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A Lagrangian flow network is constructed for the atmospheric blocking of Eastern Europe and

Western Russia in summer 2010. We compute the most probable paths followed by fluid particles,

which reveal the Omega-block skeleton of the event. A hierarchy of sets of highly probable paths is

introduced to describe transport pathways when the most probable path alone is not representative

enough. These sets of paths have the shape of narrow coherent tubes flowing close to the most

probable one. Thus, even when the most probable path is not very significant in terms of its

probability, it still identifies the geometry of the transport pathways. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4928704]

Eastern Europe and Western Russia experienced a strong

heat wave with devastating consequences in the summer

of 2010. This was due to an atmospheric blocking episode

that lasted during several weeks. Despite these types of

events have been well-investigated over the years, a com-

plete understanding and prediction is still missing. In this

work, we present a characterization of this flow pattern

based on the study of fluid transport as a Lagrangian

flow network, so that the methodology of complex net-

works can be applied. In particular, the most probable

paths (MPPs) linking nodes of this atmospheric network

reveal the dominant pathways traced by atmospheric

fluid particles.

I. INTRODUCTION

Lagrangian analysis of transport in fluids, in particular

in geophysical and time-dependent contexts, has experienced

intense developments in the last decades. These can be

roughly classified into three classes: Some of the approaches

search for geometric objects—lines, surfaces, usually related

to invariant manifolds—which bound fluid regions with dif-

ferent properties.1–3 In the second type of approaches, one

computes different types of Lyapunov exponents and other

stretching-like fields in the fluid domain.4–7 Finally, set-

oriented methods8–12 address directly the motions of finite-

size regions.

Most of these techniques focus in identifying proper

Lagrangian Coherent Structures,13–15 understood as barriers
to transport or coherent regions with small fluid exchange

with the surrounding medium. Much less is known about the

actual routes of transport, the dominant pathways along

which fluid particles travel and fluid properties are

interchanged.

In principle, the pathways are simply given by trajectories

starting from the desired initial conditions. This is true when

the advection dynamics is represented by a deterministic

dynamical system and the initial condition is precisely fixed.

In many applications, however, particularly in geosciences,

stochastic components are added to the motions to better rep-

resent unresolved spatial scales.16–18 Also, imprecisely stated

initial conditions will develop into a divergent set of possible

trajectories, because of the inherently chaotic character of

advection by nearly any nontrivial fluid flow, particularly

when it is time-dependent. In fact, in real experiments such

as in the deployment of buoys or balloons, the trajectories of

closely released objects diverge soon.19–21 The so-called

spaghetti plots18 provide a visual representation of this dis-

persion. But they become, when many trajectories are repre-

sented, cluttered and unclear. Some types of clustering or the

selection of relevant trajectories is needed to highlight which

are the dominant routes among a large set of possible

trajectories.

We have recently developed22 a formalism that com-

putes, in unsteady flows, the optimal fluid paths starting at

given initial conditions and also optimal paths connecting

pairs of points. By optimal we refer to the paths that are

more likely to be followed, in a well-defined sense made

explicit below, by the fluid particles initialized in a finite

neighborhood of the initial locations. By this reason, they

are called most probable paths. The methodology builds on

the set-oriented techniques8–12 that discretize space to pro-

vide a coarse-grained description of transport and draws

analogies with network theory,22–26 for which tools to com-

pute optimal paths in graphs are well developed. A related

formalism addressing optimal paths in time-independent

flows in continuous time has been developed by Metzner

et al.27 The optimal paths provide the main pathways or

skeleton of the transport process in a given geographical

area. Because of the implicit stochastic ingredient in the

coarse-graining procedure of set-oriented methods, this

methodology, at variance with other ones more tied to the

theory of smooth dynamical systems, can be applied equally

well to cases of deterministic transport and to strongly

diffusive situations.
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In this paper, we compute optimal transport paths for

the atmospheric circulation during a blocking event occur-

ring in Summer 2010 (in particular, we focus our study for

the period 20th July–30th July) over Eastern Europe and

Russia. This atmospheric flow has very different temporal

and spatial scales, and is much more diffusive, than the oce-

anic flow analyzed in Ser-Giacomi et al.22 We give a more

detailed description of the methodology sketched in that ref-

erence and generalize it to extend the concept of most proba-

ble path to a hierarchy of sets of paths characterized by an

increasing probability. The spatial coherence of these sets is

also discussed.

The paper is organized as follows: In Sec. II, we summa-

rize the definition and construction of the optimal pathways

as most probable paths in a flow network. In Sec. III, we

extend this concept to sets of highly probable paths (HPPs)

and give rules to establish their significance and spatial co-

herence. Section IV describes the atmospheric blocking

event, the data, and models we use to compute the

Lagrangian trajectories and construct the flow network from

them. Section V contains our results: optimal pathways for

different dates and locations and also a discussion of the sta-

tistical representativeness of the optimal paths on the sets of

highly probable paths. Section VI summarizes our conclu-

sions. An Appendix applies our formalism to a simple model

flow, an analytic double-gyre system, so that the properties

of the optimal and highly probable paths computed for the

atmospheric dynamics could be more easily understood in

this simplified framework.

II. OPTIMAL PATHS FROM LAGRANGIAN FLOW
NETWORKS

Our approach to find optimal paths in time-dependent

fluid flows first represents the fluid transport dynamics as a

time-dependent flow network26 and then uses graph-theory

techniques to extract from it these optimal paths. Following

the set-oriented methodology,8–12,26 we proceed first by a dis-

cretization of the spatial domain of interest, dividing it into N
non-overlapping boxes. In terms of the network-theory

approach to transport,22,23,26 each of these boxes will represent

a single network node. A large number of ideal fluid particles

are released in each box. Under advection by a given velocity

field, links between nodes are established by studying the

Lagrangian trajectories of the particles exchanged among

each pair of network nodes. This is conveniently done with a

temporal discretization, i.e., we consider the dynamics re-

stricted to a time interval ½t0; tM� and divide it in time steps of

length s, tl ¼ t0 þ ls; l ¼ 0; 1; :::;M. For each time interval

½tl�1; tl�, we integrate the equations of motion of each ideal

fluid particle and keep track of each trajectory. The transport

dynamics will then be described by adjacency matrices

AðlÞ; ðl ¼ 1:::MÞ, in which a matrix element A
ðlÞ
IJ is given by

the number of particles initialized at time tl�1 in node I that

ends up at time tl in node J. Since the velocity field will vary

in time, the adjacency matrices will depend on the time inter-

val considered. The weighted network we build will therefore

have an explicit time-dependent character and can be ana-

lyzed, for instance, using time-ordered graphs.22,28

A fundamental assumption we make is that of a

Markovian dynamics, i.e., at each time interval, the ideal

fluid particles are initialized with uniform density in each

box, thus without keeping track of the trajectories at the pre-

vious time step. The effect of such assumption is to introduce

diffusive effects in the dynamics even when the original

equations of motion are fully deterministic.29 In the limit of

very small boxes and very short time steps, this computa-

tional diffusion is suppressed and we approach the perfect

Lagrangian motion under the given velocity field (which

itself can contain diffusive or fluctuating terms).

In our network approach, spatio-temporal particle trajecto-

ries are mapped into discretized paths between the network

nodes. We define an M-step path l between nodes I and J as

the ordered sequence of ðM þ 1Þ nodes, l ¼ fI; k1; :::;
kM�1; Jg, crossed to reach node J at time tM starting from node

I at time t0. Under the Markovian hypothesis, we can associate

a probability to each of these paths as

ðpM
IJÞl ¼ T

ð1Þ
Ik1

YM�1

l¼2

T
ðlÞ
kl�1kl

" #
T
ðMÞ
kM�1J; (1)

where

T
lð Þ

kl�1kl
¼

A
lð Þ

kl�1kl

s lð Þ
out kl�1ð Þ

(2)

is the probability of a fluid particle to reach node kl at time tl
if it was initialized at time tl�1 in node kl�1, estimated as the

ratio of the number of particles doing so to the total number

of particles released at the initial node and time. The quantity

s
ðlÞ
outðkÞ ¼

P
j A
ðlÞ
kj is called out-strength of node k during the

l-th time step.

Among all possible M-step paths between node I and J,

the one associated with the highest probability in Eq. (1) is

called the MPP and is denoted by gM
IJ . Since this path

depends explicitly on the number M of steps considered, it

could be also named “fixed-time most probable path.” Its

probability is denoted by PM
IJ ¼ maxlfðpM

IJÞlg. To find the

MPP and its probability, we use an adaptation of the Dijkstra

algorithm,30 which takes into account the layered and

directed structure of our time-ordered flow graph. The sim-

plest implementation of the algorithm would involve finding

maxima by searching over the full network, which can be a

computationally expensive task. This is greatly facilitated by

using the concepts of accessibility and accessibility matri-

ces.31 Thus, for given I and J, our implementation of the

algorithm consists of two main parts. In the first part, one

builds the tables U
ðlÞ
IJ of nodes accessible from I and J at time

step l, i.e., the set of nodes that can be crossed at t¼ tl com-

ing from I and proceeding towards J (see Fig. 1).

Technically, this is done by including in U
ðlÞ
IJ the nodes kl for

which the two following conditions are satisfied:

Yl

i¼1

AðiÞ

" #
Ikl

6¼ 0 and
YM

i¼lþ1

AðiÞ

" #
klJ

6¼ 0: (3)

In the second part of the algorithm, one recognizes that

the structure of expression (1) allows to maximize it by
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recursively maximizing over k1; k2; :::; kM�1. This is done by

finding, for each accessible node kl 2 U
ðlÞ
IJ (and only for

them, without the need of scanning the remaining nodes in

the full network), the highest probability Pl
Ikl

of the path con-

necting I and kl and the actual path associated. For l¼ 1, i.e.,

for the first time step, trivially we have P1
Ik1
¼ Tð1ÞIk1

. For

l ¼ 2; 3; :::;M � 1, we apply recursively the formula

Plþ1
Iklþ1
¼ max

kl

ðPl
Ikl

Tðlþ1Þ
klklþ1
Þ; (4)

until the final point kM¼ J is reached, and the maximum

probability, together with the associated path, is obtained

(see Fig. 1). The same procedure can then be applied to any

other pair of nodes ðI0; J0Þ.
Raising the number M of steps, we observe a fast

increase in the number of paths connecting two given nodes.

It is thus crucial to understand how much the MPP is repre-

sentative of the large set of possible paths joining two nodes.

To assess this issue in a quantitative way, we introduce the

following quantity:

kM
IJ ¼

PM
IJP

l pM
IJ

� �
l

; (5)

which determines the fraction of probability carried by the

MPP with respect to the sum of probabilities of all paths con-

necting nodes I and J. Note that the denominator can be sim-

ply computed as the matrix-product entry ð
QM

l¼1 TðlÞÞIJ .

III. SETS OF HIGHLY PROBABLE PATHS

For large values of M, the MPP progressively loses dom-

inance and, on average, does not carry a significantly high

fraction of probability. However, the dynamics, character-

ized by a high number of paths connecting initial and final

points, can be still described by a few of them, which to-

gether have a non-negligible probability. To see this, we can

relax the definition of MPP and define a family of subsets of

HPPs holding most of the probability. In our formulation,

each subset KM
IJðr; �Þ is characterized by a rank 0 � r �

M � 1 and a threshold parameter 0 � � � 1. Ideally, the sets

would contain all the paths whose probability is larger than

�PM
IJ . But, since exhaustive searching of all such paths

becomes computationally prohibitive except for very small

M, the second parameter r is introduced to determine the

number of constraints imposed in the search for these rele-

vant paths. Given the initial (I) and final (J) points, we fix r
nodes at intermediate times and look for paths between I and

J made of segments, which are MPPs that connect these in-

termediate nodes, by using the algorithm above. Different

locations and times for these r intermediate nodes are

scanned, and paths with probability larger than �PM
IJ are

retained and incorporated into the set KM
IJðr; �Þ. For �! 1,

independently on the rank (or for r¼ 0), only the MPP is

retained. KM
IJðr ¼ M � 1; �Þ contains all the paths with prob-

ability larger than �PM
IJ . However, evaluation of these sets of

HPPs can be computationally costly for high values of r,

since the algorithm scales exponentially with r.

FIG. 1. Schematics of the algorithm to find the MPP of M steps between I and J. (a) First part: determination of the accessible nodes. Point A is reachable from

I at t¼ t2 but it is not possible to reach J from it in the rest of the time interval. Point C is not reachable from I at t ¼ tM�1 even if J can be reached from it.

Point B satisfies both accessibility conditions, therefore, in contrast to points A and C, it belongs to the accessibility set and it will be considered in the calcula-

tion of the MPP. Systematic identification of all accessible nodes is done by applying the criteria in Eq. (3). The rest of the figure illustrates the recursive maxi-

mization procedure given by Eq. (4). (b) In the first time step, one assigns to the links towards the nodes A1 and A2 (considered to be the only ones in the

accessibility set U
ð1Þ
IJ ) the probabilities Tð1ÞIA1

and Tð1ÞIA2
, respectively. (c) For node B1, one considers the links from A1 and A2, evaluates the path’s probabil-

ities Tð1ÞIA1
Tð2ÞA1B1

and Tð1ÞIA2
Tð2ÞA2B1

, and selects the maximum one (in the figure corresponding to the path I;A2;B1, red lines). One repeats this for all nodes

B1;B2;B3 in the accessibility set U
ð2Þ
IJ to obtain the MPPs between I and these nodes, and then the procedure can be iterated again for the accessible nodes at

time t3.
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Nevertheless, interesting results can be obtained considering

already low-order HPPs, i.e., r¼ 1 and r¼ 2.

Once one of the subsets is computed, we can establish its

significance by defining an extension of expression Eq. (5)

kM
IJ r; �ð Þ ¼

P
� pM

IJ

� �
�P

l pM
IJ

� �
l

; (6)

where the sum in the numerator is over all the paths in the

subset KM
IJðr; �Þ and the one in the denominator is over all

paths connecting I to J.

Another important aspect of the sets of HPPs is to estab-

lish how close, spatially, are they with respect to the corre-

sponding MPP. This is obtained with an average distance

function. Given two generic paths between initial and final

points I and J, l1 ¼ fI; k1; :::; Jg and l2 ¼ fI; l1; :::; Jg, we

define their average distance as

d l1; l2ð Þ ¼
1

M � 1

XM�1

i¼1

d ki; lið Þ; (7)

where dðki; liÞ is a metric determining the distance between two

given nodes of the network. For a geophysical transport net-

work, the geographical distance (on the sphere) between the

centers of the nodes is the most natural choice. For a given pair

of nodes (I, J), the average distance between the subsetKM
IJðr; �Þ

and the MPP connecting them in M time steps is defined as

DM
IJ ¼

1

NM
IJ

X
l

d l; gM
IJ

� �
; (8)

where NM
IJ is the number of paths l in the subset KM

IJðr; �Þ,
and the sum is extended over all paths in the subset (remem-

ber that gM
IJ denotes the MPP). This quantity provides an esti-

mation of how much paths in the subset deviate spatially

from the correspondent MPP. A large deviation means that

the probability to reach J from I is spatially spread in a large

region and indicates furthermore the importance of consider-

ing the HPP subset instead of only the MPP. Small values of

DM
IJ imply HPP sets with the shape of coherent narrow tubes

around the MPP, so that the MPP already characterizes the

spatial pathways, even if its probability is not large.

In Sections IV and V we apply the above formalism to

the atmospheric flow occurring over Eastern Europe in

Summer 2010. Computations of optimal paths and their sets

in an analytic double-gyre system, a much simpler flow in

which path properties could be more easily appreciated, are

contained in the Appendix.

IV. A NETWORK OF ATMOSPHERIC FLOW OVER
EASTERN EUROPE IN SUMMER 2010

In this section, we describe the physical characteristics

of the atmospheric event, the data used, and the model we

employ to obtain the air particle trajectories.

A. Event description

Eastern Europe and Western Russia experienced a

strong, unpredicted, heat wave during the summer of 2010.

Extreme temperatures resulted in over 50 000 deaths and

inflicting large economic losses to Russia. The heat wave

was due to a strong atmospheric blocking that persisted over

the Euro-Russian region from late June to early August.32

During July, the daily temperatures were near or above re-

cord levels and the event covered Western Russia, Belarus,

Ukraine, and the Baltic nations. Physically, the origins of

this heat wave were in an atmospheric block episode that

produced anomalously stable anticyclonic conditions, redi-

recting the trajectories of migrating cyclones. Atmospheric

blocks can remain in place for several days (sometimes even

weeks) and are of large scale (typically larger than 2000 km).

In particular, the Russian block of summer 2010 was mor-

phologically of the type known as Omega block that consists

in a combination of low-high-low pressure fields with geopo-

tential lines resembling the Greek letter X (see Fig.2).

Omega blocks bring warmer and drier conditions to the areas

that they impact and colder, wetter conditions in the

upstream and downstream.33 We study the concrete period

extended from 20th July to 30th July.

B. Data

Atmospheric data were provided by the National

Centers for Environmental Prediction (NCEP) Climate

Forecast System Reanalysis (CFSR) through the Global

Forecast System (GFS).34 This reanalysis was initially com-

pleted over the 31 year period from 1979 to 2009 and

extended to March 2011. Data can be obtained with a tempo-

ral resolution of 1 h and a spatial horizontal resolution of

0:5� � 0:5�. The spatial coverage contains a range of longi-

tudes of 0�E to 359:5�E and latitudes of 90�S to 90�N.

The variables needed as input to the Lagrangian disper-

sion model described in Sec. IV C include dew point temper-

ature, geopotential height, land cover, planetary boundary

layer height, pressure and pressure reduced to mean sea

level, relative humidity, temperature, zonal and meridional

component of the wind, vertical velocity, and water

FIG. 2. Geopotential height at 500 hPa (contours, in meters) and temperature

(color code, in degree Celsius) over the region of interest, on 24th July,

12:00 UTC.
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equivalent to accumulated snow depth. All these fields are

provided by CFSR data on 26 pressure levels.

C. Lagrangian particle dispersion model FLEXPART

As mentioned, the idea is to obtain the effective velocity

field felt by any fluid particle. Then, the Lagrangian

dispersion model will integrate it to provide the three-

dimensional positions of the particle at every time step as

output.

The numerical model used to integrate particle veloc-

ities and obtain trajectories is the Lagrangian particle disper-

sion model FLEXPART version 8.2.35,36 FLEXPART

simulates the long-range and mesoscale transport, diffusion,

dry and wet deposition, and radioactive decay of tracers

released from point, line, area, or volume sources. It most

commonly uses meteorological input fields from the numeri-

cal weather prediction model of the European Centre for

Medium-Range Weather Forecasts (ECMWF) and the GFS

from NCEP (the one used in our study). Trajectories are pro-

duced by integrating the equation (the input velocity data are

interpolated on the present particle position)

dX

dt
¼ v X tð Þð Þ; (9)

with t being time, X the vector position of the air particle,

and v ¼ �v þ vt þ vm is the wind vector. FLEXPART takes

the grid scale wind �v from the CFSR but complements it

with stochastic components vt and vm to better simulate the

unresolved turbulent processes occurring at small scales. The

turbulent wind fluctuations vt are parametrized by assuming

a Markov process via a Langevin equation, and the meso-

scale wind fluctuations vm are implemented also via an inde-

pendent Langevin equation by assuming that the variance of

the wind at the grid scale provides information on the sub-

grid variance. Variables entering the parametrizations are

obtained from the meteorological CFSR fields. For addi-

tional details, we refer to Stohl et al.35,36

D. Network construction

We focus our analysis on the domain in between

0� E–80�E and 40�N–70�N. In order to define the nodes of

the network, we discretize this region in 626 equal-area

boxes using a sinusoidal projection. The latitudinal extension

of each node-box is 1:5�, and the longitudinal one varies

depending on the latitude (see Fig. 3). The area of each box

is 27 722 km2, so that the typical horizontal size is of the

order of 166.5 km. This is a moderate coarse-graining of the

resolution (0:5� � 0:5�) of the NCEP data used for particle

integration. We take s¼ 12 h as time discretization, which is

enough to follow the dynamics of the blocking event. It has

been shown in an oceanic flow network22 that the value of s
has a minor influence on optimal paths, being more impor-

tant the total time-interval considered Ms. We uniformly fill

each node with 800 ideal fluid particles releasing them at

5000 m of height, a representative level in the middle tropo-

sphere. FLEXPART trajectories are fully three-dimensional,

but by initializing at each time-step particles in a single

layer, we are effectively neglecting the vertical dispersion

(which is of the order of 800 m in the s ¼ 12 h time step) and

focussing on the pathways of large scale horizontal transport.

Fully three-dimensional flow networks will be the subject of

future work.

V. RESULTS

A. Optimal paths

Equipped with the tools developed above, we can now

compute pathways of transport during the atmospheric event

described in Sec. IV. Figure 4(a) shows all the optimal paths

leaving a node in the Scandinavian Peninsula at July 25 and

arriving to all nodes that are reached in M¼ 9 steps (i.e., 4.5

days). The graphical representation joins with maximal arcs

the center of the grid boxes identified as pertaining to the

MPP. The actual particle trajectories between two consecu-

tive boxes are not necessarily such arcs. The paths are col-

ored according to their probability value PM
IJ . The MPPs with

highest probability (reddish colors) follow a dominant anti-

cyclonic (i.e., clockwise) route bordering the high pressure

region (see Fig. 2, but note that this is at a particular time,

whereas the trajectory plots span a range of dates of more

than four days) without penetrating it. There is also a branch

of MPPs with much smaller probabilities (yellow and bluish

colors) that are entrained southward by a cyclonic

circulation.

Despite the persistent character of the Eulerian block

configuration, sets of Lagrangian trajectories become highly

variable in time. See, for example, the set of MPPs starting

from the same initial location but five days earlier (Fig.

4(b)). The southward cyclonic branch is now absent, all

MPPs following initially the anticyclonic gyre. Remarkably,

the set of trajectories bifurcates into two branches when

approaching what seems to be a strong hyperbolic structure

close to 40�N 60�E. A hint of the presence of second hyper-

bolic structure is visible at the end of the westward branch,

close to 50�N 30�E. Figure 5 displays additional MPPs start-

ing also at 20th July, but initialized inside the main anticy-

clonic region of the blocking, and in two low-pressure

regions flanking it. Fig. 5(a) clearly shows the main anticy-

clonic circulation, highlighting also the escape routes from

FIG. 3. The geographical domain considered and the discretization grid

defining the nodes of our flow network.
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the high-pressure zone, associated with the hyperbolic

regions described above. Panels (b) and (c) show the cy-

clonic circulations at each side of the high, in a characteristic

Omega-blocking configuration. The compactness of the tra-

jectories inside the eastern low-pressure area is remarkable,

which forms a very localized and coherent set with practi-

cally no escape in the displayed 4.5 days time-interval.

We stress that the plots in Figs. 4 and 5 are different

from spaghetti plots for which many available trajectories

are plotted from different or related initial conditions. For

our set of particles, this will give 800 trajectories emanating

from each box. Here, we are plotting just one path, the MPP,

for each initial and final box pairs, which strongly limits the

number of paths from each box but, as we will see more thor-

oughly, it is still representative of the trajectories of many

released particles.

B. Relevance of the MPPs

The range of colors in Figs. 4 and 5 indicates that, given

an initial box, not all MPPs leading to different locations are

equally probable. This is quantified by the probability PM
IJ ,

which gives a weight to each MPP. Indeed, PM
IJ takes a very

large range of values. Figure 6 shows a ranking plot in which

the values of all MPPs of a given M and started at a particu-

lar date are plotted in decreasing order. We see a huge spread

on the values of PM
IJ . Very low probability values arise

because of the exponential explosion of the number of paths

FIG. 5. Optimal paths of 9 steps of s¼ 12 h with starting date July 20, 2010,

entrained in the high- and in the two low-pressure areas of the blocking.

Same coloring scheme as in Fig. 4. Panel (a): probabilities ranging from

10�3 to 10�16. Panel (b): probabilities ranging from 10�2 to 10�16. Panel

(c): probabilities ranging from 10�3 to 10�13.

FIG. 6. Ranking plot in which the PM
IJ values of all MPPs obtained for

M¼ 6, 8, and 10 starting on July 25th in the whole area are plotted in

decreasing order. The range of probability values of the MPPs can be read

from the vertical axis (from a few percent to 10�15 for M¼ 6 or to less than

10�20 for M¼ 10). The total number of optimal paths can also be read-off

from the horizontal axis.

FIG. 4. Paths of M¼ 9 steps of s¼ 12 h in our flow network with starting

date July 25, 2010 (panel a)) and July 20, 2010 (panel b)) represented as

straight segments (in fact, maximal arcs on the Earth sphere) joining the

path nodes. MPPs originating from a single node (black circle) and ending

in all accessible nodes. Color gives the PM
IJ value of the paths in a normalized

log-scale between the minimum value (deep blue) and the maximum (dark

red). Panel (a): probabilities ranging from 10�3 to 10�14. Panel (b): probabil-

ities ranging from 10�3 to 10�15.
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between two nodes with increasing M. Given these low val-

ues of PM
IJ except for the smallest values of M, one should

ask how representative are the MPPs for the full set of paths.

Figure 7(a) shows distributions of the parameter kM
IJðr; �Þ

giving the relative importance of the different types of paths.

We see that k-values are small when considering only the

MPPs (r¼ 0), but the distributions shift towards higher values

for paths sets of increasing r. Figure 7(b) gives mean values of

the k distributions. They decrease with M, reflecting the lack

of representativeness of the smallest sets of paths for large M.

However, already for r¼ 1, the set of HPPs has a mean value

higher than 0.5 for a relevant range of time steps.

Thus, for the values of M and � discussed here, the set of

HPPs with r¼ 1 seems to be rich enough to represent the

transport pathways. But how different is the geometry of the

different paths in this HPP set? And how different is it from

the MPPs? We plot in Fig. 8 examples of all HPPs with r¼ 1

and �¼ 0 for particular (I, J) values and dates. In all the

cases, the sets remain coherent and narrow tubes of trajecto-

ries, and define roughly the same pathway as the MPP.

A quantification of the width of the tubes can be done

with the distance measure DM
IJ in Eq. (8). An average of it

over pairs of locations is shown in Fig. 9. Although the tube

width increases with M, it remains always below the typical

linear box size of approximately 166.5 km (see Sec. IV D),

indicating that the tubes remain narrow. Thus, we conclude

that, despite the decreasing probability of the MPPs for

FIG. 7. (a) Normalized probability density f ðkÞ of the merit figure kM
IJðr; �Þ

of paths started on July 20, 2010, for M¼ 9 and � ¼ 0:1, with r¼ 0 (only the

MPPs, left, black curve), r¼ 1 (middle blue curve), and r¼ 2 (right green

curve). Statistics is compiled from all (I,J) pairs. (b) Mean value of the

kM
IJðr; �Þ distributions (paths’ starting date July 25) as a function of the num-

ber of time steps M for r¼ 0 (only MPPs, blue squares), r¼ 1 (red circles),

and r¼ 2 (single black star).

FIG. 8. All paths in KM
IJðr ¼ 1; � ¼

0:1Þ for different I, J, initial point I
marked by a circle and final point J
marked by a square. The color bar

gives in logarithmic scale values rang-

ing from the maximum one PM
IJ (dark

red), corresponding to the MPP, to the

minimum of 0:1PM
IJ . Panel (a): M¼ 8

steps, with starting date July 25, 2011;

PM
IJ ¼ 7:8� 10�5. Panel (b): M¼ 12

steps, with starting date July 25, 2011;

PM
IJ ¼ 2:7� 10�5. Panel (c): M¼ 11

steps, with starting date July 20, 2011;

PM
IJ ¼ 7:4� 10�7. Panel (d): M¼ 11

steps, with starting date July 20, 2011;

PM
IJ ¼ 1:5� 10�7.

FIG. 9. Plot of the mean distance DM
IJ (Eq. (8)) as a function of M for r¼ 1

and � ¼ 0:1. The quantity is further averaged over all the HPPs starting on

July 25. Units are in kilometers.
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increasing M, they remain good indicators of the dominant

pathways in the transport network.

As a final description of properties of the dominant

transport paths, we present in Figure 10 (compare with Fig.

8(d)) an example on how the MPP and the HPPs between a

fixed pair of nodes change when considering different values

of M, defining the temporal interval. Typically, the probabil-

ity of the MPP shows a maximum at some intermediate val-

ues of M in between shorter values of M for which very few

particles connect the two nodes and larger values of M for

which the increasing number of factors smaller than one in

the product (1) defining ðpM
IJÞl makes this quantity to

decrease again until vanishing. For the example shown in

Figs. 8(d) and 10, the value of M giving the maximum PM
IJ is

around M � 9, i.e., Ms ¼ 4:5 days. Note that the HPP trajec-

tories change length but keep a similar shape in the range of

M considered, indicating that in this time interval, the block-

ing atmospheric structures evolve slowly.

VI. CONCLUSIONS

We have introduced MPPs and sets of HPPs as tools to

visualize and analyze dominant pathways in geophysical

flows. We have computed them for an atmospheric blocking

event involving Eastern Europe and Western Russia. The

computed optimal paths give a Lagrangian view of the

Omega-block configuration, with a central anti-cyclonic cir-

culation flanked by two cyclonic ones. Moreover, they give

additional insight on it, such as the variability of the

dominant pathways, and the identification of escaping and

trapping regions. The statistical significance of single MPPs

decreases with the time interval considered, but we find

always that the MPPs remain representative of the spatial ge-

ometry of the pathways, in the sense that the sets of HPPs

are coherent narrow tubes providing transport paths always

close to the optimal path. This spatial coherence of transport

between pairs of locations was already noticed in an ocean

flow,22 and it is also present in the model flow discussed in

the Appendix. Then, it seems to be a general characteristic

of flow networks.
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APPENDIX: OPTIMAL PATHS IN A SIMPLE MODEL
SYSTEM

In this Appendix, we display optimal paths and sets of

optimal paths for an analytic model flow, the double-gyre.

See, for example, Refs. 37 and 38 for basic properties of this

system and computations of its Lagrangian coherent struc-

tures and Lyapunov fields. Because of the simplicity of this

flow as compared with the atmospheric situation studied in

the main text, characteristics of the optimal paths could be

appreciated more easily.

The double-gyre is a two-dimensional time-periodic

flow defined in the rectangular region of the plane

x ¼ ðx; yÞ 2 ½0; 2� � ½0; 1�. It is described by the stream

function

wðx; y; tÞ ¼ A sinðpf ðx; tÞÞ sinðpyÞ ; (A1)

with

f ðx; tÞ ¼ aðtÞx2 þ bðtÞx; (A2)

aðtÞ ¼ c sinðxtÞ ; (A3)

bðtÞ ¼ 1� 2c sinðxtÞ : (A4)

From these expressions, the velocity field is

_x ¼ � @w
@y
¼ �pA sin pf x; tð Þð Þcos pyð Þ; (A5)

_y ¼ @w
@x
¼ pA cos pf x; tð Þð Þsin pyð Þ

@f x; tð Þ
@x

: (A6)

For c¼ 0, this flow is steady. Ideal fluid particles follow

very simple trajectories: they rotate following closed stream-

lines, clockwise in the left half of the rectangle and counter-

clockwise in the right one. The central streamline x¼ 1, a

heteroclinic connection between the hyperbolic point at

(1, 1) and the one at (1, 0), acts as a separatrix between the

two regions. When c > 0, more complex behavior including

FIG. 10. All paths in KM
IJðr ¼ 1; � ¼ 0:1Þ for the same I, J and starting date

as in Fig. 8(d). Same coloring scheme as in Fig. 8. Panel (a) M¼ 7 steps;

PM
IJ ¼ 2:2� 10�5. (b) M¼ 9 steps; PM

IJ ¼ 2:3� 10�4.
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chaotic trajectories arises. The periodic perturbation breaks

the separatrix, so that now some interchange of fluid is possi-

ble between the left and the right parts of the rectangle. The

geometric structures involved in this interchange have been

studied with a variety of techniques,37,38 but the framework

of optimal paths developed in this paper seems quite natural

for this purpose.

We take the parameters A¼ 0.1 and x ¼ 2p=5 and com-

pute paths in our network framework for two qualitatively

different situations, namely, the steady case c¼ 0, and the

periodically perturbed case (of period 2p=x ¼ 5) with

c ¼ 0:3. We discretize the fluid domain into 100� 50¼ 5000

square boxes, defining the nodes in our flow network, and

compute the adjacency matrices AðlÞ, l ¼ 1:::M, by releasing

400 particles from each of the boxes. In all the cases shown

below, we compute paths of M¼ 6 steps of duration s¼ 1,

starting at t0 ¼ 0.

Figure 11 considers the steady flow (c¼ 0) and shows

all optimal paths emanating from two particular initial nodes

and reaching all nodes accessible from them after the 6 steps.

We see the general clockwise and anticlockwise circulations

at each side of the separatrix. The two halves of the domain

remain isolated. Note that the paths are different from the

closed streamlines. This is so because the discretization of

the fluid domain into finite boxes, together with the Markov

assumption, introduces a stochastic component equivalent to

an effective diffusivity29 and leads to dispersion of the par-

ticles starting from a single node. In our atmospheric veloc-

ity flow, there were in addition explicit stochastic terms

modeling turbulent diffusion and mesoscale fluctuations.

Note also that, as in the atmospheric case, a huge range of

values of PM
IJ is present.

Figure 12 shows optimal paths for the periodically per-

turbed flow (c ¼ 0:3). The general clockwise and counter-

clockwise rotations still remain, but now there are pathways

connecting the two halves of the domain. Note the strong

divergence of close pathways when they approach the hyper-

bolic region at the bottom of the domain, and note how is this

geometric structure what allows transport of fluid between the

two regions that were isolated in the steady case.

In Fig. 13, we display sets of HPPs between three pairs

of nodes at c ¼ 0:3. More specifically, we compute the paths

obtained with r¼ 1 and a probability larger than 5% of the

PM
IJ for these pairs of nodes (i.e., the paths in the set

K6
IJðr ¼ 1; � ¼ 0:05Þ). The HPPs arrange in very narrow

tubes around the MPP, which is the same behavior observed

in the atmospheric paths and also in ocean calculations.22

The central path in Fig. 13 clearly identifies the pathway fol-

lowed by particles to connect the left and right regions, using

the “opening” around the hyperbolic region at the top of the

domain.
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FIG. 11. Double-gyre 6-step paths in the steady case c¼ 0, from two differ-

ent starting nodes (the black circles) to all the accessible destinations. The

network nodes pertaining to each path are joined by straight line segments

colored according to the path probability. The color code is logarithmic in

the full probability range, which is ½0:054; 7:73� 10�10� for the left node

(there is a total of 94 paths emanating from it) and ½0:0234; 10�7� for the

right one (87 paths).

FIG. 13. Three sets of HPPs in the double gyre for c ¼ 0:3. We show all

HPPs in K6
IJðr ¼ 1; � ¼ 0:05Þ, with starting nodes I at the black circles and

destinations J at the black squares. Color coding as in Figs. 11 and 12, with
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½0:0327; 3:355� 10�7� (bottom-left node, 66 paths), ½0:0245; 1:879� 10�9�
(top-left node, 108 paths), and ½0:0128; 1:335� 10�8� (right node, 106

paths).

087413-9 Ser-Giacomi et al. Chaos 25, 087413 (2015)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  161.111.180.103 On: Mon, 20 Jun

2016 07:24:35

http://dx.doi.org/10.1016/j.physrep.2006.09.005


2G. Haller and F. J. Beron-Vera, “Geodesic theory of transport barriers in

two-dimensional flows,” Physica D 241, 1680–1702 (2012).
3S. Balasuriya, “Explicit invariant manifolds and specialised trajectories in

a class of unsteady flows,” Phys. Fluids 24, 127101 (2012).
4G. Haller, “Distinguished material surfaces and coherent structure in

three-dimensional fluid flows,” Physica D 149, 248–277 (2001).
5B. Joseph and B. Legras, “Relation between kinematic boundaries, stir-

ring, and barriers for the antartcic polar vortex,” J. Atmos. Sci. 59,

1198–1212 (2002).
6F. d’Ovidio, V. Fern�andez, E. Hernandez-Garc�ıa, and C. L�opez, “Mixing

structures in the Mediterranean Sea from finite-size Lyapunov exponents,”

Geophys. Res. Lett. 31, L17203, doi:10.1029/2004GL020328 (2004).
7A. M. Mancho, S. Wiggins, J. Curbelo, and C. Mendoza, “Lagrangian

descriptors: A method for revealing phase space structures of general time

dependent dynamical systems,” Commun. Nonlinear Sci. Numer. Simul.

18, 3530–3557 (2013).
8G. Froyland and M. Dellnitz, “Detecting and locating near-optimal almost-

invariant sets and cycles,” SIAM J. Sci. Comput. 24, 1839–1863 (2003).
9M. Dellnitz, G. Froyland, C. Horenkamp, K. Padberg-Gehle, and A. Sen

Gupta, “Seasonal variability of the subpolar gyres in the Southern Ocean:

A numerical investigation based on transfer operators,” Nonlinear Process.

Geophys. 16, 655–663 (2009).
10G. Froyland, N. Santitissadeekorn, and A. Monahan, “Transport in time-

dependent dynamical systems: Finite-time coherent sets,” Chaos 20,

043116 (2010).
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