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Abstract. We develop the first parallel algorithm for Coalition Struc-
ture Generation (CSG), which is central to many multi-agent systems
applications. Our approach involves distributing the key steps of a dy-
namic programming approach to CSG across computational nodes on
a Graphics Processing Unit (GPU) such that each of the thousands of
threads of computation can be used to perform small computations that
speed up the overall process. In so doing, we solve important challenges
that arise in solving combinatorial optimisation problems on GPUs such
as the efficient allocation of memory and computational threads to every
step of the algorithm. In our empirical evaluations on a standard GPU,
our results show an improvement of orders of magnitude over current
dynamic programming approaches with an ever increasing divergence
between the CPU and GPU-based algorithms in terms of growth. Thus,
our algorithm is able to solve the CSG problem for 29 agents in one hour
and thirty minutes as opposed to three days for the current state of the
art dynamic programming algorithms.

1 Introduction

Coalition formation is one of the key coordination mechanisms in multi-agent
systems. It involves the coming together of a number of agents to achieve some
individual or group objective. An important step in the coalition formation pro-
cess involves partitioning the set of agents into coalitions that, on aggregate (as
a coalition structure), maximise the efficiency in the system. This problem is
termed the Coalition Structure Generation problem (CSG) [8]. The CSG prob-
lem is a hard combinatorial optimisation problem and scales in ω(nn) [8]. To
date, many algorithms have been designed to solve the CSG. These range from
branch-and-bound approaches such as [?], to dynamic programming approaches
such as [5, 4]. The latter are particularly attractive given their lower complexity,
but most of these algorithms scale to around 30 agents given the exponential
growth in computation involved. We also note that these algorithms were mainly
designed for single-threaded architectures, and even if distributed variants exist
[3], these require storing the input data redundantly across multiple computers
and sharing information over network links that may be liable to delays and
losses.



In contrast, in the last few years, a surge in the development of frameworks
for parallel programming on a single machine has been noted with the develop-
ment of general-purpose Graphics Processing Units (GPUs). Indeed, these pro-
cessors, originally developed for only processing high end graphics, can now be
programmed to perform simple mathematical operations that, when performed
in thousands in parallel, can significantly outperform single-threaded machines
with higher frequencies and memory speeds. There are multiple challenges, how-
ever, that need to be overcome before complex algorithms as for CSG can be
implemented onto the GPU (we elaborate on these in Section 3) including the
need to limit random memory access, the limits on the number of threads that
can be launched to share the same memory blocks, and the need to avoid loading
data frequently from main memory.

Against this background, in this paper, we present a parallel algorithm for
CSG for highly multi-threaded GPUs that meets the challenges above and out-
performs the best algorithms for CSG. Our algorithm, GPU-CSG, parallelises
the computation of individual steps of a dynamic program to solve the CSG. It
does so by partitioning the computation across thousands of threads where each
solves a small sub-problem of the larger optimisation problem. The solution to
each sub-problem is then used to find the best partition of agents. In more detail,
this paper advances the state of the art in the following ways. First, we develop
the first parallel algorithm for CSG that avoids redundant memory storage and
inter-processor communication. Second, we prove that GPU-CSG is correct and
complete and demonstrate through empirical evaluation that its growth rate is
significantly lower than that of the dynamic programming approach it builds
upon. Third, we empirically show that GPU-CSG outperforms the state of the
art by orders of magnitude, solving the CSG problem for 29 agents in less than
1.5 hours as opposed to 83 hours for the CPU-based algorithm.

The rest of this paper is structured as follows. Section 2 presents the back-
ground to this work and discusses related work, as well introduces the the GPU
architecture and details the DP algorithm. Section 3 and 4 then details the
GPU-CSG which is built upon the DP algorithm, while Section 5 concludes.

2 Background

Solving data-independent and parallel problems will always have a benefit when
run on a GPU, whether it is computing on MRI scans, which gave a signifi-
cantly large speedup factor of 431 using the GPU, or generating hashes and
getting a comparably modest speedup of times 11 [7]. This is particularly the
case whenever the algorithm has data-independent sub-routines which may be
run concurrently. If so the GPU will most likely perform better. Combining the
GPU together with dynamic programming has been used before to solve simi-
lar combinatorial optimisation problems. Boyer, et al. successfully implemented
and solved the knapsack problem with a factor speedup of 26 [1]. They also
introduced ways to reduce memory usage and thus enable computation of much
larger data sets, as well as reduce the bandwidth utilised. In so doing, they also



reduce computation time by being able to fetch more data points at an faster
rate. Thus, they fully exploit the key features of GPU programming whereby,
with limited amount of memory available on a GPU, they are able to maximise
the effective bandwidth of the algorithm.

Now, turning to the CSG problem, in terms of parallel programming ap-
proaches, we note the work of Michalak et. al. that uses a distributed variant of
the anytime IP algorithm called D-IP to solve the Coalition Structure Genera-
tion [3]. They use 14 dual-core workstations to distribute the workload to speed
up their run-time. Their algorithm shows it is possible to distribute the solu-
tions for the CSG problem and that there may be significant from distributing
computation (taking only 11% to 4% of the time, compared to the centrilised
and serialised IP). However, while their algorithm use traditional programming
strategies effective on powerful single-threaded systems, it does require data to
be shared between computational nodes over potentially slow Ethernet links and
also sharing redundant copies of the input across each. Finally, their algorithm
also suffers from the same weaknesses as IP, that is, no deterministic completion
time (in the worst case (O(nn)) as it is dependent on the coalition value function.
In contrast, GPU-CSG has a deterministic completion time (O(3n)) and relies
on much faster GPU memory access.

In what follows, we first describe the CUDA architecture (the GPU architec-
ture provided by Nevada) to clarify what are the key features and issues of using
GPUs to solve large combinatorial problems. We then describe the DP algorithm
and the data structures we use to implement it on the CUDA architecture.

2.1 The CUDA Architecture

Graphics Processing Units (GPUs) from NVIDIA and AMD are highly multi-
threaded, many-core architectures primarily aimed at highly parallel image pro-
cessing and rendering. In recent years, however, there has been a move to use
these to support more general-purpose computing through the OpenCL and
NVIDIA CUDA framework. This was achieved by devoting a larger amount of
transistors towards many computational units rather than data caching and ad-
vanced flow control more often seen in CPU architectures. NVIDIA describes
their general-purpose GPU CUDA architecture as a Single Instruction Multi-
ple Threads (SIMT) architecture, meaning groups of multiple threads execute
the same instructions concurrently and is proportional to SIMD architectures.
This enables their GPUs to be highly advantageous when performing data-
independent and non-divergent tasks. To understand this further the grouping
of the threads need to be explained and is outlined in figure 1. The kernel is a
device-specific CUDA function that is called by the sequential host code, which
will request a specified number of blocks in a grid of blocks. Each block may to
this date consist of up to 1024 threads depending on the compatibility of the
card, with a maximum grid size of 231 − 1 blocks subjected to compatibility.
When run, the blocks will be distributed onto available multiprocessors, which
then independently schedule the run-time of the block. Note that blocks may
be executed concurrently or sequential depending on the current workload and
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Fig. 1. Outline of reduction across thread, warp, block and kernel . The kernel is a
function called by the CPU.

the number of available multiprocessors. The block is split into smaller units of
32 threads called warps, all threads within the same warp are always scheduled
the same instruction to be run and this is what embodies the SIMT 3 paradigm.
Therefore, branching threads causing intra-warp divergence means a warp will
have inactive threads not executing any instructions, which may lead to poor ef-
ficiency with worst case of sequential performance. Further, warps are scheduled
independently of each other meaning possible concurrent execution of warps.

The threads communicate with each other through writes to various types of
memory outlined in table 1. There are three types of thread writable memory in
the architecture; registers and local memory are each threads coupled memory,
which is not volatile and may be shared with other threads inside the same warp
as described in Section 3.1. Shared memory is as its name tells is shared between
all threads within the same block, as it may be written to by any thread within
the block it should be treated as volatile, thus synchronization inside the block
have to be consider whilst dealing with shared memory. Finally, global memory
is the only persistent memory, which will persist between each kernel call, it may
be manipulated by the host, but also by any thread, and is the only means of
communication in between kernels, blocks, and the host.

Now, an important element of GPU programming is to manage the access to
global memory effectively as it is very slow compared to memory access of the
on-chip memory on the GPU. In more detail, each load request from memory
will fetch in cache-lines of size 32 ∗wordsize, meaning cache-lines of 32, 64, and
128 bytes each when pulling the primitives char, short and int respectively. This
is because, as mentioned earlier, all 32 threads within the same warp issue the
same instruction. Thus each warp fetches 32 entities of a specific word type, if the
memory reads within a warp is not coalesced (grouped within the same cache-
line) within consecutive words, the effective bandwidth will drop immediately.

3 Single Instruction Multiple Threads (SIMT) architecture, All threads inside a warp
execute the same instruction



Table 1 summarises the key features of GPU memory access speeds and shows
why it is important to avoid loading data from the global memory.

Table 1. Memory scope, lifetime, and speed

Type Scope Lifetime Relative Speed
Register Thread & Warp Thread Fastest
Shared Block Block Fast
Global Kernel & Host Program Slow

In the next subsection, we describe the DP algorithm, which we build upon.

2.2 The DP Algorithm

The DP algorithm [2] was originally designed to solve the winner determination
problem for combinatorial auctions. However, in recent years, it has been applied
as the de facto algorithm (complete and with the lowest worst case complexity)
to solve the CSG problem and variants of it have improved and adapted it to
different settings [5, 9]. However, the core of the algorithm is the same in all
these variants and relies on dynamic programming. Hence, in this paper we use
this as the basis for our GPU version as the dynamic programming approach
has shown potential for parallelisation as evidenced by previous work (as for the
Knapsack problem as mentioned earlier).

To show how the algorithm works, we first formalise the CSG problem. Let
A = {1, . . . , |A|} be a set of agents. A subset C ⊆ A is termed a coalition. Then,
a CSG problem is completely defined by its characteristic function v : 2A → <
(with v(∅) = 0), which assigns a real value representing utility to every feasible
coalition. The CSG problem is to identify the exhaustive disjoint partition of
the space of agents into coalitions (or, coalition structure) CS = {C1, . . . , Ck}
so that the total sum of values,

∑k
i=1 v(Ck), is maximised.

Now, DP (see Algorithm 1) works by producing two output tables, O and f ,
where each table has one entry per coalition structure. An entry in f represents
a value a certain coalition structure is given, while O represent which splitting,
if any, maximised the coalition structure for the entry in f that it represents.
More elaborated, given all coalitions of agents C ⊆ A, for each coalition in C,
evaluate all pairwise disjoint subsets (here named splittings) on their pairwise
collective sum against the coalitions original value. Given one splitting is greater,
update the value of the coalition f(C) := f(C ′) + f(C \ C ′) and assign O
on C to represent the new splitting, O(C) := {C ′, C \ C ′}. These steps are
first carried out on all coalition structures with two agents, continuing until |A|
agents. This means, given a coalition structure S with cardinality |S| = n, then
all coalition structures for the sizes 1, 2, ..., n − 1 have already been evaluated.
The dynamic programming algorithm is entirely deterministic meaning that even
if there was only one or two valuations, the algorithm will evaluate all splittings



before it reaches a conclusion. However this algorithm does not work well with
a large number of agents as it grows exponentially and has time and memory
complexity O(3n). As described later in Section 4, the part of the algorithm that
is parallelized is the max function on line 4, which handles the evaluation of all
splittings of a given coalition structure.

Algorithm 1 Dynamic Programming algorithm
INPUT: v: collection of the bids for all coalitions
VARIABLES: f : collection holding the maximum value for all coalitions
O: collection holding the most beneficial splitting for all coali-
tions.
1: for all x ∈ A, dof({x}) := v({x}), O{x} := {x} end for
2: for i := 2 to n do
3: for all C ⊆ A : |C| == i do

4: f(C) := max{f(C\C′) + f(C′) : C′ ⊆ C ∧ 1 ≤ |C′| ≤ |C|2 }
5: iff(C) ≥ v(C) then O(C) := C∗ Where C∗ maximizes right hand side of

line 4 end if
6: iff(C) < v(C) then f(C) := v(C) ∧O(C) := C end if
7: end for
8: end for
9: Set CS∗ := {A}

10: for all C ∈ CS∗ do
11: if O(C) 6= C then
12: Set CS∗ := (CS∗ \ {C}) ∪ {O(C), C \O(C)}
13: Goto 10 and start with a new CS∗

14: end if
15: end for
16: return CS∗

The table O may be discarded and not calculated to reduce memory re-
quirements by half removing instant access to the final splittings. These final
splittings are easily retrieved as outlined in algorithm 2. Essentially, all coali-
tions in C ∈ CS∗ whose value in f is not equal to the initial value in v, find the
first splitting that is equal to the value in f . The overhead of this is insignificant
as it needs to evaluate at most n − 1 coalitions compared to the exponential
number of evaluations carried out in the previous steps[6].

Having described the DP algorithm, we next elaborate on the data structure
we use to extend DP into GPU-CSG and then go on to detail the algorithm.

3 GPU-CSG

GPU-CSG parallelises the key steps of the DP algorithm. This is a non-trivial
process (as we will see) as it requires us to be efficient in memory access and in
sharing the computation among the threads on the GPU so that access to global



Algorithm 2 Enumeration of the optimal splittings through re-evaluation of
small amount of coalitions
INPUT: v : array of the initial bids for all coalitions C ⊆ A. f : the final evaluated
values gathered from evaluating splittings.
1: Set CS∗ := {A}
2: for all C ∈ CS∗ do
3: if f(C) 6= v(C) then

4: find first C∗ where f(C) = f(C\C∗) + f(C∗) : C∗ ⊆ C ∧ 1 ≤ |C∗| ≤ |C|2
5: Set CS∗ := (CS∗ \ {C}) ∪ {C∗, C \ C∗}
6: Goto 2 and start with a new CS∗

7: end if
8: end for
9: return CS∗

memory is reduced while minimising the need for synchronising the threads. To
this end, we first propose a memory efficient technique to store coalitions and
their values in memory. This is important because (as discussed in Section 2),
the GPU typically have relatively smaller amounts of memory. Moreover, we
discuss different ways to navigate through the search space of coalitions as DP
requires splitting coalitions into their components to evaluate each sub-problem
separately.

3.1 The Data Structure

How data is represented and structured is important, especially in bandwidth
bound algorithms where the majority of time is spent fetching data from memory
and the arithmetic overhead is low. Selecting the right composition will reduce
the memory requirements substantially. Given the two entities of data that are
needed to be represented for each coalition structure, the coalition structure
itself and its value in f , we propose data structures that aim to allow a large
number of agents to be represented in spite of the exponential growth of the
input (i.e., 2n).

In order to minimize memory usage we applied several techniques as follows.
First, we represent each coalition as a fixed sized array of values, where each value
represents a distinct agent. While this may seem intuitive at first, if the members
are represented as bits set in a fixed sized integer, the memory requirement will
be reduced substantially as shown by previous studies [1]. When solving the CSG
problem with n agents representing members as an array of values, there are(

n

i

)
coalition structures of size i, where i entries have to be stored per coalition
structure.



The total number of values needed to store just to represent the coalition
structures is therefore equal to:

n∑
i=i

(
n

i

)
× i

Given the same constraints, representing the coalition structure as an fixed
sized integer, it is only needed to store one entry per coalition, which is all
together 2n − 1 data points.

To give an example, with four agents A = f0, f1, f2, f3, the coalition C =
f0, f2, f3 would be represented as C = 1101 in the binary system and 13 in the
decimal system. Therefore, if the coalition structure is represented as an integer
it can implicitly be stored as an index to its coalition value, by enumerating it at
run-time. That means the only memory constraint on the system is the storage
for all coalition values.

Given that the index to the value of a coalition structure is as a binary
representation, the distribution of, coalition structures that are lexicographically
adjacent with the same cardinality will be evenly distributed over the fixed
sized array. This rise two constraints. First, the whole fixed sized array have
to fit into the memory of the GPU, limiting the number of agents that can be
represented. Second, fetching values will be in non-coalesced manner causing
waste of bandwidth, which to some degree is resolved by detecting values that
can be shared between coalition structures, as described in Section 3.1.

Now, having defined coalitions as binary arrays, we next move on to explain
how we create splittings of such coalitions efficiently for our algorithm to go
through sub-solutions of the CSG problem.

Coalition Structure Splittings Splittings as mentioned are pairwise disjoint
subsets of a coalition structure, given the coalition structure C = {f3, f2, f0}
the splittings are shown in table 2. In order to generate the splitting there are
essentially three methods used: initShift, initialSplit, and nextSplit.

Table 2. Splittings of C = {f3, f2, f0} Binary C = 1101

Set {f0},{f3, f2} {f2}, {f3, f0} {f3}, {f2, f0}
system
Binary 0001 1100 0100 1001 1000 0101
system

The function initShift, as detailed in Algorithm 3 and partly illustrated in
Figure 2, is necessary to setup the environment for all calls to initialSplit. It
takes as input the coalition structure that should be evaluated and the index n
which represent the index for the coalition structure in the two dimensional array
shift. The general idea is to put into the shared shift array which members the



Algorithm 3 initShift input Coalition : C Index : n
1: t := C
2: count := 0
3: while t > 0 do
4: index := FindFirstSet(t) Finds first bit set in t
5: shiftn,count := index
6: nullBit(t, index) Sets one bit in t to zero
7: count+ +
8: end while
9: return shift

coalition structure have in an ordered fashion. As illustrated in Figure 2, the
coalition C = {f3, f2, f0} will have the values 0, 2 and 3 put in the array, these
numbers represent which unique members it contains. It does so by using the
bit operation FindFirstSet which return the index of the first set bit, where
the index represent which unique member in the coalition structure. It uses
FindFirstSet to find the first set bit in the coalition structure, and sets the bits
index in the shift array. Remove that member from the coalition structure by
setting that bit to zero and scan for next set bit again, do so until all members
have been identified and the coalition structure is empty. The two-dimensionality
of the shift array is to have one row in the array for each coalition structure
that is being evaluated by the kernel.

Fig. 2. How initShift and initialSplit works

Further, using these values with the function initialSplit described in Algo-
rithm 5 to generate an initial splitting works as follows: Given the index n as
input that is an ascending integer value, which represent the nth subset we want
to create, and C∗ which represent the row in shift for coalition structure C. The
idea is to map the bits set in n to bits in the coalition structure C, effectively
transforming members of n to members in C. It does so by using FindFirstSet
to find the indexes of set bits in n, where the index will eventually represent
the nth ordered member of coalition structure C. First, take the indexes of bits



set in n and use them to reference a column in row C∗ in the shift array, this
will yield one member value v from coalition structure C. To add that member
to the subset to be created, take a single bit and binary left shift it v places,
and add it to the subset. Remove the set bit in n and continue with previous
operations until n is empty.

To illustrate as shown in Figure 2, the third subset represented as the binary
value of 0011, have its bits set in the indexes zero and one. In the shift array for
coalition structure C, the indexes zero and one represent the first and secondly
ordered members, which is agents f0 and f2 with values v of 0 and 2. To form the
subset, as described earlier, add together a single bit left shifted 0 places with
a single bit left shifted 2 places. This will finally yield the subset 0101 which
have the members f0 and f2 in it. Then to generate the next splitting, a call to
nextSplit in Algorithm 4 is needed that works through a recurrence relation to
generate the next splitting.

Algorithm 4 nextSplit input Coalition : C Splitting : S
1: C′ := twosComplement(C)
2: S′ := bitwiseAND((C′ + S), C)
3: return S′

Algorithm 5 initialSplit input index : n index : C∗
1: t := n
2: S := 0
3: while t > 0 do
4: index := FindFirstSet(t) Finds the first set bit in t
5: S := S + leftShift(1, shiftC∗,index) Shifts 1 left with the value in shift and

adds
6: nullBit(t, index) Sets the bit of t to 0
7: end while
8: return S

Collisions between Splittings of Coalitions Given that each thread evalu-
ates several splittings over numerous coalition structures in parallel, it is bound
that splittings on two coalitions that overlap will have splittings that collide. A
collision means that splittings of coalition contain at least one identical subset
shared between them.

∀S ⊂ C ∧ S′ ⊂ C ′ : C ∩ C ′ 6= ∅ ⇒ ∃S ∧ S′ : S = S′

For all splittings of C and C ′ where the coalitions intersect, there exist at least
one subset of a splitting shared between them.



The number of splittings that collide is dependent on how many common
members the coalitions have in common.

2n − 1 : C 6= C ′ ∧ |C ∩ C ′| = n ∧ n > 1

Specifically, the number of splittings in common is how many splittings can be
done on all the members of the intersection. Normally, each splitting would be
fetched from global memory resulting in it being fetched several times, if it have
not been evicted from the cache-memory.

For example, given two coalition structures C1 = {f0, f1, f2} and C2 =
{f0, f1, f3} that intersect on f0 and f1, all splittings value where one subset
only contain one or both members may be shared in-between them. I.e. the
values for S1 = {f0}, S2 = {f1}, and S3 = {f0, f1} are interchangeable.

Algorithm 6 Fetch using Collision detection
Input: Index:ψ Which nth splitting should be generated Index:z The index in υ for
the coalition structure that is evaluated
Variables:Value α: Holds temporary values
1: C0 := initialSplit(ψ,CS0) Gets the splitting on CS0 with index ψ
2: C1 := initialSplit(ψ,CS1) Gets the splitting on CS1 with index ψ
3: υ0,z := f(C0) Fetch the first value
4: if C1 = C0 then
5: υ0,z+1 := υ0,z Sets the other splittings value as its own
6: else
7: υ0,z+1 := f(C1) Else fetches its own value
8: end if
9: C0 := CS0\C0 Get the other subset of the pairwise disjoint subset

10: α := f(C0) Fetch the second value to a temporary variable
11: υ0,z := υ0,z + α Add it
12: C1 := CS1\C1 Get the other subset of the pairwise disjoint subset
13: if C1 = C0 then
14: υ0,z+1 := υ0,z+1 + α Add the other splittings value to its own
15: else
16: υ0,z+1 := υ0,z+1 + f(C1) Else add its own value
17: end if
18: return υ

By using collision detection as described in Algorithm 6, the number of re-
dundant fetches may be reduced, which may only be possible by evaluating two
or more coalitions at the same time.

Lines 1 to 3 generate the initial splittings and fetch the value for the first
coalition structure. It then trough lines 4 to 8 checks whether the splitting of
the second coalition structure is equal to the first. If so it assigns to it the
first coalition structure value, else it fetches its own value from global memory.
Finally, the last lines do the same thing as above just that it does that on the
pairwise disjoint subset, and the first splitting next value is stored in a temporary



variable. The more splittings that are evaluated at the same time and checked
against each other, the less redundant memory fetches will be done. This can
easily be extended throughout each warp by intra-warp communication as long
as the arithmetic overhead is less than the time it takes to fetch from memory.

Reduction As the evaluation of each coalition means finding the splitting of
the coalition which maximizes the value of the coalition structure, it is simply
needed to compare the values of all splittings with each other to find the most-
valued one. The reduction is done on four levels of scope as seen between lines
28 to 40 in algorithm 7, as well as outlined in figure 1, where the lines detail the
propagation and reduction of values throughout the scopes.

Now, turning to how the above computations are spread on the GPU, at a
’thread level’ (see Section 2.1), each thread evaluates a number of splittings to
determine their most-valued splitting. Further, at warp level, all threads inside
the same warp concurrently exchange their largest value to find the most-valued
splitting among the warp. This is done by utilizing a function called shfl xor
which allows for an exchange of register values between any thread within the
same warp. Using this technique allows for a substantial reduction in shared
memory use, as all that is needed to be stored in shared memory, is one value per
warp. With each most-valued value from each warp moved into shared memory,
a number of threads corresponding to half of the number of warps will be active,
these active threads will for each thread evaluate two values in shared memory to
again determine the most-valued value. Half the number of active threads, these
will now evaluate the most-valued values by previous iteration. Iterate until the
most-valued value is determined. Finally, a single thread using the most-valued
value, will try to update the value in global memory if it is greater using atomic
functions. We next detail how we bring all of the above techniques together in
our algorithm.

4 The GPU-CSG Algorithm

To parallelise the steps of the DP algorithm, GPU-CSG (depicted in Algorithm
7) evaluates several coalition structures at each kernel invocation, where each
thread evaluates a total of two splitting per coalition structure. As memory is
constrained per thread in terms of registers and shared memory, the algorithm
will evaluate coalition structures in batches. The total number of coalitions struc-
tures evaluated for each kernel is denoted by the constant α, while how many
coalitions per batch is determined by the constant β. The input it takes is the
array which holds the values for each coalition structure assigned to f , the initial
coalition structure C0 that it will evaluate and generate the consecutive coali-
tion structures with. Ω and Ψ are invariants which guards against out of bound
calculations, where Ω represent the largest coalition structure available and Ψ
is the number of splittings per coalition structure.

As each kernel evaluates several coalition structures yet only one is supplied
as input, all other coalition structures need to be generated. As the function



to generate coalition structures works through a recurrence relation only one
thread is allowed to generate those. Line 1 checks whether the thread has an
index of 0, meaning the first thread in each block. Line 2 follows by setting the
first index of the coalition structure array in shared memory to be the coali-
tion structure received from input. Lines 3 till 5 generates the remaining α − 1
coalition structures using the function nextCoalition, which takes as input a
coalition structure and will output the next lexicographically adjacent coalition
structure. We synchronise the threads at line 7 to make sure next step is not
executed before each coalition structure is in shared memory. Next, it will now
generate the shift array using the function initShift as described in Algorithm
3, as this can be done in parallel, line 8 evaluates if the thread-id is less than the
number total number of coalition structures evaluated by the kernel denoted by
α. Then α threads will run the function initShift concurrently, to later converge
at the synchronisation step at line 11.

Generating and fetching the splittings is the next step of the algorithm. It
starts by entering the loop at line 12 where it directly sets all values in array υ
to zero. The evaluation at line 14 determine if the thread is eligible to evaluate
splittings, ψ represents the which nth splitting the thread should create, if it is
greater than the total number of splittings Ψ , it will directly goto the reduction
part of the algorithm. Else, the thread will start to fetch splittings of the first
batch of coalition structures at line 17. It does so by first evaluating at line 18
if the coalition structure it is currently evaluating is greater than Ω, meaning a
coalition structure generated from nextCoalition is out of scope for this problem
size, if so it goes to the reduction part of the algorithm. Line 21 sets S to one
of the pairwise disjoint subsets of the first splitting the thread should fetch, by
using the function intialSplit inputting ψ and the coalition structure evaluated.
Line 22 then sets υ in row 0 to the addition of two values from the value array f ,
they are the values of the two subsets that make up one splitting, one is S, given
by the initialSplit function, the other is generated by taking the set difference
between the coalition structure in ∆ and subset S. Next, generate one subset of
the next splitting by calling nextSplit, fetch the values and add them together
again into row 1 in υ. Final, increment the counter z and loop until the whole
batch have been fetched.

Reduction is used to find the largest value among all threads in an efficient
manner, starting at line 27, all threads have converged due to synchronisation.
The reduction is also made in batches of β coalitions and the for loop starts
by at line 29 comparing if the second splittings value is greater than the first
splitting, if so, write the second splittings value to the first splittings value index
in υ. The next step at line 32 is the warp reduction, its input is the threads
maximum value, and returns the warps maximum value. The CUDA function
shfl xor allows threads inside the same warp to exchange values with each
other, by using that function, warpReduction will exchange and compare values
with other threads in an orderly fashion, converging at the maximum value for
the warp. Next, from line 33 to 36, the first thread of each warp will assign
the maximum warp value to Υ in shared memory in row i, where i represent



the ith warp the thread belongs to. When all warps have put their value to
shared memory, find the maximum value using the function blockReduction,
which simply goes over all values to find the greatest one. Finally, thread 0 will
try update the value in global memory using atomic functions as there may be
more than one block that evaluates the same coalition structure. Increment x
with β and loop again.

We next empirically evaluate GPU-CSG and compare it against the DP al-
gorithm. The aim is to test whether our memory and computation efficient tech-
niques do permit significant speedups, particularly given that the allocation of
threads on the GPU cannot be exactly controlled.

5 Empirical Evaluation

In this section we detail two experiments we evaluate the performance of GPU-
CSG. First, we evaluate the two techniques to share the splittings among the
threads we presented in Section 3.1 to identify whether there are any signif-
icant differences in performance. Second, we compare the run-time of GPU-
CSG against an optimised version of the DP algorithm (implemented in the
C-programming language).

The GPU instance of the algorithm was run on a Linux desktop computer us-
ing CUDA version 5.0 containing 12GiB DDR3 RAM, 3.2GHz AMD Phenom II
X4 CPU and a consumer grade NVIDIA GeForce GTX 660 Ti with a GPU clock
of 915MHz and 6008MHz effective clock on the memory. It ran 256 threads per
block, with each thread evaluating two splittings per coalition structure, where 8
coalition structures are evaluated in parallel for a total of 32 coalition structures
visited. The CPU DP algorithm is run single-threaded on an INTEL XEON
W3520 with a clock-speed of 2.67GHz with 32KB L1, 256KB L2 cache. The way
the data is structured and stored is identical between both implementations. Fi-
nal, each data-point were an average of ten samples excluding the extrapolated
values.

5.1 Experiment 1: Splittings Sharing and general bottlenecks

Figures 3 and 4 show the number of clock cycles in logarithmic scale each code
section consumes, which was measured on a complete run on 22 agents. Each
code section is denoted as Checkpoint n referred to in algorithm 7, the amount of
cycles is measured from the end of the previous checkpoint n−1 to the end of the
current checkpoint n. The general bottleneck in both figures show that the stage
of generating splittings and fetching the values (Checkpoint 4) consumes more
than half of the runtime, while generating the coalition structures (Checkpoint
1) only consumes around 20% of the runtime. The difference between the two
figures is that figure 4 uses shared splittings as discussed in Section 3.1, and the
relative time spent generating splittings and fetching (Checkpoint 4) its values is
slightly under 50%, versus almost 60% of the time without sharing splittings. It
can be concluded that whilst the method that share splittings still spends most



of the time fetching memory, sharing splittings is beneficial in order to reduce
memory transactions, henceforth improving the sharing of splittings makes a
significant impact on the overall performance by means of algorithm 6. It can
also be noted from figure 5 that the GPU implementations where one utilizes
internal sharing of splittings is twice as fast than the one without at 29 agents.
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Fig. 3. LOG Clock Cycles between checkpoints and relative time for each code segment

5.2 Experiment 2: GPU-CSG v/s DP

Figure 5 shows the difference between the CPU and GPU algorithms. For every N
agents the y axis shows the logarithmic elapsed time. The difference shown here
between the implementations is substantial showing that solving the problem
on the GPU is highly beneficial. For 29 agents GPU-CSG employs 1.5 hours,
while the CPU bound algorithm was extrapolated to show that it would take up
to 83 hours to complete. This is a speedup factor of over 55, which is expected
to grow with the number of agents. The reason it would grow is due to the
implementations not being linearly parallel in logarithmic time where the GPU
implementation having a smaller growth.
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6 Conclusion

This paper presented the first GPU-based solution for the combinatorial opti-
misation problem of Coalition Structure Generation. Our algorithm, GPU-CSG,
is shown to efficiently use memory access and thread allocation on the GPU in
order to speed up the computations performed by a dynamic program for the
CSG problem. In so doing, it is able to outperform the DP algorithm by up to
55 times, reducing the time taken to solve the problem for 29 agents to 1.5 hours
as compared to 83 hours previously. Given the promising results of this initial
work, we aim to develop new solutions for other similar optimisation problems
in the future.

Further work would include incorporating the IDP technique and exploring
further options to reduce memory bandwidth such as a more extensive colli-
sion detection. At the moment of writing an algorithm implementing IDP and
extensive collision detection have a speedup factor of 314 times at 28 agents.
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Algorithm 7 The GPU-CSG Algorithm
Input
f The array which holds the values
C0 The first coalition structure to do evaluation on
Ψ The maximum number of splittings
Ω The full coalition structure
Constants
λ How many splittings should be evaluated per thread
α The total number of coalition structures that are being evaluated
β The number of coalition structures that are evaluated per batch
Variables
Υ A shared array containing warps maximum values
υ A local array containing one of the threads value
∆ Holds all the coalition structures that will be evaluated
tid = threadIdx.x The thread index inside the block
ψ := λ ∗ (tid+ blockdim.x ∗ blockIdx.x) Initial subset construction index
Start of algorithm
1: if tid = 0 then
2: ∆0 := C0 Thread 0 sets the first coalition from input
3: for i := 1 to α do
4: ∆i := nextCoalition(∆i−1) Generate the next coalitions to evaluate
5: end for Checkpoint 1
6: end if
7: syncthreads()
8: if tid < α then
9: initShift(∆tid, tid) Initialise the shift array

10: end if
11: syncthreads() Checkpoint 2
12: for x := 0 to α do
13: Set all values in υ to 0 Reset the values to 0
14: if ψ ≥ Ψ then
15: goto line 28 The threads subset index is larger than the number of splittings
16: end if Checkpoint 3
17: for z := 0 to β do
18: if ∆z+x ≥ Ω then
19: goto line 28 The coalition is outside the range of the calculation
20: end if
21: S := initialSplit(ψ,∆z+x) Generate the ψth splitting from a coalition
22: υ0,z := f(∆z+x\S) + f(S) Fetch the splittings value
23: S := nextSplit(S) Generate the next splitting of the coalition
24: υ1,z := f(∆z+x\S) + f(S) Fetch the splittings value
25: z := z + 1 Increment counter and move on the next coalition
26: end for Checkpoint 4
27: syncthread()
28: for z := 0 to β do
29: if υ1,z > υ0,z then
30: υ0,z := υ1,z Sets the biggest value
31: end if
32: υ0,z := warpReduction(υ0,z) Finds maximum value in scope of warp
33: if tid%32 = 0 then
34: i := tid/32 Which nth warp does the thread belong to
35: Υi,z := υ0,z First thread in each warp writes maximum value
36: end if
37: end for Checkpoint 5
38: blockReduction() Finds maximum value in scope of block Checkpoint 6
39: if tid = 0 then
40: atomicUpdate() First thread does an atomic update on global memory
41: end if Checkpoint 7
42: x := x+ β
43: end for
44: return f


