
Group signatures in practice

V. Gayoso Mart́ınez1, L. Hernández Encinas1, and Seok-Zun Song2

1 Institute of Physical and Information Technologies (ITEFI)
Spanish National Research Council (CSIC), Madrid, Spain

{victor.gayoso,luis}@iec.csic.es
2 Department of Mathematics, Jeju National University, Jeju, Korea

szsong@jejunu.ac.kr

Abstract. Group signature schemes allow a user to sign a message in
an anonymous way on behalf of a group. In general, these schemes need
the collaboration of a Key Generation Center or a Trusted Third Party,
which can disclose the identity of the actual signer if necessary (for exam-
ple, in order to settle a dispute). This paper presents the results obtained
after implementing a group signature scheme using the Integer Factoriza-
tion Problem and the Subgroup Discrete Logarithm Problem, which has
allowed us to check the feasibility of the scheme when using big numbers.

Keywords: Cryptography, Digital signature, Group signature, Java

1 Introduction

The concept of group signatures was first proposed by Chaum and van Heyst
in 1991 [1]. Group signatures allow a certain group to sign a message such that
only one member of the group computes the signature on behalf of the whole
group.

The main properties that must satisfy a group signature scheme are the
following:

(i) Only one member signs the message on behalf of the group.
(ii) The receiver of the message can verify that its associated signature was

generated by a member of the signer group, but he or she cannot determine
which member of the group was the actual signer.

(iii) In case it is necessary, it must be possible to determine which group member
was the actual signer of the message.

There exist several proposals involving group signatures and their applica-
bility to different scenarios (e.g, [2–7]). Some of these proposals need a Key
Generation Center (KGC), denoted by C, or a Trusted Third Party (TTP), de-
noted by T , at least for the initialization process. Other schemes, however, allow
any user to create the group they choose to belong to. The actions performed
by C and T are similar and, for this reason, the roles of both entities are usually
considered equivalent.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/45450384?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 V. Gayoso Mart́ınez, L. Hernández Encinas, and Seok-Zun Song

As a general rule, the cryptographic primitives used by those proposals base
their security on computationally-intractable mathematical problems such as the
Integer Factorization Problem (IFP) and the Subgroup Discrete Logarithm Prob-
lem (SDLP). As it is well known, the IFP can be described as follows [8]: Given
a positive integer n, find its prime factorization; that is, write n = pe11 pe22 · · · pekk
where the pi are pairwise distinct primes and each ei ≥ 1. Besides, the SDLP
is defined as follows [8]: Let p be a prime and q a prime divisor of p − 1. Let
us consider g a generator of the unique subgroup G of Z∗

p of order q, and y an
element in G. The problem is that of computing the integer x, 0 ≤ x ≤ q − 1,
such that y = gx (mod p).

For example, the schemes described in [9–14] base their security in the ran-
dom oracle model, the strong RSA problem and the Decisional (bilinear) Diffie-
Hellman problem. Other schemes, such as [15–17], are identity-based group sig-
nature protocols. They mainly use bilinear maps, such as bilinear pairings, which
tend to be heavy in terms of computational load. In our case, we have employed
a construction based on the SDLP which is different to those proposed in the
aforementioned references.

This work presents the results obtained when implementing a modified ver-
sion of a group signature scheme previously designed by one of the authors [18].
The goal of the modification, as it will become clear when describing the scheme,
is to facilitate the implementation in devices with limited resources [19, 20]. In
our scheme, G = {U1, U2, . . . , Ut} is the group of users allowed to perform signa-
tures. Those users share a public key, and at the same time they have different
private keys. When a signature is needed, the element playing the role of the
KGC, C, randomly chooses a member of the group so that member can perform
the signature on behalf of G. After that, the verifier of the signature can check
if the signature was performed by one of the members of G by using the public
key that all members share. Without further information, the verifier will not
be able to identify who was the original signer, unless the verifier is the PKC.

The rest of this paper is organized as follows: In section 2, a detailed de-
scription of the group signature scheme is included. Section 3 describes the Java
application developed in order to test the feasibility of the scheme. In Section 4,
we offer to the readers the experimental results obtained with that application.
Finally, our conclusions are presented in section 5.

2 Description of the scheme

Let G = {U1, U2, . . . , Ut} be the group of users allowed to perform signatures,
and C the element acting as the Key Generation Center. The following subsec-
tions describe all the details of the group signature scheme.

2.1 Setup phase

In this phase, C generates the system parameters, its own private key, the public
key shared by the group, and the private keys of all members of G [21]. The
steps that C must complete are the following ones:



Group signatures in practice 3

1. C chooses two large primes p and q, such that p = u1rp1+1 and q = u2rq1+1,
where r, p1, q1 are prime numbers and u1, u2 ∈ Z with gcd(u1, u2) = 2; that
is, u1 = 2v1, u2 = 2v2, where v1 and v2 are prime numbers. In the original
version [18], v1 and v2 could be composite numbers; we have introduced this
modification so that the number of factors of λ(n) (see next step) does not
depend on v1 and v2, which improves the iteration through the divisors of
λ(n) in the third step.
In order to guarantee the security of the scheme, the bit length of r is selected
so that the SDLP of order r in Z∗

n is computationally infeasible.
2. C computes the values n = pq, ϕ(n) = (p − 1)(q − 1) = u1u2r

2p1q1, and
λ(n) = lcm(p− 1, q− 1) = 2v1v2rp1q1, where ϕ(n) is the Euler function and
λ(n) is the Carmichael function.

3. C selects an element α ∈ Z∗
n with multiplicative order r modulo n, such that

gcd(α, ϕ(n)) = 1. The element α can be efficiently computed as C knows the
factorization of n and consequently it knows ϕ(n) and λ(n).
In practice, it is enough to find a random value g ∈ Z∗

n such that gλ(n) ≡ 1
(mod n) and check that none of the 62 non-trivial divisors of λ(n) are the
actual order of g [21]. By non-trivial divisor we mean a divisor of λ(n)
different from 1 or λ(n). The number of non-trivial divisors of λ(n) is derived
from the fact that λ(n) = 2v1v2rp1q1 and all the factors are prime numbers.
Once the value g is found, the generator is obtained through the following
computation [21]:

α = gλ(n)/r (mod n).

4. C generates a secret random number s ∈ Z∗
r and determines

β = αs (mod n).

5. C publishes the values n, r, α, and β, while the elements p, q, and s are kept
secret.

6. C sets its private key by generating four random numbers a0, b0, c0, d0 ∈ Z∗
r .

7. C determines the shared public key for G by computing

P = αa0βb0 (mod n) = αa0+sb0 (mod n),
Q = αc0βd0 (mod n) = αc0+sd0 (mod n).

8. C computes the integers h, k ∈ Zr such that h = a0 + sb0 (mod r) and
k = c0 + sd0 (mod r).

9. C determines the private key for each signer Ui ∈ G, 1 ≤ i ≤ t, where each
private key is the tuple (ai, bi, ci, di) and ai, bi, ci, di ∈ Zr.
In order to do that, C first generates t pairs of random numbers, bi, di ∈ Zr.
Then, it obtains the remaining elements by using the following equations:

ai = h− sbi (mod r), ci = k − sdi (mod r).

Once C has obtained the private keys of all the users, it distributes them to
the signers via some secure channel.



4 V. Gayoso Mart́ınez, L. Hernández Encinas, and Seok-Zun Song

2.2 Parameter and key verification

Each member of the signer group, Ui, 1 ≤ i ≤ t, may check the parameters of
the system by verifying that α ̸= 1 (mod n) and αr = 1 (mod n).

Moreover, each signer, Ui, 1 ≤ i ≤ t, may verify that their private key is
related to the shared public key, by checking:

P = αaiβbi (mod n), Q = αciβdi (mod n). (1)

2.3 Group signature generation

Let M be the message to be signed by a member of G. By using, for example,
a public hash function of the SHA-2 family [22], either the signing user or C
compute h(M) = m, where m represents the hash output.

In order to calculate the signature, Ui must obtain the values fi and gi that
compose the signature in this way:

fi = ai + cim (mod r), gi = bi + dim (mod r). (2)

After that, the group signature for the message M , which is (f, g) = (fi, gi),
can be published.

2.4 Group signature verification

Any verifier knowing the message, M , the hash function, h, the public key of
the group G, (P,Q), and the group signature, (f, g), can check if the signature
is valid through the following computation:

PQm = αfβg (mod n). (3)

Equation (3) can be justified from expressions (1)–(2):

αfβg (mod n) = αai+mciβbi+mci = αaiβbi
(
αciβdi

)m
= PQm.

2.5 Disclosure of the signing user

In case it is necessary, C is able to verify the signature and determine the actual
signer, as C knows all the private keys of the users belonging to the group G.

If the original message is M , its associated hash code is m = h(M), and the
corresponding group signature is the pair (f, g), C needs to iterate the following
loop:

f̄i = ai + cim (mod r)
ḡi = bi + dim (mod r)

}
1 ≤ i ≤ t, (4)

stopping whenever it finds an index j, such that (f̄j , ḡj) = (f, g). Using this
procedure, C determines that the actual signer was Uj .



Group signatures in practice 5

3 Java implementation of the scheme

The group signature scheme presented in this contribution has been implemented
as a Java application using Java SE 8. The application is composed of three
panels which are described in detail in the next subsections. In each panel, the
user has the option of converting the data from decimal (or text, in the case of
the message to be signed) to hexadecimal and vice versa.

In all the cases where a random number is needed, the application uses the
standard Java classes BigInteger [23] and Random [24], so the requested number
is obtained through the following code:

Random random = new Random();

BigInteger number = new BigInteger(numBits,random);

In the previous code, the element numBits indicates that the desired number
must be uniformly distributed over the range 0 to 2numBits − 1. Regarding the
Random class, it uses a 48-bit seed which is modified using a linear congruential
formula according to the method described in Section 3.2.1 of [25].

Whenever a random prime number is needed, the following code is used after
obtaining a random number:

BigInteger prime = number.nextProbablePrime();

By calling the method nextProbablePrime() over the element number, the
application obtains the first integer greater than number that is probably prime,
where the probability that the number returned is composite does not exceed
2−100 [23].

3.1 Parameters panel

This panel includes the general parameters, the KGC’s private key and the
group’s public key, as it can be seen in Figure 1. More specifically, it includes
text boxes for the private elements p, q, s, a0, b0, c0, and d0 and the public
elements n, r, α, β, P , and Q.

There are four buttons available in this panel:

– Generate: It computes all the parameters according to the steps 1-8 of the
procedure described in Section 2.1.

– Save: It allows the user to save either the public data or all the data included
in this panel. The information is stored in a file using an XML structure.

– Load : It allows the user to overwrite the data existing in the text boxes with
the information stored in the XML file selected by the user.

– Clear : It deletes the content of all the text boxes pertaining to this panel.



6 V. Gayoso Mart́ınez, L. Hernández Encinas, and Seok-Zun Song

Fig. 1. View of the three panels of the application



Group signatures in practice 7

3.2 Users panel

This panel includes the private keys of the four users managed by this applica-
tion. It is important to point out that the number of users implemented in this
version of the application is not a limitation of the scheme, but a figure selected
in order to simplify the usage of the application. For each user from i = 1 to 4,
a set consisting of the associated values ai, bi, ci, and di is displayed, as it can
be seen in Figure 1.

The four buttons available in this panel implement the following functional-
ity:

– Generate: It generates all the private elements associated to the private keys
of the users according to the step 9 of the procedure described in Section
2.1.

– Save: It allows the user to save the private elements of the four users in a
file using an XML structure.

– Load : It allows to overwrite the data existing in the text boxes with the
information stored in the XML file selected by the user.

– Clear : It deletes the content of all the text boxes displayed in this panel.

3.3 Operations panel

This panel includes the operational functionality that can be accessed through
the following buttons, as displayed in Figure 1:

– Generate: It generates the signature of the text message provided manually
by the user according to Equation (2) included in Section 2.3. In order to
obtain the elements f and g associated to the signature, it is necessary to
select in the panel the hash function and the signing user.

– Verify : It allows to verify if the signature provided by the application user
corresponds to the text message entered in its text box. For this function-
ality, the application implements Equation (3) from Section 2.4. In order to
perform this verification, the application only uses the public data available
in the Parameters panel.

– Disclose: By selecting this button, the application first verifies if the signa-
ture provided is correct, and then it completes the calculations that allow
the server to identify which of the four users signed the message. In order to
do this, the application implements Equation (4) included in 2.5.

– Clear : It deletes the content of all the text boxes displayed in this panel.

4 Experimental results

The tests whose results are presented in this section were completed using a PC
with Windows 7 Professional OS and an Intel Core i7 processor at 3.40 GHz.

Table 1 includes the running time obtained when executing the general pa-
rameters generation procedure in the testing computer with the bit lengths indi-
cated in each case, where the bit length represents the maximum length in bits



8 V. Gayoso Mart́ınez, L. Hernández Encinas, and Seok-Zun Song

of the parameters r, p1, q1, v1, and v2. The time displayed for each bit length
represents the average time of the generation of 100 sets of parameters.

Table 1. General parameters generation running time

Length (bits) 32 64 96 128 160 192

Time (seconds) 0.30 4.24 25.21 57.19 128.83 300.57

As expected, the running time has an exponential shape, as it can be seen in
Figure 2.

Fig. 2. General parameters’ generation running time

Even though the running time obtained for large bit lengths is considerable,
it is important to point out that the process of generating the general parameters
is executed only once during the life cycle of that set of parameters. In the rest
of operations (signature generation and verification, and signature disclosure)
the running time obtained is less than 5 milliseconds even for parameters of 192
bits.



Group signatures in practice 9

5 Conclusions

In this contribution we present a modification of the first group signature scheme
described in [18]. In order to implement the scheme as a Java application, we
have modified the scheme by adding a new requirement which mandates v1 and
v2 to be both prime numbers, as explained in §2.1. With this modification, we
force the number of non-trivial divisors of λ(n) to be exactly 62, which facilitates
the implementation in devices with limited resources as the application does not
need to factor v1 and v2 in order to determine the actual number of non-trivial
divisors of λ(n).

The tests performed with the application allow us to confirm the expected
difficulty in generating the system parameters for bit lengths greater than 64
bits. Nevertheless, as the system parameters generation procedure is only exe-
cuted once by the PKC, it is not a limitation for deploying the group signature
service in devices with limited resources, as they must only perform the signature
generation and verification procedures.

Acknowledgment

This work has been partially supported under the framework of the international
cooperation program managed by National Research Foundation of Korea (NRF-
2013K2A1A2053670) and by Comunidad de Madrid (Spain) under the project
S2013/ICE-3095-CM (CIBERDINE).

References

1. Chaum, D., van Heyst, E.: Group signatures. Lecture Notes in Computer Science
547 (1991) 257–265

2. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups.
Lecture Notes in Computer Science 1296 (1997) 410–424

3. Camenisch, J., Michels, M.: Separability and efficiency for generic group signature
schemes. Lecture Notes in Computer Science 1666 (1999) 413–430

4. Bresson, E., Stern, J.: Efficient revocation in group signature. Lecture Notes in
Computer Science 1992 (2001) 190–206

5. Chung, Y.F., Chen, T.L., Chen, T.S., Chen, C.S.: A study on efficient group-
oriented signature schemes for realistic application environment. International
Journal of Innovative Computing, Information and Control 8(4) (2012) 2713–2727

6. Ogawa, K., Ohtake, G., Fujii, A., Hanaoka, G.: Weakened anonymity of group sig-
nature and its application to subscription services. IEICE Transactions on Funda-
mentals of Electronics, Communications and Computer Sciences E97-A(6) (2014)
1240–1258

7. Emura, K., Miyaji, A., Omote, K.: An r-hiding revocable group signature scheme:
Group signatures with the property of hiding the number of revoked users. Journal
of Applied Mathematics 2014 (2014) 1–14

8. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press, Inc., Boca Raton, FL, USA (1996)



10 V. Gayoso Mart́ınez, L. Hernández Encinas, and Seok-Zun Song

9. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure
coalition-resistant group signature scheme. Lecture Notes in Computer Science
1880 (2000) 255–270

10. Ateniese, G., de Medeiros, B.: Efficient group signatures without trapdoors. Lec-
ture Notes in Computer Science 2894 (2003) 246–268

11. Nguyen, L., Safavi-Naini, R.: Efficient and provably secure trapdoor-free group
signature schemes from bilinear pairings. Lecture Notes in Computer Science 3329
(2004) 89–102

12. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen cipher-
text attack. Journal of Cryptology 15(2) (2002) 75–96

13. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. Lecture Notes in Computer Science 3152 (2004) 56–72

14. Boneh, D., Boiyen, X., Shacham, H.: Short group signatures. Lecture Notes in
Computer Science 3152 (2004) 41–55

15. Han, S., Wang, J., Liu, W.: An efficient identity-based group signature scheme
over elliptic curves. Lecture Notes in Computer Science 3262 (2004) 417–429

16. Tan, Z.: An improved identity-based group signature scheme. Lecture Notes in
Computer Science 3262 (2004) 417–429

17. Li, L., De-gong, D., Ying-liang, D.: An improved identity–based group signature
scheme. In: International Conference on Information Technology, Computer Engi-
neering and Management Sciences 2011 (ICM 2011). Volume 2. (2011) 269–271

18. Durán Dı́az, R., Hernández Encinas, L., Muñoz Masqué, J.: Two proposals for
group signature schemes based on number theory problems. Logic Journal of the
IGPL 21(4) (2013) 630–647

19. Potzmader, K., Winter, J., Hein, D., Hanser, C., Teufl, P., Chen, L.: Group signa-
tures on mobile devices: Practical experiences. Lecture Notes in Computer Science
7904 (2013) 47–64

20. Spreitzer, R., Schmidt, J.M.: Group-signature schemes on constrained devices:
the gap between theory and practice. In: First Workshop on Cryptography and
Security in Computing Systems (CS2’14). (2014) 31–36

21. Susilo, W.: Short fail-stop signature scheme based on factorization and discrete
logarithm assumptions. Theoretical Computer Science 410(8) (2009) 736–744

22. NIST: Secure Hash Standard. National Institute of Standard and Technology,
Federal Information Processing Standard Publication, FIPS 180-4. (2012)

23. Oracle Corporation: BigInteger (Java Platform SE 8). http://docs.oracle.com/
javase/8/docs/api/java/math/BigInteger.html. (2014)

24. Oracle Corporation: Random (Java Platform SE 8). http://docs.oracle.com/

javase/8/docs/api/java/util/Random.html. (2014)
25. Knuth, D.E.: The Art of Computer Programming, Volume 2 (3rd Ed.): Seminu-

merical Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA (1997)


