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In the adult brain, neural progenitor cells (NPCs) reside in the subventricular zone (SVZ) of the lateral ventricles, the dentate gyrus and the
olfactory bulb. Following CNS insult, NPCs from the SVZ canmigrate along the rostral migratory stream (RMS), amigration of NPCs that is
directed by proinflammatory cytokines. Cells expressing CXCR4 follow a homing signal that ultimately leads to neuronal integration
and CNS repair, although such molecules can also promote NPC quiescence. The ligand, SDF1 alpha (or CXCL12) is one of the
chemokines secreted at sites of injury that it is known to attract NSC-derived neuroblasts, cells that express CXCR4. In function of its
concentration, CXCL12 can induce different responses, promoting NPC migration at low concentrations while favoring cell adhesion
via EGF and the alpha 6 integrin at high CXCL12 concentrations. However, the preclinical effectiveness of chemokines and their
relationship with NPC mobilization requires further study, particularly with respect to CNS repair. NPC migration may also be affected
by the release of cytokines or chemokines induced by local inflammation, through autocrine or paracrine mechanisms, as well as through
erythropoietin (EPO) or nitric oxide (NO) release. CXCL12 activity requires G-coupled proteins and the availability of its ligand may
be modulated by its binding to CXCR7, for which it shows a stronger affinity than for CXCR4.
J. Cell. Physiol. 230: 27–42, 2015. © 2014 Wiley Periodicals, Inc.

Neuronal progenitor cells (NPCs) can differentiate into
neurons, astrocytes or oligodendrocytes, and they can
promote the survival/integration of cells into new neuronal
circuits after CNS insult (Fallon et al., 2000). Neurogenesis
occurs in specific areas of the brain (Altman and Das, 1965),

including the subventricular zone (SVZ) of the lateral ventricles
and the subgranular zone (SGZ) of the granular cell layer
(Gould et al., 1999; Bernier et al., 2002; Gould, 2007 Coremans
et al., 2010; Pignatelli and Belluzzi, 2010; Walton et al., 2013).
Functional recovery from insult requires the integration of new
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neurons into the existing and/or damaged circuits, which
depends on their correct migration (Decimo et al., 2012).
Under non-pathological conditions, most NPCs can produce
interneurons in the olfactory bulb (OB): (Christie and Turnley,
2013; Walton et al., 2013), and new neurons are derived from
less-differentiated neural stem/progenitor cells (NSCs) and
neuroepithelial cells (NEPs) that differentiate into neuronal-
restricted or glial-restricted precursor cells (Bonaguidi et al.,
2005, 2008; Stephens et al., 2012). NPCs express nestin (a
neuroepithelial cell marker) and musashi-1, a neural RNA
binding protein, while undifferentiated NEPs express specific
transcription factors, such as Sox1, Sox2, and Sox3 (Foshay and
Gallicano, 2008; Sundberg et al., 2011).

Which Signals Induce NPC Migration toward Damaged
Areas of the CNS?

Several extrinsic and intrinsic factors that emanate from the
SVZ can regulate neurogenesis when inflammation arises as a
result of CNS damage (Whitney et al., 2009; Gonzalez-Perez
et al., 2010; Boneva and Yamashima, 2012; Gensel et al., 2012).
Many such factors regulate the fate and proliferation of NSCs in
the neurogenic niches, including nerve growth factor (NGF),
bFGF (basic fibroblast growth factor) or FGF-2 (basic fibroblast
growth factor) (Schwindt et al., 2009; Bohrer and
Schwertfeger, 2012), BDNF (brain-derived neurotrophic
factor) (Zhang et al., 2011), Neurotrophin-4/5 (NT3 and NT4/
5), ciliary neutrophic factor (CNTF), vascular endothelial
growth factor (VEGF), erythropoietin (EPO), leukemia
inhibitory factor (LIF) (Oshima et al., 2007), BMI-1 and platelet-
derived growth factor (PDGF-a) (Lowenstein and Arsenault,
1996; Jo et al., 2000; Kijowski et al., 2001; Coskun and Luskin,
2002; Aguirre et al., 2005; Bonaguidi et al., 2005; Bauer and
Patterson, 2006; Liu et al., 2006; Dempsey and Kalluri, 2007;
Covey and Levison, 2007; Liu et al., 2007; Krüger et at., 2007;
Bonaguidi et al., 2008; Choi et al., 2008; Lum et al., 2009; Leong
and Turnley, 2011; Reed et al., 2012; Koivuniemi et al., 2013;
Talaver�on et al., 2013; S�anchez-Mendoza et al., 2013). In this
review, we shall examine how chemokines influence NPC
migration within the SVZ following injury and CNS damage
(Wang et al., 2002; Imitola et al., 2004; Merino et al., 2011a).
Chemotactic factors promote neurogenesis and gliogenesis in
the normal developing brain (R�eaux-Le Goazigo et al., 2013),
and the CXCR4/CXCL12 (SDF1) axis induces NPC
differentiation and migration in the periinfarct area (Imitola
et al., 2004; Dziembowska et al., 2005; Tran et al., 2007; Turbic
et al., 2011). The response of SVZ-derivedNPC, and of the new
cells they produce, is quite variable, depending on the type of
injury, the brain area damaged and the trophic factor/s released
following damage, such as cytokines (Hagberg and Mallard,
2005), chemokines (Bonecchi et al., 2009) or vascular factors
(Schanzer et al., 2004; Bauer, 2009). Thus, cell therapy could
possibly promote the migration of SVZ neuroblasts that
express the CCR1-8, 10 and/or CXCR1-6 chemokine
receptors and their ligands (Tran et al., 2007). Most of the
research into chemokines has been carried out in rodent
models, studying the ectopic migration and neural
differentiation of SVZ-derived NPCs following the neural
damage produced by cerebral ischemia (Li et al., 2012; Lindvall
et al., 2004; Lichtenwalner and Parent, 2006). In these models,
the enhancedNPCmotility induced by chemokines and growth
factors guides neuroblasts from the SVZ/RMS toward the
damaged areas in the CNS (Merino et al., 2008, 2011b; Turbic
et al., 2011), with CXCR4 co-localizing with PSA-NCAM in the
migrating cortical neurons (Merino et al., 2008). Some
chemokines have anti-apoptotic effects and they promote
neurogenesis in rodent models of cerebral ischemia (Imitola
et al., 2004; Liu et al., 2007, 2008a,b; Merino et al., 2011a).
Consequently, both endogenous and graftedNPCs canmigrate

and differentiate into new neurons according to different
chemotactic gradients (Li et al., 2013; Liu et al., 2008). The
signaling mechanisms by which chemokines regulate
differentiation, cell remodeling and self-repair in pathological
circumstances in the CNS may potentially promote recovery
to some extent (Bye et al., 2012; Gensel et al., 2012; Hassani
et al., 2012). Indeed, proliferation is a feature associated with
stem cell transplantation during the first week post-lesion in
rodent models of global ischemia (Levison et al., 2001; Chen
et al., 2001, 2004; Bonecchi et al., 2009). However, the poor
survival of new neurons in the lesioned area (Arvidsson et al.,
2002), together with the limited integration of newly-formed
cells into existing neural circuits more than four weeks after
their implantation, are issues that limit the efficacy of cell
therapy in neurodegenerative diseases (Aboody et al., 2000;
Stroemer et al., 2009; Perederiy et al., 2013). In fact, several
weeks after transplantation proliferation rates return to
normal (Thored et al., 2006; Kokaia and Lindvall, 2003). Thus, it
is crucial to elucidate how chemokines direct neuroblast
migration and the interaction of these cells with their
environment (Robin et al., 2006; Tiveron et al., 2006; Barkho
and Zhao, 2010), particularly in a neuropathological context
(Fiala et al., 2012).

In the present review,wewill concentrate on howmolecular
regulators of the CXCR4/CXCR7/CXCL12 regulate NPC
migration and CNS repair, and the extent to which crosstalk
between the nervous and immune systems might regulate
these processes (Klein and Rubin, 2004). Several chemokines
are expressed in the vascular niche (CCR1–3, 5, 7–10 and
CXCR1–4), as well as in neurospheres (CCR1–8, 10 and
CXCR1–6: (Tran et al., 2007; Bonecchi et al., 2009).
Chemotactic factors direct NPC migration after striatal
damage, these include monocyte chemoattractant protein-1
(MCP-1, CCL-2), and growth regulated oncogene-alpha (GRO
alpha) (Gordon et al., 2009). Interestingly, CXCR4 signaling
induces survival and migration of neural and oligodendrocyte
precursors (OP) during embryonic and postnatal CNS
development. In fact, in CXCR4-defective mice, the number of
neural precursors in the neurosphere outgrowth was twofold
less than in wild-type mice; Neural precursor radial cell
migration was also decreased in these mices (Lu et al., 2002;
Dziembowska et al., 2005). However, the addition of
recombinant CXCL12 protein to neurospheres derived from
wild type mice increases the radial migration of cells from the
sphere in a dose-dependent manner (Dziembowska et al.,
2005). In these studies, fewer differentiated oligodendrial cells
expressing platelet-derived growth factor receptor (PDGFR)
were found in the CXCR4-deficient mice (Dziembowska et al.,
2005). These observations support a role for chemokines in
NPC migration and repair. Indeed, the release of CXCL12 and
its interaction with CXCR4 promotes migration from
neurospheres derived from E17 embryonic or adult mouse
NPCs (Robin et al., 2006) Figure 1A shows neurosphere
cultures at 5 days in vitro and Figure 1b and c indicates
neuroblast and immature neurons derived from them.

Chemokines are small chemotactic cytokines that interact
with specific G-protein coupled receptors (CCR., CXCR,
CX3CR, CR) and regulate leukocyte or immune cell trafficking
to damaged areas of the CNS (Asensio and Campbell, 1999).
Proinflammatory cytokines act as neuromodulators/
neurohormones, and they can regulate processes such as
synaptic transmission (Banisadr et al., 2011), migration, and
NPC proliferation by providing autocrine/paracrine survival
signals (Rostene et al., 2007); Figure 2 shows all regulators of
CXCR4. For instance, other BRAK/CXCL14 chemokines also
regulate synaptic transmission in the adult dentate gyrus
(Banisadr et al., 2011). The chemokine BRAK (CXCL14) is an
ancient member of the chemokine family whose functions in
the brain are completely unknown. CXCL14 is a small cytokine
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belonging to the CXC chemokine family that is also known as
BRAK (for breast and kidney expressed chemokine).
Chemokines can also regulate the capacity to adapt migratory
patterns in response to changes in the surrounding
environment (Otto et al., 2002; Hallbergson et al., 2003; Ji et al.,
2004b; Bye et al., 2012). Neurogenesis via the CXCR4/
CXCL12 interaction, and that provoked by other chemokines
(e.g., monocyte chemotactic protein 1 [CCL2] [Li et al., 2008]),
induces the migration and differentiation of NPCs within the
SVZ in periinfarct areas following cerebral ischemia (Arvidsson
et al., 2002; Zhang et al., 2002; Ni et al., 2004; Robin et al., 2006;
Ohab et al., 2006; Liu et al., 2008). However, chemokines such
as CXCL12 or CX3CL1/fractalkine can promote NPC
quiescence (qNPC) (Krathwohl and Kaiser, 2004a,b), as well in
hematopoietic stem cells (HSCs; Broxmeyer et al., 2003).

Do NPCs Promote Functional Recovery in Neurogenic
Areas Following CNS Insult?

The transition from quiescence to self-renewal or
differentiation is a response to specific cues or factors (Kiel and

Morrison, 2008; Christie and Turnley, 2013). For example, two
weeks after injury, newly-generated neuroblasts re-route from
the SVZ and RMS to the lesion, where they can differentiate to
form mature neurons in rodents (Lindvall et al., 2004; Kokaia
et al., 2012; Kokaia and Lindvall, 2013). These SVZ-derived
neuroblasts can replace damaged neurons in the hippocampus,
striatum, and neocortex (Takasawa et al., 2002; Jin et al., 2005;
Tonchev et al., 2005; Kuge et al., 2009), and they can
differentiate into neurons, oligodendrocytes, or astrocytes.
The NPCs that originate in the SGZ can be identified by a
combination of brain lipid binding protein (BLBP), nestin and
glial fibrillary acidic protein (GFAP), and most NPCs express
the markers Nestin and Sox2 (Ilieva and Dufva, 2013).
Subsequently, the majority of these NPCs differentiate into
immature doublecortin positive (DCXþ) neurons (or
neuroblasts) and mature NeuNþ neurons, which can integrate
into hippocampal networks as fully functional neurons (Bye
et al., 2012; Lacar et al., 2012).

The SVZ is a three-dimensional interconnected niche that is
made up of three major cell types (Lacar et al., 2012). The
formation and proliferation of NPCs is dependent on the Sox

Fig. 1. (A) SVZ Neurospheres after 5 days of differentiation in primary culture. Phase-contrast image of neurosphere with cells invading the
space between them. (B,C) Neuroblasts and immature neurons in vitro at 5 days of culture.
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gene family, in particular Sox2 (Andreu-Agullo et al., 2011).
Neuroblasts (DCXþ type A cells) are organized into a network
that is ensheathed by the processes of qNSCs (nestinþ and
GFAPþ type B cells) and that arises from rapidly amplifying
NPCs (Nestinþ and GFAPþ type C cells (Kim et al., 2007;
Leong and Turnley, 2011; Saaltink et al., 2012).

In the adult SVZ, NPCs are associated with ependymal and
vascular niches that regulate stem cell self-renewal and
differentiation. Activated type B stem cells and their progeny
(Lacar et al., 2012), the transitory amplifying type C cells,
express epidermal growth factor receptor (EGFR) (Abhold
et al., 2012), and are most strongly associated with vascular
cells (Miller and Gauthier-Fisher, 2009). Adult qNSCs (type B
cells) in the SVZ and subgranular zone (SGZ) share basic
properties with embryonic radial glia (RG: Miller and Gauthier-
Fisher, 2009), and upon transplantation into neurogenic areas
of the adult brain (the hippocampus and (OB), these NPCs can
differentiate into new neurons in response to local signals
released by neurons following CNS insult (Carbajal et al., 2010;
Bye et al., 2012).

The development of the CNS requires the formation of
numerous, precise connections between neurons and their
targets. Newly born neurons from the neocortex can
undertake radial migration through the embryonic cortex,
whereas tangential migration is a glial-guided process of
neuronal translocation that occurs throughout the developing
brain but that only persists in the RMS of adult brains
(Boldajipour et al., 2008; Christie and Turnley, 2013). These
neuroblasts migrate long distances from the SVZ to the
olfactory bulb through a glial tunnel formed by astrocytes

(Snapyan et al., 2009; Fig. 3). Both actively dividing type B and
type C cells are closely associated with the vascular niche in the
SVZ (Shen et al., 2008; Tavazoie et al., 2008). Rapidly dividing
type C cells give rise to type A neuroblasts, progenitors that
divide as they migrate, usually in cell chains. In the dorsal SVZ,
neuroblast chains often run parallel to blood vessels in the
direction of the RMS (see Fig. 3: Shen et al., 2008; Tavazoie
et al., 2008) and the OB (Snapyan et al., 2009). Upon arrival at
the OB, neuroblasts switch to radial migration in order to
reach their final destination. However, a cortical injury may

Fig. 2. Molecular modulators of CXCR4/CXCR7 chemokines in neuronal repair and neuroblast recuruitment. SDF1 Alpha (CXCL12) can
induce NPCmigration at low concentrations while favoring cell adhesion via EGF and the alpha 6 integrin (at high CXCL12 levels). Cytokines/
chemokines regulate NPCmigration through autocrine/paracrine mechanisms. In addition, erythropoietin (EPO) or nitric oxide release (NO)
release also regulate CXCR4/CXCL12 axis. Finally, CXCL12 activity requires G-coupled proteins and its availability may be modulated by its
binding to CXCR7. For instance, hypoxia increases CXCR4/CXCL12 levels (left part) while CXCL12 can induce p-akt or p-ERK cascades
(CXCR4þ) (left part) or activate other signaling pathways in cardiomyocytes (Jak/Rho/PKC, right part). CXCL12/CXCR4 signal axis plays
pleiotrophic effects (right part). Molecular CXCR4/CXCR7 regulators (upper part).

Fig. 3. Scheme of the neural cell migration process from the
Subventricular zone (SVZ) toward the olfactory bulb (OB).
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change the migration patern switching it from tangencial to
radial migration (Goings et al., 2004).

In the CNS, CXCL12 chemokine directs migration to the
cerebellum (Ma et al., 1998) or granular cell layer (Lu et al.,
2000; Bagri et al., 2002; Tran et al., 2007). In addition, CXCL12
signaling is required for the maintenance of Cajal-Retzius cell
position in the marginal zone during normal cortical
development (Paredes et al., 2006; Berger et al., 2007). The
CXCR4/CXCR7/CXCL12 axis also directs cortical neuronal
migration (Tham et al., 2001; Stumm et al., 2003; Li et al., 2008;
L�opez-Bendito et al., 2008; Tiveron and Cremer, 2008);
CXCL12 is overexpressed by GABAergic neurons from the
SVZ GABAergic neurons from the SVZ (Bhattacharyya et al.,
2008; Casoni et al., 2012). Indeed, ectopic migration in the
granular cell layer occurs in transgenic mice lacking CXCR4 (Lu
et al., 2002). CXCR4 is expressed by dividing NPCs from the
SGZ, as well as by their derivatives, including doublecortin-
expressing neuroblasts and immature granule cells
(Bhattacharyya et al., 2008). CXCL12 induces post-synaptic
transmission in parvalbumin-containing GABAergic
interneurons (basket cells from the dentate gyrus). CXCL12
was located in the synaptic vesicles of basket cells and inGABA-
containing vesicles, which suggests that CXCL12 regulates the
strength of the GABAergic inputs to the pool of dividing neural
progenitors from the dentate gyrus (Bhattacharyya et al.,
2008), and that CXCL12 signaling directly regulates the
migration of neuroblasts within the RMS (Kokovay et al., 2011).
Axonal processes from differentiated neurons are guided to
their targets by families of repellent and attractant signaling
molecules (Tessier-Lavigne and Goodman, 1996; Yu and
Bargmann, 2001). Interestingly, CXCL12 plays an important
role in modulating axonal responsiveness to several guidance
cues through CXCR4 and a cyclic nucleotide-dependent
(AMPc) signaling pathway (Chalasani et al., 2003a,b).

Chemokines like CCL2 direct the migration of NPCs in
neuroinflammatory conditions (Belmadani et al., 2006). The
CXCR4/CXCL12 chemokine attracts HSCs (hematopoietic
stem cells) to pass from the blood to the bone marrow, and it
retains stromal cells within the bone marrow niche (Voermans
et al., 2001a,b; Chute, 2006; Chu et al., 2007; Rose et al., 2008).
CXCL12-induced progenitor migration in hematopoietic
progenitor cells bearing CXCR4 chemokine receptor
(Voermens et al., 2001a). Stromal cell secretion of CXCL12
creates a gradient that leads to actin polymerization and
integrin overexpression, resulting in chemotaxis toward the
source of the CXCL12 (Voermans et al., 2001a,b).

Protective actions mediated by immune cells though
chemokine release could regulate responses in the neural
microenvironment that promote tissue repair in damaged
areas of the CNS (Klein and Rubin, 2004; Giusto et al., 2013).
On the other hand, through CXCL12 release, the CXCL12–
CXCR4 axis regulates the recruitment of endothelial
progenitors (CD34þ) during inflammation (Modle et al., 1998;
Jo et al., 2000). In this context, CXCL12 might enhance the
immune and CNS systems during immune and CNS
development, favoring their co-ordinated activity (Klein and
Rubin, 2004).

Does CXCL12 Regulate the Adherence of NPCs to Blood
Vessels and/or Their Migration Along Chemotactic
Gradients?

Through different signaling pathways, CXCL12 is involved in
regulating quiescence, activation, migration, and homing
(Krathwohl and Kaiser, 2004a,b; Wong and Korz, 2008).
CXCL12 regulates stem cell migrations that occupy and leave
niches in different vascularized parenchymal regions of the
CNS. In normal conditions, the cells in these niches can be co-
opted to enhance repair when NSCs home to the vasculature

through an CXCL12/CXCR4 dependent mechanism. NPCs
can become integrated when transplanted into the adult SVZ
or hippocampus, and they generate neurons via CXCL12 (Gage
et al., 1995; Belmadani et al., 2005), as well as binding
preferentially to endothelial cells in function of a chemotactic
gradient (Warner et al., 2008).

CXCL12 is a chemoattractant for cortical neurons and
meningeal cells (Borrell and Marín, 2006), although it also
induces cortical migration (Tham et al., 2001; Lazarini et al.,
2003; Stumm et al., 2004; Tissir et al., 2004; Daniel et al., 2005).
Indeed, CXCL12 promotes NPC migration within the SVZ
along endothelial cells depending on the available CXCL12 and
CXCR4 (Zhu et al., 2002). CXCL12 is secreted by meningeal
cells and acts as a chemotactic factor for NSCs in the external
cerebellar granular layer, as well as for NPCs (Reiss et al., 2002)
and hematopoietic precursors (Aiuti et al., 1997). Interestingly,
CXCL12 deficiency induces ectopias in the cerebellum,
suggesting that perhaps CXCL12 chemotactically attracts
neuronal cells isolated from the cerebellar external granular
layer (EGL), but not from the internal granular cell layer (IGL)
(Reiss et al., 2002). These CXCL12 mediated chemoattractant
effects were abolished by removal of CXCL12 from
conditioned media by immunoprecipitation, and they could be
restored by the addition of recombinant CXCL12 (Reiss et al.,
2004). These findings indicate the relevance of the
chemoattractant capacity of CXCL12 for neurons (Reiss et al.,
2004).

CXCL12 and CXCR4 are involved in actin reorganization
and the cell migration mediated by endothelial progenitor cells
after PAR-1 activation (Smadja et al., 2005). CXCL12 is the
most important chemoattractant for hematopoietic stem/
progenitor cells (Aiuti et al., 1997; Kucia et al., 2005) since
CXCR4 blockade by AMD3100 (a chemokine blocker), or
CXCR4 knockdown by siRNA CXCR4, effectively blocks
homing of activated type B and type C cells to blood vessels
(Aiuti et al., 1997; Kucia et al., 2005). Cells expressing CXCL12
are found in the SVZ and they express the PCNA cell-cycle
marker. Indeed, proliferating CXCL12 cells co-localize with the
nuclear Cux1/2 marker exclusively in the SVZ/IZ and cortex
(Tiveron et al., 2006; Cubelos et al., 2008), and they play a role
in cortical migration and dendritogenesis (Nieto et al., 2004
Cubelos et al., 2010). Collectively, these findings demonstrated
the relevance of CXCR4/CXCR7 (SDF1) alpha chemokines in
neuronal migration (Wang et al., 2011).

How do Niche-dependent CXCL12 Levels Induce
Stem-cell Differentiation and Adhesion, and Promote
Cell Migration after CNS Damage?

Curiously, high CXCL12 levels in the ependymal layer could
help induce quiescence, as occurs in vascular cells (Siegenthaler
and Pleasure, 2010). The differential CXCL12 gradient could
regulate NPC quiescence when CXCL12 is abundant,
especially since CXCR4 can induce fast desensitization and
internalization of this alpha chemokine receptor (S�anchez-
Martín et al., 2013). Conversely, low CXCL12 levels induce
differentiation and proliferation in the SVZ (Dar et al., 2005;
Lapidot et al., 2005). In fact, CXCL12 strongly upregulates
EGFR (epidermal growth factor receptor) and alpha6 integrin
in activated type B and type C cells, enhancing their activated
state and their ability to bind laminin in the vascular niche
(Siegenthaler and Pleasure, 2010: Fig. 4). Once SVZ type B stem
cells become activated and express EGFR, they are chemically
attracted to the surface of blood vessels. It is seems that the
upregulation of EGFR in activated type B cells by CXCL12
favors chemotaxis (Porcile et al., 2005; Abhold et al., 2012).
CXCL12 can induce SVZ migration via EGFR since crosstalk
between EGFR and CXCR4 signaling promotes proliferation
(Porcile et al., 2005; Guo et al., 2007). Thus, CXCL12 increases
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the motility of type A neuroblasts and induces NPC migration
from the SVZ toward the OB (Kokovay et al., 2010;
Siegenthaler and Pleasure, 2010). Consequently, CXCL12
regulates progenitor cell occupancy and exit from the adult
SVZ through its activity within vascular niches (Siegenthaler
and Pleasure, 2010; Fig. 4).

Alternatively, CXCL12 is concentrated by heparan sulfate
proteoglycans (Amara et al., 1999; Netelenbos et al., 2003) and
LFA-1 (lymphocyte function associated antigen-1), as well as by
other cell adhesion molecules involved in CXCL12 triggered
proadhesive interactions in T lymphocytes (Wu et al., 2012).

Regulation of integrin activity maintains the ability of
lymphocytes to adhere quickly at sites of infection or
inflammation (Wu et al., 2012). Indeed, quiescent type B NSCs
are the only cell type that do not display chemotaxis toward
CXCL12 or endothelial cell-conditioned medium. However,
activated B cells remain in close proximity to blood vessels in
the SVZ, and particularly C cells, while type A cells migrate
toward the OB (Miller and Gauthier-Fisher, 2009). In this
context, chemokines like IL-8 or CXCL12 induce the
recruitment of human NPCs across brain endothelial cells
(Weiss et al., 2010). In addition, CXCL16 induces migration
and invasion by glial precursor cells via its CXCR6 chemokine
receptor (Hattermann et al., 2008).

Both ependymal and vascular cells provide important factors
for NPC regulation. Noggin (expressed by ependymal cells)
induces neurogenesis (Lim et al., 2000) and PDGF (secreted by
both ependymal and blood vessels) supports self-renewal
(Ramirez-Castillejo et al., 2006). Interestingly, only activated
type B and type C cells that are dividing are enriched near blood
vessel surfaces (Tavazoie et al., 2008). In fact, the ependymal
niche harbors quiescent stem cells, while the vascular niche
regulates the transit-amplifying type C cells and type A
neuroblasts, which are more strongly attracted to endothelium-
derived factors than are quiescent stem cells (Fig. 4)

On the other hand, CXCL12 stimulates type A cells in the
SVZ to move toward blood vessels and these type A cells are
not normally as close to the vascular surface as activated type B
and type C cells. Although type A cells are chemically attracted
to endothelial factors, their migratory capacity is less effectively
blocked by AMD3100 (a CXCR4 antagonist), suggesting that
additional chemoattractant(s) are required for NSC homing to
endothelial cells in the SVZ (Miller and Gauthier-Fisher, 2012;
Tavazoie et al., 2008). Moreover, CXCL12 upregulates alpha 6

integrin expression on activated type B and type C cells, albeit
less so on type A cells. These differential effects on type A, B or
C cells may explain how stem cell trafficking of NPCs toward
blood vessels is mediated through an CXCL12 gradient. Thus,
certain concentrations of CXCL12 could promote type A
egression andmigration from the vascular niche toward theOB
(Snapyan et al., 2009). In this respect, it is important to
elucidate how CXCL12 stimulates CXCR4 signaling pathways
and NPC migration, issues that are discussed below.

Which Signaling Pathways are Involved in CXCL12
Proliferative Effects in NPC?

The coupling of CXCR4 to different intracellular pathways
depends on its activation by its ligand CXCL12 (Khan et al.,
2003). Thus, we will briefly describe the cascades involved in
CXCL12-mediated NPC proliferation in vitro (i.e., PI-3 kinase/
Akt, JAK/STAT pathways, or FOXO-3 activation; Fig. 5).

CXCL12 induces NPC migration through Akt-1 and
FOXO3a phosphorylation

It is known that the PI3K/Akt-1 pathway contributes to the
proliferation or self-renewal of embryonic stem cells (Paling
et al., 2004) andCXCR4 activation regulates secondmessenger
activity through Gi-Go GTP-binding proteins, since PTX (an
inhibitor of G proteins) decreased CXCL12-induced NPC
proliferation in vitro (Wu et al., 2004). It has been shown that
the CXCR4/G protein/PI3K-Akt pathways are responsible for
CXCL12-mediated NPC proliferation (Fig. 5), through the
phosphorylation of Akt-1 and FOXO3a (Wu et al., 2009; Yumei
et al., 2009). Several studies in vitro reported that CXCR4
activation by CXCL12 induces neuronal survival through Akt
phosphorylation (activation) and that this can also regulate cell-
cycle proteins in post-mitotic neurons (e.g., Retinoblastoma;
Rb: Khan et al., 2003, 2008). Akt-1 (a serine/threonine kinase) is
a downstream target of PI3K, a kinase known to regulate the
survival and proliferation of various cell types, including NPCs
(Nakamura et al., 2000; Chang et al., 2003; Brunet et al., 2009).
The transcription factor FOXO3a (a downstream target of
Akt-1) is directly associated with CXCL12 mediated human
NPC proliferation. FOXO3a is one of the FOXO subclass of
Forkhead transcription factors (Forkhead box, class O:
Birkenkamp et al., 2007) and CXCL12 increases the
phosphorylation of Akt-1 and FOXO3a (Wu et al., 2009). As a
major substrate of Akt-1, FOXO3a plays a critical role in
coordinating cell survival or cell death reponses (Nakamura
et al., 2000; Birkenkamp et al., 2007). Thus, one way in which
Akt-1 may promote cell survival and proliferation is through
FOXO3a phosphorylation (Yang et al., 2008b). CXCR4
antagonist (T140) or inhibitors for G proteins (pertussis toxin,
PTX) and PI3K (LY294002) abolished CXCL12-mediated NPC
proliferation and phosphorylation of Akt-1 and FOXO3a (Wu
et al., 2004, 2009). In conclusion, CXCR4 activation by
CXCL12 is coupled to G proteins and p-Akt regulates the
proliferative effects of CXCL12 on NPCs in vitro (Fig. 5).

The role of PI3K (p110a and p110b catalytic subunits) in
NPC migration via CXCR4/CXCL12 signaling

The two catalytic subunits of PI3K, p110a and p110b, are both
activatedbyEGF(epidermalgrowth factor)CXCL12invitro, and
theb isoformof PI3K is responsible forNPCmovement toward
chemoattractants. PI3K (p110b) is activated by CXCL12 in
NPCs and its activity is necessary for immature interneuron
migration to the cerebral cortex. However, p110b was not
necessary for pyramidal neuron migration, suggesting that the
dependence of migration on p110b is cell type and/or
chemoattractant dependent in vivo (Holgado et al., 2013).

Fig. 4. (A) Stem cell niche quiescent B cells (Bq) are in a
subependymal position with their apical process contacting the
ventricular space. (B) Once activated (Ba), these cells generate
transiently amplifying C cells positioned in close proximity to blood
vessels. Both the ependyma and vessels express SDF1 alpha
(CXCL12), which regulates proliferation through EGFR and cell
ahdhesion (a6b1, integrin). C cells generate A cells, which them
migrate toward the olfactory bulb (OB) through the rostral
migratory stream (RMS).
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CXCL12 and JAK/STAT or FAK signaling in NPCs

NPCs respond toCXCL12 by activating the JAK (Janus kinases),
PI3K and ERK-1/2 pathways, all signaling cascades associated to
CXCR4 in cells of the immune system but also, in NPCs in vitro
(Vila-Coro et al., 1999; Balabanian et al., 2005; Schabath et al.,
2006; Guillermet-Guibert et al., 2008; Fig. 5). Jaks are a small
family of cytoplasmic tyrosine kinases, critical for signaling by
Type I and II cytokine receptors. The JAK/STAT pathway is
another pathway activated by CXCL12 in NPCs in vitro
(Holgado et al., 2013; Fig. 5) and NPC proliferation and
differentiation are differentially regulated by the Jak pathway (Jin
et al., 2005, 2006). CXCL12 induced JAK2 activation and
STAT5b association to CXCR4. CXCL12-induced NPC
migration is blocked by the JAK2 Inhibitor II or the pan-JAK
inhibitor (AG490), as reported for T cells (Soriano et al., 2003).
In fact, Jak2 regulates NPC proliferation and maintenance,
whereas silencing of JAK3 signaling is essential for NPC
differentiation into neurons and oligodendrocytes (Kim et al.,
2007, 2010). Moreover, STAT3 activation in NPCs leads to
astrogliogenesis (Peng et al., 2012; Chen et al., 2013) and indeed,
after CXCL12 binding, JAK2 and JAK3 associate with CXCR4
and are activated (Vila-Coro et al., 1999). Activation of the JAK/
STAT pathway by other chemokines has been described,
including CCR2 (Mellado et al., 1998), CCR7 (Mellado et al.,
2003; Stein et al., 2003) CCR5 (Wong and Fish, 1998;Wong and
Korz, 2008) and CXCR4 (Vila-Coro et al., 1999).

Although the JAK/STAT pathway was activated following
CXCL12 stimulation of NPCs, JAK activity was not necessary
for NPC migration in vitro. Interestingly, JAK2 or JAK3

deficiency does not alter the CXCL12 responses in immune
cells (Moriguchi et al., 2005). It has also been suggested that JAK
is necessary for CXCL12-mediated STAT recruitment (Ahr
et al., 2005). Interestingly, CXCL12 might require the JAK/
STAT pathway to trigger neural precursor differentiation
induced by IL-6 (Miller and Gauthier, 2007).

ERK-1/2 is another cascade involved in cell migration
(Delgado-Martin et al., 2011), connecting the PI3K and MAPK
signaling pathways (Lopez-Ilasaca et al., 1997; Bondeva et al.,
1998; Gong et al., 2006). ERK-1/2 activation occurs in NPCs
treated with TGX-221 in vitro (a p110b inhibitor), suggesting
that some crosstalk could exist between these two signaling
cascades. In fact, CXCL12-mediated NPCmigration decreased
after treatment with a specific ERK-1/2 pathway inhibitor,
while p110b knockdown blocked CXCL12-induced migration
(Holgado et al., 2013). Collectively, these findings indicate that
several signaling cascades are involved in the influence of
CXCL12 on NPCmigration (CXCR4þ; Khan et al., 2003; Peng
et al., 2004; Fig. 5).

Another cue regulating NPC migration is the homing
cascade that determines cell adhesion to brain endothelial cells
and transendothelial migration for cell repair (Cui et al., 2007).
In this context, metalloproteases (MPP2/9) regulate the
trafficking of stem cells (Son et al., 2006). Since the CXCR4/
CXCL12 axis mediates active MMP9 and MMP2 secretion in
different cell types (Yu et al., 2003; Chu et al., 2007), the
chemotaxis seems to be regulated MMP and CXCR4 in vitro
(Cui et al., 2007). Accordingly, we must consider how MPP2/9
activation contributes to the regulation of chemokine activity
(Mastroianni et al., 2011).

Fig. 5. CXCR4 signaling pathways. CXCR4 induces chemotaxis via Cdc42/Rac or p-ERK 1/2 cascade (right part). Foxo3a and akt
phosphorylation promotes survival in NPC bearing CXCR4 chemokine receptor. CXCL12 plays an essential role in modulating axonal
responsiveness to several guidance cues through a cyclic nucleotide-dependent signaling pathway (AMPc). Chemokines also mediates
chemotaxis via STAT-2/JAK cascade. Clatrin mediates endocytoses (CXCR4þ cells). AMD3100 (a CXCR4 chemokine blocker) blocks
CXCL12-induced migration in NPC.

JOURNAL OF CELLULAR PHYSIOLOGY

R O L E O F C X C R 4 / C X C R 7 C H E M O K I N E S I N N E U R O N A L M I G R A T I O N 33



Does Chemokine and Metalloprotease Activity Regulate
NPC Migration Toward Damaged Areas of the CNS?

MMPs are a family of metalloendopeptidases that cleave the
protein components of the extracellular matrix (ECM) under
pathological conditions (Mastroianni and Liuzii, 2007).
However, these proteins can also promote tissue repair,
remodeling or neurogenesis (Canete-Soler et al., 1995a,b).
MMPs are members of the Zn-dependent endopeptidase family,
and their expression is transcriptionally controlled by
proinflammatory cytokines (cytokines or chemokines), growth
factors, hormones, and cell–cell and cell–matrix interactions
(Van den Steen et al., 2002; Nagase, 1997). It is noteworthy that
MMP-2 activation cleaves CXCL12 into a neurotoxic isoform
(the truncated SDF-1 (5–67) that reduces NPC proliferation
(Zhang et al., 2003; Barkho et al., 2008; Lum et al., 2009; Peng
et al., 2013; Fig. 2). CXCL12 induces CXCR4 activation and
promotes NPC migration by activating ERK1/2 and Akt-1,
decreasing cAMP levels (Peng et al., 2013; Holgado et al., 2013).
However, its SDF-1 (5–67) truncated form (generated by
metalloprotease MMP2/9) fails to induce NPC migration and it
does not activate these signaling pathways (Peng et al., 2013).
Interestingly, activation of CXCR4 by CXCL12 depends on two
domains located at the N-terminal of this alpha chemokine
receptor (PepC-C: KPVSLSYRCPCRFFESHIARA). This
synthetic peptide upregulates CXCL12 expression in vivo and in
vitro, promote chemotaxis of neuroblasts in vivo, and stimulate
chemotaxis and proliferation of CXCR4þ cells in vitro, without
affecting NSC fate (Filippo et al., 2013). Thus, post-translational
CXCL12 cleavage byMMP-2 generate a neurotoxic SDF-1 (5–67)
form that could reduce NPC migration and induce
neurotoxicity (Peng et al., 2000, 2012; Zhang et al., 2003).
Conversely, the Metalloproteinase 17 (ADAM17), also known
as Tumor necrosis factor-a Converting enzyme is primarily
involved in CXCL12-induced shedding from neurons in vitro
(Simizu et al., 2010). Moreover, CXCL12 can provoke the
cleavage of other chemokines, like fractalkine (CX3CL1, a delta
chemokine), by enhancing ADAM17 expression in cortical
neurons in vitro. Thus, CXCL12 regulates the expression of
ADAM17 rather than directly stimulating its enzymatic activity
in cortical neurons in vitro suggesting that MMP activation
regulates CXCL12 levels in neural cells (Simizu et al., 2010).

HowdoMetalloproteasesControl theTrafficking of Stem
Cells Through CXCR4/CXCL12 Chemokines?

Circulating stem cells release factors that enable them to cross
the endothelial barrier and home to an organ (e.g., MMP2 or
MMP9: Kucia et al., 2006). Several studies have demonstrated
that MMPs regulate the chemotaxis of progenitor cells through
the CXCR4/CXCL12 axis. In fact, MMPs play a role in the
CXCL12/CXCR4-induced chemotaxis of human
hematopoietic progenitor cells across subendothelial
basement membranes, a process that is blocked by MMP
inhibitors (Janowska-Wieczorek et al., 2000). Indeed, the
intracerebral injection of recombinant human CXCL12
stimulates the homing of transplanted bone marrow stromal
cells (BMSCs) to the site of injection in the brain (Jin et al.,
2006). Since CXCL12 enhances the chemotaxis of bone
marrow and blood CD34 (þ) cells (Mohle et al., 1998), and this
chemotaxis can be blocked by inhibitors of MMPs (Lin et al.,
2013; Chambon et al., 2013), these findings indicate that the
activation of metalloproteases regulates the chemotaxis of
progenitor cells via the CXCR4/CXCL12 axis.

Nitric Oxide (NO) and CXCL12 Regulation: A Role in
Repair?

NO produced by eNOS (endothelial nitric oxide synthase)
plays a role in angiogenesis and vascular remodeling, and eNOS

is also essential for the mobilization of stem and progenitor
cells (Aicher et al., 2003), as well as promoting neurogenesis/
repair in rodent models of stroke (Zhang et al., 2004; Chen
et al., 2005). Interestingly, CXCL12-induces chemotaxis in
T cells by a mechanismmediated by NO signaling (Aicher et al.,
2003). In fact, the CXCL12/CXCR4 axis mediates the DETA-
NONOate ([Z]-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)
aminio] diazen-1-ium-1,2-diolate) enhancement of BMSCs for
CNS repair, along with MMP9, by increasing CXCL12 and
Angiopoietin 1 (Ang1) levels in the SVZ: Zacharek et al., 2006,
2007; Cui et al., 2007). This evidence indicates that NO donors
significantly enhance CXCL12-induced cell migration in rodent
models of cerebral ischemia (Cherla and Ganju, 2001; Ji et al.,
2004a; Zhou et al., 2007). Since CXCR4 blockade or MMP
inhibition significantly attenuate DETA-NONOate-induced
BMSC migration, CXCR4 and MMP appear to fulfill a crucial
role of in the control of NPC migration (Ciu et al., 2007).
Indeed, a higher density of secreted MMP9 was evident in SDS-
polyacrylamide gel electrophoresis zymography after DETA-
NONOate treatment of synergic BMSCs, suggesting that
chemokines and MMPs regulate the chemotaxis of progenitor
cells. In consonance with this hypothesis, AMD3100 (a CXCR4
chemokine blocker) or GM6001 (an MMP inhibitor)
significantly attenuated DETA-NONOate-induced BMSC
adhesion to mouse brain endothelial cells (MBECs) or
astrocytes (Ciu et al., 2007).

Erythropoietin (EPO) Regulates CXCR4 (CXCL12)
Levels Through Specific Signaling Pathways

This glycoprotein and its cognate receptor, EPOR, offer
protection against insults in theCNS, and EPO is another factor
that regulates CXCR4/CXCL12 expression (Keswani et al.,
2005; Tsai et al., 2006; Liao et al., 2008; Chamorro et al., 2013).
Since EPO promotes neurogenesis and can induce neuroblast
migration from the SVZ toward the OB after CNS damage
(Shingo et al., 2001; Chen et al., 2007; Ransome and Turnley,
2007), it may fulfill a fundamental therapeutic role in cerebral
ischemia by regulating CXCR4/CXCL12 levels (Wang et al.,
2004; Avasarala and Konduru, 2005; Xiong et al., 2007; Brunner
et al., 2009).

Ischemic stroke is an example of a CNS pathology where
chemokines promote angiogenesis and NPC recruitment
(Amantea et al., 2009; Merino et al., 2011; 2013). Stroke is one
of the major causes of disability in adults, and is the result of
cerebral artery occlusion and blood-brain barrier dysfunction.
During the initial phase of cerebral ischemia, inflammatory
responses, gliosis, and microglial overactivation occur,
provoking an increase in NO and ROS production that leads to
neurodegeneration (Zhang et al., 2001; Itoh et al., 2009;
Chaturvedi and Kaczmarek, 2013). In the neurovascular niche,
MMPs secreted by endothelial cells can breakdown the tight
junctions between astrocytes and the endothelium (Venstrom
and Reichardt, 1993; Asahi et al., 2001; Ohab et al., 2006;
Reuter et al., 2013).

Interestingly, CXCR4 and MMP9 expression can induce
both beneficial (Liu et al., 2012) or detrimental effects in the
developing and adult brain (Kim et al., 2006; Liu et al., 2008) or
spinal cord (Pannu et al., 2007). Since inflammation is
detrimental for neurogenesis (Ekdahl et al., 2003) and IL-8,
CCL-2, CCR5, leukotriene B4 -LTB4-, and CXCL1-
chemokines or cell adhesion molecules (ICAM, Selectin,
CD11/CD18 integrins) induce leukocyte recruitment toward
damaged CNS areas (Kim, 1996; Kang et al., 2012; Ma et al.,
2012), it is important to elucidate how EPO regulates
chemokines to guide NPC migration from the SVZ toward the
damaged CNS and promote repair (Bye et al., 2012). This
feature might be important from a therapeutic view point
because TPA (the recombinant tissue plasminogen activator;
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a thrombolytic factor) is currently the only clinical agent
approved for stroke therapy (Saver et al., 2013).

It is also crucial to study the pathways bywhich EPO signaling
induces chemokine-dependent NPC migration. In this context,
NSCs respond to injury by secreting CXCR4/CXCL12, and the
cytokines IL-1 Beta, IL-6, TNF-a, IL-4, and IL-10 (Filippo et al.,
2013). Cytokine-mediated deployment of CXCL12 induces
revascularization through the recruitment of CXCR4þ
hemangiocytes (Jin et al., 2006). Since rhEPO-activated
endothelial cells enhance NPC migration by secreting MMP2
and MMP9, and by PI3K/Akt activation in vitro, Akt could
mediate EPO-induced neuroprotection following insult.
However, EPO also induces ERK1/2 signaling, as well as MMP2
and MMP9 secretion (Wang et al., 2006). Since rhEPO-treated
MBEC supernatants (conditioned medium) promote the
migration of NPCs, an effect that is abolished by MMP
inhibitors, EPOmight also regulate NPCmigration (Asahi et al.,
2001; Wang et al., 2004, 2008). Moreover, EPO induces the
phosphorylation of FOXO3a via the PI3K/Akt cascade and it
leads to the proteolysis that retains it in the cytoplasm by
binding to 14-3-3 protein (Chong and Maiese, 2007). It is
noteworthy that the protection mediated by EPO against
insults in vitro occurs through 3 PI-kinase/Akt activation and
NO release. NO generated by nNOS also triggers the release
of EPO following insult, and this is prevented by (TRIM) a
specific neuronal nNOS inhibitor in vitro (Keswani et al., 2004).
In fact, the beneficial effects of rhEPO on post-ischemic
progenitor migration are potentially mediated via MPP2 and/or
MPP9 secretion, as well as by the phosphoinositol-3-kinase/
Akt1 (Cai and Semenza, 2004; Fig. 2) and ERK1/2 signaling
pathways (Wang et al., 2006). However, PI3K/Akt and the
ERK1/2 inhibitors attenuated the rhEPO-induced MMP2 and
MMP9, which suppressed NPC migration promoted by the
rhEPO-activated MBECs (Wang et al., 2006). Therefore, EPO-
inducedNPCmigration was dependent onMMPs in endothelial
cells (Wang et al., 2006). The reparative role of EPO is
consistent with the reported neurite elongation and
neuroprotective role induced by peripheral administration of
EPO (Pankratova et al., 2012), which promotes neurogenesis,
oligodendrogenesis and neurovascular remodeling following
traumatic brain injury, and that has a favorable functional
outcome in rats (for review, Brettschneider et al., 2006; Kadota
et al., 2009). However, there are concerns about the potential
clinical use of EPO as it increases hematocrit at the doses
required for neurogenesis in rodent models (5000U/kg),
although this adverse effect was abolished by its Carbamylated
EPO derivate, which promotes proliferation in the SVZ/
dentate gyrus and the neuronal differentiation of adult NPCs
(Wang et al., 2006; Leconte et al., 2011), as well as SVZ-derived
oligodendrogenesis (Kako et al., 2012). Interestingly, in
cerebral models of ischemia enhanced homing of bone
marrow-derived progenitor cells through the CXCR4/
CXCL12 axis was induced by the neuroprotectant
cerebrolysin in cardiomyocytes (Brunner et al., 2009) and
neuronal cells in vivo and in vitro (Merino et al., 2009). Since
Increased Sca-1(þ) and CXCR4(þ) homing, and BMSC
mobilization, were directed toward an CXCL12 gradient in the
ischemic myocardium, these findings would support the notion
that EPO promotes protective effects via CXCR4/CXCL12
chemokines (Brunner et al., 2009; Gao et al., 2012).

How Differential CXCL12 Binding via CXCR4 and
CXCR7 Regulates NPC Migration/How Does CXCR4-
CXCR7 Crosstalk Regulate NPC Migration?

The expression of different chemokine receptors on the same
cell can lead to the formation of heterodimers that may
enhance or reduce the effects of the chemokines
(Percherancier et al., 2005). CXCR7 (RDC1) is the second

receptor for CXCL12, a receptor that fails to couple to classic
G-protein signaling pathways activated by chemokines (Ehrlich
et al., 2013). However, it remains unclear howCXCR7 acts as a
scavenger receptor to reduce the availability of CXCL12 for
CXCR4 or CXCR7 signaling in NPCs (Boldajipour et al., 2008;
Zhu et al., 2012). The chemoattractant properties of NPCs
from the SVZ vary in function of the CXCL12 concentration. In
fact, CXCL12 has an approximately 10-fold higher affinity for
CXCR7 than for CXCR4 (Bakondi et al., 2011; Costantini et al.,
2013) and, while CXCR7 regulates the responses to CXCL12
in culture cells, CXCR4 can form heterodimers with CXCR7
(Levoye et al., 2009). CXCR7 is a second and de-orphanized
CXCL12 receptor that mediates the anti-apoptotic signaling
effects of CXCL12 (Kalatskaya et al., 2009; S�anchez-Martín
et al., 2013). In this way, CXCL12 can signal through CXCR7 in
large populations of SVZ NPCs that express both these alpha
chemokine receptors (Zhu et al., 2012). Indeed, CXCL12
secreted by human CD133-derived multipotent stromal cells
promotes NPC survival by activating CXCR7 (Bakondi et al.,
2012).

Thus, the existence of a balance between CXCR dimers and
monomers at the membrane could explain why the CXCL12
axis promotes NPC or neuronal migration (Costantini et al.,
2013). CXCR7 is expressed by neurons, astroglia and vascular
cells in the forebrain, suggesting that CXCL12 may signal
through CXCR7 in large populations of neural cells
(Schönemeier et al., 2008). CXCR7 expressionwas found to be
regulated by the membrane level of CXCR4 (Wang et al.,
2008), although activated chemokine receptors are
desensitized (Lagane et al., 2005, 2008) and internalized before
they are subsequently degraded in the endosome or are
recycled back to the cell surface (Kucia et al., 2005a,b). Most
CXCR7 receptors are found in early endosomes (Wysoczynski
et al., 2005; Hartmann et al., 2008) and thus, the surface
expression of this chemokine appears to be regulated at the
translational level by modulating its intracellular transport and
incorporation into the membrane (at the post-translational
level: S�anchez-Martín et al., 2013). Ubiquitination may also
regulate CXCR7 trafficking to and from the plasma membrane
since CXCR7 is reversibly de-ubiquitinated upon CXCL12
recombinant exposure, and it can even be modulated by lipid
rafts (Merixell Canals et al., 2012). Since CXCR7 is expressed
at low levels in normal cells and CXCL11 (the ligand for
CXCR7) binds to CXCR7 but does not activate GPCR-
mediated downstream pathways (Balabanian et al., 2011), the
interplay between CXCR4 and CXCR7might affect the CXCR
available at the membrane (Balabanian et al., 2005; Ehrlich et al.,
2013). Thus, the balance between CXCR4/CXCR7 could
determine the effects of CXCL12 on NPC proliferation after
CXCL12 activation (Zhu et al., 2012). In fact, CXCR7 is rapidly
transferred to the plasma membrane, and it mediates CXCL12
endocytosis, as well as co-localizing with CXCR4 after
exposing NPCs to CXCL12 (Zhu et al., 2012).

CXCL12 protects NPCs from apoptotic challenges through
the CXCR7 and CXCR4-mediated endocytotic signaling
produced by the activation of ERK1/2 pathways (Zhu et al.,
2012). Activation of the CXCL12-CXCR4 pathway is crucial
for the migration of hematopoietic stem cells, various immune
cells, and malignant tumor cells. However, some differences in
their signaling pathways, in particular those involving the
expression of the CXCR4 and CXCR7 receptors on the cell
surface, could explain the differential influence of CXCL12.
While CXCR4 has one classical ligand, CXCL12, CXCR7
responds to both CXCL12 or Interferon-inducible T-cell alpha
chemoattractant chemokine I-TAC (C-X-C motif) ligand,
CXCL11. Thus, unlike CXCR4, CXCR7 competes with
CXCL12 and CXCL11 (Burns et al., 2006), and therefore,
CXCL12-mediated responses could potentially be modulated
by CXCL11 (Hartman et al., 2008). CXCL11 is also called
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Interferon-gamma-inducible protein 9 (IP-9) that is
chemotactic for activated T cells. This chemokine elicits its
effects on its target cells by interacting with the cell surface
chemokine receptor CXCR3, with a higher affinity than do the
other ligands for this receptor, CXCL9 and CXCL10
(Hartmann et al., 2008).

CXCL14, specifically binds to CXCR4with a high affinity and
it inhibits the CXCL12-mediated chemotactic responses of
human leukemia-derived cell line/CD34(þ) hematopoietic
progenitor cells. Thus, CXCL14 functions as a natural inhibitor
of CXCL12 (Tanegashima et al., 2013) and along with CXCR7,
it may modulate stem cell maintenance and immune responses
by regulating the CXCR4/CXCL12 responses (Tanegashima
et al., 2013).

Finally, CXCL12 can be regulated by hypoxia (Schioppa et al.,
2003), and the level of CXCL12 expression and its binding
affinity to particular receptors may decide the degree to which
the CXCL12/CXCR4 axis or the CXCL12/CXCR7 system
influences NPC proliferation (Virgintino et al., 2013). In this
context, the responsiveness of CXCR4 to the CXCL12
gradient may be positively modulated or primed by several
small molecules involved in inflammation, such as C3
complement cleavage fragments (Ratajczak et al., 2006;
Wysoczynski et al., 2007). The molecular explanation for this
phenomenon is based on the observation that C3 cleavage
fragments enhance the incorporation of CXCR4 into
membrane lipid rafts (Wysoczynski et al., 2005), thereby
inducing dimerization and promoting the association between
CXCR4 and downstream signaling molecules (Wysoczynski
et al., 2007). Interestingly, high CXCL12 and C3 cleavage
fragments levels in damaged tissues induce a chemoattractant
gradient, which is responsible for CXCR4þ stem cell
circulation (Wysoczynski et al., 2007). Indeed, the N-terminal
end of CXCL12 appears to be responsible for a positive
feedback loop that maintains a CXCL12 gradient that attracts
neuroblasts from the SVZ into an injury site (Filippo et al.,
2013).

Effects of Cytokines on Chemokine Release by NPCs

Cytokines and chemokines have been shown to alter NSC self-
renewal and progenitor cell differentiation, which is probably
mediated by JAK/STAT signaling and transcriptional activation
(Vitkovic et al., 2000; Hiroi and Ohmori, 2003; Das and Basu,
2008; Islam et al., 2009a). Soluble IL-6R (sIL-6R) binds IL-6 and
promotes trans-signaling (Taga and Kishimoto, 1997; Jones,
2013). IL-6 also induces differentiation of cortical precursor
cells into oligodendrocytes and can activate adult astrocytes
(Kahn and De Vellis, 1994). IL-6 induces the differentiation of
neural stem cells (NSCs) specifically into glutamate-responsive
neurons and two morphological astroglia cell types. In fact, IL-
6-activated neurogenesis is induced by the MAPK/CREB
(mitogen-activated protein kinase/cAMP response element-
binding protein) cascade (Islam et al., 2009a,b; Peng et al.,
2011). However, astrocyte differentiation is dependent on IL-6
family cytokine-mediated STAT3 (signal transducers and
activators of transcription protein-3) activation (Taga and
Kishimoto 1997; Taga and Fukuda, 2005).

Treatment of SVZ-derived NPCs with IFN g and TNF-alpha
(alone or in combination) augmented CXCL1, CXCL9 and
CCL2 chemokines but downregulated CCL19 (Turbic et al.,
2011). Neuronal differentiation was promoted by CXCL9,
CCL2, and CCL21, although astrocyte and total
oligodendrocyte differentiation was not affected. Conversely,
IFN g, CXCL1, CXCL9, and CCL2 promoted oligodendrocyte
maturation (Hiroi and Ohmori, 2003; Owens et al., 2005;
Suyama et al., 2005; Lum et al., 2009; Conductier et al., 2010;
Turbic et al. 2011) and TNF-alpha also increased CXCR4 and
CCR5 expression by astrocytes (Croitoru-Lamoury et al.,

2003). In addition, CCR7 was overexpressed in inflammatory
conditions (Gomez-Nicola et al., 2010) while chronic exposure
to LIF or CNTF altered the formation of NSC progeny and
promoted NSC self-renewal, events inhibited by leptin (Nakai-
Futatsugi and Niwa, 2013).

Chemokines and Cell Therapy in CNS Disorders

Hypoxic preconditioning of transplanted cells induces
neurogenesis following cerebral ischemia. A number of
engrafted-BMSCs induce chemotactic and trophic effects
CXCL12 dependent levels for cell repair (Kucia et al., 2006;
Brunner et al., 2009; Weiss et al., 2012). There is a connection
between fibroblast growth factor receptor 1 (FGFR-1)
activation andmacrophage recruitment, which is dependent on
CX3CL1 levels (Reed et al., 2012). In fact, macrophages
promote fibroblast growth factor receptors (FGFR)-driven
tumor cell migration and invasion in a CXCR2-dependent
manner (Bohrer and Schwertfeger, 2012). However, FGF has
also been shown to have a protective effect against insults by
exerting differential effects on neurons and glial cells. This
suggests that EGF/FGF can also regulate NPC proliferation
following insult, acting through regulatory chemokines
(Sanders et al., 2000; Hadjipanayi et al., 2012; Itkin et al., 2012).

Stem cells obtained from periodontal cells can respond to
chemokines and 90% of periodontal cells can undergo neuronal
differentiation, making them an accessible source of autologous
human adult SCs and highlighting their potential for preventing
CNS disorders (Widera et al., 2007). Transplantation of
BMSCs may be a new approach for brain repair although their
clinical use and the results of engraftment are still limited
(Dezawa et al., 2005; Kaplan et al., 2007). Chemokines can
direct BMSC migration toward damaged areas through
chemotactic gradients and, since efficient transfection induces
CXCR4 overexpression, BMSCs migrate rapidly toward

Chemokine/Cytokine Effect on neural precursor cells

IFN-g Reduces NSC proliferation and survival,
promotes differentiation and neurite
outgrowth (Wong et al., 2004; Bonaguidi et al.,
2005; Song et al., 2005; Lum et al., 2009)

IL-4 Increases oligodendrocyte precursors (Suyama
et al., 2005; Butovsky et al., 2006; Guan et al.,
2008; Lum et al., 2009)

TNF-a Inhibits neural progenitor differentiation
(Croitoru-Lamoury et al., 2003; Belmadani
et al., 2005)

Leptin Inhibits neural progenitors differentiation (Nakai-
Futatsugi and Niwa, 2013)

IL-6/LIF Induces NSC self-renewal, as well as
differentiation into glutamatergic neurons or
oligodendrocytes (Bonaguidi et al., 2005; Bauer
and Patterson, 2006; Butovsky et al., 2006;
Oshima et al., 2007; Guan et al., 2008 Covey
and Levison, 2008)

Leptin/MCP-1 Affects oligodendroglial growth in the cortex
(Udagawa et al., 2006) and acts as a
chemotactic factor for neural precursors
(Widera et al., 2004)

CCL2¼MCP-1 Promotes neuronal differentiation of SVZ neural
progenitors (Edman et al., 2008)

CXCL12 (SDF-1 alpha) Chemotactic factor that also promotes the
survival and proliferation of adult NSCs, and
that induces proliferation through EGF
activation in NPCs (Zhu et al., 2012). CXCL12
mediates interactions between the
endothelium and glioblastoma (Rao et al.,
2012)

CNTF Promotes neurogenesis and stem cell self-renewal
(Shimazaki et al., 2001)

CXCL13/IL-8 Chemotaxis of endothelial cells (Weiss et al.,
2010).

GRO a Regulates human embryonic stem cell self-
renewal and/or adoption of a neuronal fate.
Differentiation (Krtolica et al., 2011)
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CXCL12 (Jin et al., 2006). The combined use of hematopoietic
progenitor cells mobilized from bone marrow by granulocyte
colony stimulating factor (GCSF) and AMD3100 enhances
chemotaxis in mouse models of Alzheimer's disease (Shin et al.,
2011). Thus, further studies should assess how chemokines
contribute to the homing andmigration of normal NPCs within
the vascular niche so that this approach can be used in the
context of neurodegenerative diseases. The neuroimmune
interactions based on activation of the CXCR4/CXCL12
cascade could enhance NPC migration in experimental models
of CNS disease, thereby preventing cell death in rodent models
of inflammatory or CNS disease, and potentially opening up the
possibility of developing new therapies for cell repair (Whitney
et al., 2009; Li et al., 2012).

Conclusion and Concluding Remarks

This review presents evidence showing that CXCR4/CXCL12
signaling contributes to NPC migration to areas of CNS
damage. The homing cascade that drives cell adhesion to brain
endothelial cells and transendothelial migration is important
for cell repair (Cui et al., 2007). NPCs in the adult SVZ are
associated with the ependymal and vasculature niches that
regulate stem cell self-renewal and differentiation. There are
several cell types in the SVZ, from activated Type B stem cells
to the transit-amplifying type C cells that express EGFR
(Abhold et al., 2012) and these are most strongly associated
with vascular cells (Miller and Gauthier-Fisher, 2009).

Clearly, much remains to be learnt about how CXCR4/
CXCR7 activity controls NPC recruitment to damaged areas
of the CNS. However, some studies have shown that classic
signaling pathways are involved in neuronal migration,
particularly since CXCL12 binding to CXCR4 can mediate Gi
activation and induce intracellular signaling in NPCs (van Biesen
et al., 1996; Bajetto et al., 1999). Consequently, the activation
of 3 PI-kinase/Akt by CXCL12 mediates NPC proliferation
(CXCR4þ) (Ni et al., 2004), and regulates Akt-1 and FOXO3a
phosphorylation (Wu et al., 2009; Holgado et al., 2013). The
JAK/STATor ERK1/2 cascadesmediatedCXCL12 proliferative
effects in NPCs in vitro, along with other signaling pathways.

NO, EPO and metalloprotease activity (MMP2/9 or
ADAM17), or CXCL12 availability, regulate CXCR4/CXCR7
chemokine function in NPCs, since CXCR7 expression was
found to be regulated by the membrane levels of CXCR4
(Wang et al., 2008). On the other hand, EPO induces NPC
migration via the CXCR4/CXCL12 axis, while the NO donor
DETA-NONOate promotes SVZ neuroblast cell migration
through CXCL12 and Ang1 in the SVZ, supporting their role in
CNS repair (Cui et al., 2007). In addition, metalloproteases
control stem cells trafficking (Son et al., 2006), since MMP-2
regulates chemotaxis through CXCL12 given that MMP-2
activation cleaves CXCL12 into the truncated CXCL12 (SDF1
alha) (1–56) neurotoxic form that impedes progenitor
proliferation and migration.

Collectively, these findings support the notion that CXCR4/
CXCL12 signaling drivesNPCmigration to initiate endogenous
stem cell-based tissue repair and to regulate the capacity to
recruit new neuroblasts from the SVZ/RMS toward damaged
areas of the CNS. In this context, CXCL12 can provide a
bidirectional signal acting, as a chemoattractant or as an inducer
of NPC migration, depending on its concentration.
Consequently, understanding the signaling pathways
downstream of CXCR4 will be crucial to elucidating how
neuroprotectants prevent cell death in the CNS. In this
context, NO, MPP2/9, and CXCL12 availability are key factors
that regulate homing and repair responses in damaged tissues.
Thus, CXCR4 activation by neuroprotectants or new NO
donors may possibly prevent CNS damage. However, the
carbamylated derivative erythropoietin (cEpo) offers

hematopoietic tissue protection without an increase in
hematocrit, and its clinical efficacy in inducing the homing of
progenitor cells via the CXCR-4/CXCL12 axis remains to be
confirmed.

Since metalloprotease activation can be induced in CNS
pathologies but may also contribute to neurogenesis, inhibitors
of MMPs could regulate the shedding of chemokines. In fact,
MMP-2, ADAM17, and ADAM 10 can cleave CXCL12 into a
neurotoxic form. Consequently, the use of inhibitors of
sheddases and MMP blockers could blunt the inflammatory
responses mediated by chemokines and cytokines in the acute
phase of cell death. However, the use of MMP 2/9 inhibitors is
likely to be less useful in promoting cell repair and axonal
regeneration. Further studies will be necessary to clarify the
possible therapeutic influence of MMP inhibitors on chemokine
levels in neurodegenerative diseases

In conclusion, the CXCR4/CXCL12 axis emerges as a target
for neuroprotectants in CNS pathologies.

This review has attempted to provide an update on the
neuroimmune interactions by which chemokines regulate NPC
migration. Finally, CXCL12 based therapy could stimulate
neuroblast recruitment and enhance survival of new formed
neurons. Thus, neuroprotectants that activate CXCR4
signaling could possibly prevent apoptosis and induce repair in
animal models of HIV-1 neuropathogenesis, multiple sclerosis,
cerebral ischemia, Alzheimer or trauma, among other
pathological situations. Although there is promising data on
CXCR4/CXCL12 and CNS repair, further studies will be
necessary before translating chemokine studies into clinical
therapies. Nevertheless, beneficial clinical effects of AMD3100
(a CXCR4 chemokine blocker) plus GCSF synergic treatment
to mobilize stem cell trafficking by CD34þ cells have already
been observed in pediatric patients after 2 to 3 cycles of
apheresis, without clinical complications (Hong et al., 2012).
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