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The tetraspanin CD9 has been shown to interact with different members of the 31 and 33 subfamilies of integrins,
regulating through these interactions cell adhesion, migration and signaling. Based on confocal microscopy co-
localization and on co-immunoprecipitation results, we report here that CD9 associates with the 32 integrin
LFA-1 in different types of leukocytes including T, B and monocytic cells. This association is resistant to stringent
solubilization conditions which, together with data from chemical crosslinking, in situ Proximity Ligation Assays
and pull-down experiments, suggest a primary/direct type of interaction mediated by the Large Extracellular

?E{g:;giin Loop of the tetraspanin. CD9 exerts inhibitory effects on the adhesive function of LFA-1 and on LFA-1-
Integrin dependent leukocyte cytotoxic activity. The mechanism responsible for this negative regulation exerted by
CD9 CD9 on LFA-1 adhesion does not involve changes in the affinity state of this integrin but seems to be related to
LFA-1 alterations in its state of aggregation.

Adhesion © 2015 Elsevier B.V. All rights reserved.
Cytotoxicity

1. Introduction

The B2 subfamily of integrins comprises four distinct members,
alP2, aMP2, aXp2, and aDP2, that are selectively expressed on leuko-
cytes (for review [15,28,33]). The integrin aL32, also termed LFA-1
(Lymphocyte Function-associated Antigen-1) or CD11a/CD18 antigen,
is expressed on most types of leukocytes and primarily on lymphocytes,
whereas expression of the rest of members of this subfamily is rather re-
stricted to myeloid cells. LFA-1 interacts with intercellular adhesion
molecules (ICAM-1, -2, or -3), playing a pivotal role in many crucial
leukocyte functions that require intercellular adhesion, such as extrava-
sation into tissues, organization of the immune synapse and antigen
presentation, inter-lymphocyte collaboration and killing of target cells
by CTL or NK cells [2,40,63,66].
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LFA-1 can exist in different states of activation regarding its ability to
bind ligands. Resting T lymphocytes express LFA-1 with low affinity and
avidity for ligands, necessary for their normal circulation in the blood as
individual cells. However, activation by the TCR-CD3 complex or recep-
tors for different cytokines and chemokines, results in rapid activation
of LFA-1 enabling T cells to adhere to other cells [15,27,72]. Activation
of LFA-1 can be induced through changes in the affinity of individual
integrin molecules, reflecting conformational alterations, or through
changes in the valency of interactions with multivalent ligands [18]. In
terms of ligand binding affinity, at least three different conformational
states of LFA-1 have been identified: a bent conformation of low affinity,
an extended conformation with closed headpiece displaying intermedi-
ate affinity, and a high affinity extended conformation with open head-
piece and separated intracellular tails [18,39]. PMA induces the
intermediate affinity state but also increases the diffusion of LFA-1 mol-
ecules on the cell surface, which in the presence of multivalent ligand,
leads to aggregation/clustering of this integrin [18,42]. On the other
hand, extracellular Mn?* induces the high affinity conformation of
LFA-1 [18,26] but also induces changes in the local density (i.e. the
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clustering) of integrin molecules, which is reflected by changes in
the number of effective adhesive bonds (i.e. the valency) with ligand
[19,55].

CD9 is a member of the tetraspanin family of integral membrane
proteins [20,77] abundantly expressed on the surface of endothelial
cells, some leukocytes and many types of tumor cells [21,36,64]. CD9
was initially characterized as a lympho-hematopoietic marker [14]
and received the name “Motility-Regulatory Protein” (MRP) [49]. CD9
has been also implicated in the formation and maintenance of muscular
myotubes [68], in nervous cell neurite outgrowth [61], and in sperm-
oocyte fusion [23]. Like other tetraspanins, CD9 associates on the cell
surface with different integrins and many of the functional effects that
have been attributed to CD9 may be indeed related to its ability to asso-
ciate to integrin molecules [6,7].

Functional interactions of CD9 with several members of the 31 and
3 subfamilies of integrins have been reported, usually based on the
effects exerted by CD9-specific mAbs on the associated integrin-
dependent adhesion, migration and signaling (reviewed in [6,7]).
However, to our knowledge, only one published report includes some
indication - merely based on co-immunoprecipitation evidence -
suggestive of a possible interaction between CD9 and the (32 integrin
subunit [69], although this study did neither address the type or func-
tional aspects of this interaction. In addition, functional association of
LFA-1 with tetraspanins CD81 (the most closely related to CD9) and
CD82, has been described on T lymphocytes [62,75], which prompted
us to investigate in more detail whether CD9 is also functionally associ-
ated with the B2 integrin LFA-1 on leukocytes.

We report here that CD9 associates directly with LFA-1 in different
types of leukocytes and exerts inhibitory effects on its adhesive capacity
and on leukocyte LFA-1-dependent cytotoxic activity.

2. Materials and methods
2.1. Cells and cell cultures

Primary T lymphoblasts were obtained from peripheral blood mono-
nuclear cells from healthy donors treated with 5 pg/ml phytohemagglu-
tinin (Amersham Biosciences) for 48 h, as described previously [25,48].
Cells were then cultured for 7-10 days in RPMI-1640 containing 10%
FBS and 50 U/ml IL-2 (Eurocetus). HSB-2 and Jurkat (T cell lines), JY
and Daudi (B cell lines) and THP-1 and U937 cells (monocytic cell
lines) were cultured in RPMI-1640 supplemented with 10% FBS, antibi-
otics and glutamine. THP-1 and U937 differentiation into macrophage-
like cells was induced with PMA (100 ng/ml) for 24 h.

2.2. Expression constructs and RNA silencing transfection

For stable transfection experiments, HSB-2 and U937 cells were
electroporated with 20 pg pcDNA3-CD9 plasmid at 200 V (2 x 10 ms
pulses in a 0.4 cm electroporation cuvette) using an ECM830 BTX elec-
troporation system and selected with 1 mg/ml G418. For CD9 silencing,
Jurkat cells were retroviraly transduced (OriGene Technologies) with
the shRNA-coding plasmids TI356235 (the plasmid with the CD9
shRNA cassette insert) and TR20003 (“TR2” control plasmid without
shRNA insert), according to manufacturer's indications and selected
with 1 ug/ml puromycin.

2.3. Antibodies and reagents

ICAM-1-Fc chimeric protein consisting of the five domains of ICAM-1
fused to the Fc region of human IgG1 was prepared as described [9].
Anti-p-tubulin antibody was purchased from Sigma and the anti-CD18
biotin-conjugated antibody (MEM-48) from ImmunoTools. The anti-
bodies anti-p2 integrin Lia3/2 [17] and TS1/18 [58], anti-aL TP1/40
[17] and TS1/11 [58], anti-aM Bear-1 [41] and anti-aX HC1/1 [16],
anti-CD9 VJ]1/20 [78], PAINS-10 and PAINS-13 [31], anti-CD147 VJ1/9

and anti-CD59 VJ1/12 [78] and anti-HSPA8 PAINS-18 [29,31] were
purified by protein A or protein-G affinity chromatography. The
anti-CD81 5A6 mAb was kindly provided by Dr. Shoshana Levy
(Stanford University School of Medicine, USA), the 32 stimulatory
mADb KIM185 by Dr. Martyn K. Robinson (UCB-Celltech., Slough, UK),
the anti-CD105 mAb P4A4 by Dr. Carmelo Bernabeu (CIB-CSIC,
Madrid, Spain) and the anti-32 mAb m24 by Dr. Nancy Hogg (Cancer
Research UK, London, UK).

2.4. Flow cytometry analysis

For protein surface expression analysis cells were washed twice in
RPMI-1640, incubated with primary antibodies at 4 °C for 30 min,
followed by FITC-conjugated anti-mouse IgG (Sigma) and fixed in 2%
formaldehyde in PBS. For flow cytometric analysis of m24 epitope ex-
pression, HSB-2 and JK cells were washed in cation-free PBS and incu-
bated for 15 min at 37 °C with Mn?* (10, 20, 40, 100 and 400 uM) or
with Ca?"/Mg?* (0.5 mM and 1 mM respectively) in the presence of
mADb 24 (5 pg/ml), washed and stained with secondary FITC-anti-
mouse IgG. Fluorescence was measured using a FACScanTM flow
cytometer (Beckton-Dickinson).

2.5. Immunofluorescence, confocal and TIRF microscopy

For immunofluorescence studies cells, treated or not with 0.4 mM
Mn?™ for 20 min at 37 °C, were seeded on 12-mm glass coverslips coat-
ed with poly-L-lysine (50 pg/ml). Cells were fixed in 2% paraformalde-
hyde, blocked in 1% BSA in TBS and incubated for 1 h with TS1/11 or
TS1/18 mAbs (10 pg/ml), followed by secondary antibody Alexa
FluorTM-594 anti-mouse IgG (Invitrogen), rabbit polyclonal anti-CD9
antibody H-110 (Santa Cruz Biotechnology) and Alexa FluorTM-488
anti-rabbit IgG (Invitrogen). For THP-1 cells, Fc receptors were saturat-
ed with human gammaglobulin for 30 min, prior to fixation. Samples
were mounted with Mowiol reagent (Calbiochem) and images were ob-
tained with a Zeiss LSM510 Meta inverted microscope. Fluorescence co-
localization histograms and Pearson coefficient values were obtained
using the Fiji plug-in “Intensity correlation analysis” [47,60]. Fiji soft-
ware was also used for setting the threshold and for detection and quan-
titation of fluorescent objects.

For TIRF (total internal reflection fluorescence) miscroscopy, JK TR2
and JK shCD9 cells were first activated with PMA (200 ng/ml for 2 h),
then plated onto ICAM-1-Fc-coated (14 pg/ml) 35 mm Petri dishes
with glass bottom (2.5 x 10° cells/plate), and incubated for 90 min at
37 °C to allow adhesion. After washing non-adhered cells with PBS, ad-
hered cells were fixed in 2% paraformaldehyde (10 min, room temper-
ature) and then permeabilized with 0.3% Triton-X100 in TBS buffer.
Immunofluorescence staining of beta-2 integrin with mAb TS1/18 was
performed as described above, and images were obtained with an
inverted Olympus Xcellence IX83P2ZF TIRF miscroscopy system. Fiji
software was used for setting the threshold and for detection and quan-
titation of fluorescence in clusters.

2.6. Co-immunoprecipitations

Co-immunoprecipitation experiments were performed using intact
cells, in order to detect only surface protein-protein interactions. Cells
were incubated for 15 min at 37 °C (or for 60 min at 4 °C in parallel
control experiments) with the specific TS1/18 (anti-32) or V]J1/20
(anti-CD9) or control anti-CD105 and anti-CD59 antibodies in the
presence of 0.5 mM Ca?*/1 mM Mg? ™, followed by washing the anti-
body excess. Cells were then lysed for 15 min at 4 °C in TBS containing
1% Brij-97 or 1% Triton-X100 in the presence of corresponding extracel-
lular cations and protease inhibitors and, after removal of insoluble ma-
terial, incubated overnight at 4 °C with protein G-sepharose. Beads were
then washed with 1:5 diluted lysis buffer, boiled in nonreducing
Laemmli buffer, resolved by 8% (for 32 detection) or 12% (for CD9)
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SDS-PAGE and transferred onto nitrocellulose membranes. Membranes
were then blocked with 3% BSA and developed with the 32 (MEM-48)
or CD9 (VJ1/20) biotin-conjugated antibodies followed by streptavidin
HRP (Thermo scientific) and ECL-chemiluminescence.

2.7. Covalent chemical cross-linking

THP-1/PMA and JY cells were extracted in 1% Brij97 lysis buffer
(containing 20 mM Hepes,150 mM Nacl, 0.5 mM CaCl,, 3 mM MgCl,
and protease inhibitors), pH 7.4. After removal of insoluble material,
lysates were treated with 0.25 mM thiol-cleavable cross-linker 3,3’-
dithiobis(sulfosuccinimidylpropionate) (DTSSP) for 30 min at 4 °C.
The cross-linking reaction was quenched for 15 min at room tempera-
ture with 10 mM glycine, pH 7.4, and then Triton X-100 was added
to a final concentration of 1% (v/v) to cross-linked lysates and to parallel
non-cross-linked lysates used as controls. Samples were immuno-
precipitated with anti-32 integrin mAb TS1/18, with anti-CD9 mAb
VJ1/20 or with anti-CD9 pAb (H110), as indicated, resolved by
SDS-PAGE either under reducing conditions (to break the thiol bond
in DTSSP-crosslinked protein complexes) or under non-reducing
conditions and subsequent immunoblotting with biotinylated anti-
CD9 (VJ1/20) or anti-B2 integrin (MEM-48) mAbs, followed by
streptavidin-HRP (Thermo Scientific) and ECL-chemiluminescence.

2.8. Pull-down assays

GST-fusion proteins containing the LEL region from human wt CD9,
wt CD81 and wt CD63 were prepared as previously described [4,32,37].
JY and THP-1 cells were washed three times in PBS and either left un-
treated or their surface proteins biotinylated with 1 mM EZ-Link®
Sulfo-NHS-LC-Biotin (Thermo Scientific) in PBS with 1 mM CaCly,
1 mM MgCl, for 30 min at 4 °C. Cells were then washed twice in
PBS + 100 mM glycine to quench and remove excess biotin. Biotinylat-
ed and non-biotinylated cells were lysed in 1% Brij-97 or in 1% Triton-
X100 buffer and incubated overnight at 4 °C with equal amounts of
GST-fusion proteins, pulled down with glutathione-agarose for 3 h at
4 °C, washed in 1:10 diluted lysis buffer and boiled in non-reducing
Laemmli buffer. For non-biotinylated cells, the presence of 32 integrin
in the pulled-down complexes was revealed by immunoblotting with
biotinylated mAb MEM-48 and detection with streptavidin-HRP and
ECL-chemiluminescence. The levels of pulled-down GST-fusion proteins
were assessed by western-blot using an anti-GST rabbit polyclonal anti-
body (Santa Cruz Biotechnology). For surface-biotinylated cells, all ly-
sate proteins pulled-down by GST or by LEL-GST-CD9 were isolated
with glutathione-sepharose beads and detected with streptavidin-HRP
and ECL-chemiluminescence.

2.9. Cell adhesion assays

Static cell adhesion to ICAM-1-coated dishes was performed as de-
scribed elsewhere [29,54]. 96-well flat-bottom plates were pre-coated
with 6 pg/ml (for THP-1/PMA and T-lymphoblast cells) or 12 pg/ml (for
JY, HSB2 and JK cells) of ICAM-1-Fc and blocked with 1% BSA. For PMA-
stimulated cell adhesion, cells were incubated with 50 or 200 ng/ml of
PMA in RMPI-1640 for 2 h at 37 °C. Cells were loaded with the fluores-
cent probe BCECF-AM (Sigma) and added (2 x 10° cells/well) in adhe-
sion medium (Hepes 20 mM, NaCl 149 mM, 2 mg/ml glucose),
stimulated with 0.5 mM Ca?*/1 mM Mg?™ or 20-400 uM Mn?* and

incubated for 20-60 min at 37 °C. When indicated, 20 pg/ml of anti-
CD9 (VJ1/20, PAINS-10 and PAINS-13), anti-B32 (Lia3/2 and KIM185) or
the control anti-HSPA8 (PAINS-18) mAbs were pre-incubated with
cells for 15 min at 4 °C before transferring the plates to 37 °C. The plates
were then washed by gravity with warm PBS for 20 min at 37 °C. The
percentage of adherent cells was calculated by determining their fluores-
cence in a microplate reader (TecanGENios), considering as 100% the
total fluorescence of cells before washing. For determining cell adhesion
under flow conditions, JK TR2 and JK shCD9 cells were first activated
with PMA (100 ng/ml for 1 h) and labeled with CFSE or CMAC fluores-
cent probes and allowed to adhere for 15 min at 37 °C to immobilized
ICAM-1 (5 pg/ml). Shear stress was started at 0.5 dyn/cm2 and increased
up to 20 dyn/cm? at 1 min intervals. Cell detachment was calculated by
normalizing the number of adhered cells relative to the number of cells
observed at the minimal flow rate of 0.5 dyn/cm?.

2.10. Lymphokine-activated killer cell assay

The LAK cell assay was performed essentially as described [30,53]
with 4 x 10% Daudi cells/well as targets and 4 x 10° T lymphoblasts as
effector cells [25] in triplicates in 96-well U-bottom plates in a final vol-
ume of 200 pl. For antibody inhibition studies, purified mAbs were used
at 50 pg/ml. Then the plates were incubated at 37 °C for 5 h and the per-
centage of specific target cytolysis was determined from the amount of
LDH activity, measured as INT reduction, in the culture supernatant.
20 pl of lactate solution (Sigma, 36 mg/ml in 10 mM Tris buffer,
pH 8.5) was added to the cell-free supernatant, followed by addition
of 20 pl INT solution (Sigma, 2 mg/ml in PBS) and 20 pl of a solution con-
taining NAD*/diaphorase (NAD™: Sigma, 3 mg/ml; diaphorase:
Boehringer, 13.5 U/ml; BSA: 0.03%; sucrose: 1.2%; in PBS) and incubated
for 20 min. The reaction was terminated with 20 pl of the LDH inhibitor
oxamate (Sigma, 16.6 mg/ml in PBS) and the absorbance at 492 nm was
determined in a microplate reader.

2.11. In situ proximity ligation assays

In situ proximity ligation assays (PLAs) (Duolink kit, Olink
Bioscience, Uppsala, Sweden) allows detection of direct or closely prox-
imal protein—protein interactions in cell samples by fluorescence mi-
croscopy [65,76]. THP-1/PMA cells were seeded, fixed and blocked as
described above. Next samples were incubated simultaneously with
mouse mAbs anti-32 TS1/18, anti-aL TS1/11, anti-CD147 VJ1/9 or
anti-CD81 5A6 mAbs, and with the anti-CD9 H-110 rabbit polyclonal
antibody (sc-9148, Santa Cruz Biotechnology), followed by specific
oligonucleotide-labeled secondary antibodies (anti-mouse-plus probe
and anti-rabbit minus probe). Only if the two different target proteins
are in close proximity (<40 nm), the oligonucleotides of the two probes
will hybridize and after a rolling-circle amplification reaction and detec-
tion with a different fluorescently labeled oligonucleotide a fluorescent
dot signal can be visualized and analyzed by microscopy.

2.12. Statistical analysis
One-factor ANOVA analysis was performed using the statistics soft-

ware SPSS (IBM). The data distribution was tested for normality by
Bonferroni test.

Fig. 1. CD9 co-localizes with LFA-1 on THP-1 cell surface. A) Flow cytometric detection of CD9 (mAb V]1/20), 32 (mAb TS1/18), L (mAb TP1/40), M (mAb Bear-1), aX (mAb HC1/1) and
CD147 (mAb VJ1/9) proteins on the surface of THP-1 monocytic cells or THP-1/PMA macrophage-like cells. Gray filled histograms correspond to negative controls; empty histograms cor-
respond to the expression of the indicated molecules. The numbers in boxes represent ML.E.I values. B) and C) confocal microscopy of THP-1, THP-1 in the presence of 0.4 mM Mn?* and
THP-1/PMA differentiated cells showing in panel B co-localization of CD9 (green) and 32 (red) and in panel C co-localization of CD9 (green) and L (red) at the cell surface. Representative
images of confocal sections for each channel (green and red) and merged channels are shown together with co-localization histograms (right panels) showing Pearson co-localization

values. Scale bars = 5 pm.
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Fig. 2. Co-immunoprecipitation analysis of the association between LFA-1 and CD9. THP-1/PMA (left panels) and JY (right panels) cells were incubated with the immunoprecipitating
mAbs TS1/18 (anti-B2) in panel A, and V]1/20 (anti-CD9) in panel B, prior to their lysis in 1% Brij-97-containing lysis buffer. Protein immunocomplexes were precipitated with pro-
tein-G-sepharose, then resolved by 8% (for detection of 32) or 12% (for detection of CD9) SDS-PAGE under non-reducing conditions, and immunoblotted with anti-32 (MEM-48)
(upper panels) or anti-CD9 (V]1/20) (middle panels) biotin-conjugated mAbs or with anti-CD105 or anti-CD59 control proteins (lower panels). Blots are representative of three different
experiments. In some cell lysates, several 32 bands (indicated by gray arrowheads), probably corresponding to differences in glycosylation or partial degradation, are immunodetected.
WL: whole cell lysate. pG: protein-G-sepharose without precipitating antibody.

3. Results major (32 integrins (o Bz, otvfP2 0ixP2) and CD9 (Fig. 1A, upper histo-
grams). Confirming previous reports, we observed that the surface ex-
3.1. CD9 associates with 32 integrin on the leukocyte surface pression of both CD9 [32,50] and B2 integrins [1] was increased

during PMA-induced differentiation of THP-1 cells into macrophage-

To investigate the possible association between CD9 and the (32 like cells (Fig. 1A, lower histograms). As shown in Fig. 1B, CD9 and 32
integrin LFA-1, we first studied the co-localization of these molecules integrin subunit were found to co-localize partially on the surface of un-
by double immunofluorescence staining with specific mAbs and confo- differentiated monocytic THP-1 cells and this co-localization became
cal microscopy analysis. We employed monocytic THP-1 cells because much more evident on PMA-differentiated macrophage-like THP-1
they constitutively display detectable surface expression of the three (THP-1/PMA) cells, particularly at the cell-cell contact regions in the

Fig. 3. Direct interaction of CD9 and LFA-1 at the cell surface is mediated by the Large Extracellular Loop of CD9. A) THP-1/PMA or JY cells were lysed with 1% Triton-X100-based lysis buffer
after incubation with immunoprecipitating mAbs TS1/18 (anti-32) or V]1/20 (anti-CD9). Immunoblotting of co-immunoprecipitated proteins was performed as described in Materials and
methods. WL: whole cell lysate. pG: protein-G-sepharose without precipitating antibody. B) 1% Brij-97 extracts of JY cells were treated with DTSSP cross-linker and Triton X-100 was then
added to a final concentration of 1% (v/v) to cross-linked lysates and to parallel non-cross-linked lysates used as controls, as indicated. Samples were immunoprecipitated with anti32
integrin mAb TS1/18 (as indicated in the left panel and lanes 1 and 2 in the right panel) or with anti-CD9 mAb V]1/20 (lanes 3 and 4 in the right panel), resolved by SDS-PAGE either
under reducing conditions to break the thiol bond in DTSSP-crosslinked protein complexes (left panel) or under non-reducing conditions (right panel) and subsequently immunodetected
with biotinylated anti-CD9 (V]1/20) or anti-B2 integrin (MEM-48) mAbs. C) In situ proximity ligation assays (PLAs) were performed on THP-1/PMA macrophage-like cells as described in
Materials and methods. Red fluorescent dots reveal molecular interactions between CD9 and (32 or oL integrin subunits of LFA-1. The interactions between CD147/CD9 and CD81/CD9 are
also shown as negative and positive controls, respectively (left panels). Maximal projections of representative confocal stacks are shown. Scale bars = 5 pum. The right panel shows the
quantitation of total fluorescence per cell. **p < 0.001. D) Non biotinylated (left panel) or surface-biotinylated (right panel) JY cells were lysed in Triton-X100-based buffer and incubated
with the LEL-GST constructs of human CD81 or CD9, as indicated. The GST and CD63-LEL-GST constructs were used as negative controls for specificity of binding. Formed complexes were
pulled-down with glutathione-sepharose beads. For non-biotinylated cells, the presence of 32 integrin in the pulled-down complexes was revealed by immunoblotting with mAb MEM-48
(upper left-panel) and loading controls of GST fusion proteins stained with anti-GST polyclonal antibody are also shown (lower left-panel). For surface-biotinylated cells, all lysate proteins
pulled-down by GST, CD63-LEL-GST or by CD9-LEL-GST were isolated with glutathione-sepharose beads and detected with streptavidin-HRP. As a control, 32 integrin was also
immunoprecipitated with mAb TS1/18 from 1% Triton-X100 lysates of either surface-biotinylated or non-biotinylated (NB) JY cells and detected with streptavidin-HRP (which also clearly
reveals the accompanying biotinylated 185 kDa band corresponding to the oL subunit of LFA-1) or by immunodetection with anti-32 mAb MEM48, respectively.
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cellular aggregates that form during this differentiation process, as indi-
cated by the increase in the Pearson co-localization coefficient. As we re-
ported previously [55], when activation of 32 integrin was induced with
extracellular divalent cation Mn2™ the localization of B2 integrin
molecules changed from an evenly-distributed pattern to a patched/
clustered distribution and interestingly CD9 was clearly found co-
localizing with clustered (32 integrin. Since the 32-specific mAb stained
all the B2-containing integrins we also performed double immunofluo-
rescence using an al-specific mAb, confirming the pattern of co-
localization between CD9 and LFA-1 (Fig. 1C). The specificity of the
co-localization between CD9 and LFA-1 was evidenced by the almost
complete lack of co-localization observed between CD9 and CD147
(Supplementary Fig. 1), which is another abundantly expressed surface
protein on these cells (Fig. 1A).

Similar co-localization results were also observed in other leuko-
cytes, including the B lymphoblastic JY and T leukemic Jurkat cells,
which only express LFA-1, but not o3, or axf, (Supplementary
Fig. 2), and collectively suggest that CD9 associates with 32-integrins,
and particularly with LFA-1 (o f32), on the surface of different types of
leukocytic cells.

To confirm the association of CD9 with LFA-1, co-
immunoprecipitation experiments were performed using JY and THP-
1/PMA cells. All immunoprecipitations were performed using intact
cells that were incubated with the immunoprecipitating mAbs at
37 °C prior to their lysis, thus ensuring that only interactions between
cell surface molecules were detected. Inmunoprecipitation using the
p2-specific mAb TS1/18, from Brij-97 lysates of THP-1/PMA and JY
cells, followed by immunoblotting with anti-CD9 mAb V]1/20 clearly
showed that this tetraspanin was co-precipitated with integrin LFA-1
(Fig. 2A). Co-immunoprecipitation was also detected in the reverse
order, i.e. immunoprecipitating CD9 followed by immunodetection of
2 integrin (Fig. 2B). Moreover, the association of LFA-1 with CD9 ob-
served in Brij97-based lysates of THP-1/PMA and ]Y cells persisted
under more stringent solubilization conditions such as the use of deter-
gent Triton-X100 (1.0 %) (Fig. 3A), thus pointing to a strong/direct type
of interaction taking place between these molecules on the leukocyte
surface. Similar results were also obtained using Triton-X100 (1.0 %) ly-
sates of Jurkat cells (not shown). Parallel immunoprecipitations were
also carried out with cells incubated with immunoprecipitating anti-
bodies at 4 °C and subsequently lysed in Triton-X100, to rule out that
the observed association between CD9 and 32 integrin is caused by
pre-incubation with antibodies at 37 °C (Supplementary Fig. 3), and
also with cells lysed at 4 °C with this detergent prior to the addition of
precipitating antibodies, yielding essentially the same results (data not
shown).

When chemical crosslinking of solubilized proteins from JY cells was
performed with thiol-cleavable DTSSP an important increase in the
amount of CD9 co-immunoprecipitated with 32 integrin could be de-
tected after cleavage of the cross-linked protein complexes in reducing
conditions (Fig. 3B, left panel). Essentially the same results were also ob-
tained with THP-1/PMA cells (data not shown). Furthermore, immuno-
precipitation with anti-32 and anti-CD9 mAbs of non-cleaved cross-
linked protein complexes resolved under non-reducing conditions
clearly showed high molecular weight complexes of around 300 kDa
which were immunodetected both with anti-32 and anti-CD9 antibod-
ies (Fig. 3B, right panel), indicating that these molecules had been di-
rectly cross-linked. It is worth indicating that these ~300 kDa bands
are compatible with covalently cross-linked complexes containing
both LFA-1 subunits (oL = 185 kDa; 32 = 95 kDa) plus a molecule of
CD9 (24 kDa). Definitive proof that these ~300 kDa bands correspond
to complexes including CD9 and (32 integrin, was provided by the fact
that they were immunoprecipitated both with anti-32 and anti-CD9 an-
tibodies, and immunodetected in both cases with an anti-32 antibody
(MEM-48) (Supplementary Fig. 4). Taken together, these crosslinking
experiments support a direct-type of interactions occurring between
endogenous LFA-1 and CD9 in leukocytic cells.

Further support for the direct nature of CD9-LFA-1 interaction
on the leukocyte surface was provided by in situ Proximity Ligation
Assays (PLAs) on non-permeabilized THP1/PMA cells. PLA signal is
only detected when the secondary probes directed against the two dif-
ferent molecules whose interaction is suspected are within a short
range distance (<40 nm) compatible with direct or closely proximal
molecular interactions. As shown in Fig. 3C, PLA signal between CD9
and both subunits of LFA-1 (o and 3;) was clearly revealed on the sur-
face of THP-1/PMA cells, being the PLA signal particularly evident at
cell-cell contact regions. The same procedure with the abundantly
expressed membrane molecule CD147/EMMPRIN (Fig. 1A) did not pro-
vide any detectable PLA signal, revealing the specificity of PLA signal. As
a positive control for primary/direct interactions, we assayed the associ-
ation of CD9 with CD81, as these two tetraspanins are known to interact
forming heterodimers and higher order oligomers on the cell surface
[32,43,45].

Most reported lateral interactions of tetraspanins with other pro-
teins, and particularly with integrins, occur through the variable region
of their Large Extracellular Loop (LEL) domain [34,46,67]. To assess
whether CD9-LFA-1 interaction is mediated through this domain, we
carried out pull-down assays employing a GST-fusion protein corre-
sponding to the LEL domain of CD9 (CD9-LEL-GST) [29,38]. The 32 sub-
unit of endogenous LFA-1 was pulled down by CD9-LEL-GST from Brij-
97 (not shown) and Triton-X100 (Fig. 3D, left panel) lysates of JY cells
(and THP-1/PMA cells, not shown). As a positive control, another GST
construct corresponding to the LEL domain of CD81, a tetraspanin close-
ly related to CD9, also pulled-down the 32 integrin subunit, as previous-
ly reported [69]. In contrast, the GST-LEL construct of another
tetraspanin, CD63, (CD63-LEL-GST) did not pull-down the 32 integrin
subunit, reflecting the specificity of these LFA-1/tetraspanin interac-
tions. Furthermore, the CD9-GST-LEL fusion protein selectively recov-
ered both the p2 and the oL subunits of LFA-1 from a lysate of biotin-
labeled JY cells, indicating that on these cells LFA-1 is a major surface
protein that is selectively engaged in specific interactions with the LEL
domain of CD9 (Fig. 3D, right panel).

3.2. CD9 regulates the adhesive function of integrin LFA-1

We decided to explore whether CD9 could regulate the adhesive
function of LFA-1. For this goal, we first assessed the effects of several
CD9-specific mAbs (V]1/20, PAINS-10 and PAINS-13), which exert an
agonist-like action on CD9 [29,31,32,51], on LFA-1-mediated leukocyte
adhesion. Treatment of THP-1/PMA cells with the three different anti-
CD9 mAbs inhibited significantly their adhesion to immobilized ligand
ICAM-1 (Fig. 4A, left panel). The LFA-1-dependence of this assay was
confirmed by the nearly complete inhibition of adhesion with the
blocking anti-32 mAb Lia3/2 and by the important stimulation of adhe-
sion with the 32-activating mAb Kim185. Similar results were also ob-
tained with B lymphoblastic JY cells, which do not express 31 integrin
(Fig. 4B).

In contrast to freshly isolated resting human lymphocytes, which ex-
press very little CD9 on their surface [5,70], PHA/IL-2-activated lympho-
cytes (“lymphoblasts”) express abundantly the integrin LFA-1 as well as
variable (from donor to donor) though consistently detectable levels of
CD9 on their surface, together with modest a3, and negligible o3,
integrin expression (Fig. 4C). Using these primary human lymphoblasts
in static adhesion assays on ligand ICAM-1, we observed essentially the
same regulatory effects of CD9-specific mAbs on the adhesive activity of
LFA-1 (Fig. 4D), indicating that CD9 exerts inhibitory effects on LFA-1-
mediated adhesion.

Interaction of integrin LFA-1 with specific ligands is a crucial step in
many leukocyte intercellular interactions and particularly in the cyto-
toxic lymphocyte-mediated killing of target cells [2,11,24,25,40]. Inter-
estingly, the observed inhibitory effect exerted by anti-CD9 mAbs
(V]J1/20, PAINS-10 and PAINS-13) on LFA-1 was also reflected in LAK
(lymphokine-activated Kkiller cells)-mediated killing of target Daudi
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Fig. 4. Anti-CD9 mAbs inhibit LFA-1 adhesion and LAK cytotoxicity. A) THP-1/PMA cells were loaded with the fluorescent probe BCECF-AM (Sigma) and then allowed to adhere to ICAM-1-
Fc-coated wells (6 pg/ml) for 20 min at 37 °C in the presence of the indicated mAbs (20 pg/ml). Data represent the percentage of adherent cells (mean 4 SEM of four experiments, each
performed in triplicates) that remains in the wells after washing non-adherent cells. B) JY B lymphocytic cells, loaded with the fluorescent BCECF-AM probe, were seeded in 96-well plates
pre-coated with ICAM-1-Fc (12 pg/ml) and incubated for 20 min at 37 °C with the corresponding mAbs (20 pg/ml) specified. The bars-graph represents the percentage of adhesion
(mean 4 SEM) of 3 different experiments, performed in triplicates. C) Flow cytometric analysis of CD9 (mAb V]1/20), 32 (mAb TS1/18), aL (mAb TP1/40), M (mAb Bear-1) and oX
(mAb HC1/1) surface molecules on human T-lymphoblasts from two different donors. D) Adhesion of T-lymphoblasts to plastic-immobilized ICAM-1-Fc (6 pg/ml). Cells were allowed
to adhere for 20 min in the presence of the specified mAbs (20 ug/ml). Data shown correspond to the percentages of adherent cells (mean 4 SEM of four experiments) relative to
100% cell adhesion (dotted line) considered in the absence of antibody treatment. E) LAK cytotoxic cells were pre-treated with control anti-HSPA8 mADb (PAINS-18), anti-CD9 antibodies
(V]J1/20, PAINS-10 and PAINS-13) or the inhibitory anti-32 antibody TS1/18 and their cytotoxicity was analyzed by incubating them with Daudi target cells at a 10:1 (effector:target) ratio.
Cytotoxicity was determined from the amount of LDH released to the medium. The data show the percentage of cytotoxicity (mean 4 SEM) of three different experiments performed in
triplicates. *p < 0.05, **p < 0.01 and ***p < 0.001.
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Fig. 5. Ectopic expression or silencing of CD9 regulates LFA-1 mediated adhesion. A) and B) ectopic neoexpression of CD9 in HSB-2 cells was achieved by stable transfection with the
pcDNA3-CD9 (HSB-2/CD9) plasmid and CD9 knock-down in Jurkat cells was achieved by retroviral transduction with CD9-specific ShRNA (JK shCD9). Jurkat cells transduced with an
empty shRNA vector (JK TR2) were used as control. The neoexpression or silencing of CD9 in these cells was confirmed by flow cytometric analysis (A) and western blotting (B).
C) After loading cells with BCECF-AM, HSB-2 (left panel) or Jurkat (right panel) cells were allowed to adhere for 60 min to immobilized ICAM-1-Fc (12 pg/ml), in the presence or absence
of the indicated mAbs (20 pg/ml). The graphic shows the percentage of cell adhesion (mean + SEM) of three independent experiments, each performed in triplicates. *p < 0.05 and
*p<0.01.

Fig. 6. CD9 regulation of LFA-1-mediated adhesion does not involve alteration of integrin affinity. A) Flow cytometric analysis of epitope m24 expression induced by Mn?™ (at 10, 20, 40,
100 and 400 uM) relative to its basal expression in Ca**/Mg? ™ (0.5 mM and 1 mM, respectively) on the surface of HSB-2 (dark blue solid line), HSB-2/CD9 (light blue dotted line), JK TR2
(red dotted line) and JK shCD9 (brown solid line) cells. B) and C) JK TR2 (red bars) and JK shCD9 (brown bars) (B) or HSB-2 (dark blue bars) and HSB-2/CD9 (light blue bars) (C) cells were
loaded with BCECF-AM. Then cells were treated with different Mn?* concentrations and allowed to adhere for 45 min to immobilized ICAM-1-Fc (12 pg/ml), in the presence or absence of
the indicated mAbs (20 ug/ml). Each bar panel shows the percentages of adherent cells (mean + SEM of three experiments) for each Mn? " concentration, and data corresponding to these
different Mn?* concentrations are plotted in the right panel. *p < 0.05, **p < 0.01 and ***p < 0.001.
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cells (Fig. 4E). The allosterically inhibiting anti-CD18 mAb TS1/18 [57]
was used as a blocking control. Taken together, these results confirm
that mAbs with agonist-like effect on CD9 regulate negatively the adhe-
sive function of LFA-1.

We next wanted to address whether changes in the expression
levels of CD9 could also regulate LFA-1 adhesiveness, either by ectopi-
cally expressing this tetraspanin in the CD9-deficient HSB-2 T lympho-
blastic cell line or, conversely, by suppressing CD9 expression using
shRNA interference in Jurkat T cells (Fig. 5A and B). Ectopic expression
of CD9 in HSB-2 cells reduced significantly LFA-1-mediated adhesion
to immobilized ligand ICAM-1 (Fig. 5C), whereas silencing CD9 in Jurkat
cells enhanced LFA-1-mediated adhesion to ICAM-1 (Fig. 5D). Interest-
ingly, incubation of HSB-2/CD9 and Jurkat T cells with the anti-CD9
mAbs VJ1/20, PAINS-10 and PAINS-13, further reduced LFA-1-
mediated adhesion to ICAM-1, confirming the agonist-like effect of
these mAbs on CD9 function.

3.3. CD9-mediated regulation of LFA-1 adhesion does not involve changes
in integrin affinity but alters its clustering

Integrin adhesive capacity is mainly regulated by two different
mechanisms involving either, alterations in the conformation of individ-
ual integrin molecules that are reflected by affinity changes, or modifi-
cations in the aggregation of integrin molecules which affect the
valency of their interactions with ligand. To investigate which of these
mechanisms is involved in the observed CD9-mediated inhibition of
LFA-1 adhesive function, we first analyzed the induction of expression
of the m24 epitope by divalent cation Mn?*, which reports the high af-
finity conformation of LFA-1. As shown in Fig. 6A, expression of m24
epitope was similarly induced by Mn?* (over the 10-400 uM concen-
tration range) on cells expressing CD9 (HSB-2/CD9 and JK TR2 cells)
and on their respective counterparts lacking CD9 (HSB-2 and JK
shCD9), clearly indicating that the presence of this tetraspanin does
not interfere with the affinity state of LFA-1. As expected, Mn? T induced
LFA-1-mediated adhesion of JK (Fig. 6B) and HSB-2 (Fig. 6C) T cells in a
concentration-dependent manner over a 20-400 uM range. Interesting-
ly, the differences in static cell adhesion between cells lacking CD9 and
their CD9-expressing counterparts disappeared at the highest (400 M)
Mn? " concentration. The inhibitory effect of anti-CD9 mAb V]1/20 was
also abrogated at 400 uM Mn? . These results show that CD9 does
not affect LFA-1 adhesive function when cell adhesion is mediated by
integrin molecules in the high affinity state (i.e. at high Mn?™
concentration).

However, when T cell adhesion was promoted with phorbol ester
PMA (at 50 and 200 ng/ml), which induces the intermediate affinity
state of LFA-1 as well as ligand-dependent clustering of this integrin,
CD9-caused inhibition of static adhesion was clearly observed even at
the highest PMA dose (200 ng/ml) (Fig. 7A and B), suggesting that
CD9 effect was somehow related to the aggregation/clustering of
LFA-1. It is worth indicating that these CD9-caused inhibitory effects
on adhesion are still maintained at higher concentrations of PMA
(400 ng/ml) (data not shown), although cell viability under these con-
ditions begins to be compromised. Importantly, these differences in
PMA-induced LFA-mediated cell adhesion to ICAM-1 between T cells
expressing or lacking CD9 were also consistently observed under flow
conditions, therefore highlighting the relevance of CD9-mediated regu-
lation of LFA-1 function under conditions that resemble a more physio-
logical setting (Fig. 7C).

To analyze in more detail the implication of CD9 in the organization
of LFA-1 molecules, we first quantitated the number and size of LFA-1
clusters on the adhesive surface of PMA-stimulated T cells either ex-
pressing (JK TR2) or lacking CD9 (JK shCD9). As shown in Fig. 8A
(upper panel), the number of PMA-induced LFA-1 clusters detected by
confocal microscopy on the cellular adhesive surface in contact with
immobilized ligand ICAM-1 was significantly higher on Jurkat T cells
expressing CD9 than on their CD9-silenced counterparts. Interestingly,
although fewer LFA-1 clusters were observed on cells lacking
CD9 expression, their size was bigger than on CD9-expressing cells.
Likewise, the presence of CD9 induced the organization of LFA-1 mole-
cules into an increased number of smaller clusters in PMA-stimulated
monocytic U937 cells adhering onto ICAM-1 (Fig. 8A, lower panel).
These results were corroborated by TIRF microscopy, which recognizes
with high resolution and high signal-to-noise ratio the organization of
cell surface molecules located specifically in the area of contact with
the substrate (ICAM-1). Quantitation of fluorescence from TIRF micros-
copy images shows that CD9-expressing T cells (JK TR2) display an in-
creased number of clusters but of a smaller size as well as a significant
proportion of LFA-1 molecules with a dispersed/unclustered appear-
ance, compared to their CD9-lacking (JK shCD9) cell counterparts
(Fig. 8B).

As a complementary biochemical approach to get further insight on
how CD9 affects the organization of LFA-1 molecules on the leukocyte
surface, the differential resistance of LFA-1 molecules to extraction
with increasing concentrations of detergent Triton X-100 (ranging
from 0.02 to 1%) in Jurkat cells expressing (JK TR2) or lacking CD9 (JK
shCD9) was analyzed. As shown in Fig. 8C, LFA-1 molecules were
much more easily extracted when CD9 is expressed on the cell surface,
as would be expected from the increased proportion of LFA-1 found in a
dispersed/unclustered form and organized in smaller clusters.

Collectively, the confocal and TIRF microscopy data together with
the biochemical extraction results show that CD9 affects the organiza-
tion of LFA-1 molecules into clusters, as evidenced by the differences
in the number and size of LFA-1 aggregates on the cell surface as well
as by their resistance to detergent extraction.

4. Discussion

We report here that the 32 integrin LFA-1 associates with CD9 in dif-
ferent types of leukocytes, including T (Jurkat) and B (JY) lymphocytic
cell lines, and PMA-differentiated THP-1 macrophage-like cells.

The CD9/LFA-1 association was evidenced by co-localization, in situ
Proximity Ligation Assays (PLA), as well as biochemical studies based
on co-immunoprecipitation, chemical cross-linking and pull-down as-
says. These interactions resist stringent cell solubilization conditions
(i.e. 1% Triton X-100) in co-immunoprecipitation and pull-down exper-
iments which, together with chemical cross-linking and PLA data,
collectively support the direct nature of the interaction between CD9
and LFA-1. Both co-localization and PLA signal were particularly evident
at the cell-cell contact regions of THP-1 cell aggregates formed during
their PMA-induced differentiation process, which are areas enriched
in LFA-1 molecules actively engaged in interactions with ICAM-1 ligand
expressed on opposing cells, suggesting that the association of CD9
with LFA-1 might be important in the regulation of LFA-1 adhesive
function. Tetraspanin-integrin interactions seem to be consistently
mediated through the variable region of the LEL domain of tetraspanins
[8,20,35,79]; in this regard our pull-down experiments with a recombi-
nant construct corresponding to the CD9 LEL-domain indicate that the

Fig. 7. CD9 regulates PMA-induced LFA-1 adhesion through an increment in integrin clustering. A) and B) prior to adhesion, JK TR2 and JK shCD9 (red and brown bars, respectively) (A) or
HSB-2 and HSB-2/CD9 (dark and light blue bars, respectively) (B) cells were treated 2 h at 37 °C with different concentrations of PMA (0, 50 or 200 ng/ml). Then cells were loaded with the
fluorescent probe BCECF-AM and allowed to adhere to plastic-immobilized ICAM-1-Fc (12 pg/ml) for 45 min at 37 °C in the presence or absence of the indicated mAbs (20 pg/ml). Data
represent the percentages of adherent cells (mean 4 SEM of three experiments), and data corresponding to these different PMA concentrations are plotted in the right panel. C) Adhesion
of PMA-stimulated JK TR2 and JK shCD9 cells to ICAM-1 under shear flow conditions. Left panel contains a representative image showing the cells that remain adhered for each different
flow rate, and the right panel graph shows the calculated ratios of adherent cells from 9 different microscopic fields for each flow rate condition. *p < 0.05, **p < 0.01 and ***p < 0.001. Scale

bars = 30 pm.
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interaction between (2 integrin and CD9 is also mediated by this
domain.

After demonstrating the existence of CD9-LFA-1 complexes in dif-
ferent types of leukocytes we next explored whether CD9 exerted any
functional effects on the adhesive capacity of LFA-1. For this purpose,
we have made use of three different anti-CD9 mAbs (V]1/20, PAINS-10
and PAINS-13) considered to exert, at the cellular level, an agonist-like
action on the basis that in different cellular systems the functional ef-
fects caused by treating CD9™ cells with these antibodies are similar
to those derived from the neo- or over-expression of CD9, but opposite
to those observed after silencing this tetraspanin [29,32,51]. The use of
these three anti-CD9 mAbs, as well as ectopic expression of CD9 in
HSB-2 T cells or silencing the endogenous CD9 expression in Jurkat T
cells using specific ShRNAs, collectively show that CD9 exerts a negative
regulatory role on LFA-1-mediated leukocyte adhesion. Consistently
with the CD9 inhibitory effect on adhesion, LAK-cellular cytotoxicity
against target cells, which is largely dependent on LFA-1-mediated in-
tercellular adhesion, was also inhibited by these anti-CD9 mAbs. En-
gagement of tetraspanins CD81 or CD82 with specific mAbs or
overexpression of these molecules on T cells has been reported to up-
regulate the adhesive and signaling capacities of the integrin LFA-1
[62,75], whereas for the tetraspanin CD9 we report here the opposite:
a clear inhibitory effect on LFA-1-mediated cellular adhesion and
in vitro cellular cytotoxicity. One possibility is that the different func-
tional effects of distinct tetraspanins on LFA-1 adhesive function might
depend on the specific cellular system under study or the specific ligand
employed (ICAM-3 employed in some of these previous reports versus
ICAM-1 employed here), or alternatively CD9 may exert specific func-
tional effects on LFA-1.

Integrin adhesive capacity can be regulated essentially by mecha-
nisms involving either alterations in the affinity of individual integrin
molecules or changes in their aggregation/clustering on the cell surface
which regulate the valency of their interactions with ligand. As reported
by the expression of the m24 epitope, the high affinity conformation of
LFA-1 induced by Mn?* was not altered by ectopic expression or silenc-
ing of CD9; accordingly, no differences were observed in LFA-1-
mediated adhesion stimulated by 400 uM Mn?* between cells express-
ing or lacking CD9. In contrast, it is interesting that at lower Mn>* con-
centrations (20 and 40 uM), at which presumably only a proportion of
total LFA-1 molecules are in the high affinity conformation, differences
in adhesion between cells expressing or lacking CD9 could be observed.
Moreover, the differences between cells expressing and lacking CD9
were also consistently observed when cell adhesion was promoted
with PMA, which induces the intermediate affinity state of LFA-1 as
well as ligand-dependent clustering of this integrin. All these results
clearly indicated that the effect of CD9 on LFA-1-mediated adhesion
was mainly related to the aggregation/clustering state of this integrin
and not to changes in its affinity. Indeed, confocal and TIRF microscopy
analyses of PMA-induced LFA-1 clustering specifically at the adhesive
cellular surface in contact with immobilized ligand ICAM-1 showed
that in leukocytic cells expressing CD9 an increased number of clusters
but with a smaller size could be detected in comparison with their CD9-
lacking cell counterparts. TIRF microscopy images also revealed that in
T cells expressing CD9 a significant proportion of LFA-1 molecules
showed a dispersed/unclustered appearance, which might correspond
to the nanoclusters of LFA-1 that have been characterized by other
higher resolution microscopy techniques. In this regard, through the
use of NSOM (near-field scanning optical microscopy) and SDT (single

dye tracking) super-resolution optical techniques, it has been recently
reported that LFA-1 is preorganized in nanoclusters in “hotspot” regions
of the leukocyte membrane. Ligand binding favors the lateral mobility
and growth of LFA-1 clusters through coalescence of individual
nanoclusters to form microclusters, in a process that also critically de-
pends on transient cytoskeleton anchorage, which in turn mediate effi-
cient stable leukocyte adhesion under shear flow [3,74]. Our findings
are therefore compatible with these observations, and we can speculate
that CD9 might have an important role in regulating these transitions
among the different states of LFA-1 organization into distinct types
of differently-sized clusters as well as the anchorage to the actin
cytoskeleton.

Interestingly, we have observed that the 31 integrin-mediated adhe-
sion of leukocytes to the extracellular matrix protein fibronectin was
enhanced by anti-CD9 mAbs or following ectopic expression of this
tetraspanin (data not shown), which concurs with our previous data
with colorectal carcinoma cells [51]. Therefore, CD9 seems to have a
dual functional regulatory role on leukocyte adhesion mechanisms by
increasing 31 adhesion to fibronectin but down-regulating LFA-1-
mediated adhesion. Reciprocal control of the activity of members of dis-
tinct subfamilies of integrins co-expressed on the same cell has been
previously described. For instance, in some leukemic T cell lines func-
tionally active integrin o431 occurs only when LFA-1 is either not
expressed or inactive [73], whereas in human erythroleukemic K562
cells transfected with integrin av3, ligation of the 33 integrin subunit
inhibits the phagocytic function of endogenously expressed o531
integrin [12,13]. Similarly, in human T lymphoblasts induction of activa-
tion of LFA-1 resulted in decreased adhesion through at431 and a5p31
integrins, rendering cells with a less adhesive and more migratory
phenotype [52]. However, the underlying mechanisms for this type of
regulation are still unclear. Association with cytoskeleton is essential
for integrin activation and adhesion. Interestingly, actin cytoskeleton
seems to play a differential role in the control of 31 and (32 integrin
function. In this regard, in resting leukocytes LFA-1 molecules are main-
tained in an inactive low-avidity state through association with
actin microfilaments and release from these cytoskeletal constraints,
caused by drugs such as cytochalasin D or latrunculin B, increases
their lateral diffusion which is accompanied by enhanced clustering
and avidity and augmented LFA-1-mediated leukocyte adhesion to
ICAM-expressing cells [44,71]. In contrast, most 31 integrins (with the
notable exception of 431 interaction with VCAM-1) mediate a more
stable type of cell adhesion to extracellular matrix proteins such
as fibronectin, collagen and laminin, and for this purpose seem to re-
quire firmer links with cytoskeletal components [10,22,59]. Several
tetraspanins, including CD81 and CD9, are linked to actin microfila-
ments through ERM (Ezrin-Radixin-Moesin) proteins, either directly
or through tetraspanin-associated partners EWI-2 and EWI-F [56]. The
fact that CD9 may modulate in an opposite manner the adhesive func-
tion of B2 and 1 integrins points to CD9-centered TEMs as crucial
players in this balanced regulation. An attractive possibility is that, by
reinforcing the integrin-cytoskeletal links, CD9 may restrict the mem-
brane lateral diffusion of LFA-1 molecules resulting in inhibition of its
adhesive function, while at the same time, stabilizing 31 integrins
with concomitant adhesion enhancement to matrix components.
Further research will be required to properly address this attractive
hypothesis.

The model depicted in Fig. 9 summarizes the main findings of this re-
port. State “1” in the model is characterized by expression of dispersed

Fig. 8. CD9 regulates the distribution of LFA-1 molecules into clusters. A) Confocal microscopy images of immunofluorescence-stained (32 integrin clustering at the adhesive surface in
contact with ligand ICAM-1-Fc of PMA-stimulated JK TR2, JK shCD9, U937/pcDNA3 and U937/CD9 cells. Representative confocal images are shown on the left panels and quantitation
of the number and size (mean area) of clusters/cell corresponding to ten individual cells are shown on the right panels. *p < 0.05, **p < 0.01 and ***p < 0.001. Scale bars = 5 pm.
B) TIRF microscopy images of 2 integrin clustering at the adhesive surface in contact with ligand ICAM-1-Fc of PMA-stimulated JK TR2, JK shCD9. Five representative images are
shown for each cell type on the left panel and quantitation of the number and size of clusters/cell corresponding to 15 individual cells are shown on the right panels. ***p < 0.001.
Scale bars = 5 um. C) Differential resistance of LFA-1 molecules to extraction with increasing concentrations of detergent Triton X-100 (0.02/0.05/0.1/0.5%) from PMA-stimulated Jurkat
cells either expressing (JK TR2) or lacking CD9 (JK shCD9), adhered to ICAM-1-Fc. Extracted LFA-1 was detected by immunoblotting with the anti-32 mAb MEM48, and quantitated relative

to 3-actin content.
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Fig. 9. Hypothetical model which summarizes the regulation by CD9 of the different LFA-1 functional states, as described in the Discussion.

and inactive/bent form of LFA-1 (Low-valency/Low-affinity) and by the
absence/very low expression of CD9, as occurs physiologically in most
resting/non-stimulated lymphocytes [5,70]. Conversion from state “1”
into a High-valency/Intermediate-affinity state (“2”) is characterized
by aggregation of integrin molecules into large clusters and the acquisi-
tion of intermediate affinity conformation, both induced by phorbol
ester PMA. Within the context of TEMs, augmented CD9 function in-
duced by its ectopic neoexpression (or by the use of agonist-like mAbs
to this tetraspanin, not shown in the model), alters the organization of
LFA-1 molecules at the cell adhesion surface, as evidenced by an in-
crease in “dispersed” LFA-1 molecules and in the number of clusters
with a reduced size, defining an Intermediate-valency/Intermediate-af-
finity state (“3”) characterized by diminished adhesive efficiency to li-
gand ICAM-1 relative to state “2”. On the other hand, state “4” is
induced by high concentration of Mn?* and is characterized by cluster-
ing of LFA-1 molecules in a high affinity conformation (High-valency/
High-affinity state); in this case, transition from state “4” into “5”,
caused by the ectopic expression of CD9 (or by the use of agonist-like
mADbs to this tetraspanin, not shown in the model), is not accompanied
by a down-modulation of the adhesive efficiency because, although
probably some reduction in the ligand-interaction valency occurs, this
effect is not potent enough to decrease cell adhesion when mediated
by a majority of LFA-1 molecules in the high affinity conformation.
The inhibitory effects on LFA-1-mediated cell adhesion (observed in
transitions “2”—“3") could place CD9 as a novel target for therapeutic
intervention aimed at reducing the activity of LFA-1, which would be
potentially beneficial in a number of inflammatory disorders.

5. Conclusions

Our data demonstrate that the tetraspanin CD9 associates with
integrin LFA-1 in different types of leukocytes, and through these inter-
actions, CD9 exerts inhibitory effects on LFA-1 adhesive function and
leukocyte cytotoxic activity. The mechanism responsible for this nega-
tive modulation exerted by CD9 does not involve changes in the affinity
state of LFA-1 but relates to alterations in its state of aggregation. These
data contribute to our understanding of the regulation of adhesive activ-
ity of LFA-1, an integrin that plays a pivotal role in many crucial leuko-
cyte functions that require intercellular adhesion.

Abbreviations

BSA bovine serum albumin

FBS fetal bovine serum

FITC fluorescein isothiocyanate

GST glutathione S-transferase

ICAM-1 intercellular adhesion molecule-1

IL-2 interleukin 2

INT 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyltetrazolium
chloride

LDH lactate dehydrogenase

LAK lymphokine-activated killer

LEL large extracellular loop

mAb monoclonal antibody

M.E.L mean fluorescence intensity



R. Reyes et al. / Biochimica et Biophysica Acta 1853 (2015) 2464-2480 2479
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PBS phosphate buffered saline

PLAs proximity ligation assays
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SDS sodium dodecyl sulfate

SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis

SEM standard error of the mean

TBS tris buffered saline

TEM tetraspanin-enriched microdomain
TIRF total internal reflection fluorescence
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