
ECC programming in Java Card

V. Gayoso Martı́nez and L. Hernández Encinas
Institute of Physical and Information Technologies (ITEFI)

Spanish National Research Council (CSIC)
Madrid, Spain

Email: {victor.gayoso,luis}@iec.csic.es

Abstract—Elliptic Curve Cryptography (ECC) is a branch
of public-key cryptography based on the arithmetic of el-
liptic curves. Given its mathematical characteristics, ECC
is currently one of the best options for protecting sensitive
information. The lastest version of the Java Card platform
includes several classes related to elliptic curves. However,
potential developers are discouraged by the peculiarities of
its programming model and the scarce information available.

In this work, we present an up to date and extensive review of
the ECC support in Java Card. In addition to that, we offer to
the reader the complete code of two applications that will allow
programmers to understand and test the entire application
development process in Java Card.

Keywords-elliptic curves; information security; Java Card;
public key cryptography; smart cards;

As it is well known, in 1985 Miller [1] and Koblitz
[2] independently proposed a cryptosystem based on the
ECDLP (Elliptic Curve Discrete Logarithm Problem). This
field of cryptography is usually known as ECC (Elliptic
Curve Cryptography). In comparison with other public-
key cryptosystems, ECC uses significantly shorter keys to
achieve the same level of security [3]. This makes ECC the
perfect choice for devices with limited resources [4].

In 1996, the smart card sector witnessed the appearance of
a new technology named Java Card. Java Card is the smallest
of the Java platforms, and it allows to develop and install
a specific type of Java-based application (called applet) in
smart cards compliant with the Java Card specifications.
This card technology is widely used in several sectors, for
example in the cell phone and banking industries. In those
sectors security is essential, so the integration of crypto-
graphic capabilities is a typical application requirement.

Although Java Card is derived from the Java language,
its programming model has several important particularities,
so most Java programmers are not able to develop applets
unless they are provided the proper training. Unfortunately,
the number of learning resources about this technology
is limited, which makes the development of Java Card
applications a complex and resource-consuming operation
for most software companies.

This contribution analyses the ECC capabilities in every
Java Card version released so far, including all the classes
and ECC functions implemented. In addition to that, we
provide a complete code example that shows how to develop

ECC applications in Java Card. In order to facilitate the
understanding of the example, we have included the script
needed to execute it and the console output obtained when
running the applet in a simulator.

The rest of this paper is organized as follows: Section II
presents a brief mathematical introduction to elliptic curves.
In Section III, we review some important concepts about
smart cards. Section IV describes the most relevant charac-
teristics of Java Card, including the new features presented
by each version. Section V details the ECC functionality
included in the different Java Card releases. In Section VI,
we offer two code examples which demonstrate how to
create digital signatures and produce a shared secret using a
key agreement procedure. Finally, Section VII summarizes
our conclusions about this topic.

I. ELLIPTIC CURVE CRYPTOGRAPHY

An elliptic curve E over the field F is a regular projective
curve of genus 1 with at least one rational point ([5] and
[6]). Every elliptic curve admits a canonical equation called
the general Weierstrass form. That equation in homogeneous
coordinates is

Y 2Z+a1XY Z+a3Y Z2 = X3+a2X
2Z+a4XZ2+a6Z

3,

with a1, a2, a3, a4, a6 ∈ F and ∆ ̸= 0, where ∆ is the
discriminant of E.

The homogeneous Weierstrass equation defines a projec-
tive plane curve which has a special point, the point at
infinity, which is denoted as O = [0 : 1 : 0]. In principle that
curve does not have to be elliptic, as it could have singular
points. Due to that fact, the condition ∆ ̸= 0 assures that the
curve is regular, which is equivalent to stating that there are
no curve points where the first derivatives of the function
are cancelled [7].

In practice, instead of the general Weierstrass equation,
two short Weierstrass forms depending on the characteristic
of the finite field Fq are typically used:

• If the finite field is a prime field, i.e. F = Fp, where
p > 3 is a prime number, the equation defining the
(non-supersingular) elliptic curve becomes

y2 = x3 + ax+ b.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/45450312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1. Command APDU

• If the finite field is a binary field, i.e. F = F2m , where
m is an integer number, then the equation of the (non-
supersingular) elliptic curve is

y2 + xy = x3 + ax2 + b.

II. SMART CARDS

A smart card is a plastic card with an embedded chip that
controls the access to the stored data. The most widespread
communication model for smart cards is composed by the
byte oriented protocol T=0 and the APDU (Application
Protocol Data Unit) elements.

APDUs, built according to the ISO/IEC 7816-3 [8] and
7816-4 [9] specifications, are the data packets exchanged
between the external application and the card by means of a
smart card reader. The card operating system is responsible
for analysing any incoming APDU and redirect it to the
application it is intended for. The operating system is also
responsible for retrieving the response data from the card
application and submit it to the external application using
the card reader.

There are two types of APDUs: command and response.
Figure 1 shows the format of command APDUs, which
consist of a header and optionally a body with the following
elements:

• CLA (1 byte): command class.
• INS (1 byte): specific instruction within the class.
• P1 (1 byte): first parameter associated to the instruction.

It can be used to give more information about the
instruction, or as input data.

• P2 (1 byte): second parameter associated to the instruc-
tion. As in the previous case, it can be used to give more
information about the instruction, or as input data.

• Lc (1 byte, optional): number of bytes in the data field
of the command. Since its highest value is 0xFF, the
maximum data length is 255 bytes, although some cards
allow to send 256 bytes using the value 0x00.

• Data (variable size, optional): information to be pro-
cessed by the applet.

• Le (1 byte, optional): maximum number of bytes to be
included in the data field of the response APDU.

In comparison, the format of any response APDU is
simpler (see Figure 2), as it only includes the following
items:

Figure 2. Response APDU

• Data (variable length, optional): information returned
by the card application.

• SW1 (1 byte): first status byte, which provides general
information about the result of the command execution.

• SW2 (1 byte): second status byte.

III. JAVA CARD

The first Java Card specification was presented in Novem-
ber 1996 by engineers working for the French company
Schlumberger. Their goal was to create a technology that
could combine the ease of development provided by the Java
language and the security features associated to smart cards.
Shortly after submitting the first draft of the Java Card API,
Gemplus and Bull joined Schlumberger in order to constitute
the Java Card Forum, a consortium created to evolve this
technology.

After the presentation of Java Card 1.0, Sun Microsystems
began to actively cooperate with those smart card manu-
facturers. The result was the announcement in November
1997 of Java Card 2.0. This new version represented a
major milestone in Java Card, as it provided a mechanism
for object-oriented programming and improved the level
of detail in the specification of the application runtime
environment.

Due to the need to adapt the capabilities of the Java
language to the physical limitations of smart cards, since its
inception it became clear that it was impossible to implement
some of the Java features. For example, the char, double,
float, and long types were not supported, multithreading
was not allowed, and the dimension of data arrays was
limited to one.

Java Card 2.1 was released in March 1999 and consisted
of three specifications:

• Java Card API: defines the Java packages available for
programmers.

• JCVM (Java Card Virtual Machine): specifies the subset
of the Java language that can be used and the virtual
machine needed for the execution of applets.

• JCRE (Java Card Runtime Environment): describes the
applet runtime behaviour.

Java Card 2.2 was released in September 2002, and
included the following novelties:

• JCRMI (Java Card Remote Method Invocation) imple-
mentation.



Figure 3. Java Card timeline

• Support of up to 4 logical channels.
• Improvement of the memory resource management.
• New classes for cryptographic algorithms.

In March 2006, Sun announced the availability of Java
Card 2.2.2, which provided the following improvements:

• Support of up to 20 logical channels.
• Implementation of new cryptographic algorithms.
• New classes for biometric recognition technology.

Finally, in March 2008 the Java Card 3.0 specification was
released. With the aim to adapt the Java Card technology
to the needs of internet services, for the first time the
specification was divided into two different editions:

• Connected Edition: introduces an enhanced runtime
environment and a new virtual machine that provides
network-oriented features such as the support for web
applications using servlets.

• Classic Edition: represents an evolution of Java Card
2.2.2, including not only the correction of errors, but
also several new features like the possibility to use some
of the algorithms described in the NSA (National Secu-
rity Agency) Suite B document [10]. In the remaining
sections of this contribution, whenever we mention Java
Card 3.0 we will implicitly refer to the Classic Edition.

As a summary of the previous information, Figure 3 shows
the timeline of the different Java Card releases.

IV. ECC IN JAVA CARD

Java Card 2.2 was the first version that included ECC
capabilities. More specifically, that version defined the fol-
lowing elements:

• New classes ECKey, ECPrivateKey, and
ECPublicKey for the creation and management of
public and private keys. Those classes can be used
with elliptic curves defined over prime and binary
fields.

• KeyPair class extension to allow the use of ECC key
pairs.

• KeyAgreement class extension to include the key
agreement functions ECDH (Elliptic Curve Diffie Hell-
man) and ECDHC (Elliptic Curve Diffie Hellman with
Cofactor), with the peculiarity that the output of these
functions is not the product u · V of the first user’s
private key u and the second user’s public key V (and
additionally the cofactor in the ECDHC case), but the
result of feeding the first coordinate of the point u · V
to the SHA-1 function [11].

• KeyBuilder class extension, which defines the per-
mitted key lengths for ECC and other cryptosystems.
In the case of elliptic curves over prime fields, the valid
lengths in Java Card 2.2 were 112, 128, 160, and 192
bits, while in the case of curves defined over binary
fields it was possible to use key lengths of 113, 131,
163, and 193 bits.

• Signature class extended with the implementation
of ECDSA (Elliptic Curve Digital Signature Scheme)
using the hash function SHA-1 [3].

Java Card versions 2.2.1 and 2.2.2 did not incorporate
new ECC features. However, Java Card 3.0 included the
following novelties:

• In elliptic curves over prime fields, key lengths of 224,
256, and 384 bits were available for the first time.

• The implementation of the functions ECDH and
ECDHC was extended in order to accept new variants
in which the output of the function is directly the first
coordinate of the product u · V (optionally with the
cofactor), eliminating the use of the SHA-1 function in
the final step of the procedure.

• The implementation of ECDSA permitted to use that
digital signature scheme in combination with the SHA-
224, SHA -256, SHA-384, and SHA-512 functions.

Finally, the revision version 3.0.4 added the possibility to
use 521-bit keys in curves defined over prime fields.

V. CODE EXAMPLES

The JCDK (Java Card Development Kit) is a software
package that includes a complete development environment
in which applications written for the Java Card platform can
be developed and tested [12]. The JCDK includes a suite of
tools along with a reference implementation written in C.

Before JCDK 3.0.2, the reference implementation did
not include support for cryptographic functions. That was
a significant drawback for developers interested in this
technology. Fortunately, starting with JCDK 3.0.2, it was
possible to use some of the cryptographic functions de-
scribed in the Java Card API (more specifically, those listed
in the Development Kit User Guide pertaining to the JCDK
version in use).

Regarding ECC, the reference implementation in JCDK
3.0.2 allows to use the functions ECDH, ECDHC, and
ECDSA only with curves defined over prime fields. From the



set of key lengths specified in the Java Card API, the ones
available in the reference implementation are 112, 128, 160,
and 192 bits. For each of those key lengths, the development
kit implements one curve. The elliptic curves available in
JCDK 3.0.2 are the following curves specified in the SECG
SEC 2 standard [13]: secp112r1, secp128r1, secp160k1, and
secp192k1.

Although the applet development and execution simula-
tion steps can be performed using the command-line tools
provided by the JCDK, Tim Boudreau has developed a
connector for the NetBeans IDE (Integrated Development
Environment). Interested readers can obtain the instructions
for its installation at [14]. The minimum version require-
ments for installing this plugin are the following ones:

• NetBeans: 6.8.
• Java Development Kit: 6.
• Java Card Development Kit: 3.0.2.
• Java Card plugin for NetBeans: 1.3.

A. Key agreement example

Listing 1 contains the code that we have developed in
order to demonstrate how to generate two pairs of 128-bit
keys corresponding to users U and V, retrieve the most
relevant information from them, and generate a shared
secret using the key agreement function ECDH.

1 import javacard.framework.*;
2 import javacard.security.*;
3

4 public class JCDiffieHellman extends Applet
5 {
6 byte[] baTemp = new byte[255];
7 byte[] baPrivKeyU, baPrivKeyV, baPubKeyU, baPubKeyV;
8 short len;
9

10 KeyPair kpU, kpV;
11 ECPrivateKey privKeyU, privKeyV;
12 ECPublicKey pubKeyU, pubKeyV;
13

14 KeyAgreement ecdhU, ecdhV;
15

16 public static void install(byte[] bArray,
17 short bOffset, byte bLength)
18 {
19 new JCDiffieHellman();
20 }
21

22 protected JCDiffieHellman()
23 {
24 register();
25 }
26

27 public void process(APDU apdu)
28 {
29 byte[] buffer = apdu.getBuffer();
30

31 if (selectingApplet())
32 return;
33

34 if(buffer[ISO7816.OFFSET_CLA] != (byte)0x00)
35 ISOException.throwIt((short) 0x6660);
36

37 switch (buffer[ISO7816.OFFSET_INS])
38 {
39 case (byte)0xD1:
40 processINSD1(apdu);
41 return;

42 case (byte)0xD2:
43 processINSD2(apdu);
44 return;
45 case (byte)0xD3:
46 processINSD3(apdu);
47 return;
48 default:
49 ISOException.throwIt((short) 0x6661);
50 }
51 }
52

53 /////////////////////////////////////////////////
54 // INS D1 - KEY PAIR GENERATION //
55 // Generates a key pair for both users U and V //
56 // APDU EXAMPLE: 00D1000000 //
57 /////////////////////////////////////////////////
58

59 private void processINSD1(APDU apdu)
60 {
61 try
62 {
63 kpU = new KeyPair(KeyPair.ALG_EC_FP,
64 KeyBuilder.LENGTH_EC_FP_128);
65 kpU.genKeyPair();
66 privKeyU = (ECPrivateKey) kpU.getPrivate();
67 pubKeyU = (ECPublicKey) kpU.getPublic();
68

69 kpV = new KeyPair(KeyPair.ALG_EC_FP,
70 KeyBuilder.LENGTH_EC_FP_128);
71 kpV.genKeyPair();
72 privKeyV = (ECPrivateKey) kpV.getPrivate();
73 pubKeyV = (ECPublicKey) kpV.getPublic();
74 }
75 catch(Exception exception)
76 {
77 ISOException.throwIt((short) 0xFFD1);
78 }
79 }
80

81 ///////////////////////////////////////
82 // INS D2 - PARAMETER DATA RETRIEVAL //
83 // P1: user //
84 // Values P1: 01: user U, 02: user V //
85 // P2: parameter to retrieve //
86 // Values P2: 01: A, 02: B, 03: P, //
87 // 04: public key, //
88 // 05: private key //
89 // APDU EXAMPLE: 00D2020300 //
90 ///////////////////////////////////////
91

92 private void processINSD2(APDU apdu)
93 {
94 byte buffer[] = apdu.getBuffer();
95

96 try
97 {
98 switch(buffer[3])
99 {

100 case 0x01: // Parameter A
101 if(buffer[2]==(byte)0x01)
102 len = pubKeyU.getA(baTemp,(short) 0);
103 else
104 len = pubKeyV.getA(baTemp,(short) 0);
105 apdu.setOutgoing();
106 apdu.setOutgoingLength((short) len);
107 apdu.sendBytesLong(baTemp,(short) 0, len);
108 break;
109

110 case 0x02: // Parameter B
111 if(buffer[2]==(byte)0x01)
112 len = pubKeyU.getB(baTemp,(short) 0);
113 else
114 len = pubKeyV.getB(baTemp,(short) 0);
115 apdu.setOutgoing();
116 apdu.setOutgoingLength((short) len);
117 apdu.sendBytesLong(baTemp,(short) 0, len);
118 break;
119

120 case 0x03: // Parameter P
121 if(buffer[2]==(byte)0x01)



122 len = pubKeyU.getField(baTemp, (short) 0);
123 else
124 len = pubKeyV.getField(baTemp, (short) 0);
125 apdu.setOutgoing();
126 apdu.setOutgoingLength((short) len);
127 apdu.sendBytesLong(baTemp,(short) 0,len);
128 break;
129

130 case 0x04: // Public key
131 if(buffer[2]==(byte)0x01)
132 len = pubKeyU.getW(baTemp,(short) 0);
133 else
134 len = pubKeyV.getW(baTemp,(short) 0);
135 apdu.setOutgoing();
136 apdu.setOutgoingLength((short) len);
137 apdu.sendBytesLong(baTemp,(short) 0,len);
138 break;
139

140 case 0x05: // Private key
141 if(buffer[2]==(byte)0x01)
142 len = privKeyU.getS(baTemp,(short) 0);
143 else
144 len = privKeyV.getS(baTemp,(short) 0);
145 apdu.setOutgoing();
146 apdu.setOutgoingLength((short) len);
147 apdu.sendBytesLong(baTemp,(short) 0,len);
148 break;
149

150 default:
151 throw new IndexOutOfBoundsException();
152 }
153 }
154 catch(Exception exception)
155 {
156 ISOException.throwIt((short) 0xFFD2);
157 }
158 }
159

160 ///////////////////////////////////////
161 // INS D3 - SHARED SECRET GENERATION //
162 // P1: user //
163 // Values P1: 01: user U, 02: user V //
164 // APDU EXAMPLE: 00D3010000 //
165 ///////////////////////////////////////
166

167 private void processINSD3(APDU apdu)
168 {
169 byte buffer[] = apdu.getBuffer();
170

171 try
172 {
173 switch(buffer[2])
174 {
175 case 0x01: // Process from U’s standpoint
176 len = privKeyU.getS(baTemp,(short) 0);
177 baPrivKeyU = new byte[len];
178 Util.arrayCopyNonAtomic(baTemp, (short)0,
179 baPrivKeyU, (short)0, len);
180

181 len = pubKeyV.getW(baTemp,(short) 0);
182 baPubKeyV = new byte[len];
183 Util.arrayCopyNonAtomic(baTemp,(short)0,
184 baPubKeyV, (short)0, len);
185

186 ecdhU = KeyAgreement.getInstance(KeyAgreement.
187 ALG_EC_SVDP_DH, false);
188 ecdhU.init(privKeyU);
189 len = ecdhU.generateSecret(baPubKeyV,
190 (short)0, len, baTemp, (short)0);
191

192 apdu.setOutgoing();
193 apdu.setOutgoingLength((short) len);
194 apdu.sendBytesLong(baTemp,(short) 0, len);
195 break;
196

197 case 0x02: // Process from V’s standpoint
198 len = privKeyV.getS(baTemp,(short) 0);
199 baPrivKeyV = new byte[len];
200 Util.arrayCopyNonAtomic(baTemp,(short)0,
201 baPrivKeyV, (short)0, len);

202

203 len = pubKeyU.getW(baTemp,(short) 0);
204 baPubKeyU = new byte[len];
205 Util.arrayCopyNonAtomic(baTemp,(short)0,
206 baPubKeyU, (short)0, len);
207

208 ecdhV = KeyAgreement.getInstance(KeyAgreement.
209 ALG_EC_SVDP_DH,false);
210 ecdhV.init(privKeyV);
211 len = ecdhV.generateSecret(baPubKeyU,
212 (short)0, len, baTemp, (short)0);
213

214 apdu.setOutgoing();
215 apdu.setOutgoingLength((short) len);
216 apdu.sendBytesLong(baTemp,(short) 0, len);
217 break;
218

219 default:
220 throw new IndexOutOfBoundsException();
221 }
222 }
223 catch(Exception exception)
224 {
225 ISOException.throwIt((short) 0xFFD2);
226 }
227 }
228 }

Listing 1. Java Card ECDH code example.

The most important classes and methods that appear in
Listing 1 are the following [15]:

• install(): method called by the JCRE to create an
instance of the applet.

• register(): method used by the application to
register this applet instance with the JCRE and to assign
the Java Card platform name of the applet as its instance
AID (Application Identifier) bytes.

• process(): method called by the JCRE to process
an incoming APDU command.

• apdu.getBuffer(): returns the APDU content as
a byte array.

• apdu.setOutgoing(): method used to set the data
transfer direction to outbound and to obtain the ex-
pected length of the response (APDU field Le).

• apdu.sendBytesLong(): sends the specified bytes
from the output byte array.

• KeyPair: container for a key pair.
• ECPrivateKey: interface that allows the implemen-

tation of ECC private keys.
• ECPublicKey: interface that allows the implementa-

tion of ECC public keys.
• KeyAgreement: base class for key agreement algo-

rithms.
• genKeyPair(): method that initializes the key ob-

jects encapsulated in the KeyPair instance in use with
new key values.

• getPrivate(): returns a reference to the private key
component of the KeyPair object in use.

• getPublic(): returns a reference to the public key
component of the KeyPair object in use.

In order to simulate the applet execution, it is necessary
to use a script with the command APDUs to be sent to the



smart card. Listing 2 shows the content of our script file.
The powerup command prepares the APDUTool utility
for reading command APDUs, so it must be executed
before any command APDU is sent. In comparison, the
powerdown command ends the APDUTool processing.
For every command APDU in the script, the six bytes that
compose the APDU correspond to the CLA, INS, P1, P2,
Lc, and Le fields mentioned in Section III [16].

powerup;

// Applet selection (AID: C9AA4E15B3F6)
0x00 0xA4 0x04 0x00 0x06 0xC9 0xAA 0x4E 0x15 0xB3 0xF6

0x7F;

//Command APDUs

0x00 0xD1 0x00 0x00 0x00 0x7F;

0x00 0xD2 0x01 0x01 0x00 0x7F;
0x00 0xD2 0x01 0x02 0x00 0x7F;
0x00 0xD2 0x01 0x03 0x00 0x7F;
0x00 0xD2 0x01 0x04 0x00 0x7F;
0x00 0xD2 0x01 0x05 0x00 0x7F;

0x00 0xD2 0x02 0x01 0x00 0x7F;
0x00 0xD2 0x02 0x02 0x00 0x7F;
0x00 0xD2 0x02 0x03 0x00 0x7F;
0x00 0xD2 0x02 0x04 0x00 0x7F;
0x00 0xD2 0x02 0x05 0x00 0x7F;

0x00 0xD3 0x01 0x00 0x00 0x7F;
0x00 0xD3 0x02 0x00 0x00 0x7F;

powerdown;

Listing 2. Applet execution script.

The result of running the script is the following sequence
of command and response APDUs:

→ 00A4040006C9AA4E15B3F6
← 9000
→ 00D1000000
← 9000
→ 00D2010100
← FFFFFFFDFFFFFFFFFFFFFFFFFFFFFFFC9000
→ 00D2010200
← E87579C11079F43DD824993C2CEE5ED39000
→ 00D2010300
← FFFFFFFDFFFFFFFFFFFFFFFFFFFFFFFF9000
→ 00D2010400
← 0479D69944F614C7AC9C6B5DF66C391AE2F77F

04CBF17257CE92F5D791B9B7533C9000
→ 00D2010500
← 595DA05E618DA5A664EF6A931272F5039000
→ 00D2020100
← FFFFFFFDFFFFFFFFFFFFFFFFFFFFFFFC9000
→ 00D2020200
← E87579C11079F43DD824993C2CEE5ED39000
→ 00D2020300
← FFFFFFFDFFFFFFFFFFFFFFFFFFFFFFFF9000
→ 00D2020400
← 04620044FA3892038A9C3ADB194916E31F0112

9E2429B92B75037979D17C1D6CD79000
→ 00D2020500
← 835DC74BEB36D19C28E6474A4D400E0E9000

As it can be observed, U’s private key is 0x595DA05E
618DA5A664EF6A931272F503, while the serialization

→ 00D3010000
← 248B7E259095F53613641F1DD27DB61768D946

D79000
→ 00D3020000
← 248B7E259095F53613641F1DD27DB61768D946

D79000

of his public key is 0x0479D69944F614C7AC9C6B5DF
66C391AE2F77F04CBF17257CE92F5D791B9B7533
C. Besides, V’s private and public key are 0x835DC74BE
B36D19C28E6474A4D400E0E and 0x04620044FA38
92038A9C3ADB194916E31F01129E2429B92B7503
7979D17C1D6CD7, respectively. Finally, the value of the
shared secret is 0x248B7E259095F53613641F1DD27
DB61768D946D7.

B. Digital signature example

The code of Listing 3 allows to generate a digital signature
associated to the text “ECDSA example”, and to validate the
validity of that signature, using a 192-bit key pair.

The goal of using a predefined key pair in the example
consists in simulating the data persistence of real smart
cards. Besides, instead of codifying the text to be signed,
we have developed the applet so it signs the string that
is sent to the card using one of the valid APDUs for this
applet. Regarding the verification process, it is necessary to
send to the card both the digital signature and the original
text.

1 import javacard.framework.*;
2 import javacard.security.*;
3

4 public class JCECDSA extends Applet
5 {
6

7 byte[] baTemp = new byte[255];
8 byte[] baSignature = new byte[255];
9 byte[] baText = new byte[255];

10 byte[] baPrivKey = {(byte)0x33, (byte)0x4a,
11 (byte)0x6a, (byte)0xa1, (byte)0xd5, (byte)0x42,
12 (byte)0xc3, (byte)0x12, (byte)0xbd, (byte)0xfa,
13 (byte)0x70, (byte)0x61, (byte)0x99, (byte)0xb4,
14 (byte)0x11, (byte)0xf7, (byte)0xa8, (byte)0xdd,
15 (byte)0xcf, (byte)0xaf, (byte)0x56, (byte)0x3a,
16 (byte)0x7c, (byte)0xb8};
17 byte[] baPubKey = {(byte)0x04, (byte)0x4e,
18 (byte)0x0d, (byte)0xb7, (byte)0xd8, (byte)0x81,
19 (byte)0x39, (byte)0xee, (byte)0x2a, (byte)0x4c,
20 (byte)0xd4, (byte)0x75, (byte)0x47, (byte)0x6b,
21 (byte)0x62, (byte)0x9c, (byte)0x10, (byte)0x41,
22 (byte)0x9e, (byte)0x3d, (byte)0xa8, (byte)0x35,
23 (byte)0x44, (byte)0x5f, (byte)0x50, (byte)0x4c,
24 (byte)0x55, (byte)0x54, (byte)0x40, (byte)0xc4,
25 (byte)0x16, (byte)0xfa, (byte)0x2d, (byte)0xde,
26 (byte)0xd7, (byte)0x67, (byte)0xf5, (byte)0xea,
27 (byte)0x0d, (byte)0xbc, (byte)0x98, (byte)0x49,
28 (byte)0x7e, (byte)0x95, (byte)0x47, (byte)0xb0,
29 (byte)0xb8, (byte)0x09, (byte)0x63};
30

31 short len, lenText, lenSignature;
32 boolean result = false;
33

34 KeyPair kp;
35 ECPublicKey pubKey;
36 ECPrivateKey privKey;
37 Signature ecdsa;
38



39 public static void install(byte[] bArray,
40 short bOffset, byte bLength)
41 {
42 new JCECDSA();
43 }
44

45 protected JCECDSA()
46 {
47 register();
48 }
49

50 public void process(APDU apdu)
51 {
52 byte[] buffer = apdu.getBuffer();
53

54 if (selectingApplet())
55 return;
56

57 if(buffer[ISO7816.OFFSET_CLA] != (byte)0x00)
58 ISOException.throwIt((short) 0x6660 );
59

60 switch (buffer[ISO7816.OFFSET_INS])
61 {
62 case (byte)0xD1:
63 processINSD1(apdu);
64 return;
65 case (byte)0xD2:
66 processINSD2(apdu);
67 return;
68 case (byte)0xD3:
69 processINSD3(apdu);
70 return;
71 case (byte)0xD4:
72 processINSD4(apdu);
73 return;
74 default:
75 ISOException.throwIt((short) 0x6661 );
76 }
77 }
78

79 //////////////////////////////////////////
80 // INS D1 - KEY PAIR GENERATION //
81 // Generates a new key pair of 192 bits //
82 // APDU EXAMPLE: 00D1000000 //
83 //////////////////////////////////////////
84

85 private void processINSD1(APDU apdu)
86 {
87 try
88 {
89 kp = new KeyPair(KeyPair.ALG_EC_FP,
90 KeyBuilder.LENGTH_EC_FP_192);
91 kp.genKeyPair();
92 privKey = (ECPrivateKey) kp.getPrivate();
93 privKey.setS(baPrivKey, (short)0,
94 (short)baPrivKey.length);
95 pubKey = (ECPublicKey) kp.getPublic();
96 pubKey.setW(baPubKey, (short)0,
97 (short)baPubKey.length);
98 ecdsa = Signature.getInstance(
99 Signature.ALG_ECDSA_SHA, false);

100 }
101 catch(Exception exception)
102 {
103 ISOException.throwIt((short) 0xFFD1);
104 }
105 }
106

107 //////////////////////////////////////////////
108 // INS D2 - SIGNATURE //
109 // DATA: string to be signed //
110 // APDU EXAMPLE: 00D20000080102030405060708 //
111 //////////////////////////////////////////////
112

113 private void processINSD2(APDU apdu)
114 {
115 byte buffer[] = apdu.getBuffer();
116 short numBytesInput =
117 apdu.setIncomingAndReceive();
118 lenText = 0;

119

120 while (numBytesInput > 0)
121 {
122 Util.arrayCopyNonAtomic(buffer,
123 ISO7816.OFFSET_CDATA, baText,
124 lenText, numBytesInput);
125 lenText += numBytesInput;
126 numBytesInput =
127 apdu.receiveBytes(ISO7816.OFFSET_CDATA);
128 }
129

130 try
131 {
132 ecdsa.init(privKey, Signature.MODE_SIGN);
133 len = ecdsa.sign(baText, (short)0, lenText,
134 baSignature, (short)0);
135

136 apdu.setOutgoing();
137 apdu.setOutgoingLength((short) len);
138 apdu.sendBytesLong(baSignature, (short) 0, len);
139 }
140 catch(Exception exception)
141 {
142 ISOException.throwIt((short) 0xFFD2);
143 }
144 }
145

146 ///////////////////////////////////////////////
147 // INS D3 - SIGNATURE VERIFICATION //
148 // P1: operation //
149 // Values P1: 01: text load //
150 // 02: signature load //
151 // APDU EXAMPLE: 00D301000401020304 //
152 // APDU EXAMPLE: 00D3020006010203040506 //
153 ///////////////////////////////////////////////
154

155 private void processINSD3(APDU apdu)
156 {
157

158 byte buffer[] = apdu.getBuffer();
159 short numBytesInput =
160 apdu.setIncomingAndReceive();
161

162 if(buffer[2]==(byte)0x01) // Text load
163 {
164 lenText = 0;
165 while (numBytesInput > 0)
166 {
167 Util.arrayCopyNonAtomic(buffer,
168 ISO7816.OFFSET_CDATA, baText,
169 lenText, numBytesInput);
170 lenText += numBytesInput;
171 numBytesInput =
172 apdu.receiveBytes(ISO7816.OFFSET_CDATA);
173 return;
174 }
175 }
176

177 if(buffer[2]==(byte)0x02) // Signature load
178 {
179 lenSignature = 0;
180 while (numBytesInput > 0)
181 {
182 Util.arrayCopyNonAtomic(buffer,
183 ISO7816.OFFSET_CDATA, baSignature,
184 lenSignature, numBytesInput);
185 lenSignature += numBytesInput;
186 numBytesInput =
187 apdu.receiveBytes(ISO7816.OFFSET_CDATA);
188 return;
189 }
190 }
191 ISOException.throwIt((short) 0xFFD3);
192

193 }
194

195 /////////////////////////////////////
196 // INS D4 - SIGNATURE VERIFICATION //
197 // APDU EXAMPLE: 00D4000000 //
198 /////////////////////////////////////



199

200 private void processINSD4(APDU apdu)
201 {
202 try
203 {
204 ecdsa.init(pubKey, Signature.MODE_VERIFY);
205 result = ecdsa.verify(baText, (short)0,
206 lenText, baSignature, (short)0, lenSignature);
207 }
208 catch(Exception exception)
209 {
210 ISOException.throwIt((short) 0xFFD4);
211 }
212

213 if(result)
214 return;
215 else
216 ISOException.throwIt((short) 0xFFD5);
217 }
218 }

Listing 3. Java Card ECDSA code example.

In addition to the classes and methods described regarding
the key agreement example, the new elements that appear
in Listing 3 are the following [15]:

• Signature: base class for digital signature algo-
rithms.

• init(): method that initializes the Signature ob-
ject with the appropriate key and mode (sign or verify).

• sign(): generates the signature of the input data.
• verify(): verifies the signature of the input data

against the supplied signature.
Listing 4 contains the test script for the JCECDSA applet.

powerup;

// Applet selection (AID: C9AA4E15B3A2)
0x00 0xA4 0x04 0x00 0x06 0xC9 0xAA 0x4E 0x15 0xB3 0xA2

0x7F;

0x00 0xD1 0x00 0x00 0x00 0x7F;

0x00 0xD2 0x00 0x00 0x0D 0x45 0x43 0x44 0x53 0x41 0x20
0x65 0x78 0x61 0x6D 0x70 0x6C 0x65 0x7F;

0x00 0xD3 0x01 0x00 0x0D 0x45 0x43 0x44 0x53 0x41 0x20
0x65 0x78 0x61 0x6D 0x70 0x6C 0x65 0x7F;

0x00 0xD3 0x02 0x00 0x37 0x30 0x35 0x02 0x18 0x0b 0x7c
0x83 0x11 0x0c 0xe0 0xb7 0xba 0xc5 0x98 0xc9 0x73
0x0a 0x11 0x3b 0x04 0x49 0xeb 0xb6 0x35 0x80 0x20
0x6b 0x2f 0x02 0x19 0x00 0xe5 0x66 0x9c 0x57 0x97
0xa2 0xd6 0x1d 0x2f 0x3e 0xdd 0x29 0x29 0x93 0x85
0x7e 0xd4 0x8b 0xfa 0xec 0xb4 0x7c 0x02 0x70 0x7F;

0x00 0xD4 0x00 0x00 0x00 0x7F;

powerdown;

Listing 4. Applet execution script.

Below is included the command and response APDU
sequence obtained when executing the previous script:

→ 00A4040006C9AA4E15B3A2
← 9000
→ 00D1000000
← 9000

→ 00D200000D4543445341206578616D706C65
← 37303502180B7C83110CE0B7BAC598C9730A11

3B0449EBB63580206B2F021900E5669C5797A2
D61D2F3EDD292993857ED48BFAECB47C027090
00

→ 00D301000D4543445341206578616D706C65
← 9000
→ 00D3020037303502180B7C83110CE0B7BAC598

C9730A113B0449EBB63580206B2F021900E566
9C5797A2D61D2F3EDD292993857ED48BFAECB4
7C0270

← 9000
→ 00D4000000
← 9000

In the previous example, the user’s private key is 0x33
4A6AA1D542C312BDFA706199B411F7A8DDCFAF56
3A7CB8, while the serialization of the public key is 0x04
4E0DB7D88139EE2A4CD475476B629C10419E3DA8
35445F504C555440C416FA2DDED767F5EA0DBC98
497E9547B0B80963. Given the input message “ECDSA
example”, coded as 0x4543445341206578616D706C6
5, the signature generated by the procedure is 0x373035
02180B7C83110CE0B7BAC598C9730A113B0449EB
B63580206B2F021900E5669C5797A2D61D2F3EDD
292993857ED48BFAECB47C0270.

VI. CONCLUSION

Java Card is a technology that has benefited from the
success of the Java language. Its object-oriented model
allows smart card programmers to develop interoperable
applets that can be deployed on smart cards independently of
their manufacturer. However, Java Card’s learning curve is
steeper than Java’s, so only a minority of Java programmers
are attracted to Java Card.

Regarding ECC, Java Card 2.2 was the first version that
included classes and functions supporting elliptic curves.
The latest release, Java Card 3.0, has incremented the
support for ECC, offering a range of key lengths suitable
for any commercial deployment.

In this contribution, we have provided all the information
needed by any Java programmer to start developing ECC
applets, including two working examples that allow users
to perform key exchanges with the ECDH algorithm, and
digital signatures with the ECDSA procedure.

Given the current trends in information security, we
believe that implementing ECC applications in smart cards
will be an attractive option for many companies willing to
create new security services.

ACKNOWLEDGMENT

This work has been partially supported by Ministerio
de Ciencia e Innovación (Spain) under the grant TIN2011-
22668.



REFERENCES

[1] V. S. Miller, “Use of elliptic curves in cryptography,” Lecture
Notes Comput. Sci., vol. 218, pp. 417–426, 1986.

[2] N. Koblitz, “Elliptic curve cryptosytems,” Math. Comp.,
vol. 48, no. 177, pp. 203–209, 1987.

[3] Digital Signature Standard (DSS), NIST Std. FIPS 186-3,
2009.

[4] V. Gayoso Martı́nez, F. Hernández Álvarez, L. Hernández
Encinas, and C. Sánchez Ávila, “Analysis of ECIES and other
cryptosystems based on elliptic curves,” J. Inform. Assurance
and Security, vol. 6, no. 4, pp. 285–293, 2011.

[5] N. Koblitz, Algebraic Aspects of Cryptography. New York,
NY, USA: Springer-Verlag, 1998.

[6] J. H. Silverman, The Arithmetic of Elliptic Curves. New
York, NY, USA: Springer-Verlag, 2nd ed., 2009.

[7] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to
Elliptic Curve Cryptography. New York, NY, USA: Springer-
Verlag, 2004.

[8] Identification cards – Integrated circuit cards – Part 3:
Cards with contacts – Electrical interface and transmission
protocols, ISO/IEC Std. 7816-3, 3rd ed., 2006.

[9] Identification cards – Integrated circuit cards – Part 4: Or-
ganization, security and commands for interchange, ISO/IEC
Std. 7816-4, 3rd ed., 2013.

[10] National Security Agency. (2005) NSA Suite B cryptog-
raphy. http://www.nsa.gov/ia/programs/suiteb\ cryptography/
index.shtml.

[11] Secure Hash Standard, NIST Std. FIPS 180-4, 2012.

[12] Oracle Corp. (2011) Java Card SDK. http://www.oracle.com/
technetwork/java/javame/javacard/download/devkit/index.
html.

[13] Recommended elliptic curve domain parameters, SECG Std.
SEC 2 version 1.0, 2000, http://www.secg.org/download/
aid-784/sec2-v2.pdf.

[14] Oracle Corp. (2013) Java Card development quick start guide.
https://netbeans.org/kb/docs/javame/java-card.html.

[15] ——. (2011) Java Card Classic platform specification
3.0.4. http://www.oracle.com/technetwork/java/javacard/
specs-jsp-136430.html.

[16] ——. (2001) Developing a Java Card applet. http://www.
oracle.com/technetwork/java/javacard/applet-136808.html.


