
Human Interactions in Electronic Institutions

Dave de Jonge, Bruno Rosell, Carles Sierra

IIIA-CSIC, Bellaterra, Catalonia, Spain
{davedejonge,rosell,sierra}@iiia.csic.es

Abstract. Every social network has its own fixed, but different, set of
rules that apply to all users. This reflects the fact that in real life every
community has different norms depending on the relationships between
its members. Unfortunately this has required people to create many dif-
ferent social networks that exist next to each other even though they have
largely overlapping sets of members. In this paper we argue that Elec-
tronic Institutions (EI) solve this problem by allowing to create a generic
social network in which users can set up their own sub-communities with
their own particular norms and protocols. Electronic Institutions make
it easy for users to specify these protocols and norms in a visual way, and
adapt them when necessary. Furthermore we present a new framework
on top of the existing EI architecture that allows humans to interact
in any EI. It can generate a graphic user interface from the institution-
specification without the requirement of any extra programming or de-
sign. However, it still allows designers to design a more sophisticated,
domain specific GUI.

1 Introduction

Electronic Institutions (EI) have introduced a new paradigm for the develop-
ment of software applications, in which the tasks are executed by independent
agents, that are not necessarily designed specifically for that application and
that cannot be blindly trusted. Just like any human institution, an EI is a place
where participants come together and interact according to some pre-defined
protocol. It makes sure that the norms of the institution are enforced upon its
participants and thus prevents them from misbehaving. An EI therefore provides
the infrastructure in which agents can interact in an autonomous way within the
norms of the institution. With the rise of the Internet more and more activities
are taking place in an open environment where one does not have direct control
over who is participating in it. When interacting with an online tool it is often
difficult to determine who programmed it and whether it can be trusted. Elec-
tronic Institutions provide a framework where agents can safely interact with
other agents, regardless of their origins.

Electronic Institutions have been under development for more than 15 years
[1],[4],[5],[8] which has resulted in a large framework consisting of tools for imple-
menting, testing, running and visualizing them. This framework was originally
developed with the aim of creating institutions consisting purely of software



agents. For many purposes, however, it is desirable to have both humans and
agents participating. Therefore, in this paper we present a new framework on
top of the existing EI framework that provides a Graphic User Interface (GUI)
that allows humans to enter into an EI and interact with other users or software
agents.

We think that this framework could be especially useful for the development
of a new type of social network, where users can set up sub-communities, each
with its own rules and protocols. We argue that the fact that many social net-
works are nowadays existing next to each other is inefficient and is due to the
fact that users are not able to adapt norms and protocols to their own needs.
Electronic Institutions would provide a solution to this problem. Another advan-
tage of human users interacting in an EI is that it allows developers to test an
institution during its development, without having to program its participating
agents. While the EI is under development human users can take the place of
the software agents that would later participate in it, for testing purposes. This
will allow for faster development.

Our framework generates a default user interface automatically from the EI
specification, without the need for extra programming. But, on the other hand, if
one does require a more case-specific user interface, it still provides an API that
enables any web designer to easily design a custom GUI without the need for
much knowledge of Electronic Institutions, or Java programming. Our approach
is completely web-based, meaning that the GUI is in fact a website, implemented
using standard web-technologies such as HTML5, Javascript and Ajax. In short,
we have developed our framework with the following goals:

– To allow people to interact in an EI through a web browser.
– To have a generic GUI that is generated automatically.
– To allow any web designer to easily design a new GUI, if wanted.
– To allow testing of an EI under development, before having implemented its

agents.

Visual user interfaces for Electronic Institutions have been created before, for
example in [9]. In their work the user controls an avatar that walks around in a
3-dimensional virtual world that represents the EI. Although a 3D-virtual world
may be more impressive visually, we think that a simple website that runs in a
web browser has several advantages:

– Websites are cross-platform.
– No need for heavy hardware: it works on mobile phones and tablets.
– More practical as one does not have to walk around an environment, but

simply has all options directly available in the form of buttons or menu-
items.

– We think a 2-dimensional environment is more common in the context of
social media1 and therefore users will feel more familiar with it.

1 Although the 3D social game Second Life has been very popular for a while, it has
never been nearly as popular as 2D media such as Facebook and Twitter.



This paper is organized as follows: first, in Section 2 we give an overview of Elec-
tronic Institutions, in which we explain the basic concepts and terms necessary
for the rest of this paper. Next, in Section 3 we explain how we have realized
the automatic generation of a Graphic User Interface for Electronic Institutions
and give the technical details. In Section 4 we argue that Social Networks are
in fact examples of institutions where human behavior is regulated by norms
and protocols and explain why we think that these norms should become more
flexible and how Electronic Institutions could help realizing that. In Section 5,
we introduce two use cases that we are currently using to further develop our
framework. Finally, in Section 6 we summarize our conclusions.

2 Electronic Institutions

An institution is an organizational structure for coordinating the activities of in-
teracting agents; it typically embodies some rules that govern these interactions.
A commonly cited example is that of a fish market, with buyers and sellers engag-
ing in interactions aimed at buying and selling fish. They have strict conventions
by which fish is traded under strict negotiation protocols. More specifically, the
fish market is an auction house that enforces certain conditions on the eligibility
of traders, the availability and delivery of goods and the behavior of partici-
pants. While the actual trading makes up the critical part of the fish market,
there are other interactions that are also governed by rules. For example, be-
fore any trading can be undertaken, sellers must deliver fish to the market, and
buyers must register. Furthermore, once a deal has been agreed, the sellers must
pay for and collect the fish, and the buyers must collect payment. Beyond this
example, many other institutions have similar sets of distinct activities that can
be identified, like hotels and universities.

2.1 Scenes

Just as there are meetings in human institutions in which different people in-
teract, Electronic Institutions have similar structures, known as scenes, to fa-
cilitate interactions between agents. Scenes are essentially group meetings, with
well-defined communication protocols that specify the possible dialogs between
agents within these scenes. For example, an electronic fish market may include
an auction scene in which buyers compete to purchase fish, with a protocol
that involves making bids. There may be many simultaneous instances of such
auctions within a fish market, each referred to as a Scene instance.

Scenes within an institution are connected in a network that determines how
agents can legally move from one scene to another. In the fish market example,
a buyer can only enter the auction scene after passing the registration scene.

2.2 Actions

Activities are dialogical as they are achieved via agent interactions composed of
non-divisible utterances, that occur at discrete instants of time. These utterances



can be modeled as messages that conform to a certain pattern, and physical
actions are represented by appropriate messages of this form.

In an auction, for example, a buyer commits to buy a box of fish at a certain
price by making a bid, while the actual physical action of transferring money
from the buyer to the auction house is triggered when the auctioneer declares
that the box is sold. In the rest of the paper we will therefore use the words
‘action’ and ‘message’ interchangeably.

For each message that can be said, a number of parameters may be specified
by the protocol. When making a bid in an auction for example, the maker of
the bid should include the amount of money he bids in the message. Electronic
Institution support several basic parameter types, such as ‘Integer’, ‘String’ and
‘Boolean’. Apart from these basic types the designer of an institution can define
custom types, which are composed of one or more parameters of a basic type.

2.3 Scene Protocols

The agents in a scene in an EI have to interact according to some protocol. The
protocol defines which agent can say what and when within the scene. At each
moment during the execution of a protocol, the protocol is in a certain state,
depending on the messages that have been said so far. The current state of the
protocol determines what kinds of messages each agent can send.

In an auction for example, the protocol may start in a state in which the
auctioneer introduces the next item under auction. Participants are not allowed
to make any bid yet in this state. Once the auctioneer announces the start of
the auction, the state changes to a bidding state, in which the participants are
allowed to make their bids.

A protocol is therefore represented as a directed graph in which the nodes
are the states of the protocol. Each edge of the graph is labeled with one or more
message patterns. A message can only be sent if it satisfies one of the patterns
labeling one of the outgoing arcs from the current state.

2.4 Roles

Scene protocols are not specified in terms of agents, but rather in terms of roles.
Every agent plays a specific role that determines which actions it can take at
which moment. Roles can be understood as standardized patterns of behavior
that agents, when instantiating a role, must respect.

2.5 Constraints

As explained above, the state of the protocol restricts the actions that can be
taken by the agents. However, the actions can be restricted even further by
including constraints in the protocol. Constraints are given as sentences in a
first-order logic attached to a message pattern. A message can only be sent if its
corresponding constraints are satisfied.



2.6 Governors

Each agent participating in the EI has a special agent assigned to it, called its
Governor. The Governor of an agent α has control over each message that is
being sent by α. Whenever α tries to sent a message, this message first passes
α’s Governor, which checks whether the protocol is in the correct state and
whether the constraints are satisfied. If so, the Governor forwards the message
to its recipient. If not (for example, because the agent made a bid that is higher
than what he can afford), the Governor blocks the message.

2.7 Ontology

As explained in Section 2.2 messages can have parameters, which can be of a
basic type or of a user-defined type. Each EI has an Ontology associated to it
which stores the definitions of these user-defined types. Also it stores for each
message how many parameters it has and which types those parameters have.

2.8 Developing an Institution

The design and execution of an EI is done through a framework called EIDE,
which is implemented in Java. The two main components of EIDE are called
Islander and AMELI.

Islander is a visual tool to design institutions. It allows you to visually define
the scenes, roles, protocols, message patterns, constraints, ontology and other
components of the institution. It then converts the visual representation into
xml format (the EI-specification) that can be read by AMELI. AMELI is the

Fig. 1. Left: the institution-specification of an auction house with six scenes. Right:
the specification of a Scene-protocol. Both were created with Islander.

component that executes the institution. It comprises of a set of agents that con-
trol the execution of scene instances, and is responsible for assigning a Governor
to each participating agent. An EI can be executed by starting AMELI with an
EI-specification. When it is running, agents can join it by requesting entrance
to the institution, and, once entered, they can start communicating according
to the protocols of the institution.



Note that apart from designing the institution, one also needs to implement
the agents that are going to participate in the institution. These agents could
be implemented by third parties, interested in participating in the EI for their
own reasons. For example, one may design an online fish auction as an EI, so
that any potential buyer can develop its own agent to make bids according to
its own bidding strategy.

3 Human Interaction

The goal of our work is to enable human users to participate in Electronic
Institutions, interacting with one another as well as with software agents. One
can for example imagine an auction house in which bids are made by humans,
but in which the tasks of the auction house, such as registration of participants
and leading the auction are taken care of by automated agents.

Fig. 2. Left: a ‘classic’ EI with only software agents. Right: an EI with one software
agent and two users.

3.1 Our Framework

A human user would interact in an EI by clicking buttons in a browser window.
To allow these actions to have effect in the EI, we have implemented a soft-
ware agent that represents the user inside the EI and that executes the actions
requested by the user. This agent is called the GuiAgent. Its current implemen-
tation does not do anything autonomously, but, if necessary, it can be extended
with more sophisticated capabilities, such as giving intelligent strategic advice
to the user.



When developing the framework we took into account that, on one hand, one
may want to have a good-looking GUI that is specifically designed for a given
institution. But, on the other hand, one may not want to develop an entirely new
GUI for every new institution, or one may want to have a generic GUI available
to test a new EI during its development, so that one can postpone the design of
its final GUI until the EI is finished. Therefore, our framework allows for both.
It generates a GUI automatically from the EI-specification, but at the same time
provides an API that enables web designers to easily create a custom GUI for
every new EI. The framework is used on top of the existing EI-framework and
consists of the following components:

– A Java agent called GuiAgent that represents the user in the EI.
– A Java component that encodes all relevant information the agent has about

the current state of the institution into an xml file.
– A Javascript library called EiGuiInterface that translates the xml file into a

Javascript object called EiStateInfo.
– A Javascript library called DefaultGuiGenerator that generates a default

Graphic User Interface (as html) based on the EiStateInfo object.

3.2 How it Works

In order for a user to participate in an institution, there must be an instance of
that EI running on some server. To join the institution, the user then needs to
open a web browser and navigate to institution’s url. The process then continues
as follows:

1. A web page including the two Javascript libraries is loaded into the browser.
2. The page sends a login request to the server.
3. Upon receiving this request the server starts a GuiAgent for the user and,

depending on the specific institution, other agents necessary to run the in-
stitution.

4. When the GuiAgent is instantiated it analyzes the EI-specification to retrieve
all static information about the institution.

5. The page starts a polling service that periodically (typically several times
per second) requests a status update from the GuiAgent.

6. When the GuiAgent receives a status update request it asks its Governor for
the dynamic information about the current status of the institution.

7. The GuiAgent converts both the static and the dynamic information into
xml which is sent back to the browser.

8. The DefaultGuiGenerator Javascript library then uses this information to
update the user interface (more information about this below).

9. The user can now execute actions in the institution or move between its
scenes by clicking buttons on the web page.

10. For each action the user makes, a http-request is sent to the GuiAgent.
11. The GuiAgent uses the information from the http-request to create an EI-

message which is sent like any other message in a standard EI.



As explained, the GuiAgent uses two sources of information: static information
from the EI-specification stored on the hard disk of the server and dynamic
information from the Governor. The static information consists of:
– The names and protocols of the scenes defined in the institution.
– The roles defined in the institution.
– The ontology of the institution.

While the dynamic information consists of:
– The current scene and its current state.
– The actions the user can take in the current state of the scene.
– For each of these actions: the parameters to be filled out by the user.
– Which agents are present in the current scene
– Whether it is allowed to leave the scene and, if yes, to which other scenes

the user can move.

Http-Request Description
/login?name=alice&role=guest Enter the EI with given name and role.
/sendMessage?name=alice&receiver=bob
&msg=bid&amount=1000

Send a message with given parameters.

/gotoScene?name=alice&role=guest
&sceneName=Admission

Enter the given scene with the given role.

/exitScene?name=alice Exit the given scene.
/gotoTransition?name=alice
&transitionName=transition1

Go to the given transition.

/request_update?name=alice Request an update of the status of the EI.

Fig. 3. The http-requests sent from the browser to the GuiAgent

3.3 Generating the GUI
Every time the browser receives information from the GuiAgent, it updates the
GUI. This takes place in two steps, respectively handled by the two Javascript
libraries. In the first step the EIGuiInterface converts the received xml into a
Javascript object called EiStateInfo, which is composed of smaller objects that
represent the static and dynamic information as explained above.

In the second step the EiStateInfo-object is used by the DefaultGuiGenerator
library to draw the GUI. This GUI is completely generic, so it looks the same
for every institution. If one requires a more fancy user interface tailored to one
specific EI, one can write a new library that replaces the DefaultGuiGenerator.

The fact that these two steps are handled by two different libraries enables
you to reuse the EIGuiInterface when designing a new GUI, so you doe not
have to worry about how to retrieve the relevant information from the EI. All
information will be readily available in the EiStateInfo-object, so you only need
to determine how to display it on the screen.



Fig. 4. The components necessary to generate the GUI. Solid arrows indicate exchange
of information. The dashed arrow indicates that the GUI is created by the Default-
GuiGenerator

3.4 The Default User Interface

The default user interface is displayed in Figure 5. It is divided in four sections:

– A menu bar in the top that allows for navigating from scene to scene.
– A panel showing general information about the status of the user: the scene

in which it currently is, the state of the scene, and the role the user is playing.
– A panel to display the messages coming in from other users and agents.
– A panel where the user can choose which action to take (i.e. which message

to send), and fill out the parameters.

The figure shows the GUI for an agent participating in the MusicCircle institu-
tion (see Section 5). This institution has six scenes, hence the menu bar shows
six menu options. Two of those menu items are grayed out meaning that the
user currently cannot move to those scenes. If a user is present in more than one
scene at the same time, the browser will have a separate tab opened for each
scene. We have chosen to make navigation between scenes resemble as much as
possible the way a user navigates between menu-items on a regular website.

The panel on the left is where the user interacts with the other users and
agents in the EI. The user can choose which action to take from a drop down
list. This list only shows those actions that the user currently can do, hence
preventing the user from sending illegal messages (note however that even if the
user would be able to send illegal messages, they would still be blocked by the
Governor. But for the sake of user-friendliness we only want to display messages
that the user can indeed send).



Fig. 5. The Default Gui, applied to the Music Circle institution

Once the user has selected an action to take, the browser displays a form
where the user can fill out the necessary parameters. Since each action in the
institution is modeled as a message, the user needs to choose which agent is
going to receive the message. The EI-specification however may restricts which
agents can receive which kind of message. A bid in an auction house for example
should always be sent to the agent playing the role of auctioneer.

The form shows one input control for each parameter of the message. The
type of control depends on the type of the parameter. For example, if the the
parameter is of type integer, a numeric input control appears, while if the pa-
rameter is of type string, a text box appears. In case the parameter is of a
user-defined type, a sub-form appears with several controls, one for each of the
variables of the user-defined type.

3.5 Customizing the GUI

A customized GUI-generator can retrieve all necessary information from the
EiStateInfo-object. For example: if the user chooses to make a bid in an auc-
tion, the GUI-generator would read from the EiStateInfo-object that an Integer
parameter must be set to represent the price the user wants to bid. The pro-
grammer of the GUI-generator should make sure that whenever a parameter of
type Integer is required, the GUI displays an input-control that allows the user
to introduce an integer value.



The fact that one can also define user-defined types in an EI adds a lot of
flexibility. Suppose for example that one would like a user to record an audio
file and send this in a message to an other agent. Electronic Institutions do not
support audio files by default. However, the institution designer may define a
new type with the name ‘Audio’. Once the user chooses to send a message that
includes audio, the EiStateInfo-object will indicate that a parameter of type
Audio is needed. A customized GUI-generator could then be programmed such
that a microphone is activated whenever this type of parameter is required.

4 Social Networks as Electronic Institutions

In the past few years there has been an enormous increase in the popularity of
social networks and many different ones nowadays exist next to each other, such
as Facebook, Twitter, LinkedIn and Couch Surfing. Although they are all based
on the same idea: making contacts and sharing information with them, each
of these networks applies different protocols and has different interpretations of
what it means to have a connection. While on Facebook a friend is someone you
share your pictures with, a connection on LinkedIn is someone you share your
CV with. In this section we make two important observations:

– Social networks are institutions, each with their own norms and protocols.
– The flexibility of Electronic Institutions allows for a more generic type of

social network, in which the users can determine their own norms.

Clearly, different kinds of relationships require different rules of behavior, and we
claim that this is an important reason why so many social networks exist simul-
taneously. To illustrate this we will next compare two popular social networks:
Facebook and Couch Surfing, regarding to their respective norms and protocols.

4.1 Norms and Protocols of Facebook and Couch Surfing

Facebook is mainly designed for friends to share social activities with each other.
Due to the informal nature of these activities, like sharing pictures and playing
games together, it does not require very strict norms.

– Meaning of friendship: Friends can see each others’ pictures.
– Protocols: Becoming friends requires only two actions: one person requests

the friendship, the other accepts it.
– Norms: Users have full control over their profiles: you can remove anything

that anyone else writes on your profile.
– What could go wrong: You may by accident share pictures with someone

you don’t like.

Couch Surfing is a social network for travelers [2]. The main idea of this network
is that when you go traveling, instead of booking a hotel, you find somebody at
your destination who would be willing to host you for free in his or her house.



When planning a trip you can search for profiles of people at your destination
and if you like somebody’s profile you can request him or her to host you.

While Facebook focuses on online shared experiences with friends you already
know, Couch Surfing focuses on meeting new people, in real life. This means
that Couch Surfing requires much stricter policies than Facebook. After all,
hosting a complete stranger in your house, or being hosted by a stranger, can be
dangerous (cases are known of women getting raped using Couch Surfing [3]).
Becoming friends on Couch Surfing therefore requires more effort, and there
are several mechanisms to verify the trustworthiness of members that Facebook
lacks, discussed for example in [7].

– Meaning of friendship: I trust this person, so you can safely host him.
– Protocols: To become friends, you need to indicate how well you know the

other person, how much you trust him or her and specify details on how and
where you met.

– Norms: If somebody posts a negative comment about you on your profile,
you cannot remove it.

– What could go wrong: Hosts may get robbed by their guests, or worse.

4.2 Designing EI-based Social Networks

The fact that different kinds of social contacts require different protocols and
norms, has lead to the creation many different social networks, even though they
often have overlapping communities of users. We now discuss how the application
of Electronic Institutions could make an end to this inefficiency by allowing users
to set up new sub-communities within a given social network, and invent their
own set of norms and protocols for these sub-communities, without having to
create an entirely new website.

One problem we have to overcome when implementing a social network as
an EI is the fact that Electronic Institutions are based on the assumption that
all users that communicate with each other are together in one scene instance.
Social networks on the other hand have a much more asynchronous design, in
which it is not assumed that users are not online at the same time: when you
share an image with a friend, you are in fact uploading it to a database. Your
friend will not see it until he or she also appears online. At that moment the
image is automatically downloaded from the database to your friends browser,
so that he or she can see it.

To overcome this discrepancy we have come up with the following design:
each activity a user can do in an EI-based social network takes place in a scene
instance where the user and the database are both represented by an agent.
So in each scene instance there are exactly two agents: the GuiAgent and a
DataBaseAgent. When the user uploads a picture, for example, this is modeled
as a message which is being sent from the GuiAgent to the DataBaseAgent. When
the other user appears online his or her GuiAgent will also enter a scene together
with a DataBaseAgent, and the image will be sent from the DataBaseAgent
to the GuiAgent. A second problem we needed to tackle is that the current



Fig. 6. Left: a standard website. Right: an EI-based website.

implementation of Electronic Institutions does not allow for any bulk data (i.e.
images, video or audio) to be sent in a message. We therefore have to send the
data itself outside the institution. The action of sending this data however, is
still represented as a message inside the EI, so that the EI can still verify whether
the user is actually allowed to undertake that action. We just need to make sure
that when such a message is blocked, this is also prevents the user from sending
the actual data. This can be achieved for example by disabling an upload button.

Finally, one more problem to tackle is the fact that moving from one scene
to another scene in an EI is made in three steps: first you exit the current scene,
then you move to a so called transition and finally you move to the new scene.
We think it is very user-unfriendly, since going from one web page to another
is usually done with one single menu click. The reason for this 3-step process
is that it allows agents to choose to move into more than one scene instance at
a time, or to synchronize with other agents before moving into the new scene.
Although this is fine for software agents, we think this is overly complex for
human users, and not necessary for the application to social networks.

We have solved this by making sure that these three steps are all triggered
automatically, one by one, by a single click on a menu-item. The downside of this,
however, is that it removes the possibility for the user to make any choices at the
transition. Also it could happen that a user chooses to move to a scene instance
that is not available. A scene can be unavailable because one needs to wait for
other agents to participate in the same scene. However, in the model described
above the GuiAgent and its associated DataBaseAgent are always together and
never need to participate in any scene instance with any other agents. Therefore,
as long as we stick to this model no scene can ever be unavailable.



5 Case Studies: MusicCircle and WeBrowse

As a test case we are applying our EI-technology to a social network for online
music learning, called MusicCircle, which is currently under development. On
this website students can learn to play an instrument, with and from their friends,
in a community-driven way. Imagine for example a student who is learning to
play the piano. He or she can play a piece and record it, and then upload it to
the social network. The student can then ask the other community-members for
feedback. These community members may be friends of the student, professional
music teachers or even automated music analyzing agents.

MusicCircle will allow users to create their own sub-communities. For exam-
ple, one can set up a community for guitar players, or for jazz-musicians, or a
community consisting only of your colleagues from work. We are providing the
EI framework underneath this social network. This will enables set or change
the norms of their communities as they wish.

Some communities may for example have serious users and strict norms, be-
cause their members want to study seriously, and want to discuss their play with
other serious students. Other communities may be much more non-committal,
consisting of hobbyist who just want to spend some free time playing music
without taking it too seriously. A few examples of norms that a community may
set, could be the following:

– This group is only for advanced guitar-players: to join, you need to be at
least at stage 10 of the guitar course.

– Only active users can receive feedback: to be able to receive feedback you
must give feedback to others at least 5 times a week

– Experts will only help serious students: if want to get help from an expert
player, you need to practice at least 3 times a week to request his help.

Another social application where we are applying our technology is the We-
Browse application [6], [10] which enables friends to simultaneously visit a mu-
seum online, each from his or her own mobile device. It allows friends, even
though they are in different locations, to have a shared experience when they
visit the museum. The users see the same artifacts on their respective computer
screens, and they can see each others’ actions, such as zooming in on an object,
or adding tags and ‘likes’.

Furthermore, the users need to make joint decisions on what to see or do
next in the museum. Since people may have different opinions on this matter,
protocols are needed to determine how individual decisions and opinions are
aggregated into social group decisions that are acceptable to all group members.
The underlying EI regulates these protocols.

6 Conclusions

We have managed to add a new tool to the existing EIDE framework that
allows humans to interact in an with each other and with software agents in an



Electronic Institution. The tool generates a user interface automatically, so the
creator of an institution can directly use it without having to design anything.
However, it still allows designers to design a custom GUI, tailored to a specific
institution, without having to worry about getting the necessary information
from the EI. Furthermore, we argue that social networks could highly benefit
form this technology. We are currently applying it to two projects related to
social networks that will learn how useful it really is in practice.

7 Acknowledgments

This work is supported by the Agreement Technologies CONSOLIDER project,
and CHIST-ERA project ACE, EU project 318770 PRAISE, and the CBIT
project (TIN2010-16306).

References

1. Arcos, J.L., Esteva, M., Noriega, P., Rodríguez-Aguilar, J.A., Sierra, C.: Engineer-
ing open environments with electronic institutions. Engineering Applications of
Artificial Intelligence 18(2), 191–204 (2005)

2. CouchSurfing: http://www.couchsurfing.org (2012)
3. DailyMail: http://www.dailymail.co.uk/news/article-1205794/rape-horror-

tourist-used-couchsurfing-website-aimed-travellers.html#ixzz29y3wxuck (2012)
4. d’Inverno, M., Luck, M., Noriega, P., Rodríguez-Aguilar, J.A., Sierra, C.: Com-

municating open systems. Artificial Intelligence 186, 38–64 (03/2012 2012), http:
//www.sciencedirect.com/science/article/pii/S0004370212000252?v=s5

5. Esteva, M.: Electronic Institutions: From Specification to Development. Ph.D. the-
sis, Technical University of Catalonia (2003)

6. Hazelden, K., Yee-King, M., Amgoud, L., d’Inverno, M., Sierra, C., Osman, N.,
Confalonieri, R., de Jonge, D.: Wecurate: Designing for synchronised browsing and
social negotiation. Dubrovnik, Croatia (15/10/2012 2012)

7. Lauterbach, D., Truong, H., Shah, T., Adamic, L.: Surfing a web of trust: Repu-
tation and reciprocity on couchsurfing.com. In: Computational Science and Engi-
neering, 2009. CSE ’09. International Conference on. vol. 4, pp. 346–353 (2009)

8. Noriega, P.: Agent Mediated Auctions: The Fishmarket Metaphor. Ph.D. thesis,
Autonomous University of Barcelona (1997)

9. Trescak, T., Rodriguez, I., Sanchez, M.L., Almajano, P.: Execution infrastructure
for normative virtual environments. Engineering Applications of Artificial Intelli-
gence 26(1), 51 – 62 (2013), http://www.sciencedirect.com/science/article/
pii/S0952197612002540

10. Yee-King, M., Confalonieri, R., de Jonge, D., Hazelden, K., Sierra, C., d’Inverno,
M., Amgoud, L., Osman, N.: Multiuser museum interactives for shared cultural
experiences: an agent based approach. Saint Paul, Minnesota, USA (06/05/2013
2013)

http://www.sciencedirect.com/science/article/pii/S0004370212000252?v=s5
http://www.sciencedirect.com/science/article/pii/S0004370212000252?v=s5
http://www.sciencedirect.com/science/article/pii/S0952197612002540
http://www.sciencedirect.com/science/article/pii/S0952197612002540

	Human Interactions in Electronic Institutions

