSlgBH ++= µ  

where µB is the Bohr magneton, B is the strength of the applied magnetic field and (lx, ly, lz) are the 

director cosines that the magnetic field makes with the principal axis of the g-tensor whose principal 

values are gx, gy, gz.  

To estimate these values several spectra have been calculated taking a Lorentzian line shape with 

an anisotropic halfwidth. In this way the values given in Table 2 have been obtained and the 

calculated spectra are represented by dotted lines in Figures 3 and 4. The values of the isotropic 

contribution of the g-tensor, g0 = (gx + gy + gz)/3, are also given in Table 2. 

It is interesting to note that the g0 value obtained for 1a+ and 2+ (Table 2) was similar to that 

previously reported for [Rh4(µ-PyS2)2(cod)4]+ (g0 = 2.16 ± 0.01) and [Rh4(µ-PyS2)2(tfbb)4]+ (g0 = 2.11 

± 0.01).14 In particular, when a frozen solution of [Rh4(µ-PyS2)2(cod)4]+ was measured a hyperfine 

structure corresponding to an interaction with two equivalent 103Rh nuclei was resolved. That was 

interpreted considering that the unpaired electron was mainly located in two equivalent rhodium 

centres. The similar value of g0 strongly suggests that the same occurs in 1a+. A trickier fact is the 

different g0 value in 1a+ and 2+, suggesting a higher unpaired electron delocalisation when tfbb 

ligand replaces cod. Although the lack of resolved hyperfine structure in 2+ as well as in [Rh4(µ-
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PyS2)2(tfbb)4]+, even in a frozen solution, prevent the determination of the number of metal centres 

sharing the unpaired electron, the decrease of the g0 value as compared with that found in 1a+ and 

[Rh4(µ-PyS2)2(cod)4]+ could be a consequence of the different electron acceptor character of the 

diolefin ligand, higher in tfbb than in cod. This also can account for the decrease of the g-tensor 

anisotropy. 

On the other hand, the observed decrease of the g-tensor anisotropy in complexes [Rh4(µ-

PySO)2(diolefin)4]+ when compared with [Rh4(µ-PyS2)2(diolefin)4]+ could be associated with some 

structural modification, probably related with the metal-metal separation, driven by the different 

bridging ligands (µ-PySO and µ-PyS2) because the g0 value does not change. In the case of the 

related iridium tetranuclear compounds, the differences observed between [Ir4(µ-PyS2)2(cod)4]+ and 

[Ir4(µ-PySO)2(cod)4]+ can be explained similarly. 

The chemical reversibility associated to the redox processes leading to the oxidized species [M4(µ-

PySO)2(diolefin)4]+ and [M4(µ-PySO)2(diolefin)4]2+ suggests that the tetranuclear framework is 

maintained upon oxidation. Thus, the main structural changes probably affect to the metal-metal 

separations as it has been found in related di- and trinuclear complexes.29 An extended Hückel 

molecular orbital calculation carried out on complex [Rh4(µ-PyS2)2(cod)4] showed the antibonding 

character of the HOMO in the tetranuclear species, and thus a shortening of the metal-metal 

distances upon oxidation should be also expected in the complexes [M4(µ-PySO)2(diolefin)4]. 

Unfortunately, we have failed to obtain good quality crystals of any of the oxidized species, even 

using different anions, to confirm this result. In addition, attempts to prepared the dicationic 

complexes [M4(µ-PySO)2(diolefin)4]2+ using silver salts as oxidants were unsuccessful. 

Coordination Chemistry of the complexes [M4(µ-pySO)2L4]. The coordination mode of the 6-

mercaptopyridin-2-ol ligands in the complexes [M4(µ-PySO)2L4] (M = Rh, Ir) produces a 

tetranuclear framework with two oxygen atoms oriented in a divergent fashion available for 
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coordination (Scheme 1, b). Although these complexes are potential O,O donor entities they have 

shown weaker coordination ability than the S,S donor [M4(µ-PyS2)2L4] tetranuclear counterparts, 

previously reported.11, 12 Thus, the compound [Rh4(µ-PySO)2(cod)4] (1) failed to react with the 

species [Rh(cod)(NCCH3)2]BF4 that has two labile acetonitrile ligands. However, evidence of a weak 

interaction between and 1 and Tl+ was obtained from 1H NMR data in solution (CDCl3) because a 

pronounced lowfield shift (0.22 ppm) of the resonance attributable to the meta protons adjacent to 

the oxygen atoms of the bridgind ligands has been observed.30  

The reaction of [Rh4(µ-PySO)2(cod)4] (1) with the solvated species [Au(PPh3)(Me2CO)X]+ in  

acetone/dichloromethane gave a deep-red solution. The 1H NMR spectrum of the isolated red-brick 

solid in CDCl3 at 223K showed six well-defined resonances of equal intensity for the PySO2- 

bridging ligands which is compatible with the formation of the pentanuclear cation [(PPh3)AuRh4(µ-

PySO)2(cod)4]+ (7). However, we observed that compound 1 crystallized out from these solutions 

which is an indication of the weak coordination of the fragment [Au(PPh3)]+ to one of the O donor 

sites in 1. In contrast, the protonation of complex 1 with CF3SO3H in CH2Cl2 resulted in the 

breakdown of the tetranuclear structure and the formation of unidentified species. 

Concluding Remarks 

We have described the high yield synthesis of rhodium and iridum tetranuclear complexes [M4(µ-

PySO)2(diolefin)4] (M = Rh, Ir; diolefin = cod, tfbb) from the doubly deprotonated form of the new 

ligand 6-mercapto-2(1H)-pyridone. The C2 symmetry tetranuclear structure is supported by two 

S,N,O-tridentate ligands acting as six electron donor ligands. The coordination mode of the ligand 

determines the formation of the isomer having two peripheral oxygen donor atoms oriented in a 

divergent fashion. However, both sites have a marginal nucleophilic character and only a weak 

coordination with selected metal ion fragments has been observed. The tetranuclear complexes are 

redox-active species that undergo two stepwise one-electron oxidation processes and the mono-

oxidized mixed-valence paramagnetic tetranuclear species have been prepared by chemical 
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oxidation. Interestingly, the integrity of the rhodium tetranuclear framework is also sustained upon 

carbonylation and the carbonyl complex undergoes stereoselective replacement reactions by 1,5-

cyclooctadiene and triphenylphosphine ligands. 

 

Experimental Section 

General Methods. All manipulations were performed under a dry nitrogen atmosphere using 

Schlenk-tube techniques. Solvents were dried by standard methods and distilled under argon 

immediately prior to use. Standard literature procedures were used to prepare the starting materials 

[Rh(µ-Cl)(diolefin)]2 (diolefin = cod,31 tfbb32), [Ir(µ-Cl)(cod)]2,33 [Rh(µ-Cl)(CO)2]2,34 trans-

[RhCl(CO)(PPh3)2],35 [AuCl(PPh3)]36 and [Cp2Fe][PF6].37 AgCF3SO3 and 6-chloro-2-pyridinol were 

purchased from Fluka Chem. and Aldrich, respectively. NaSH.H2O (Aldrich) was used immediately 

on delivery. 

Physical Measurements. IR spectra were recorded on a Perkin-Elmer FT-IR Spectrum One. 

Elemental C, H, N and S analysis were performed in a 240-C Perkin-Elmer microanalyzer. 

Conductivities were measured in ca. 5.10-4 M acetone solutions using a Philips PW 9501/01 

conductimeter. Mass spectra were recorded in a VG Autospec double-focusing mass spectrometer 

operating in the FAB or EI modes. The ions were produced by the standard Cs+ gun at ca. 30 KV; 3-

nitrobenzyl alcohol (NBA) was used as matrix. Electrospray mass spectra (ESI-MS) were recorded 

in methanol on a Bruker MicroTof-Q using sodium formiate as reference. 1H, 13C{1H} and 31P{1H} 

NMR spectra were recorded on a Varian Gemini 300 spectrometer operating at 300.08, 75.46 and 

121.47 MHz respectively. Chemical shifts are reported in ppm and referenced to SiMe4 using the 

residual resonances of the deuterated solvents (1H and 13C) and 85% H3PO4 (31P) as external 

reference respectively. Assignments in complex NMR spectra were done by simulation with the 

program gNMR© v 3.6 (Cherwell Scientific Publishing Limited) for Macintosh. EPR spectra were 

measured in a Bruker ESP380E spectrometer working either in X-band (≈ 9.5 GHz) or Q-band (≈ 34 
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GHz). Powdered polycrystalline samples were introduced in standard EPR quartz tubes and the 

spectra were run at room temperature. The magnetic field was measured with a Bruker ER035M 

NMR gaussmeter and a 5350B HP frequency counter was used for determining the microwave 

frequency. Cyclic voltammetric experiments were performed with an EG&G PARC Model 273 

potentiostat/galvanostat using a three-electrode glass cell consisting of a platinum-disk working 

electrode, a platinum-wire auxiliary electrode and a standard calomel reference electrode (SCE). 

Linear voltamperometry was performed using a rotating platinum electrode (RDE) as the working 

electrode. Tetra-n-butylammoniumhexafluorophosphate (TBAH) was employed as supporting 

electrolyte. Electrochemical experiments were carried out under nitrogen in ca. 5.10-4 M 

dichloromethane solutions of the complexes and 0.1 M in TBAH. The [Fe(C5H5)2]+/[Fe(C5H5)2] 

couple is observed at +0.47 V under these experimental conditions. 

Synthesis of 6-mercaptopyridin-2-ol (H2PySO). NaSH.H2O (8.50 g, 0.115 mol) was dissolved in 

refluxing DMF (90 mL) under argon. After cooling, a solution of 6-chloropyiridin-2-ol (5.0 g, 0.038 

mol) in dimethylformamide (10 mL) was added and the solution heated for 16 hours at 418 K. The 

mixture was cooled and the precipitated salt was filtered off to obtain an orange-brown solution. The 

solvent was mostly removed by distillation under vacuum and the oily brown residue dissolved in 40 

mL of a methanol-THF mixture (1:3). The solution was filtered through celite and the resulting 

orange solution brought to dryness under vacuum. The residue was stirred with diethylether to give a 

cream solid that was filtered, washed with diethylether and dried under vacuum. The solid was 

dissolved in the minimum amount of a dichlorometane-methanol mixture (4:1) and then eluted 

through a silica gel column using dichlorometane/methanol (2:1). The eluted orange solution was 

brought to dryness under vacuum and the residue stirred in THF. Slow addition of diethyl ether gave 

the compound as a hygroscopic pale-yellow solid that was filtered, washed with diethyl ether and 

dried under vacuum. Yield 3.650 g (74%). 1H NMR (DMSO-d6, 293 K) δ: 10.56 (br, NH), 6.96 (dd, 

JH-H = 8.4 Hz, JH-H = 7.2 Hz), 5.96 (d, JH-H = 7.2 Hz), 5.51 (d, JH-H = 8.4 Hz), 3.51 (br, SH). 13C{1H} 
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NMR (DMSO-d6, 293 K) δ: 169.8 (C=O), 164.6 (C-S), 140.1, 109.0, 103.5. IR (cm-1): 3300-2400 

(br, SH, NH), 1648, 1601, 1537. MS (EI, CH3OH, m/z): 127 (H2pySO, 100%), 94 (HpyO, 20%). 

HRMS calcd for C5H6NOS 128.01646, found 128.01652. 

Synthesis of the Complexes. [Rh4(µ-PySO)2(cod)4] (1). H2PySO (0.052 g, 0.406 mmol) was 

reacted with a solution of KOH in methanol (2.91 ml, 0.278 M, 0.811 mmol) in methanol (5 mL) to 

give a pale-yellow solution of K2PySO. This solution was further reacted with a solution of [Rh(µ-

Cl)(cod)]2 (0.200 g, 0.406 mmol) in dichloromethane (10 ml) to give an orange suspension after 

stirring for 12 hours. The solvent was removed under vacuum and the residue dissolved in 

dichloromethane (25 mL) and then filtered through celite. Concentration of this solution to ca. 1 mL 

and slow addition of methanol afforded the compound as a red-orange microcrystalline solid which 

was collected by filtration, washed with methanol and dried under vacuum. Yield: 0.200 g (90%). 

Anal. Calcd for C42H54N2O2Rh4S2: C, 46.08; H, 4.97; N, 2.56; S, 5.86. Found: C, 46.43; H, 4.63; N, 

2.67; S, 5.93. MS (FAB+, CH2Cl2, m/z): 1094 (M+, 100%), 986 (M+ - cod, 10%), 878 (M+ - 2cod, 

7%). Mol. Weight (CHCl3). Found: 1065 (Calcd. 1094). 1H NMR (CDCl3, 293 K) δ: 7.76 (d, 2H, JH-

H = 7.1 Hz), 6.77 (dd, 2H, JH-H = 8.7 Hz, JH-H = 7.1 Hz), 5.74 (d, 2H, JH-H = 8.7 Hz) (pySO); 4.95 (m, 

2H, =CH), 4.89 (m, 2H, =CH), 4.79 (m, 2H, =CH), 4.75 (m, 2H, =CH), 4.14 (m, 2H, =CH), 3.95 (m, 

2H, =CH), 3.91 (m, 2H, =CH), 3.38 (m, 2H, >CH2), 3.31 (m, 2H, =CH), 2.80-2.35 (m, 14H, >CH2), 

2.22 (m, 2H, >CH2), 2.05 (m, 2H, >CH2) 1.94 (m, 6H, >CH2), 1.76 (m, 6H, >CH2) (cod). 13C{1H} 

NMR (CDCl3, 293 K) δ: 170.7 (C-O), 161.6 (C-S), 137.9, 117.2, 111.9 (CH) (pySO); 91.3 (d, JRh-C = 

12 Hz), 88.0 (d, JRh-C 12 Hz), 82.9 (d, JRh-C 13 Hz), 81.3 (d, JRh-C = 11 Hz), 79.0 (d, JRh-C = 12Hz), 76.7 

(d, JRh-C = 12 Hz), 68.9 (d, JRh-C = 14 Hz), 67.2 (d, JRh-C = 15 Hz) (=CH, cod); 34.2, 32.5, 31.3, 30.9, 

30.4, 30.2, 30.6, 28.8 (>CH2, cod). 

[Rh4(µ-PySO)2(tfbb)4] (2). To a solution of K2PySO (0.274 mmol) in methanol (5 mL), obtained 

by reaction of H2PySO with a solution of KOH in methanol, was added a solution of [Rh(µ-

Cl)(tfbb)]2 (0.200 g, 0.274 mmol) in dichloromethane (10 mL). The mixture was reacted for 12 hours 



 
Alonso, Benedí, Fabra, Lahoz, Oro and Pérez-Torrente, manuscript for Inorganic Chemistry 
 

 18 

to give a purple suspension. Work-up as described above gave the compound as a purple 

microcrystalline solid. Yield: 0.183 g (85%). Anal. Calcd for C58H30F16N2O2Rh4S2: C, 44.47; H, 1.93; 

N, 1.79; S, 4.09. Found: C, 44.51; H, 1.83; N, 1.73; S, 4.18. MS (FAB+, CH2Cl2, m/z): 1566 (M+, 

100%), 1340 (M+ - tfbb, 6%), 1237 (M+ - Rh(tfbb), 4%), 1114 (M+ - 2tfbb, 11%), 888 (M+ - 3tfbb, 

6%), 784 (M+ - 2Rh(tfbb) - pySO, 40%). 1H NMR (CDCl3, 293 K) δ: 7.38 (d, 2H, JH-H = 6.9 Hz), 

6.82 (dd, 2H, JH-H = 8.5 Hz, JH-H = 6.9) (pySO); 6.40 (m, 2H, CH), 5.84 (m, 4H, CH) (tfbb), 5.79 (d, 

2H, JH-H = 8.5) (pySO), 5.50 (m, 2H, CH), 5.34 (m, 2H, =CH), 4.66 (m, 2H, =CH), 4.50 (m, 2H, 

=CH2), 4.34 (m, 2H, =CH2), 3.98 (m, 2H, =CH2), 3.84 (m, 4H, =CH2), 2.97 (m, 2H, =CH2) (tfbb). 

[Ir4(µ-PySO)2(cod)4] (3). K2PySO (0.223 mmol) and [Ir(µ-Cl)(cod)]2 (0.150 g, 0.223 mmol) were 

reacted for 12 hours in a dihloromethane/methanol mixture following the procedure described above. 

The resulting blue-green suspension was evaporated to dryness and the residue extracted with 

dichloromethane (3x15 mL) and the combined solutions filtered through celite. Work-up as above 

afforded the compound as green microcrystalline solid. Yield: 0.138 g (85 %). Anal. Calcd for 

C42H54Ir4N2O2S2: C, 34.75; H, 3.75; N, 1.93; S, 4.42. Found: C, 34.80; H, 3.65; N, 2.01; S, 4.11. MS 

(FAB+, CH2Cl2, m/z): 1452 (M+, 69%), 1151 (M+ - Ir(cod), 62%). 1H NMR (CDCl3, 293 K) δ: 7.48 

(dd, 2H, JH-H = 7.2, JH-H = 1.1 Hz), 6.85 (dd, 2H, JH-H = 8.7 Hz, JH-H = 7.2 Hz), 5.89 (dd, 2H, JH-H = 

8.70, JH-H = 1.1 Hz) (pySO); 4.68 (m, 2H, =CH), 4.43 (m, 6H, =CH), 4.03 (m, 2H, =CH), 2.80 (m, 

4H, =CH), 2.39 (m, 14H, >CH2), 2.35 (m, 2H, =CH), 2.10 (m, 2H, >CH2), 1.83 (m, 6H, >CH2), 1.69 

(m, 2H, >CH2), 1.44 (m, 8H, >CH2) (cod). 13C{1H} NMR (CDCl3, 293 K) δ: 170.2 (C-O), 160.1 (C-

S), 138.4, 118.1, 114.4 (CH) (pySO); 75.1, 71.3, 67.5, 66.1, 65.1, 64.5, 54.4, 49.1 (=CH, cod), 36.4, 

32.2, 31.5, 31.2(2C), 30.9, 29.6, 29.1 (>CH2, cod). 

[Rh4(µ-PySO)2(CO)8] (4). A solution of K2PySO (0.386 mmol) in methanol (5 mL) was prepared 

following the procedure described above. The solvent was removed under vacuum and the residue 

suspended in dichlomethane (10 mL). Solid [Rh(µ-Cl)(CO)2]2 (0.150 g, 0.386 mmol) was added 

under a carbon monoxide atmosphere to give a deep violet solution which was stirred for 1 h. The 
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solution was filtered through celite and then concentrated by continuous bubbling of carbon 

monoxide to ca. 1 mL. Slow addition of n-hexane (10 mL) and cooling to 258 K under carbon 

monoxide afforded the compound as a violet microcrystals which were collected by filtration, 

washed with n-hexane and then dried under vacuum. Yield: 0.139 g (81%). Anal. Calcd for 

C18H6N2O10Rh4S2: C, 24.40; H, 0.68; N, 3.16; S, 7.24. Found: C, 24.23; H, 0.78; N, 3.06; S, 7.46. MS 

(FAB+, CH2Cl2, m/z): 885 (M+, 22%), 829 (M+ - 2CO, 94%), 801 (M+ - 3CO, 100%), 773 (M+ - 

4CO, 90%), 745 (M+ - 5CO, 63%), 717 (M+ - 6CO, 85%), 689 (M+ - 7CO, 74%), 661 (M+ - 8CO, 

53%). 1H NMR (CDCl3, 293 K) δ: 6.82 (m, 4H), 5.98 (dd, 2H, JH-H = 8.45, JH-H = 0.97 Hz) (pySO). 

Calculated spectrum, δ: 6.791 (JH-H = 6.99 Hz, JH-H = 0.97 Hz), 6.842 (JH-H = 6.99 Hz, JH-H = 8.45 Hz), 

5.980 (JH-H = 8.45 Hz, JH-H = 1.24 Hz). 13C{1H} NMR (CDCl3, 293 K) δ: 184.9 (d, JRh-C = 62 Hz), 

183.7 (d, JRh-C = 63 Hz), 182.5 (d, JRh-C = 72 Hz), 181.0 (d, JRh-C = 76 Hz) (CO); 170.2 (C-O), 152.7 

(C-S), 139.6, 117.4, 115.1 (CH) (pySO). IR (CH
2
Cl

2
, cm-1): 2099 (m), 2079 (s), 2068(s), 2029 (s) 

and 2013 (m). 

[Rh4(µ-PySO)2(cod)2(CO)4] (5). Carbon monoxide was bubbled through a solution of [Rh4(µ-

PySO)2(cod)4] (1) (0.100 g, 0.091 mmol) in dichloromethane (15 mL) to give a deep violet solution 

of complex [Rh4(µ-PySO)2(CO)8] in 15 min. The solution was slowly concentrated under vacuum (5 

mL) to give a deep red solution that was stirred under argon for 72 h. The dark blue solution 

obtained was concentrated under vacuum to ca. 1 mL to give a purple microcrystalline solid by slow 

addition of methanol (5 mL). The solid was collected by filtration, washed with methanol and the 

dried under vacuum. Yield: 0.079 g (87%). Anal. Calcd for C30H30N2O6Rh4S2: C, 36.38; H, 3.05; N, 

2.83; S, 6.47. Found: C, 36.02; H, 2.90; N, 2.84; S, 6.36. MS (FAB+, CH2Cl2, m/z): 990 (M+, 32%), 

962 (M+ - CO, 8%), 934 (M+ - 2CO, 100%), 906 (M+ - 3CO, 17%), 878 (M+ - 4CO, 11%). 1H NMR 

(C6D6, 293 K) δ: 6.86 (dd, 2H, JH-H = 7.1; JH-H = 0.9 Hz), 6.39 (dd, 2H, JH-H = 8.45 Hz, JH-H = 7.1 Hz), 

6.00 (dd, 2H, JH-H = 8.5 Hz, JH-H = 0.9 Hz) (pySO); 4.98 (m, 2H, =CH), 4.85 (m, 2H, =CH), 4.28 (m, 

2H, =CH), 3.27 (m, 2H, =CH), 2.60 (m, 4H, >CH2), 2.14 (m, 4H, >CH2), 2.02 (m, 2H, >CH2), 1.77 
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(m, 2H, >CH2), 1.46 (m, 4H, >CH2) (cod). 13C{1H} NMR (CDCl3, 293 K) δ: 187.6 (d, JRh-C = 64 Hz), 

184.7 (d, JRh-C = 71 Hz) (CO); 171.0 (C-O), 157.4 (C-S), 138.9, 115.2, 113.9 (CH) (pySO); 90.4 (d, 

JRh-C = 12 Hz), 88.6 (d, JRh-C = 12 Hz), 73.2 (d, JRh-C = 12 Hz), 66.5 (d, JRh-C = 12 Hz) (=CH, cod); 

35.0, 32.7, 27.9, 27.0 (CH2, cod). IR (CH2Cl2, cm-1): 2089 (sh), 2075 (s), 2057(m) y 2010 (s). 

[Rh4(µ-PySO)2(CO)4(PPh3)4] (6). Method A. Carbon monoxide was bubbled through a solution of 

[Rh4(µ-PySO)2(cod)4] (0.150 g, 0.137 mmol) in dichloromethane (10 mL) for 15 min. to give a deep 

violet solution of the complex [Rh4(µ-PySO)2(CO)8]. Further addition of PPh3 (0.144 g, 0.548 mmol) 

gave a brown-reddish solution after evolution of carbon monoxide. The solution was stirred for 10 

min. and then concentrated under vacuum to ca. 1 mL. Slow addition of methanol (10 mL) gave the 

complex as a violet solid which was isolated by filtration, washed with methanol and dried under 

vacuum. Yield: 0.169 g (68 %). Method B. A solution of K2PySO (0.144 mmol) in methanol (5 mL) 

was added to a solution of trans-[RhCl(CO)(PPh3)2] (0.200 g, 0.290 mmol) in dichloromethane (15 

mL) to give a red-brown solution which was stirred for 1 h. The solvent was removed under vacuum 

and the residue dissolved in dichloromethane (15 mL) and then filtered through celite. The solution 

was concentrated under vacuum to ca. 2 mL and a violet solid began to crystallize. The 

crystallization was completed by addition of ethanol (10 mL), and the solid was collected by 

filtration, washed with methanol and dried under vacuum. Yield: 0.087 g (66%). Anal. Calcd for 

C86H66N2O6P4Rh4S2: C, 56.67; H, 3.65; N, 1.54; S, 3.52. Found C, 56.76; H, 3.57; N, 1.50; S, 3.48. 

MS (FAB+, CH2Cl2, m/z): 1822 (M+, 100%), 1794 (M+ - CO, 5%), 1504 (M+ - PPh3 - 2CO, 5%), 

1476 (M+ - PPh3 - 3CO, 5%), 1448 (M+ - PPh3 - 4CO, 5%), 1297 (M+ - 2PPh3, 56%), 1214 (M+ - 

2PPh3 - 3CO, 16%), 1185 (M+ - 2PPh3 - 4CO, 24%). 1H NMR (CDCl3, 293 K) δ: 7.70-7.01 (m, 60 

H) (PPh3); 6.49 (d, 2H, JH-H = 6.8 Hz), 6.15 (dd, 2H, JH-H = 8.2 Hz, JH-H = 6.8), 4.86 (d, 2H, JH-H = 8.2) 

(pySO). 31P{1H} NMR (CDCl3, 293 K) δ: 39.76 (d, JRh-P = 163 Hz), 38.69 (d, JRh-P = 175 Hz). IR 

(CH
2
Cl

2
, cm-1): 1982 (s), 1974 (sh). 
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[Rh4(µ-PySO)2(cod)4][CF3SO3] (1a+). Solid AgCF3SO3 (0.071 g, 0.274 mmol) was added to a 

solution of [Rh4(µ-PySO)2(cod)4] (1) (0.300 g, 0.274 mmol) in dichloromethane (15 mL) and the 

mixture was stirred for 1 hour with exclusion of light. The dark suspension was filtered through 

celite under argon to remove the metallic silver and the resulting bright garnet solution concentrated 

under vacuum to ca. 1 mL. Slow addition of diethyl ether (10 mL) gave 1a+ as a garnet 

microcrystalline solid. Yield: 0.268 g (79%). Anal. Calcd for C43H54F3N2O5Rh4S3: C, 41.53; H, 4.38; 

N, 2.25; S, 7.73. Found: C, 41.25; H, 4.09; N, 2.17; S, 7.65. MS (FAB+, CH
2
Cl

2
, m/z): 1094 (M+, 

72%), 986 (M+ - cod, 8%), 883 (M+ - Rh(cod), 37%), 758 (M+ - Rh(cod) - pySO, 15%). ΛM (Ω-

1cm2mol-1): 109 (acetone, 4.85 10-4 M). 

[Rh4(µ-PySO)2(cod)4][PF6] (1b+). Solid [Cp2Fe]PF6 (0.045 g, 0.137 mmol) was added to a 

solution of [Rh4(µ-PySO)2(cod)4] (1) (0.150 g, 0.137 mmol) in dichloromethane (15 mL). The 

mixture was stirred for 30 min. and the resulting bright garnet solution concentrated under vacuum 

to ca. 3 mL. Slow addition of diethyl ether (10 mL) gave 1a+ as a garnet microcrystalline solid that 

was collected by filtration, washed repeatedly with diethyl ether and then vacuum dried. Yield: 

0.132 g (78%). Anal. Calcd for C42H54F6N2O2PRh4S2: C, 40.70; H, 4.39; N, 2.26; S, 5.17. Found: C, 

40.58; H, 4.28; N, 2.24; S, 5.15. MS (FAB+, CH2Cl2, m/z): 1094 (M+, 72%), 883 (M+- Rh - cod, 

37%), 758 (M+- Rh(cod) - pySO, 15%). ΛM (Ω-1cm2mol-1): 118 (acetone, 5.6.10-4 M). 

[Rh4(µ-PySO)2(tfbb)4][CF3SO3] (2+). [Rh4(µ-PySO)2(tfbb)4] (0.100 g, 0.064 mmol) and 

AgCF3SO3 (0.017 g, 0.064 mmol) were reacted in dichloromethane (15 mL) for 1 hour with 

exclusion of light to give a purple solution. Work-up as described above gave the compound as a 

purple microcrystalline solid. Yield: 0.095 g (87%). Anal. Calcd for C59H30F19N2O5Rh4S3: C, 41.30; 

H, 1.76; N, 1.63; S, 5.61. Found: C, 41.15; H, 1.53; N, 1.59; S, 5.56. MS (FAB+, CH2Cl2, m/z): 1566 

(M+, 100%), 1340 (M+ - tfbb, 20%). ΛM (Ω-1cm2mol-1): 102 (acetone, 4.92 10-4 M). 

[Ir4(µ-PySO)2(cod)4][CF3SO3] (3+). [Ir4(µ-PySO)2(cod)4] (0.100 g, 0.069 mmol) and AgCF3SO3 

(0.018 g, 0.069 mmol) were reacted in dichloromethane (15 mL) for 1 hour with exclusion of light to 
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give a green suspension. Work-up as describe above gave the compound as a green microcrystalline 

solid. Yield: 0.074 g (67%). Anal. Calcd for C43H54F3Ir4N2O5S3(%): C, 32.26; H, 3.40; N, 1.75; S, 

6.01. Found: C, 32.01; H, 3.32; N, 1.73; S, 6.08. MS (FAB+, CH2Cl2, m/z): 1452 (M+, 100%), 1152 

(M+ - Ir(cod), 29%), 743 (M+ - 2Ir - 3cod, 21%). ΛM (Ω-1cm2mol-1): 105 (acetone, 2.99 10-4 M). 

Crystal Structure determination of [Rh4(µ-PySO)2(cod)4] (1). Single crystals for the X-ray 

diffraction study of compound 1 were obtained by slow diffusion of ethanol into a dichloromethane 

solution of the complex at 258 K. Crystal data for 1: C42H54N2O2Rh4S2 . 2(CH2Cl2), fw 1264.48, 

space group C2/c, a = 9.3868(11), b = 18.516(2), c = 25.869(3) Å, β = 98.994(2)º, V = 4441.0(9) Å3, 

Z=  4, Dcalcd 1.891 g.cm-3, µ = 1.836 mm-1. X-ray data were collected for an irregular block (0.24 x 

0.20 x 0.11 mm) at low temperature (100(2) K) on a Bruker SMART APEX CCD difractometer. 

Data were collected using graphite-monochromated Mo Kα radiation (λ= 0.71073 Å; 7268 measd. 

reflns. (2.2 ≤ θ ≤ 28.47º), 5191 unique (Rint = 0.0351)). An absorption correction for 1 was applied 

by using the SADABS routine38 (min, max. transm. factors 0.6598, 0.8194). The structure was 

solved by direct methods, completed by subsequent difference Fourier techniques and refined by 

full-matrix least-squares on F2 (SHELXL-97)39 with initial isotropic thermal parameters. Anisotropic 

thermal parameters were used in the last cycles of refinement for all non-hydrogen atoms (no. 

data/restraints/parameters 5191/0/291). Two solvent molecules of dichloromethane were found. All 

hydrogens were found in the difference Fourier maps and refined with positional parameters riding 

on carbon atoms, but with free displacement parameters. Final agreement factors were R1(F) 

(F2≥2σ(F2)) 0.0412, wR2(F2) 0.0955 and GOF 1.044. 
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Table 1. Redox Potentials (Eo vs SCE, in V) and Peak-to-peak Separation (ΔEp in mV) for 

Complexes [M4(µ-PySO)2(diolefin)4] and [M4(µ-PyS2)2(diolefin)4]8 in 0.1 M TBAH/CH2Cl2 at 100 

mVs-1 

 
 [M4]→[M4]+ [M4]+→[M4]2+ 
Compound Eo (V) ΔEp (mV) Eo (V) ΔEp (mV) 

[Rh4(µ-PySO)2(cod)4] (1) 0.25 78 0.77 84 

[Rh4(µ-PySO)2(tfbb)4] (2) 0.49 100 0.84 110 

[Ir4(µ-PySO)2(cod)4] (3) 0.12 105 0.64 102 

[Rh4(µ-PySO)2(cod)2(CO)4] (5) 0.41 95 0.90 105 

[Rh4(µ-pyS2)2(cod)4] 0.16 63 0.58 70 

[Rh4(µ-pyS2)2(tfb)4] 0.37 80 0.79 80 

[Ir4(µ-pyS2)2(cod)4] 0.08 79 0.53 80 

 

 

Table 2. Principal Values of the g-tensor, Isotropic Contribution to the g-tensor (g0) and Halfwidth 

of the Lorentzian Lineshape used in the Simulation Spectra of the Complexes [M4(µ-

PySO)2(diolefin)4]+ 

 

Compound gx 
Wx (mT) 

gy 
Wy (mT) 

gz 
Wz (mT) g0 

1a+ 2.145 
10.6 

2.158 
6.5 

2.205 
6.3 

2.169 

2+ 2.100 
5.0 

2.108 
4.5 

2.145 
3.0 

2.118 

3+ 2.201 
13.0 

2.221 
15.0 

2.371 
13.0 

2.264 

a The estimated uncertainty in the g-values is ±0.008 in all the cases 
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Scheme 1. Synthesis of tetranuclear complexes directed by 2,6-dimercaptopyridine (a) and 6-

mercapto-pyridin-2-ol (b) 

 

 

 

 

Scheme 2. Synthesis of rhodium diolefin complexes [Rh4(µ-PySO)2(diolefin)4], carbonylation and 

replacement reactions 
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Figure 1. Molecular structure of compound [Rh4(µ-PySO)2(cod)4] (1). Selected bond distances (Å) 

and angles (°): Rh(1)-S 2.3890(10), Rh(1)-O 2.110(3), Rh(1)-C(6) 2.129(4), Rh(1)-C(7) 2.138(4), 

Rh(1)-C(10) 2.085(4), Rh(1)-C(11) 2.093(4), Rh(2)-S 2.3716(10), Rh(2)-N 2.093(3), Rh(2)-C(14) 

2.139(4), Rh(2)-C(15) 2.134(4), Rh(2)-C(18) 2.137(4), Rh(2)-C(19) 2.142(4); S-Rh(1)-O 96.86(8), 

S-Rh(2)-N 86.97(9), S-Rh(1)-M(1) 176.65(11), S-Rh(2)-M(3) 170.53(13), S-Rh(1)-M(2) 90.07(12), 

S-Rh(2)-M(4) 94.4(6), O-Rh(1)-M(1) 85.26(13), N-Rh(2)-M(3) 91.28(14), O-Rh(1)-M(2) 

170.59(13), N-Rh(2)-M(4) 178.6(8), Rh(1)-S-Rh(2) 83.52(3), Rh(1)-O-C(1) 128.2(2) (M labels 

represent the midpoints of the olefinic bonds). 
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Figure 2. Possible C2 isomers of compound [Rh4(µ-PySO)2(cod)2(CO)4] (5). 
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Figure 3. Q-band (34 GHz) EPR spectra of polycrystalline powdered sample of 1a+ and 2+. Dotted 

lines correspond to calculated spectra with the parameters given in Table 3 (see text for details). 

These last ones have been shifted down a 25 % of their whole amplitude. 
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Figure 4. Q-band (34 GHz) EPR spectrum of polycrystalline powdered sample of 3+. Dotted line 

corresponds to the calculated spectrum with the parameters given in Table 3 (see text for details). 

This last one has been shifted down a 25 % of its whole amplitude. 
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The redox-active rhodium and iridum tetranuclear complexes [M4(µ-PySO)2(diolefin)4] (M = Rh, Ir; 

diolefin = cod, tfbb) have been straightforwardly obtained from the ligand 6-mercapto-2(1H)-

pyridone. The tetranuclear structure is hold up by two S,N,O-tridentate ligands exhibiting a 1κO, 

2κN, 3:4κ2S coordination mode acting as six electron donors. The mono-oxidized mixed-valence 

paramagnetic tetranuclear species have been prepared by chemical oxidation. 

 

 

 


