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Abstract

The use of next-generation sequencing technologies is revolutionizing microbial ecology by allowing a deep phylo-

genetic coverage of tens to thousands of samples simultaneously. Double Principal Coordinates Analysis (DPCoA) is

a multivariate method, developed in community ecology, able to integrate a distance matrix describing differences

among species (e.g. phylogenetic distances) in the analysis of a species abundance matrix. This ordination technique

has been used recently to describe microbial communities taking into account phylogenetic relatedness. In this work,

we extend DPCoA to integrate the information of external variables measured on communities. The constrained

Double Principal Coordinates Analysis (cDPCoA) is able to enforce a priori classifications to retrieve subtle differ-

ences and (or) remove the effect of confounding factors. We describe the main principles of this new approach and

demonstrate its usefulness by providing application examples based on published 16S rRNA gene data sets.
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Introduction

The use of next-generation sequencing technologies is

revolutionizing the way researchers study microbial

ecosystems. The most common approach to microbial

community analysis includes the retrieval from environ-

mental samples of phylogenetic markers by PCR, such as

the 16S/18S rRNA gene, using primers carrying a nucle-

otide tag or barcode specific for each sample

(Parameswaran et al. 2007). The resulting products are

then pooled and sequenced en masse, with the barcode

sequence later serving as the basis for sample origin

determination of each sequence obtained. The use of this

approach enables deep phylogenetic coverage of tens to

thousands of samples at the same time.

The Unifrac metric (Lozupone & Knight 2005) is com-

monly used together with ordination or clustering tech-

niques to study the phylogenetic relationships between

microbial communities. While this approach is a stan-

dard method in microbial ecology, Eckburg et al. (2005)

used the Double Principal Coordinate Analysis (DPCoA)

as an alternative to study the diversity of the human

intestinal microbiota using 16S rRNA gene data sets.

DPCoA (Pavoine et al. 2004) has been developed in com-

munity ecology as an ordination technique able to inte-

grate a matrix describing differences among species in

the analysis of a species abundance matrix. DPCoA out-

put relies on a simultaneous representation of species

and community points in a reduced space (factorial

map) where distances among species preserve the origi-

nal differences and are used to compute the positions of

the community points. The main differences between the

two approaches (Unifrac and DPCoA) are the definition

of phylogenetic distances among communities

(see below) and the possibility with DPCoA to visualize

the organisms that drive the phylogenetic dissimilarities

among communities, as both communities and species

can be plotted in the same space. In DPCoA, the phylo-

genetic distance among two sequences can be defined as
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the square root of sum of branch lengths in the smallest

path that connects them on the phylogenetic tree (de

Vienne et al. 2011). Then the phylogenetic distance

between two communities is defined as the average phy-

logenetic distance among two individuals from the pool

of the two communities minus the average phylogenetic

distance among two individuals drawn from the same

community. On the other hand, the Unifrac metric mea-

sures the difference between two communities as the

fraction of the branch length of the phylogenetic tree of

sequences that is unique to one community or the other.

In many cases, external variables are recorded on

communities (e.g. habitat type, host health status), and it

should be useful to consider this information to improve

the ecological interpretation of microbial community

comparisons. Standard (partial) canonical ordination

methods (e.g. redundancy analysis or canonical corre-

spondence analysis) could be useful in this context, but

they focus only on differences in species compositions

and thus implicitly assume that species characteristics

are similar as they are not able to consider phylogenetic

information in the analysis. In this paper, we show the

usefulness of the constrained DPCoA (cDPCoA) that

allows constraining the phylogenetic-based study of

microbial community data by highlighting or removing

the effect of external variables. As DPCoA is a particular

case of a general statistical framework (duality diagram

theory, Dray 2007), it can be easily extended to introduce

external information on communities while retaining the

ability to visualize species contributions (see below for

mathematical details). Here, we consider only the case

where external variables are qualitative, that is commu-

nities are grouped into levels of a factor (e.g. countries or

habitats). DPCoA can be constrained in two different

ways. The first approach, referred to as a ‘between-class

analysis’ (BCA), compares community compositions by

highlighting the differences among the levels of the fac-

tor (analysis of the average phylogenetic differences

among, for example habitats). In contrast, the second

approach referred to as a ‘within-class analysis’ (WCA)

compares community compositions by controlling the

effect of the external variable; the average (phylogenetic)

differences among the levels of the factor are removed

and the analysis focuses on the residual (phylogenetic)

differences among the communities. In this second

approach, also known as partial analysis (see for instance

Wesuls et al. 2012), the external factor is considered as a

covariable (cofactor), while it is considered as an explan-

atory variable in the first approach. Note that both

approaches could also be mixed if two factors are consid-

ered. For instance, the between-class analysis can be

applied to highlight the effect of a factor after the effect

of a cofactor has been partialled out (ter Braak 1988) (see

also Pavoine et al. 2013). Such approaches could also

probably be developed with the Unifrac metric, but to

our knowledge, have so far not been reported.

Methods

Mathematical notations

Consider m� communities that contain individuals

belonging to S species. Consider that the communities

are clustered into r groups (e.g. r levels of a factor); the

i-th group contains mi communities (m� ¼ Rr
i¼1mi). Let

nijk be the abundance of species k in a community j

belonging to group i; nij� ¼ RS
k¼1nijk the number of indi-

viduals in the community; ni�� ¼ Rmi

j¼1nij� the number of

individuals in group i as a whole; and n��� ¼ Rr
i¼1ni�� the

total number of individuals in the data set. The propor-

tion of species k in community j associated with group i

may be defined as pijk = nijk/nij• The weight attributed to

community j of group i is lij = nij•/ni•• and the weight

attributed to group i, ki = ni••/n••. We have Rmi

j¼1lij ¼ 1

for all i, and Rr
i¼1ki ¼ 1 . Let pij ¼ ðpij1; . . .; pijk; . . .; pijSÞt (t

stands for transpose) be the vector of proportions of the

species in community j of group i, with pij
t1 = 1;

pi� ¼ Rmi

j¼1lijpij the vector of proportions of the species in

group i as a whole (pi� ¼ ðpi�1; . . .; pi�k; . . .; pi�SÞt); and

p�� ¼ Rr
i¼1kipi� the vector of proportions of the species in

the whole data set (p�� ¼ ðp��1; . . .; p��k; . . .; p��SÞt). Let D
be a matrix of (e.g. phylogenetic) distances among all

species.

Common space for species, communities and groups

Our approach is restricted to matrices D = (dkl), for all k,
l = 1. . .S, with Euclidean properties so that it is possible

to define a Euclidean space in which each species k will

be positioned at a point Mk with ‖MkMl‖ = dkl for all k

and l. Many distances used in biology satisfy these prop-

erties (Gower & Legendre 1986). For example, the phylo-

genetic distance between two species, defined as the

square root of the sum of branch lengths in the smallest

path that connects them on the phylogenetic tree, has

Euclidean properties (de Vienne et al. 2011). Alterna-

tively, for any distance matrix that does not have Euclid-

ean properties, simple transformations exist to render

the matrix Euclidean (e.g. Caillez 1983, Lingoes 1971).

Let M be the S 9 n matrix of coordinates, with points

(species) as rows and principal axes as columns (n is the

dimension of the Euclidean space). The space is obtained

by a weighted principal coordinate analysis, with spe-

cies’ weights given by vector p�� (Gower 1984). Each

community is then positioned at the centroid of the spe-

cies points that occur in it: a community j from group i

with the vector of proportions pij is positioned at point

Cij with the vector of coordinates cij ¼ pt
ijM. Each group

© 2014 John Wiley & Sons Ltd

2 S . DRAY, S . PAVOINE and D. AGUIRRE DE C �ARCER



is positioned at the centroid of the species points that

belong to it: a group i with the vector of proportions pi�
is positioned at point Gi with the vector of coordinates

gi ¼ pt
i�M. It is thus possible to obtain a Euclidean space

in which all species, communities and groups are posi-

tioned simultaneously. In this space, all clouds of points

are centred: Mp�� ¼ 0, Rr
i¼1kiR

mi

j¼1lijcij ¼ 0, Rr
i¼1kigi ¼ 0,

where 0 is the n 9 1 vector of zeros. Let C be the m• 9 n

matrix providing the coordinates of all communities and

G be the r 9 n matrix providing the coordinates of all

groups. These coordinates thus depend on which species

compose the communities and groups and how (phylo-

genetically) distant they are.

DPCoA

To analyse the differences among all communities with-

out consideration of the groups, one can obtain the prin-

cipal axes of the community points weighted by kiµij (by
a weighted principal component analysis). This

approach corresponds to DPCoA (Pavoine et al. 2004).

Let WC = diag{kiµij} be the diagonal matrix with com-

munity weights and CtWCC ¼ U!Ut. Υ is the diagonal

matrix with eigenvalues, and U contains eigenvectors

which define the principal axes of the community points.

The coordinates of the communities are given by CU,

and the coordinates of the species are given by MU.

Between-DPCoA

To analyse the differences between the groups, one can

obtain the principal axes of the group points (averages

per group) weighted by ki. We designate this approach

‘Between-DPCoA’. Let WG = diag{ki} be the diagonal

matrix with group weights and GtWGG ¼ VWVt. Ψ is

the diagonal matrix with eigenvalues, and V contains

eigenvectors, for example the new principal axes. All

coordinates are projected on these principal axes: the

coordinates of the groups, communities and species are

thus given by GV, CV and MV, respectively.

Within-DPCoA

Another interesting approach consists in analysing the

distances among communities after having partialled out

the distances among groups. The first step of this analy-

sis is to modify the positions of the communities as fol-

lows: the new position of community j in group i has

coordinates cij � gi = (pij � pi•)
tM. In this new configu-

ration, the groups are now all positioned at the origin of

the space, whereas the positions of the species are

unchanged. To analyse the differences between the com-

munities within the groups, one can obtain the principal

axes of these new community points weighted by kiµij.

We designate this approach ‘Within-DPCoA’. Let N be

the m• 9 n matrix providing the new coordinates of all

communities. Let NtWcN ¼ ZNZt. Ξ is the diagonal

matrix with eigenvalues, and Z contains eigenvectors

(the new principal axes). The communities and the

species are projected on these principal axes: their

coordinates are NZ and MZ, respectively.

Particular case of two factors

Now consider that the communities are clustered accord-

ing to the levels of two factors A and B. Here µij is the

weight attributed to the community ij associated with

level i of factor A and level j of factor B. These weights

have to be positive and to sum to 1. In our approach,

some combinations of the two factors can be missing. For

example, in one of our case studies (see below), there is

no shrubland community with pH lower than 4. The

approach starts with the matrices M and C defined

above that contain preliminary coordinates for the spe-

cies and communities, respectively. It also considers a

new writing of matrix WC that contains the global

weights attributed to the communities: WC = diag{µij}.
With the notations defined above, µij is equal to nij•/n•••
(the relative number of individuals observed in commu-

nity ij).

Consider that we intend to remove the effects of a fac-

tor B before analysing the effects of a factor A. A solution

was introduced in the context of partial redundancy

analysis (Sabatier et al. 1989), partial canonical corre-

spondence analysis (ter Braak 1988). This solution is also

discussed in Pavoine et al. (2013). We extend it here to

the case where some combinations of the two factors can

be missing.

Let UA be the matrix with communities as rows and

levels of factor A as columns. The entry at the ith row

and jth column contains 1 if the community i is associated

with the jth level of factor A and 0 otherwise. Let UB be

the matrix with communities as rows and levels of factor

B as columns. The entry at the ith row and jth column

contains 1 if the community i is associated with the jth

level of factor B and 0 otherwise.

Let P?
UB

¼ Irm �UB Ut
BWCUB

� ��1
Ut

BWC the projector

on the orthogonal complement of the subspace gener-

ated by UB. The approach consists in projecting

all points (species, communities and levels of factor A)

on the subspace (A/B) generated by the matrix P?
UB
UA.

The projector on this subspace is

PðA=BÞ ¼ P?
UB
UA Ut

AWCP
?
UB
UA

� ��1
Ut

AWCP
?
UB
. The remain-

ing steps are similar to those of the Within-DPCoA. Let

N(A/B) = P(A/B)C be the matrix providing the new coor-

dinates of all communities (grouped by levels of factor

A). Let Nt
ðA=BÞWCNðA=BÞ ¼ ZðA=BÞNðA=BÞZt

ðA=BÞ. Ξ(A/B) is the

diagonal matrix with eigenvalues, and Z(A/B) contains

© 2014 John Wiley & Sons Ltd
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eigenvectors (the new principal axes). The communities

and the species are projected on these principal axes: their

coordinates areN(A/B)Z(A/B) andMZ(A/B), respectively.

Testing procedure

As in several other ordination methods, a permutation

testing procedure (Manly 1997) could be used to evaluate

the statistical significance of the effect of the constraining

factor. The ratio of the total inertia of the Between-

DPCoA divided by the total inertia of the DPCoA (i.e.

the ratio of the sum of its eigenvalues: trace(Ψ)/trace(Υ))

is used as the statistic of the test. It measures the part of

the total phylogenetic variability of the communities that

is explained by the external variable. To test the null

hypothesis that the constraining factor has no effect on

the phylogenetic variability, the observed value of the

statistic is compared to the distribution of values

obtained after a random permutation of the communities

in the groups. Note that, as in standard ANOVA, the total

inertia is fully decomposed in an additive ways in two

components corresponding to between- and within-

groups inertia (i.e. we have trace(Υ) = trace(Ψ) + trace

(Ξ)).

Data analysis

We provide examples of the utility of cDPCoA with 16S

rRNA gene-based microbial community data sets

employing Lauber and co-workers’ data from 88 soil

communities (2009), and Dethlefsen & Relman’s data on

antibiotic-driven perturbations of the distal gut microbi-

ota (2011). In the first case, raw sequences were obtained

from Genbank’s SRA, then processed using QIIME (Capor-

aso et al. 2010). Briefly, sequences were filtered for

appropriate length and quality values, clustered into

OTUs at 0.95 distance threshold and assigned to each

original sample according to its barcode information.

The resultant table (OTUs abundance by samples) was

subsampled to a common depth to avoid bias, and

singletons in each sample were removed to decrease the

complexity of the overall data set (Aguirre de C�arcer

et al. 2011). Finally, the most abundant sequence from

each OTU was chosen as representative of that cluster.

Its taxonomic affiliation was obtained using QIIME, and a

distance matrix between all representative sequences

was obtained using MOTHUR (Schloss et al. 2009) with

default parameters. In the case of the gut microbiota data

set, we directly used the OTU table made available by

the authors as SI, and employed the accession numbers

defined for each OTU to obtain their reference sequences

from the database. Then, we subsampled to a common

depth, removed singletons and obtained a distance

matrix between representative sequences as above. Both

abundance and distance matrices were subjected to

DPCoA and cDPCoA (using, as external variables, pH

range and habitat type defined according to EnvO ontol-

ogy ‘feature’ http://environmentontology.org/ for the

soils data set, while subject and [treatment] stage were

used in the case of the gut microbiota data set). We used

the R package ade4 (Dray 2007), including the newly

developed bca.dpcoa (Between-DPCoA), wca.dpcoa

(Within-DPCoA) and bwca.dpcoa (for two factors

analysis) functions. Data and R scripts to reproduce all

analyses are available at ftp://pbil.univ-lyon1.fr/pub/

datasets/dray/MER2014/.

Results

The initial DPCoA revealed (Fig. 1a) a community distri-

bution very similar to that previously reported by Lau-

ber et al. (2009) in which soil pH is the main driver of

community composition. As shown in Fig. 1b, a particu-

lar group within the Acidobacteriaceae (A) decreases with

increasing pH, with several other groups showing the

opposite behaviour. Lauber et al. did not find overall

community differences driven by vegetation type (EnvO

ontology ‘feature’) using a nonmetric multidimensional

scaling based on Unifrac distances. However, such dif-

ferences could lay hidden beneath the stronger pH effect.

To test this hypothesis, partial canonical correspondence

analysis can be applied to remove the pH effect and evi-

dence vegetation type driven effects (Fig. 2). Differences

between soil types were detected, but it was difficult to

identify key groups characterizing each soil type

(Fig. 2b).

We applied Between-DPCoA using vegetation type

as a constraining factor to study the effect of other

environmental parameters on community composi-

tion. This analysis explained 21.5% (p = 0.001) of the

variation of the phylogenetic diversity among com-

munities (sum of eigenvalues for Between-DPCoA

divided by the sum of eigenvalues for DPCoA). How-

ever, the results were obscured by the observed

strong pH effect (see Fig. 1c,d). Thus, we applied

Within-DPCoA to remove the pH effect. The part of

the total variation in community composition not

explained by the pH was equal to 54.5% (sum of ei-

genvalues for Within-DPCoA divided by the sum of

eigenvalues for DPCoA). Obviously, no pH nor vege-

tation type effect were identified (Fig. 1, panels e and

f). Both Between-DPCoA and Within-DPCoA can be

combined to focus on differences between vegetation

types after removing pH effect (Fig. 1, panels g and

h). This new analysis focused on 5.45% (p = 0.001) of

the total variation in phylogenetic composition and

corresponded to differences between vegetation types

that were not explained by the pH effect. It

© 2014 John Wiley & Sons Ltd
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segregated the different types of soil, and, contrary to

partial canonical correspondence analysis, it allowed

the identification of the bacterial taxa responsible for

such separation. For instance, there was an associa-

tion between overall Firmicutes (K) abundance and

tropical soils, whereas Actinobacteria (B) mainly

occurred in shrubland soils.

In their study of the distal gut microbiota, Dethlefsen

& Relman (2011) used principal coordinates analysis of

unweighted unifrac metrics to observe antibiotic-driven

perturbation, intermingled with strong inter-subject dif-

ferences. Here, cDPCoA could permit to focus solely on

differences due to antibiotic treatment while controlling

for inter-subject variability, and additionally provide
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Fig 1 Panel (a); DPCoA of Lauber et al. data set. Soil communities have been grouped by pH range, and the ellipsoids represent their vari-

ability. Panel (b); Same DPCoA as in panel (a), but the effect of each OTU in community variation is shown. OTUs are coloured according

to RDP II classifier results. Panels (c) and (d); Results of a cDPCoA using vegetation type as constraining factor (Between-DPCoA) and with

communities grouped by vegetation type (c) or pH (d). Panel D demonstrates that pH range is still driving the vegetation type-related vari-

ation. Panels (e) and (f); cDPCoA using pH range as constraint, and retaining the residuals (Within-DPCoA, hence effectively removing

pH-related variation). Communities are grouped by pH (e) or vegetation type (f). The group ellipsoids in panel E demonstrate that no pH-

related variation remains in the data, while panel (f) shows no apparent vegetation type-related effect. Panels (g) and (h); Results of DPCoA

applied to two factors using vegetation type as constraint applied to the data set while removing pH-related variation. OTUs are coloured

according to RDP II classifier results. Code for OTUs classes: A-Acidobacteriaceae, B-Actinobacteria, C-Alphaproteobacteria, D-Bacteria, E-Bacter-

oidetes, F-Betaproteobacteria, G-Chloroflexi, H-Cyanobacteria, I-Deinococcales, J-Deltaproteobacteria, K-Firmicutes, L-Gammaproteobacteria, M-Gem-

matimonadaceae, N-Nitrospiraceae, O-OD1, P-Planctomycetaceae, Q-Proteobacteria, R-TM7, S-Verrucomicrobiales

d = 1
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Forest soil
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Fig 2 Decomposition of the soils dataset

variability according to vegetation type.

The diagram shows the result of a

between-class analysis applied to a corre-

spondence analysis using vegetation type

as the constraint on the data, in which pH

effect has been previously removed. (a)

The ellipsoids represent the collective var-

iance of each type. (b) OTUs are coloured

according to RDP II classifier results (see

Fig. 1).
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visualization of the organisms that drive the phyloge-

netic dissimilarities among sample classes. A DPCoA of

the data (Fig. 3a) showed evidence of differences

between microbial communities pre- and post-antibiotic

treatment, but with considerable overlap. We followed a

similar strategy as for the soils data set by removing

inter-subject variability and focusing on treatment

classes, which revealed much finer segregation between

sample classes (Fig. 3b), and allowed a projection of the

groups driving the phylogenetic segregation (Fig. 3c). In

this case, the analysis showed an increase in the relative

abundance of Bacteroidaceae (A), Porphyromonadaceae (M)

and Prevotellaceae (N) as the main phylogenetic signature

of the antibiotic treatment (Fig. 3c).

Discussion

cDPCoA is an extension of DPCoA to analyse the relative

effects of two factors on the phylogenetic diversity of

communities or to remove variability due to a factor

before focusing on the other. As an illustration, we analy-

sed 16S rRNA bacterial sequences representing soil and

distal gut communities. As expected from a previous

analysis (Lauber et al. 2009), differences in the phyloge-

netic composition of soil communities were mostly dri-

ven by soil pH. cDPCoA allowed the swift identification

of the groups of species driving these differences, with a

subgroup of Acidobacteriaceae decreasing with increasing

pH, a pattern previously reported (Sait et al. 2006; Lau-

ber et al. 2009). Differences among habitats were thus

hidden by differences in soil pH among communities.

While it is beyond the scope of the present report to

re-analyse the test data set, we have made use of it to

show how cDPCoA offers the means to overcome this

obstacle but focusing the analyses on phylogenetic differ-

ences among habitats. Using cDPCoA, the pH effect can

be removed to identify residual structures or to focus on

the effect of another variable (here the habitat, or more

precisely EnvO ontology ‘feature’). Whereas partial

canonical ordinations can be used to focus and/or

remove the effect of some variables, these approaches do

not take into account the phylogenetic relationships

among species (here OTUs) as Unifrac and DPCoA do.

Taking into account phylogenetic information permits to

observe correlations between external variables and

phylogenetic community composition, but also to make

better sense of data sets with thousands of OTUs by con-

sidering that two distant species induce more differences

in community composition than two close species. To

date, no suitable method allowed the use of explanatory

variables and cofactors in combination with ordination

methods including the phylogenetic relatedness among

species, which prompted our implementation of the

cDPCOA. Similarly, cDPCoA was shown to be useful

in removing existing strong inter-subject variability

between the gut microbiota of different subjects before

analysing treatment effects. Here, the use of cDPCoA

clearly improves the biological interpretation and allows

to identify the main phylogenetic signature of the antibi-

otic treatment after partialling out the subject variation.

We believe this brief exercise helps demonstrate how

cDPCoA approaches can be very useful in the analysis of

diversity patterns in microbial communities. Compared

to DPCoA, cDPCoA enforces a priori classifications to

d = 0.05
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Fig 3 Panel (a); DPCoA of Dethlefsen & Relman data set. Distal gut communities have been grouped by sample categories (Pre; before

antibiotic treatment. CP; during treatment. Post; after antibiotic treatment), and the ellipsoids represent their variability. Panel (b);

cDPCoA of the same data set using sample category (treatment) as constraint after the removal of inter-subject variability. Panel

(c); Same cDPCoA as in panel (b), but the effect of each OTU in community variation is shown. OTUs are coloured according to RDP II

classifier results. Code for OTUs classes: A-Bacteroidaceae, B- Bifidobacteriaceae, C-Burkholderiales, D-Caulobacterales, E-Clostridiales, F-Deni-

trobacterium, G-Desulfovibrionales, H-Enterobacteriales, I-Holdemania, J-Incertae Sedis, K-Lactobacillales, L-other, M-Porphyromonadaceae, N-

Prevotellaceae, O-Rhodospirillales, P-Rikenellaceae, Q-Sphingomonadales, R-Streptophyta, S-Turicibacter, T-uncultured, U-Verrucomicrobiaceae.
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focus on subtle differences and (or) removing confound-

ing effects, such as the well-reported inter-subject

variability in the study of the human microbiome

(Eckburg et al. 2005; Aguirre de Carcer et al. 2011). A pri-

ori classifications are frequent in the analysis of microbial

communities and should thus be considered during the

statistical analysis.

Here, we have followed the most common approach

in dealing with high-throughput 16S rRNA gene

sequences. This includes clustering sequences at a prede-

fined similarity threshold to produce OTUs, which then

serve as proxies for taxonomic ranks. This procedure

presents two important pitfalls. First, sequence errors in

the reads (e.g. PCR errors, sequencing errors, chimeric

sequences) can lead to an overestimation of the number

of OTUs. While this bias cannot be easily overcome, sev-

eral studies have produced benchmarked tools and

approaches able to reduce its impact (Schloss et al. 2011;

Bragg et al. 2012; Bokulich et al. 2013). The second issue

relates to the comparison of the physiological and

ecological diversity captured within OTUs defined at

arbitrarily predefined similarity threshold. In this

respect, Philippot et al. (2010) have postulated that eco-

logical coherence within taxonomic groups arises from

the presence of a characteristic and unique set of gene

families associated with environmental interactions, with

the number of signature genes being negatively corre-

lated with taxonomic rank. In that context, Zaneveld

et al. (2010) recently showed that for the genomes of the

main bacterial groups residing in the gut, gene conserva-

tion was correlated with 16S rRNA distance. The bacte-

rial species concept remains a hot topic of discussion and

represents an active area of research (Mende et al. 2013).

This study shows how cDPCoA, designed to reveal

relationships between the structure of complex commu-

nities, differences among their species, and environmen-

tal factors, can be coupled with powerful molecular

techniques to help clarify the scope and relative impact

of deterministic and stochastic factors in microbial

communities (Dethlefsen et al. 2006). This study also

opens the way to new research on describing patterns in

phylogenetic diversity. Instead of simply providing

quantification of how much different communities are

as with Unifrac (Lozupone & Knight 2005), DPCoA

answers the question of how different communities are.

Indeed, DPCoA provides a direct link between the

compositions of the communities in terms of which spe-

cies they contain and the quantification of phylogenetic

differences among these communities (Pavoine et al.

2004). As a result the, species driving the phylogenetic

differences among communities can be precisely identi-

fied. In comparison with PCoA applied to Unifrac

distances, DPCoA not only allows plotting communities

and species onto the same space, but was also found to

be robust to the small fluctuations around zero, which

are the main sources of noise to be expected from Ampli-

con sequencing data (Fukuyama et al. 2012).

Further research could be carried out now to include

a wider variety of variables that can affect communities.

For example, the raw value of soil pH, here used to clas-

sify communities, could be considered in a more contin-

uous way as a quantitative explanatory variable. Sets of

more than two explanatory factors could also be envis-

aged. Overall, we hope that the methods suggested will

aid ecologists in attaining an understanding of the fac-

tors driving microbial community structure. To favour

the use of DPCoA and related methods, we provide R

functions and code to reproduce the analyses presented

in the paper and to apply these new statistical techniques

to other real data sets.
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