
On the implementation of a multiple outputs algorithm

for defeasible argumentation

Teresa Alsinet1, Ramón Béjar1, Lluis Godo2, and Francesc Guitart1

1 Department of Computer Science – University of Lleida
Jaume II, 69 – 25001 Lleida, SPAIN

{tracy, ramon, fguitart}@diei.udl.cat
2 Artificial Intelligence Research Institute (IIIA-CSIC)

Campus UAB - 08193 Bellaterra, Barcelona, SPAIN
godo@iiia.csic.es

Abstract. In a previous work we defined a recursive warrant semantics for De-
feasible Logic Programming based on a general notion of collective conflict among
arguments. The main feature of this recursive semantics is that an output of a pro-
gram is a pair consisting of a set of warranted and a set of blocked formulas. A
program may have multiple outputs in case of circular definitions of conflicts
among arguments. In this paper we design an algorithm for computing each out-
put and we provide an experimental evaluation of the algorithm based on two
SAT encodings defined for the two main combinatorial subproblems that arise
when computing warranted and blocked conclusions for each output.

1 Introduction and motivation

Defeasible Logic Programming (DeLP) [8] is a formalism that combines techniques
of both logic programming and defeasible argumentation. As in logic programming,
knowledge is represented in DeLP using facts and rules; however, DeLP also provides
the possibility of representing defeasible knowledge under the form of weak (defeasi-
ble) rules, expressing reasons to believe in a given conclusion. In DeLP, a conclusion
succeeds in a program if it is warranted, i.e., if there exists an argument (a consistent set
of defeasible rules) that, together with non-defeasible rules and facts, entails the con-
clusion, and moreover, this argument is found to be undefeated by a warrant procedure.
This builds a dialectical tree containing all arguments that challenge this argument, and
all counterarguments that challenge those arguments, and so on, recursively. Actually,
dialectical trees systematically explore the universe of arguments in order to present an
exhaustive synthesis of the relevant chains of pros and cons for a given conclusion.

In [1] we defined a new recursive semantics for DeLP based on a general notion of
collective (non-binary) conflict among arguments. In this framework, called Recursive

DeLP (R-DeLP for short), an output (or extension) of a program is a pair consisting of
a set of warranted and a set of blocked formulas. Arguments for both warranted and
blocked formulas are recursively based on warranted formulas but, while warranted
formulas do not generate any collective conflict, blocked conclusions do. Formulas that
are neither warranted nor blocked correspond to rejected formulas. The key feature that
our warrant recursive semantics addresses is the closure under subarguments postulate

recently proposed by Amgoud[4], claiming that if an argument is excluded from an out-
put, then all the arguments built on top of it should also be excluded from that output.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/45450742?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Then, in case of circular definitions of conflict among arguments, the recursive seman-
tics for warranted conclusions may result in multiple outputs for R-DeLP programs.

In this paper, after overviewing in Section 2 the main elements of the warrant recur-
sive semantics for R-DeLP, in Section 3 we design an algorithm for computing every
output for R-DeLP programs with multiple outputs, and in Section 4 we present empir-
ical results. These are obtained with an implementation of the algorithm based on two
SAT encodings defined in [2] for the two main combinatorial subproblems that arise
when computing warranted and blocked conclusions for each output for an R-DeLP
program, so that we can take profit of existing state-of-the-art SAT solvers for solving
instances of big size.

2 Preliminaries on R-DeLP

The language of R-DeLP, denoted L, is inherited from the language of logic program-
ming, including the notions of atom, literal, rule and fact. Formulas are built over a finite
set of propositional variables {p, q, . . .} which is extended with a new (negated) atom
“∼p” for each original atom p. Atoms of the form p or ∼p will be referred as literals.3
Formulas of L consist of rules of the form Q ← P1 ∧ . . . ∧ Pk , where Q, P1, . . . , Pk

are literals. A fact will be a rule with no premises. We will also use the name clause

to denote a rule or a fact. The R-DeLP framework is based on the propositional logic
(L,�) where the inference operator � is defined by instances of the modus ponens rule
of the form: {Q ← P1 ∧ . . . ∧ Pk , P1, . . . , Pk} � Q. A set of clauses Γ will be deemed
as contradictory, denoted Γ � ⊥, if , for some atom q, Γ � q and Γ � ∼q.

An R-DeLP program P is a tuple P = (Π,∆) over the logic (L,�), where Π,∆ ⊆
L, and Π �� ⊥. Π is a finite set of clauses representing strict knowledge (information
we take for granted they hold true), ∆ is another finite set of clauses representing the
defeasible knowledge (formulas for which we have reasons to believe they are true).

The notion of argument is the usual one. Given an R-DeLP program P , an argument
for a literal (conclusion) Q of L is a pair A = �A, Q�, with A ⊆ ∆ such that Π ∪A ��R

⊥, and A is minimal (with respect to set inclusion) such that Π ∪ A � Q. If A = ∅,
then we will call A a s-argument (s for strict), otherwise it will be a d-argument (d
for defeasible). The notion of subargument is referred to d-arguments and expresses
an incremental proof relationship between arguments which is defined as follows. Let
�B,Q� and �A, P � be two d-arguments such that the minimal sets (with respect to set
inclusion) ΠQ ⊆ Π and ΠP ⊆ Π such that ΠQ ∪ B �R Q and ΠP ∪ A �R P

verify that ΠQ ⊆ ΠP . Then, �B,Q� is a subargument of �A, P �, written �B,Q� �
�A, P �, when either B ⊂ A (strict inclusion for defeasible knowledge), or B = A and
ΠQ ⊂ ΠA (strict inclusion for strict knowledge). More generally, we say that �B,Q�
is a subargument of a set of arguments G, written �B,Q� � G, if �B,Q� � �A, P � for
some �A, P � ∈ G. A literal Q of L is called justifiable conclusion with respect to P if
there exists an argument for Q, i.e. there exists A ⊆ ∆ such that �A, Q� is an argument.

The warrant recursive semantics for R-DeLP is based on the following notion of
collective conflict. Let P = (Π,∆) be an R-DeLP program and let W ⊆ L be a set
of conclusions. We say that a set of arguments {�A1, Q1�, . . . , �Ak, Qk�} minimally

3 For a given literal Q, we write ∼Q as an abbreviation to denote “∼q” if Q = q and “q” if
Q = ∼q.

conflicts with respect to W iff the two following conditions hold: (i) the set of argument
conclusions {Q1, . . . , Qk} is contradictory with respect to W , i.e. it holds that Π∪W ∪
{Q1, . . . , Qk} � ⊥; and (ii) the set {�A1, Q1�, . . . , �Ak, Qk�} is minimal with respect
to set inclusion satisfying (i), i.e. if S � {Q1, . . . , Qk}, then Π ∪W ∪ S �� ⊥.

An output for an R-DeLP program P = (Π,∆) is any pair (Warr, Block), where
Warr ∩ Block = ∅ and {Q | Π � Q} ⊆ Warr, satisfying the following recursive
constraints:

1. P ∈ Warr∪Block iff there exists an argument �A, P � such that for every �B,Q� �
�A, P �, Q ∈ Warr. In this case we say that the argument �A, Q� is valid with
respect to Warr.

2. For each valid argument �A, Q�:
– Q ∈ Block whenever there exists a set of valid arguments G such that

(i) �A, Q� �� G, and
(ii) {�A, Q�} ∪G minimally conflicts with respect to the set

W = {P | �B,P � � G ∪ {�A, Q�}}.
– otherwise, Q ∈ Warr.

In [1] we showed that, in case of some circular definitions of conflict among argu-
ments, the output of an R-DeLP program may be not unique, that is, there may exist sev-
eral pairs (Warr, Block) satisfying the above conditions for a given R-DeLP program.
Following the approach of Pollock [9], circular definitions of conflict were formalized
by means of what we called warrant dependency graphs. A warrant dependency graph
represents (i) support relations of almost valid arguments with respect to valid argu-
ments and (ii) conflict relations of valid arguments with respect to almost valid argu-
ments. An almost valid argument is an argument based on a set of valid arguments and
whose status is warranted or blocked (but not rejected), whenever every valid argument
in the set is warranted, and rejected, otherwise. Then, a cycle in a warrant dependency
graph represents a circular definition of conflict among a set of arguments.

3 Computing the set of outputs for an R-DeLP program

From a computational point of view, an output for an R-DeLP program can be com-
puted by means of a recursive procedure, starting with the computation of warranted
conclusions from strict clauses and recursively going from warranted conclusions to
defeasible arguments based on them. Next we design an algorithm implementing this
procedure for computing warranted and blocked conclusions by checking the existence
of conflicts between valid arguments and cycles at some warrant dependency graph.

The algorithm R-DeLP outputs first computes the set of warranted conclusions
form the set of strict clauses Π . Then, computes the set VA of valid arguments with re-
spect to the strict part, i.e. arguments with an empty set of subarguments. The recursive
procedure extension receives as input the current partially computed output (W,B)
and the set of valid arguments VA and dynamically updates the set VA depending on
new warranted and blocked conclusions and the appearance of cycles in some warrant
dependence graph. When a cycle is found in a warrant dependence graph, each valid
argument of the cycle can lead to a different output. Then, the procedure extension
selects one valid argument of the cycle and recursively computes the resulting output by

warranting the selected argument. The procedure extension finishes when the status
for every valid argument of the current output is computed. When an R-DeLP program
has multiple outputs, each output is stored in the set of outputs O.
Algorithm R-DeLP outputs
Input P = (Π, ∆): An R-DeLP program
Output O: Set of outputs for P
Variables

(W, B): Current output for P
VA: Set of valid arguments w.r.t. the current set of warranted conclusions W

Method

O := ∅
W := {Q | Π � Q}
B := ∅
VA : = {�A, Q� | �A, Q� is valid w.r.t. W}
extension ((W , B), VA, O)

end algorithm R-DeLP outputs

Procedure extension (in (W , B), VA; in_out O)
Variables

Wext: Extended set of warranted conclusions
VAext: Extended set of valid arguments
is_leaf : Boolean

Method

is_leaf := true
while (VA �= ∅ and is_leaf = true) do

while (∃�A, Q� ∈ VA |
¬ conflict(�A, Q�, VA, W , not_dependent(�A, Q�, almost_valid(VA, (W , B))))
and ¬ cycle(�A, Q�, VA, W , almost_valid(VA, (W , B))) do

W := W ∪ {Q}
VA := VA\{�A, Q�} ∪ {�C, P � | �C, P � is valid w.r.t. W}

end while

I := {�A, Q� ∈ VA | conflict(�A, Q�, VA, W , ∅) }
B := B ∪ {Q | �A, Q� ∈ I}
VA := VA\I
J := {�A, Q� ∈ VA | cycle(�A, Q�, VA, W , almost_valid(VA, (W , B))) }
for each argument (�A, Q� ∈ J) do

Wext := W ∪ {Q}
VAext := VA\{�A, Q�} ∪ {�C, P � | �C, P � is valid w.r.t. Wext}
extension ((Wext, B), VAext, O)

end for

if (J �= ∅) then is_leaf := false
end while

if ((W, B) �∈ O and is_leaf = true) then O := O ∪ {(W, B)}
end procedure extension

The function almost_valid computes the set of almost valid arguments based
on some valid arguments in VA. The function not_dependent computes the set of
almost valid arguments which do not depend on �A, Q�. The function conflict has
two different functionalities. On the one hand, the function conflict checks conflicts
among the argument �A, Q� and the set VA of valid arguments, and thus, every valid ar-
gument involved in a conflict is blocked. On the other had, the function conflict

checks possible conflicts among the argument �A, Q� and the set VA of valid arguments
extended with the set of almost valid arguments whose supports depend on some argu-
ment in VA\{�A, Q�}, and thus, every valid argument with options to be involved in a
conflict remains as valid. Finally, the function cycle checks the existence of a cycle
in the warrant dependency graph for the set of valid arguments VA and the set of almost
valid arguments based on some valid arguments in VA.

One of the main advantages of the warrant recursive semantics is from the imple-
mentation point of view. Warrant semantics based on dialectical trees, like DeLP [5,6],
might consider an exponential number of arguments with respect to the number of rules
of a given program. However, for every output, our algorithm can be implemented to
work in polynomial space. This can be achieved because it is not actually necessary to
find all the valid arguments for a given literal Q, but only one witnessing a valid argu-
ment for Q is enough. Analogously, function not_dependent can be implemented
to generate at most one almost valid argument not based on �A, Q� for a given literal.
The only function that in the worst case can need an exponential number of arguments
is cycle, but we showed [2] that whenever cycle returns true for �A, Q�, then a con-
flict will be detected with the set of almost valid arguments which do not depend on
�A, Q�. Moreover, the set of valid arguments J computed by function cycle can also
be computed by checking the stability of the set of valid arguments after two consecu-
tive iterations, so it is not necessary to explicitly compute dependency graphs.

4 Empirical results

The algorithm R-DeLP outputs needs to compute two main queries during its ex-
ecution: i) whether an argument is almost valid and ii) whether there is a conflict for
a valid argument. In [2] we proposed SAT encodings for resolving both queries with a
SAT solver.

Now in this paper we study the average number of outputs for R-DeLP instances
and the median computational cost of solving them with the R-DeLP outputs algo-
rithm, as the instances size increase with different instances characteristics. The main
algorithm has been implemented with python, and for solving the SAT encodings, we
have used the solver MiniSAT [7]. An on-line web based implementation of the R-DeLP
argumentation framework is available at the URL: http://arinf.udl.cat/rp-delp.

To generate R-DeLP problem instances with different sizes and characteristics, we
have used the generator algorithm described in [3]. We generate test-sets of instances
with different number of variables (V): {15, 20, 25, 30}4 and with clauses with one or
two literals. For each number of variables, we generate three sets of instances, each one
with a different ratio of clauses to variables (C/V): {2, 4, 6}. From all the clauses of
an instance, a 10% of them are considered in the strict part of the program (Π) and a
90% of them are considered in the defeasible part (∆). 5

Table 1 shows the experimental results obtained for our test-sets. So far, we have
computed the average number of outputs per instance (# O), the average number of

4 Notice that the total number of literals is two times the number of variables.
5 These parameters are selected given the experimental results in [3], where we considered single

output programs and these parameters gave non-trivial instances in the sense that they are
computationally hard to solve.

http://arinf.udl.cat/rp-delp

warrants per output, the average number of warrants in the intersection of the set of
outputs and the median time for solving the instances. The results show that even for a
small number of variables V and a small ratio C/V we can have instances with mul-
tiple outputs. Observe that although the average number of outputs is not too different
between all the test-sets, the complexity of solving the instances seems to increase ex-
ponentially as either V or C/V increases. We believe this is mainly due to an increase
in the complexity of deciding the final status (warranted or blocked) of each literal for
each output.

V C/V # O
Warrants # Warrants Time (s.)per output in intersection

15
2 1.04 7.14 7.1 0.906
4 1.31 7.28 6.93 7.96
6 5.40 6.43 5.90 19.11

20
2 1.06 9.89 9.82 1.93
4 1.65 9.63 9.31 28.89
6 1.44 9.09 8.81 38.87

25
2 1.10 11.47 11.38 5.09
4 2.44 11.72 10.74 76.31
6 1.90 8.04 7.50 151.31

30
2 1.08 12.56 12.5 9.20
4 1.81 12.16 11.56 142.49
6 1.89 11.02 9.92 227.97

Table 1. Experimental results for the R-DeLP outputs algorithm.

As future work we propose to study the average number of blocked conclusions
per output which would give us an idea if the computation time is higher because there
is a relationship between the number of blocked and warranted conclusions. We also
propose to extend the R-DeLP outputs algorithm to the case of multiple levels for
defeasible facts and rules.

References

1. T. Alsinet, R. Béjar, and L. Godo. A characterization of collective conflict for defeasible
argumentation. In COMMA 2010, pages 27–38.

2. T. Alsinet, R. Béjar, L. Godo, and F. Guitart. Maximal ideal recursive semantics for defeasible
argumentation. In SUM 2011, LNAI 6929, pages 96–109.

3. T. Alsinet, R. Béjar, L. Godo, and F. Guitart. Using answer set programming for an scalable
implementation of defeasible argumentation. In ICTAI 2012, pages 1016-1021.

4. L. Amgoud. Postulates for logic-based argumentation systems. In ECAI 2012 Workshop

WL4AI, pages 59–67.
5. L. Cecchi, P. Fillottrani, and G. Simari. On the complexity of DeLP through game semantics.

In NMR 2006, pages 386–394.
6. C.I. Chesñevar, G.R. Simari, and L. Godo. Computing dialectical trees efficiently in possi-

bilistic defeasible logic programming. In LPNMR 2005, LNAI 3662, pages 158–171.
7. N. Eén and N. Sörensson. An extensible SAT-solver. In SAT 2003, pages 502–518.
8. A. García and G.R. Simari. Defeasible Logic Programming: An Argumentative Approach.

Theory and Practice of Logic Programming, 4(1):95–138, 2004.
9. John L. Pollock. A recursive semantics for defeasible reasoning. In Rahwan and Simari (eds.)

Argumentation in Artificial Intelligence, pages 173–198. Springer, 2009.

	On the implementation of a multiple outputs algorithm for defeasible argumentation
	Teresa Alsinet cl@@auth, Ramón Béjar cl@@auth, Lluis Godo cl@@auth, Francesc Guitart

