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Abstract—Modern plant phenotyping requires active sensing
technologies and particular exploration strategies. This article
proposes a new method for actively exploring a 3D region of
space with the aim of localizing special areas of interest for
manipulation tasks over plants. In our method, exploration
is guided by a multi-layer occupancy grid map. This map,
together with a multiple-view estimator and a maximum-
information-gain gathering approach, incrementally provides
a better understanding of the scene until a task termination
criterion is reached.

This approach is designed to be applicable for any task
entailing 3D object exploration where some previous knowledge
of its general shape is available. Its suitability is demonstrated
here for an eye-in-hand arm configuration in a leaf probing
application.

I. INTRODUCTION

Plant phenotyping studies the influence of environmental

factors on the observable traits of plants. The success of

such studies depends on the data extracted from a series

of long-term monitoring experiments over a great number

of plants under multiple environmental conditions. Measures

can be obtained in two different scenarios. The first one

includes regular fields and mobile sensors, either mounted

on aerial vehicles using remote sensing techniques [1], or

on ground robots [2]. Obviously, climate conditions can

not be controlled here. The second one uses greenhouses,

where variables like temperature, humidity, and light, can be

controlled. The common setup includes large greenhouses

with several isolated zones, and conveyor belts that carry

each plant from its sitting position to a measure chamber

where a rich set of sensors takes measurements before return-

ing them [3]. The throughput obtained in such installations

is considerably high. However, sensors in the measuring

chamber are in a pre-defined position, and measurements

are sometimes obtained from an inadequate point of view.

Additionally, one of the main limitations is the difficulty

to measure or perform actions that require contact with the

plant, such as chlorophyll measurement or the extraction of

disk samples for DNA analysis [4].

Therefore, a major step forward is to provide the system

with the ability to move its perceptual unit, so that it can nat-

urally adapt to the characteristics of each plant. In this paper

a robotic system is proposed to overcome this weakness,

that involves a time-of-flight camera (ToF) and a probing

tool mounted on the end-effector of a robot manipulator. The

approach includes three steps: (i) selection of the target leaf

from a plant, (ii) exploration of this leaf to gather enough
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(a) Experimental setup (b) Leaf probing action

Fig. 1: (a) Overall view of the complete setup, with the

robot carrying the ToF camera and the tool, and the Kinect

camera. (b) Observe that the leaf probing task requires the

clearance (above and below) of a sector of the leaf.

information, and (iii) effective execution of probing. The first

step is usually specified by a botanical expert that defines a

criterion to choose the leaf, for example the biggest one,

or the i-th leaf from the stem. The last step, the measuring

action, has been already presented in previous works [4].

This paper focuses on a method for solving the second step.

We propose to perform task-driven exploration, that is

gathering the necessary information to execute a task, with

a method where the task is encoded in a combination of 3D

occupancy grid maps. Although we concentrate on spatial

restrictions like clearance, it is also shown that other task

constraints, like veins and yellow spots that have to be

avoided, can be represented in additional occupancy grid

maps following the same idea. The goal of task-driven

exploration is to move the robot through a sequence of views

that will contribute to maximising the information for solving

the task. We propose an algorithm that uses an information-

gain approach to compute the expected benefit of each new

possible view, and combines it with other aspects, such as the

proximity to the current view, to obtain the best next view

at each iteration. Observe that this is a local approach, and

that it cannot be optimal since the next position of the sensor

only depends on the available information at each iteration.

An optimal solution would require a complete model of the

plant beforehand. That is not feasible in plant phenotyping,

since plants from the same species are quite different and

even the same plant changes largely over time.

The rest of the paper is organized as follows. Related

works are discussed in Section II. In Section III, our leaf

probing exploration framework is explained. Experimental

results are presented and discussed in Section IV. Finally

Section V is devoted to conclusions.
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Fig. 2: 3D sensor planning framework.

II. RELATED WORK

The ability to move the sensor and consequently provide

a suitable view offers several advantages and it has been

investigated both in the field of mobile robotics and in the

field of active sensors mounted onto robot manipulators [5].

Regarding manipulators, active sensor planning algorithms

can be divided into two main groups depending on the

available initial information: model and non-model based.

Model-based methods require to have a previous complete

model of the object, usually a CAD model, and are useful for

industrial inspection or part localization. These approaches

are often based on visual servoing techniques [6]. Here,

planning algorithms find optimal solutions and consequently,

execute the minimum number of views to complete the task.

Non-model based methods assume vague knowledge about

the object. Using partial information the algorithm has to

produce a next-best-view (NBV) to incrementally gather new

data. This approach is commonly used for object model-

ing [7] and object recognition [8]. Necessarily, since NBV is

determined based on partial knowledge, an optimal solution

cannot be guaranteed. Our approach fits into this group.

Classical non-model based approaches rely on frontier-

based exploration. The camera is iteratively moved relative

to the closest or largest visible frontier, or among the two, to

the one with the easier configuration for the robot [9]. Their

implicit objective is the complete exploration of an area, it

being difficult to explicitly enforce a different task. These

methods are very adequate when using accurate sensing and

positioning devices [10], but not so much in the presence

of noise, since they do not handle uncertainty naturally. In

special cases though, where revisiting actions can be ensured,

the accumulated noise in the scene can be improved through

uncertainty reduction approaches [11].

Information gain is one of the most used measures for

candidate view selection. Each possible view, when visited,

provides a certain amount of new information. Even revisit-

ing already captured areas can provide newer information,

specially if observed from a different point of view. To

estimate the gain for each candidate view, some predictions

about the unexplored regions must be made. A typical

approach is to make assumptions about the nature of the

already captured surfaces. For instance, adjusting B-Splines

to sections of the 3D object [12], or modeling the surface as

a combination of a trend and some disturbances [13].

Note that, while a coarse model of a plant’s leaf can

be feasibly obtained for our application, it can not be

easily exploited by the current approaches. Instead, it has

been shown that 3D occupancy grid maps are well suited

for incremental object modeling [14], [15]. Therefore, we

propose a method that takes advantage of both a coarse

model of a leaf and 3D occupancy grid maps to graphically

encode the task of finding a good probing point.

III. LEAF PROBING FRAMEWORK

Neither leaf probing nor chlorophyll measurement requires

to have a complete leaf’s model to accomplish its goal.

Instead, only specific regions in the leaf’s contour are needed.

To specify the task, we consider two types of information:

the prior knowledge of the task and the on-line data, both

codified using probabilistic occupancy maps. This section

emphasises the following three main ideas:

1) All required data can be represented within a

multi-layer occupancy map, where each layer codi-

fies relevant information that is semantically differ-

ent (Sec. III-C.1). Particularly, the space occupied by

the leaf and the free space for allowing the tool to

reach the leaf.

2) The Information Gain (IG), used as a criterion to

evaluate potential new views, can be easily defined

and computed from the multi-layer representation

(Sec III-D). Its correct computation requires an accu-

rate model of the ToF camera (Sec. III-B).

3) The task termination criterion signals when enough

data is available to perform the task. Our representation

facilitates its definition and evaluation (Sec. III-C.1).

To easily understand the entire framework, we will first

describe the global set-up and thereafter its modules and how

they are interconnected. See Fig. 2 for an overall view of

the system. We stress again that our method focuses on the

main step of exploration planning between consecutive views

until task termination (ii), and not on the initial step of leaf

selection and pose estimation (i), nor on the final probing

trajectory approach (iii).



(a) Initial state of the sys-
tem.

(b) Exploration model. (c) Zenithal measurement
update.

(d) Selection of the NBV. (e) Update after new mea-
surement.

Fig. 3: Step-by-step graphical interpretation of the overall procedure. (a) The system assumes having a leaf in the field-of-

view of the camera. Once the leaf is detected, the exploration model is introduced into the system (b), together with the

first measurement (c). Views are iteratively selected depending on their expected IG, proximity and reachability (d). Green

spheres represent candidate viewpoints that have not been selected yet as a Next-Best-View, blue spheres indicate already

selected but not reachable viewpoints and the red sphere shows the one that has been selected and is being evaluated. The

radius of the sphere represents the expected IG. Observe how, after a new measure is integrated, candidate expected IGs
get reduced (e).

A. Set-up

The experimental set-up consists of a Barrett WAM arm

(robot manipulator) and three sensors: a PMD Camboard

(ToF camera), a spad meter (chlorophyl measuring tool), and

a Kinect camera (see Fig. 1a). The ToF camera is, in con-

junction with the spad meter, rigidly attached to the robot’s

end-effector, in such a way that permits controlling the robot

for both capturing detailed views from informative regions of

interest, and taking chlorophyll measurements from selected

target leaves (see Fig. 1b). The RGB-D camera is deliberately

situated on the ceiling, in a zenithal configuration, to allow

a complete overall view of the scene. Its main purpose is to

feed the obstacle avoidance map so that safe trajectories can

be successfully planned.

B. ToF camera model

It is important to highlight the relevance of having a good

characterization of the depth sensor’s model. The sensor’s

model is not just used for updating the occupancy grid maps

but also for computing the information gain estimation when

simulating the candidate views (Sec. III-D). Note that in ToF

cameras, the uncertainty associated to each pixel is different.

Due to their technology, ToF camera’s depth measure-

ments have attached a set of associated errors (see [16] for

a comprehensive list). After calibration and filtering, the re-

maining errors can be approximated by Gaussian noise with

zero mean and uniform standard deviation and independent

of any other measurement. The calibration process is long,

tedious, and has to be performed for multiple distances. The

common approach we follow is to define a 10 cm. safety

range distance and perform the calibration within that range.

For the experiments in this paper we have selected a preferred

distance of 35± 5 cm.

C. Exploration model

Once a leaf has been selected and its pose correctly

estimated (Fig. 3a), an initial task-driven exploration model

is defined (Fig. 3b). Its aim is to incrementally encode

knowledge about the scene to effectively fulfill the task (i.e.

leaf probing). The exploration model is composed of a multi-

layer occupancy grid map and a set of candidate viewpoints,

see Fig. 4 for a schematic representation.

1) Multi-layer occupancy grid map: In a similar way to

Lu et al. [17], we have subdivided the occupancy repre-

sentation of the exploration model into three semantically-

separated layers {mtask,mstate,mobs}. By doing this, our

method obtains a wide versatility that facilitates four key

aspects: the specification of the task halting criterion, the

precise adjustment of particular exploratory attractors, the

correct treatment of possibly occluded regions of interest and

the computation of obstacle avoidance trajectories.

The aim of the task termination layer mtask is twofold:

first, to indicate whether the exploration can already be

halted; and second, to act as a prior for the NBV plan-

ner (Section III-D). This layer is composed of what we call

regions of interest (ROIs), e.g. in Fig. 5. Each ROI is defined

as a region of expected occupancy in the model, and acts,

by itself, as a global halting criterion. That means that if

the expected occupancies within a certain ROI are fulfilled

after a measurement, the exploration task has finished and a

probing trajectory can be carried out. Our leaf probing model

is composed of 9 separated ROIs wisely located at the edges

of the estimated shape of the leaf (Fig. 5a). Each ROI is

composed of three bounding boxes or here called bricks,

two of them labelled as free, one at the top and one at the

bottom, and another one labelled as occupied in the middle

(Fig. 5b). It is very intuitive to see how these ROIs represent

the desired open and occupied spaces at the leaf edges that

can allow the probing tool to take a measurement. Notice

that we do not need to characterize the complete occupancy

model of a leaf but only those parts (ROIs) that help to solve

the probing task.

The state layer mstate is the one keeping the complete



Fig. 4: Schematic view of the multi-layer occupancy grid

map. Each layer is a 3D occupancy map that semantically

separates different informations. The potential information-

gain obtained from the different views cvi is estimated from

this multi-layer grid map.

update of all measurements taken during an experiment. As

a result, and in conjunction with the mtask layer, the NBV

planner can thereafter predict a more realistic estimation

of the information gain. Such prediction is accomplished

by simulation, i.e., every candidate viewpoint is ray-traced

over mstate. Once simulated, each new virtual measurement

is updated into a copy m̂task

i of the global mtask layer for

posterior computation of its expected IG (Section III-D).

The obstacle avoidance layer mobs, on the other hand,

is dedicated to represent the clearance working space of

the robot. This allows the NBV planner to return safe

and collision-free trajectories. In our approach, this layer

is initialized at the beginning of each experiment with an

overall view of the scene coming from a RGB-D sensor

located in a vantage point at the ceiling; it can also be

updated with every new measurement acquired from the eye-

in-hand depth sensor, if higher precision is requested.

2) Candidate viewpoints: A pre-defined set of vantage

points C = { cvi | i = 1, ..., k} must be chosen in order to

guarantee a good coverage for all ROIs within the mtask

layer, see Fig. 3b. Albeit locally pre-defined offline, both

the multi-layer occupancy grid map and the set of candidate

viewpoints are updated online. At this moment we assume

confidence on the robot’s pose, and therefore candidate

(a) Task termination layer. (b) Bricks within one ROI.

Fig. 5: (a). Graphical representation of the 9 ROIs within

the task termination layer. (b) Composition of bricks into a

single ROI.

viewpoints are updated just once, based on the initial leaf

pose estimation. In the future, with the aim of increasing

accuracy, it is planned to add the uncertainty of the robot

within the system and to consequently incorporate the leaf’s

pose estimation module into the main loop and adapt the

views accordingly.

D. Next-Best-View planner

Prior to the selection of the NBV and after the last

measurement update, the system checks within the mtask

layer for triggered probing termination ROIs. If any of

them is active, meaning that their expected free-occupied-

free preconditions are fulfilled, the probing trajectory to

its corresponding grasping point will be executed. On the

contrary, if none of the ROIs satisfies the halting criterion,

the planner will compute the next-best-view cv∗ based on

the IG cost function.

Our approach is based on the multi-objective performance

criterion described by Mihaylova et al. in [18] and has the

following form:

cv∗ = argmin
cvi ∈ J

‖cvi‖ , (1)

where ‖ ‖ is the euclidean distance from the current view and

J is the set containing the 10% of views with the highest

expected information gains:

IG =
∑

o

∆H(m̂task

i,o ) + β
∑

f

∆H(m̂task

i,f ) , (2)

where ∆H(m̂task

i,o ) and ∆H(m̂task

i,f ) are, respectively, the

expected information gains of occupied and free bricks when

going from the current mtask to the simulated m̂task

i layer;

and β allows to balance their relative contributions. While β

is very relevant in tasks where a type of brick is more critical

than the other, given the equal influence of both types in the

probing task, this parameter is set to 1. Note that Eq. 2 can

be also interpreted as a weighted change of entropy between

prior and posterior probability density functions.

Once the system has chosen the most informative and

reachable candidate view, a new measurement is taken

(Fig 3d) and mstate is updated (Fig 3e).



(a) Simulated isolated leaf scene. (b) Simulated cluttered scene.
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(c) Isolated leaf scene selec-
tion priorities.
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(d) Cluttered scene selection
priorities.

Fig. 6: (c) and (d) show the priority of views in scenes

(a) and (b) respectively. Each number refer to a candidate

view, see Fig. 3b. Colours indicate priority, starting at yellow

and finishing at red. The most selected view after all the

experiments is marked with an extra-circle. These data have

been collected from 100 simulations per scene.

IV. EXPERIMENTS

Figure 3 describes graphically the step-by-step procedure

of the proposed planning framework. The experiments have

been carried out under simulation and subsequently tested,

using the very same algorithm and parametrization, over the

real robot in a very similar scenario, see Figs. 6 and 7.

A. Simulation

This experiment analyses the behaviour of the system

in an isolated leaf and multiple-leaves scenes, Fig. 6a and

6b respectively. The goal is to first evaluate the suitability

of the method on both tidy and cluttered scenes, and then

compare the robot behavior between simulation and reality in

Sec. IV-B. Figures 6c and 6d display the priorities of views

while planning for each of the experiments. For clarity, the

candidate viewpoints considered have been re-arranged in

a 2D graph. Note that [0..8] correspond to the top views

and [9..16] correspond to the bottom views. It can be seen

that, in both experiments, the planner tries to go to the most

informative views first, those that point behind the leaf. We

have purposely defined these points to be non-reachable by

the robot. Observe, for instance, the behavior in the cluttered

scenario: the planner chooses, in the first place, view 13 as

(a) Real isolated leaf scene. (b) Real cluttered scene.

Fig. 7: Single and cluttered scenarios for the real experiment

TABLE I: Simulation (100 Exp.)

N. of views ¬obstacle obstacle

2 64.21% 36.26%
3 28.42% 61.54%
4 5.26% 2.20%
5 1.05% 0%
6 1.05% 0%

Notes: Percentage of experiments that finished in a certain number of
views. Some experiments resulted inconclusive due to external errors
in the path planner (5 in ¬obstacle exp. and 9 in the obstacle exp.)

the closest view among the 10% of those with the highest

IG; since it is unreachable, this view is removed from the

candidate views list and following the same criterion the

NBV is chosen again until a reachable view is obtained. The

final solution for both experiments is a top lateral-left view

(5 or 6).

Table I shows how the presence of obstacles affects the

system. In the isolated leaf scene, most of the experiments

(64%) fulfill the task termination conditions at the second

view. This is good news for plant phenotyping where high

throughput is required. Observe that when obstacles are

present, the task is finished with a second view 36% of the

times, and requires one more view 61% of the times.

B. Real

We carried out a set of 20 real experiments, using the same

algorithm and parametrization than in the simulation, and

with very similar scenes, see Fig. 7. Half of the experiments

are devoted to the isolated leaf scene, and half to the cluttered

scene. In both cases the robot behaved in the same way as

the simulated ones, and it tried to go to the more informative

views, and when not possible it chooses the NBV until

probing was successfully accomplished. The main difference

is that in a cluttered situation the view number 6 is preferred

80% of the times instead of number 5, which is the one

preferred in simulation. However, both views are close and

the difference in the obtained gain is small. 1

1Additional material at:
http://www.iri.upc.edu/groups/perception/leafProbing.

http://www.iri.upc.edu/groups/perception/leafProbing


V. CONCLUSIONS

A solution for plant phenotyping has been presented,

composed of a manipulator robot carrying a ToF camera

and a specialized probing tool. Although our experiments

can include either a tool for chlorophyll measuring or a

probing tool for leaf sampling, both tasks involve the same

framework: the robot changes the point of view of the

camera to take new images, and when enough information

is acquired the task is performed. None of the tasks requires

the complete model of the leaf but just to view a small part

of the leaf and a clearance zone.

In this article a novel 3D task representation based on

a multi-layer map has been introduced, where each layer

codifies relevant information that is semantically different.

It has been shown that this representation has three main

advantages. First, it allows to define tasks based on prior in-

formation available using a combination of free and occupied

space, and even possible constraints.

Second, a formulation has been introduced to compute

the expected information gain from this representation. The

correct computation requires the accurate calibration of the

ToF camera because of the uncertainty in depth related to

each pixel. It has been also shown that IG can be effectively

used to select the next-best-view. As the application may

require to minimize the motion of the robot, a criterion has

been introduced to prefer closer views even if they provide

slightly less information.

Third, this representation allows the natural specification

of the task termination conditions, which are the minimum

units of information required to enable the execution of the

task.

We have purposely left out of the scope of this paper

the generation of the list of possible views, and we have

considered that is provided. In the future, and following our

interest in taking into account the task, we will explore the

generation of the list of views to contain only interesting

views. We envisage that the evaluation of its interest can be

done off-line using simulations with the presented frame-

work, and something similar to lookup tables of relative

positions depending on the task can be created.

Finally, the practical experiments have revealed that the

relative position of the robot and the plant is important, as

some of the views are not reachable. A common approach

in automated plant phenotyping is to control the orientation

of the pot containing the plant. Although this adds a new

degree-of-freedom to the control of the robot, it can be easily

integrated in the proposed framework.
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