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Abstract

The medium anisotropy give rise to interesting effects in the physics of wave propagation: the angular
dependence of the group velocity, the skew angle between phase and group velocities, and the elastic
focusing leading to the concentration of wave energy in determinated directions. All these effects are
mode dependent and must be taken into account to choose the adequate propagating mode in NDE or
SHM applications. In this article the dispersion curves of phase and group velocities, and the patterns
of wave focusing for the A0 and S0 modes are theoretically obtained and verified experimentally. The
angular dependence of the group velocity and the effect of the anisotropic elastic focusing is studied in a
1.97 mm-thickness multilayer carbon-epoxy plain woven fabric composite. The time traces are obtained
by scanning the plate with the aid of a retro-reflective film stuck to the surface using a laser Doppler
vibrometer. A good agreement between the theory and the experimental results was obtained. The Maris
factor corresponding to the A0 mode shows smoother angular variation than that of the S0 mode which
depends much more on the direction.
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1. Introduction

The linear elastic wave propagation in anisotropic media can be described by the Christof-
fel equation, either in unlimited media with bulk waves, or for guided waves in general.
In isotropic media with plate-like geometries, the guided waves can be described as Lamb
waves and shear horizontal (SH) waves, taking into account that symmetric and antisym-
metric modes are present for each type of wave. In anisotropic media, Lamb and SH waves
are generally coupled and they are only uncoupled in the material symmetry axes, when
these axes exist. Furthermore, symmetric and antisymmetric modes are only present if
there is symmetry in the thickness direction of the plate. The medium anisotropy gives rise
interesting effects in the physics of wave propagation: the angular dependence of the group
velocity, the skew angle between the phase and group velocities, and the elastic focusing,
often named phonon focusing, leading to the concentration of wave energy in determi-
nated directions. All these effects are mode dependent. The anisotropic elastic focusing
phenomena have been widely studied by Taylor et al. (1969) [1] with phonons in solids,
by Maris (1971) [2] in thermal acoustic waves in crystals, by Philip and Viswanathan
(1977) [3] and Kolomenskii and Maznev (1993) [4] in phonon-focusing of surface waves in
crystals, by Maznev and Avery (1995) [5] on anisotropic plates, by Chapuis et al. (2010)
[6] in Lamb waves in multilayer anisotropic plates and recently by Fu et al. (2013) [7] in
phonon focusing in NiAl.

The main contribution of this work is to verify the angular wave propagation effect of
elastic focusing on a structural textile laminate, composed of nine layers of carbon-epoxy
plain woven fabric composite [0/90/+45/90/0/90/-45/90/0]-T300/F155. The dispersion
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curves of phase and group velocities, and patterns of wave focusing, given by the Maris
factor, for the A0 and S0 modes, are theoretically obtained. Comparisons between theo-
retical predictions and experimental results were made for the wave angular pattern and
for the elastic focusing.

The fundamentals of the theory of guided wave propagation in anisotropic media, the
angular wave group dependence, skew angle and elastic focusing are presented in Section
2. The numerical predictions for phase and group velocities, and for the slowness curve
and focusing factor are presented in Section 3. In Section 4, the experimental setup
and results are presented and compared to the theoretical predictions. Finally, Section 5
presents the final remarks.

2. Fundamentals on the theory and problem formulation

Assuming a linearly elastic, nonviscous, nonpiezoelectric medium, described by the gen-
eralized Hooke’s law, and the stress-strain relationship in the {x1,x2,x3} Cartesian coor-
dinates

σij =cijklεkl, εkl =
1

2

(

∂uk

∂xl
+

∂ul

∂xk

)

, i,j,k,l = 1,2,3. (1)

where cijkl is the stiffness tensor, uk is the particle displacement and σkl and εkl are the
stress and strain tensors, the three equations of motion

∂σij

∂xj
= ρ

∂2ui

∂t2
, i,j = 1,2,3 (2)

describe the wave propagation in a medium with general anisotropy. For the particular
case of guided waves in a plate like medium, when the plate is considered infinite in the
x1 and x2 direction and finite in the x3 direction, with d thickness, then guided waves
propagating in the sagital plane x1x3 can be represented as plane waves with displacements

(u1,u2,u3) = (U1,U2,U3) e
iξ(x1+αx3−ct), (3)

where i =
√
−1 , ξ and αξ are the wave vector components in the x1 and x3 directions,

respectively; c = ω/k is the wave phase velocity in the x1 direction.
Each composite layer (the laminae) of the laminate is considered to be composed by

an epoxy matrix reinforced with plain woven carbon fabric. Here, this fabric has two
orthogonal axes of symmetry, congruent to the fibers directions, the warp and the weft
directions. Although the warp and the weft do not have perfectly equal elastic charac-
teristics, we consider them as equivalent directions leading to the tetragonal symmetry of
the layer, describing the stiffness matrix in the Voigt notation by [8]
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, (4)

where the prime, C ′(n), denotes the stiffness matrix of the nth layer in the crystallographic
axes {x′

1,x
′

2,x
′

3}. For sake of clarity, the x3 coordinate origin is coincident with the middle
plane of the laminate, i.e., the laminate is limited by −d/2 ≤ x3 ≤ d/2.



With those considerations and expanding σij in the stress-strain relation as a function
of the displacements uk, a system of three coupled differential equations in the displace-
ments, or wave polarizations, is obtained. When the wave vector is parallel to a crys-
tallographic axis, the three equations give a system of coupled equations in u1 and u3,
describing Lamb waves, and one equation in u2, describing shear horizontal (SH) waves[8].

To solve the system of n layers, conditions of continuity of strains and stresses at the
interfaces between consecutive layers are imposed. These continuity conditions can be
modeled as being perfect or imperfect continuity [9] to simulate imperfect contact. For a
general laminate with surfaces free of stresses at x3 = ±d/2 the additional conditions for
guided waves are σ33 = σ23 = σ13 = 0. Furthermore, if C is the complete stiffness matrix
with the n stiffness sub-matrices C(n), represented in the coordinates {x1,x2,x3}, and if
the laminate has a symmetric layup sequence, i.e., C (x1,x2,x3) = C (x1,x2,− x3), then
symmetric and antisymmetric wave modes can be obtained from different impositions in
the middle plane of the laminate:

{u3 (x1,x2,0) ,σ23 (x1,x2,0) ,σ13 (x1,x2,0)} = {0,0,0} (5)

for symmetric modes, and

{u1 (x1,x2,0) ,u2 (x1,x2,0) ,σ33 (x1,x2,0)} = {0,0,0} (6)

for antisymmetric modes
These continuity and middle plane conditions are represented as a system of cou-

pled matricial equations that can be treated with the global matrix method[10], with
the transfer matrix method[8], with the stiffness matrix method[9, 11] or with the Leg-
endre orthogonal polynomial method approach[12]. The distinction amongst these ap-
proaches relies fundamentally on the presence–or not–of numerical instabilities as the
frequency-thickness product increases to high values. Within this work, moderate values
of frequency-thickness products are used and any of the mentioned methods can solve the
problem.

The resultant characteristic equation of the laminate is mode dependent and can be
represented by a determinantal equation F (ω,k; θ) = 0, where F (ω,k; θ) is function
of the angular frequency ω = 2πf , the wave number k = 2π/λ, and the propagation
direction θ. The function F is more conveniently written as function of the variables
d/λ and fd, where d is the plate thickness. The solutions of the characteristic equation
provide the set of dispersion curves in the (d/λ) × fd space and can be represented as
dispersion curves of phase velocities in the fd× cp space through a direct transformation
where the phase velocity is cp = ω/k = fd/ (d/λ) .

2.1. Group velocity and skew angle

One of the most interesting features that anisotropic media present is the dependence
of group velocities with the direction of wave propagation. This can be understood by
analyzing the dependence of the stiffness matrix with the propagation direction to provide
the elastic behavior of waves, for example, in longitudinal bulk waves the velocity in the
x1 direction is easily calculated as cL =

√

C11/ρ , and the P-wave velocity increases with
C11. The group velocity components cgx and cgy can be calculated by

[

cgx
cgy

]

=

[

cos θ − sin θ
sin θ cos θ

]

[

∂(fd)
∂(d/λ)
1

(d/λ)
∂(fd)
∂θ

]

, (7)



where f is the frequency, λ = 2π/k is the wavelength and k is the wave number of
the guided wave propagating at the direction θ. From this equation, the group velocity
direction, ϕ = arctan (cgy/cgx), and the skew angle, θs = ϕ− θ, can be determined.

2.2. Elastic focusing, phonon focusing or amplitude enhancement

Another relevant feature of the wave propagation in anisotropic media is the phonon

focusing [7, 4, 3, 1], also named elastic focusing or amplitude enhancement [2]. The elastic
focusing is an effect that concentrates the energy of waves in some specific directions
while decreases the energy at others directions. The effect can be understood when the
skew angle of the group velocity is made present in the study of the wave propagation.
The group velocity is easily visualized to be normal to the surface of the inverse of phase
velocity, the slowness surface, defined by the ~s =

(

c−1
p

)

~k/k = ~k/ω. It is mode dependent
and it is a function of the direction θ, of the wave vector and the frequency f . The focusing
factor, derived by Maris through geometrical considerations, determines how much energy
of a wave propagating through an anisotropic medium is concentrated in the direction θ
compared to the case of the isotropic medium. Using the slowness surface, s (θ) = c−1

p (θ),
within a fixed frequency, the Maris factor is easily calculated

A =

∣

∣

∣

∣

dϕ

dθ

∣

∣

∣

∣

−1

=
[

s2 + (ds/dθ)2
]−1/2 |Ks|−1 , (8)

where Ks is the slowness surface curvature. This enhancement factor was derived assuming
bulk waves where no limit exist for the wave propagation.

Analog investigations on Lamb waves in an anisotropic plate was made by Chapuis et
al. [6] showing the focusing factor A = Ak cos (θs) , where the dependence with the wave
number, k, and with cos (θs) is present.

3. Numerical results

The laminate was modeled as having nine homogeneous layers of textile carbon fiber
reinforced polymer (TCFRP), each layer with tetragonal material symmetry, with only
six independent parameters of the stiffness matrix and density presented in the Table
1. Each layer is rotated accordingly to the layup [0/90/+45/90/0/90/-45/90/0] and the
transfer matrix method was used to determine the propagation modes.

Table 1: Parameters of the TCFRP T300-F155 (Hexcel Composites).

C11 = C22 C12 C13 = C23 C33 C44 = C55 C66 Mass density Layer thickness
(GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

(

103kg/m3
)

(mm)

61.69 6.962 8.621 12.36 2.767 12.01 1.56 0.22

The first three symmetric, SH0, S0, S1, and the first three antisymmetric, A0, SH1,
A1, propagation modes are presented. Those notations are used due to the fact that, in
the the symmetry axes 0◦, 90◦ and ±45◦, {SH0, SH1} are true SH modes, and {S0, S1}
and {A0, A1} are related to Lamb waves having the uncoupled equations as in isotropic
media. As a consequence of the layup sequence and the tetragonal symmetry the results
are 90◦ periodic and only computations in the [0◦; 45◦] range are necessary to determine



the complete angular behavior of phase velocity dispersion curves, slowness curves, group
velocities and focusing patterns.

Figure 1 shows the antisymmetric and symmetric modes for wave propagation at 0.5◦,
22.5◦ and 44.5◦. The 0.5◦ and 44.5◦ curves are very close to the behavior of the 0◦ and 45◦

dispersion curves, respectively. The A0 mode has little angular variation when compared
to the others modes A1, SH, SH0, S0 e S1. The SH0 and S0 symmetric modes have
considerable angle variation while maintaining a nearly non-dispersive behavior, i.e., the
phase velocity is almost constant for a large range into small frequency-thickness product.
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Figure 1: Dispersion curves of phase velocity. Wave propagation at 0.5◦ (solid curves),
22.5◦ (dashed curves), 44.5◦ (dotted curves).

The group velocities for the first three antisymmetric and symmetric modes are shown
in Figure 2 and angles 1◦, 22.5◦ and 44◦. The frequency-thickness range fd ∈ [0,1900]
kHzmm, corresponding to the frequency range f ∈ [0,964.46] kHz, where d = 1.97mm.
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Figure 2: Group velocities dispersion curves. Wave propagation at 1.0◦ (solid curves),
22.5◦ (dashed curves), 44.0◦ (dotted curves).

Figure 3 presents the wave curves for A0 mode at 44 kHz and 310 kHz; and S0 and
SH0 modes at 310kHz. In Figure 3, the A0 mode shows a quasi circular wave curve going
from 44 kHz to 310 kHz, with velocities from 1260m/s to 1335m/s. The S0 mode shows
its anisotropy as a greater angular dependence of the group velocity. The SH0 mode has
lower group velocities when compared to the S0 mode, however its curvature suffers fast
variations nearby 45◦.
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Figure 3: Wave curves for A0 at (a) 44 kHz and (b) 310 kHz; S0 and SH0 at (c) 310 kHz.

The slowness curves s (θ) and focusing pattern (Maris factor A), of the A0– 44 kHz
and 95 kHz–and S0– 310 kHz–modes are presented in Figure 4. These focusing pattern
are verified experimentally in the next section.
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Figure 4: Slowness curves s (θ) (on the top, in s km−1) and focusing patterns A (θ) (on
the bottom, adimensional) for (a) A0 mode at 44 kHz, (b) A0 mode at 95 kHz, and (c) S0
and SH0 modes at 310 kHz.

4. Experimental results

An experimental validation was performed using a plain woven carbon-epoxy composite,
as described in the numerical results, with nine layers. The experiments were conducted
using a PZ-27 ceramic (Ferroperm), 7mm× 7mm× 0.5mm, glued with cyanoacrylate to
the center of the plate and 45 degrees from its principal axis. A signal generator (Agilent,
33120A) was used to apply four cycle tone-burst at 44 kHz and 280 kHz with 2.0Vpp ,
amplified by a 28 dB wide band amplifier (Krohn-Hite, 7602 model) to generate the A0



and S0 modes, respectively. A square retro-reflective film of 21 cm side was glued to the
opposite side of the plate, with the ceramic transducer at its center. The time traces were
obtained by scanning the retro-reflective film with a laser Doppler vibrometer (Polytec,
PSV400) in three scenarios: (1) excitation at 44 kHz and using a 100 kHz low-pass filter;
(2) excitation at 280 kHz and bandpass filter from 100 kHz to 500 kHz; and (3) excitation
at 600 kHz and 10 kHz high-pass filter.

The A0 and S0 modes have very different group velocities and it was possible to
separate them with a window and to perform a spacial analysis of the wave propagation.
The A0 maximum response occurs at 44 kHz, 66 kHz and 95 kHz when the transducer is
excited at 44 kHz, 280 kHz and 600 kHz. The S0 mode always shows maximum response
at 310 kHz. The signals were filtered using Gaussian filters at the maximum response
frequencies of each mode. Figures 5, 6 and 7 show a superposition of theoretical and
experimental wave curve results for A0 and S0 modes when the transducer is excited at
44 kHz, 280 kHz and 600 kHz, respectively, and with the Gaussian filters applied.

Figure 5: Wave curves for the 1.97mm-thick laminate with excitation at 44 kHz: pre-
diction in blue and experimental in gray. A0 mode (44 kHz) on the left and S0 mode
(310kHz) on the right.

The predicted wave patterns present a good agreement with the experimental results,
although a slight difference between the velocities at 0◦ and 90◦ appears. This is probably
due to the non-perfect tetragonal symmetry of each layer.

In order to verify the predicted effect of elastic focusing by mathematical modeling the
signals previously described were used. The A0 and S0 modes can be separated with a
window, as they have remarkable different speeds. Once separated in time, other time and
spacial windows were applied to each mode to analyze only a few cycles of the waveform.
At this point the maximum amplitude of the wave and its angular dependence were
measured. The maximum amplitude is related to the square root of the wave energy and
the comparison can be made between the the predicted enhancement of the amplitude,
√

A (θ), and the angular dependence of the maximum measured amplitude.



Figure 6: Wave curves for the 1.97mm-thick laminate with excitation at 280 kHz: pre-
diction in blue and experimental in gray. A0 mode (66 kHz) on the left and S0 mode
(310kHz) on the right.

Figure 7: Wave curves for the 1.97mm-thick laminate with excitation at 600 kHz: pre-
diction in blue and experimental in gray. A0 mode (95 kHz) on the left and S0 mode
(310kHz) on the right.

Figure 8 presents, in linear and polar coordinates, the comparison between theoretical
and experimental results of the

√

A (θ) factor, for the A0 and S0 modes with tone-burst
excitations at 44 kHz, 280 kHz and 600 kHz, respectively. The fitting of experimental data
are best realized in polar coordinates. The three sub-figures were computed using different
times of the signals, e.g, the A0 focusing pattern presented is calculated at 165.03 us and
the S0 patterns at 23.24 us and 21.8 us, respectively. The pattern of focusing of the A0
mode is only clearly visible with excitation at 44 kHz, while the S0 pattern (not shown
here) has a significant amount of noise and cannot be clearly identified. With tone bursts
excitations at 280 kHz and 600 kHz, it is the A0 mode which cannot be identified clearly
against the background noise, resulting only the S0 mode with a good signal-to-noise
ratio.



To compare the experimental results and the theoretical prediction of the elastic fo-
cusing, normalization of theoretical curves respect to their maximum angular value was
done. Then, a proportionality value was chosen for the experimental data such that the
squared error between theory and experiments is minimized. There is a clear difference
between the A0 and the S0 mode patterns. The behavior of A0 mode has a smooth an-
gular variation compared to de S0 mode, that has a much pronounced variation between
0◦/90◦ and ±45◦. The polar plots are more representative and show the concordance
between theoretical and experimental validation.
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(a) A0 mode at 44 kHz,
transducer excitation at 44 kHz.
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(b) S0 mode at 310kHz,
transducer excitation at 280kHz.
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(c) S0 mode at 310kHz,
transducer excitation at 600 kHz.
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Figure 8: Focusing factor,
√

A (θ), for the A0 and S0 modes.

5. Conclusion

In this work, the effect of elastic focusing was studied and experimentally verified on
a multilayer structural textile laminate. The profile of velocity group curves and the
amplification of the wave amplitude as a function of the direction of propagation of the
guided waves are theoretically calculated using the multilayered plate model, and these
predictions agree with the experimental results. The curves show the effective anisotropic
wave propagation character in the laminate. The theoretical predictions of the group
velocities at 44 kHz, 66 kHz, 95 kHz and 310 kHz are in agreement with those observed in
the experiments.

The A0 mode shows a smoother angular variation of the Maris factor, while the Maris
factor for the S0 mode is much more directional for this plate layup. Theses results of
mode dependent elastic focusing effect are similar to previous works [6] and must be taken
into account to choose the adequate propagating mode in NDE or SHM applications, or



to force compensations of angular energy distribution of a wave mode.
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