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Abstract

Hellinger distance is a distance between two ad-
ditive measures defined in terms of the Radon-
Nikodym derivative of these two measures. This
measure proposed in 1909 has been used in a large
variety of contexts.

In this paper we define an analogous measure for
fuzzy measures. We discuss them for distorted prob-
abilities and give two examples.

Keywords: Hellinger distance, fuzzy measures,
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1. Introduction

In 1909 Ernst Hellinger [7] introduced a distance
to evaluate in which extent two probability distri-
butions are similar. The definition is based on the
Radon-Nikodym derivatives of the two probabilities
with respect to a third probability measure. This
distance has been used in a variety of contexts as
e.g. data privacy [20], data mining [2].

In the area of fuzzy measures and capacities some
research has been done to prove a Radon-Nikodym
type theorem, as Graf [6] puts it. That is, re-
searchers try to solve the question of when a given
fuzzy measure can be expressed as the (Choquet) in-
tegral [1] of a function with respect to another given
measure. When such relationship is found, we can
say that this function is the Radon-Nikodym deriva-
tive. Graf [6] was one of the first authors to deal
with this problem. He focuses on sub-additive fuzzy
measures and gives (Theorem 4.3) necessary and
sufficient conditions for this to happen. Sugeno [21]
deals with the same problem but considering dis-
torted probabilities. Rébillé [17] deals with the case
of almost subadditive set functions of bounded sum.

In this paper we consider the definition of the
Hellinger distance for fuzzy measures. To do so, we
use the concept of derivative as used in [21], and the
Choquet integral as an alternative to the Lebesgue
integral. We will illustrate the definition with some
examples using distorted probabilities, and prove
some properties.

The calculation of our examples requires the com-
putation of Choquet integrals. The problem of the
calculation of the Choquet integral has been previ-
ously considered in e.g. [12, 13, 10, 14].

The structure of this paper is as follows. In Sec-
tion 2 we review some concepts needed in the rest of
this work. In Section 3 we introduce the Hellinger
distance for fuzzy measures, give some examples and
results. The paper finishes with some conclusions.

2. Preliminaries

This section reviews some results that are needed
later on in the rest of this paper. We focus on the
Hellinger distance and on the Choquet integral.

2.1. Measures

We begin with the definition of additive and non-
additive (fuzzy) measures.

Definition 1 A collection of subsets F of a set Ω
is a σ-algebra if

1. Ω ∈ F and ∅ ∈ F ;
2. If A ∈ F then its complement Ac ∈ F ;
3. If A1, A2, . . . F , then their union ∪Ai ∈ F .

A pair (Ω, F) consisting of a set Ω and a σ-algebra
F of subsets of Ω is called a measurable space.

Definition 2 (see e.g. [19]) Let (Ω, F) and (Λ, G)
be measurable spaces and f a function from Ω to Λ.
The function f is called a measurable function from
(Ω, F) to (Λ, G) if and only if f−1(G) ⊂ F .

Here we use for a set A ∈ G

f−1(A) = {ω ∈ Ω|f(ω) ∈ A},

and for a collection of subsets of A of Λ

f−1(A) = {f−1(A)|A ∈ A}

Definition 3 Let (Ω, F) be a measurable space. A
set function µ defined on F is called a (additive)
measure if and only if

• 0 ≤ µ(A) ≤ ∞ for any A ∈ F ;
• µ(∅) = 0;
• If A1, A2, . . . are disjoint elements of F (i.e.,

Ai ∩ Aj = ∅ for all i 6= j) then

µ(
∞
⋃

i=1

Ai) =
∞
∑

i=1

µ(Ai).
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The triple (Ω, F , µ) is called a measure space.

Example 4 There is a unique measure λ on (R, B)
such that λ([a, b]) = b − a for every finite interval
[a, b], −∞ < a ≤ b < ∞. This is known as the
Lebesgue measure.

Here R is the real line and B is a Borel σ-algebra.

Definition 5 Let (Ω, F) be a measurable space. A
set function µ defined on F is called a fuzzy measure
if an only if

• 0 ≤ µ(A) ≤ ∞ for any A ∈ F ;
• µ(∅) = 0;
• If A1 ⊆ A2 ⊆ F then

µ(A1) ≤ µ(A2)

Example 6 Let m : R
+ → R

+ be a continuous
and increasing function such that m(0) = 0. Let λ
be the Lebesgue measure. Let µm be the set function
defined by

µm(A) = m(λ(A)) (1)

for all A. The function µm is a fuzzy measure.

When m(1) = 1 and we restrict λ to the measur-
able space ([0, 1], B[0,1]), then λ is a probability mea-
sure and µm is a distorted probability. Distorted
probabilities have been studied in [5, 4, 11].

Example 7 [21] Let a > 0. We define µa as the
fuzzy measure of the form of Equation 1 with

ma(t) = t + at2/2,

that is

µa(A) = (λ(A)) + a(λ(A))2/2.

Definition 8 Let µ be a fuzzy measure space.

1. µ is said to be submodular if

µ(A) + µ(B) ≥ µ(A ∪ B) + µ(A ∩ B).

2. µ is said to be supermodular if

µ(A) + µ(B) ≤ µ(A ∪ B) + µ(A ∩ B).

2.2. Hellinger distance

The Hellinger distance was defined for pairs of prob-
abilities. It is defined in terms of the Radon-
Nikodym derivative.

Definition 9 (see e.g. [19, 8]) Let ν and µ be
two additive measures in the same measurable space
(Ω, F). Then,

if µ(A) = 0 implies ν(A) = 0

we say that ν is absolutely continuous with respect
to µ. In this cas we write ν << µ.

Theorem 10 Let µ and ν be two additive measures
on (Ω, F) and µ be σ-finite. If ν << µ, then there
exists a nonnegative measurable function f on Ω
such that

ν(A) =

∫

A

fdµ

The function f in this theorem is called the
Radon-Nikodym derivative of ν with respect to µ,
denoted

f =
dν

dµ
.

The function f may not be unique, but if f0 and
f1 are both Radon-Nikodym derivatives of ν, then
f0 = f1 almost everywhere µ (see e.g. [8] p.7).

Definition 11 Let P , Q be two probabilities that
are absolutely continuous with respect to a third
probability measure ν. The Hellinger distance be-
tween P and Q is defined as

H(P, Q) =

√

√

√

√

1

2

∫

(

√

dP

dν
−
√

dQ

dν

)2

dν

Here dP/dν and dQ/dν are the Radon-Nikodym
derivatives of P and Q

The Hellinger distance does not depend on the
measure ν (see [16]).

2.3. Choquet integral and derivatives with

respect to fuzzy measures

In this section we review the definition of the Cho-
quet integral as well as some results related to this
integral. The Choquet integral integrates a function
with respect to a fuzzy measure. When the fuzzy
measure is additive, it corresponds to the Lebesgue
integral.

Definition 12 [1] Let X be a reference set, let
(X, A) be a measurable space, let µ be a fuzzy mea-
sure on (X, A), and let g be a measurable function
g : X → [0, 1]; then, the Choquet integral of g with
respect to µ is defined by

(C)

∫

gdµ :=

∫

∞

0

µg(r)dr, (2)

where µg(r) := µ({x|g(x) > r}).

An alternative notation for this integral is Cµ(f).
The Choquet integral of g with respect to a fuzzy

measure µ on a set A is defined by:

(C)

∫

A

gdµ :=

∫

∞

0

µ({x|g(x) > r} ∩ A)dr. (3)

which corresponds to

(C)

∫

A

gdµ = (C)

∫

g · 1Adµ
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Theorem 13 [1, 3, 9] Let µ be a non-additive mea-
sure in on (R, B), and f, g be non negative measur-
able function.

1. If µ is submodular, then

(C)

∫

(f + g)dµ ≤ (C)

∫

fdµ + (C)

∫

gdµ.

2. If µ is supermodular, then

(C)

∫

(f + g)dµ ≥ (C)

∫

fdµ + (C)

∫

gdµ.

Definition 14 Let (Ω, F) be a measurable space
and let ν, µ : F → R

+ be fuzzy measures. We say
that ν is a Choquet integral of µ if there exists a
measurable function g : Ω → R

+ with

ν(A) = (C)

∫

A

gdµ (4)

for all A ∈ F .

Then, in Graf [6], Nguyen [15], and Sugeno [21]
the inverse problem is considered. That is, given
measures µ and ν, the problem is to know whether a
g exists that satisfies Equation 4 and, if so, compute
such g.

Definition 15 Let µ and ν be two fuzzy measures.
If µ is a Choquet integral of ν, and g is a function
such that Equation 4 is satisfied we write

dν/dµ = g,

and we say that g is a derivative of ν with respect
to µ.

Graf’s definition [6] considers the case of two mea-
sures when these measures are subadditive capaci-
ties. Sugeno’s [21] definition of derivative, which
follows, is of a function with respect to a distorted
Lebesgue measure, and, thus suitable for the deriva-
tive of a distorted Lebesgue measure with respect to
another distorted Lebesgue measure.

In short, Graf and Sugeno prove some cases where
g exists. I.e., there is a unique g that satisfies Equa-
tion 4 for all A ∈ F . See e.g. Theorem 4.3. in Graf.

Definition 16 (Definition 2 in [21]) For a contin-
uous and increasing function f(t) with f(0) = 0, the
derivative of the function f with respect to a fuzzy
measure µm is defined as the inverse operation of
the Choquet integral by

df/dµm = g, (5)

if g is found to be continuous and increasing.

If µ(A) is a distorted Lebesgue measure then
there exists a function m such that µm(A) =
m(λ(A)). Similarly if ν(A) is a distorted Lebesgue
there exists a function n such that νn(A) = n(λ(A)).
Then, naturally, if λ(A) = λ(B) it holds that

ν(A) = ν(B). Therefore, when λ(A) = x, ν(A) =
ν([0, x]) and we can define a function f as follows:
f(x) = ν([0, x]). So, if λ(A) = x then

ν(A) = ν([0, x]) = f(x) = (C)

∫

[0,x]

gdµm.

As stated in the introduction, Graf and Sugeno,
among others have proven conditions on when a
fuzzy measure ν is a Choquet integral of another
fuzzy measure µ. Here, we illustrate these results
with two examples adapted from [21]. We will use
these examples later.

Example 17 (See Example 7 in [21]) Let µm be
as in Example 7 (i.e., a distorted Lebesgue measure
with m(t) = t + at2/2). Let νn be another distorted
measure with n(t) = t2. Then,

νn(A) = n(λ(A)) = (C)

∫

[0,x]

gdµm

for all A such that λ(A) = x with g(t) = (2/a)(1 −
e−at).

Example 18 (See Example 8 in [21]) Let µm be
as in Example 7 (i.e., a distorted Lebesgue measure
with m(t) = t + at2/2). Let νn be another distorted
measure with n(t) = eat − 1 for a > 0. Then,

νn(A) = n(λ(A)) = (C)

∫

[0,x]

gdµm

for all A such that λ(A) = x with g(t) = cosh(at).

Let m(t), g(t) and f(t) be continuously differen-
tiable. Let µ([τ, t]) differentiable with respect to τ
on [0, t] for every t > 0. We require the regularity
condition that µ({t}) = 0 holds for every t ≥ 0. Let
µ′([τ, t]) denote (∂/∂τ)µ([τ, t]), where we note that
µ′([τ, t]) ≤ 0 for τ ≤ t. If µ is a distorted Lebesgue
measure (Definition 1) in terms of m, i.e. µ = µm,
then µ′([τ, t]) = −m′(t − τ) where m′(t) = dm(t)/t.

Theorem 19 (Theorem 1 in [21]) Let F+ be the
class of measurable, non-negative, continuous and
increasing (non-decreasing) functions such that g :
R

+ → R
+. Let g ∈ F+, then the Choquet integral

of g with respect to µ on [0, t] is represented as:

(C)

∫

[0,t]

gdµ =

∫

∞

0

µ({τ |g(τ) ≥ r} ∩ [0, t])dr

= −
∫ t

0

µ′([τ, t])g(τ)dt, (6)

and when the measure is a distorted Lebesgue mea-
sure µ = µm then

∫

∞

0

µ({τ |g(τ) ≥ r}∩[0, t])dr =

∫ t

0

m′(t−τ)g(τ)dτ.

For a function h : R+ → R
+, its Laplace transfor-

mation is denoted by H(s) and its inverse Laplace
transformation by h(t) = L−1[H(s)].
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Proposition 20 (Proposition 3 in [21]) Let F+,
g ∈ F+, and µ = µm be as in Theorem 19, let

f(t) = (C)

∫

[0,t]

gdµm =

∫ t

0

m′(t − τ)g(τ)dτ.

Then, the Laplace transformation of f(t) and the
expression of f(t) in terms of the inverse Laplace
transformation are as follows:

F (s) = L(f(t)) = sM(s)G(s) (7)

f(t) = L−1[sM(s)G(s)] (8)

where M(s) is the Laplace transformation of m and
G(s) is the Laplace transformation of g.

Proposition 21 (Proposition 4 in [21]) Let f(t) be
a continuous and increasing function with f(0) = 0,
let µm be a distorted Lebesgue measure, then there
exists an increasing (non-decreasing) function g so
that f(t) = (C)

∫

[0,t]
g(τ)dµm and the following

holds:

G(s) = F (s)/sM(s) (9)

g(t) = L−1[F (s)/sM(s)]. (10)

Here, F (s) is the Laplace transformation of f , M
the Laplace transformation of m, and G the Laplace
transformation of g.

3. Variation of Hellinger distance

We introduce now our definition of the Hellinger
distance for non-additive measures.

Definition 22 Let µ1 and µ2 be two fuzzy measures
that are Choquet integrals of ν. The Hellinger dis-
tance between µ1 and µ2 is defined as

Hν(µ1, µ2) =

√

√

√

√

1

2
(C)

∫

(

√

dµ1

dν
−
√

dµ2

dν

)2

dν

Here dµ1/dν and dµ2/dν are the derivatives of µ1

and µ2 according to Definition 15.

The first proposition below establishes that this
definition is a proper generalization of standard
Hellinger distance.

Proposition 23 Let ν, µ1, and µ2 be three addi-
tive measures such that µ1 and µ2 are absolutely
continuous with respect to ν. Then, Hν(µ1, µ2) is
the standard Hellinger distance of Definition 11.

This proposition follows from the fact that the
Choquet integral corresponds to the Lebesgue inte-
gral for additive measures.

We consider some additional properties below.
The next proposition is obvious from the definition.

Proposition 24 hν(µ1, µ2) = 0 if µ1 = µ2.

The next proposition follows from Theorem 13.

Proposition 25 If ν is submodular, then we have

hν(µ1, µ2) + hν(µ2, µ3) ≥ hν(µ1, µ3).

As h is symmetric and hν(µ1, µ2) ≥ 0, we have
that our definition is a distance for submodular ν.

Corollary 26 If ν is submodular, Definition 22 de-
fines a distance.

This definition is illustrated with an example
based on the measures given above.

Example 27 Let a > 0. Let µm be as in Ex-
ample 7 (i.e., a distorted Lebesgue measure with
m(t) = t + at2/2). Let νn1

be the measure in Ex-
ample 17 (i.e., a distorted Lebesgue measure with
n1(t) = t2), and let νn2

be the measure in Ex-
ample 18 (i.e., a distorted Lebesgue measure with
n2(t) = eat − 1). Then, the Hellinger distance of
µn1

and µn2
with respect to µm is defined as fol-

lows:

Hµm
(µ1, µ2) =

√

1

2
(C)

∫
(
√

dµ1

dµm
−

√

dµ2

dµm

)2

dµm =

=

√

1

2
(C)

∫

(

√

(2/a)(1 − e−at) −
√

cosh(at)
)

2

dµm

where

(C)

∫

(

√

(2/a)(1 − e−at) −
√

cosh(at)
)

2

dµm =

∫

µm

({

t |
(

√

(2/a)(1 − e−at) −
√

cosh(at)
)

2

≥ r

})

dr

Now we consider another example of the new
Hellinger distance.

Example 28 Let us consider µm be the distorted
Lebesgue measure with m(t) = t2 and let νp be the
distorted Lebesgue measure with distortion n(t) =
tp. Therefore, νp(A) = (λ(A))p for p ≥ 2, and
νp([0, t]) = tp.

In this example we compute the Hellinger distance
between ν2 and νp with respect to µm. That is,
Hµm

(ν2, νp) using Definition 22.
It is known (see e.g. [18]) that for all r > −1,

s > 0:

L[tr] =
Γ(r + 1)

sr+1

L−1

[

1

sr

]

=
tr−1

Γ(r)

where Γ is Euler’s gamma function.
Therefore, the Laplace transforms of νp and µ

are:

Np(s) = L[νp] =
Γ(p + 1)

sp+1

M(s) = L[µ] =
2

s3
(11)
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Now, let us consider L[ dνp

dµm

]. Applying Proposi-
tion 21, we have that:

L[
dνp

dµm
] =

Np(s)

sM(s)
=

Γ(p + 1)

2sp−1
.

Using the inverse Laplace transform on this expres-
sion we obtain:

dνp

dµm
= L−1[

Γ(p + 1)

2sp−1
] =

Γ(p + 1)

2Γ(p − 1)
tp−2

=
p(p − 1)

2
tp−2.

Let us denote by g(t) the following expression to
be used later to compute the Hellinger distance be-
tween ν2 and µp with respect to µm:

g(t) =

(

√

dν2

dµm
−
√

dνp

dµm

)2

.

First note dν2

dµm

= 1, therefore,

g(t) =

(

1 −
√

p(p − 1)

2
t(p−2)/2

)2

= 1 −
√

2p(p − 1)t(p−2)/2 +
p(p − 1)

2
tp−2.

From this follows that its Laplace transform is:

G(s) =
1

s
−
√

2p(p − 1)
Γ(p/2)

sp/2
+

p(p − 1)

2

Γ(p − 1)

sp−1
.

(12)

Now, let us consider the Laplace transform of
the Choquet integral. Using Proposition 20, and
the expressions for M(s) and G(s) in Equations 11
and 12, we have

L[(C)

∫ t

0

gdµm] =
2

s2
G(s) =

2[
1

s3
−
√

2p(p − 1)Γ(p/2)
1

sp/2+2
+

Γ(p + 1)

2

1

sp+1
].

Therefore, using the inverse of the Laplace trans-
form, we have that

(C)

∫ t

0

gdµm =

2[
t2

2
−
√

2p(p − 1)Γ(p/2)
tp/2+1

Γ(p/2 + 2)

+
Γ(p + 1)

2

tp

Γ(p + 1)
] =

t2 − 8
√

2p(p − 1)

(p + 2)p
tp/2+1 + tp

Let us consider now νp and µm as distorted prob-
abilities and take the integration on [0,1]. Then,

(C)

∫ t

0

g(τ)dµm(τ) = 2 − 8
√

2p(p − 1)

(p + 2)p
.

Therefore, the Hellinger distance between νn and
νp with respect to µm is calculated as

Hµm
(ν2, νp) =

√

√

√

√

1

2
(C)

∫ 1

0

(

√

dν2

µm
−
√

dνp

µm

)2

dµm(τ)

=

√

1 − 4
√

2p(p − 1)

(p + 2)p
(13)

We note that Hµm
(ν2, νp) = 0 for p = 2.

Remark 29 The Hellinger distance depends on
µm.

To illustrate the previous remark, let us consider
the following example.

Example 30 Let µm′ be a distorted Lebesgue mea-
sure with m′(t) = t. Let νp be the distorted Lebesgue
measure of Definition 28. Then,

df

dµm′

=
df

dt

and

(C)

∫ t

0

gdµm′ =

∫ t

0

g(τ)dτ.

We have
dvp

dt
= ptp−1

and let us define g(t) as follows

g(t) =

(
√

dν2

dt
−
√

dνp

dt

)2

=
(√

2t −
√

ptp−1
)2

= 2t − 2
2p

t

p/2

+ ptp−1.

We obtain
∫ t

0

g(t)dt = t2 − 2
√

2p

p/2 + 1
tp/2+1 + tp

and, hence,

∫ 1

0

g(t)dt = 2 − 4
√

2p

p + 2
.

Therefore, the Hellinger distance with respect to
µm′ with m′(t) = t is

Hµ
m′

(ν2, νp) =

√

1 − 2
√

2p

p + 2
. (14)

It is clear that the Hellinger distance between
ν2 and νp depends on the measure µm and µm′ as
Equation 13 and Equation 14 are, in general, differ-
ent (only equivalent for p = 2 when both distances
are zero).

The following can be deduced from the above ex-
pressions.

Lemma 31 When p → ∞, both Hµm
(ν2, νp) = 1

and Hµ
m′

(ν2, νp) = 1.
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Lemma 32 Distances Hµm
(ν2, νp) and

Hµ
m′

(ν2, νp) are increasing with respect to p,
and the following holds

• Hµm
(ν2, νp) ∈ [0, 1] for all p ≥ 2,

• Hµ
m′

(ν2, νp) ∈ [0, 1] for all p > 0.

4. Conclusions

In this paper we have extended the definition of the
Hellinger distance, which was initially defined for
additive measures, to fuzzy measures. This exten-
sion relies on a Radon-Nikodym-type derivative for
fuzzy measure.

As future work we plan to study some properties
of this distance, and also study how this extension
can be applied to other f -divergences, and if a gen-
eral definition of f -divergence can also be given.
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