
Charters for Self-Evolving Communities

Nardine Osman, Carles Sierra, and Marco Schorlemmer

Artificial Intelligence Research Institute, IIIA-CSIC, Barcelona, Spain

Abstract. Self-organisation and self-evolution is evident in physics, chem-
istry, biology, and human societies. Despite the existing literature on the
topic, we believe self-organisation and self-evolution is still missing in
the IT tools we are building and using. Instead of creating numerous
rigid systems, we should aim at providing tools for creating self-evolving
systems that adapt to the ever evolving community’s needs. This pa-
per proposes a roadmap for self-evolution by presenting a set of building
blocks, which we refer to as community charters. The paper also presents
an approach for each of these blocks, helping build the first prototype
for self-evolving communities.

Keywords: Community goals, norms, interaction protocols, self-evolution

1 Introduction

Whilst many approaches have been proposed for defining and implementing
communities (such as using the notion of organisations [8] or institutions [5]), we
believe the current literature lacks the in-depth study of computational accounts
of communities’ evolution. The very foundation of autonomous agent research
is based on the idea that agents evolve, for instance by assuming their beliefs or
goals change over time. But how communities as a whole evolve is an overlooked
question that this paper aims at raising and addressing.

We argue that just like human communities, e-communities (defined by their
software) also need to self-evolve. Instead of creating numerous rigid systems,
what we should aim at instead is providing tools for creating self-evolving sys-
tems that adapt to the community’s needs. We believe different communities
should be governed by different rules. These rules should be an ever evolving set
resulting from the aspirations of its members. Furthermore, for the community’s
rules to be effective, they need to be tailored to the specific character traits of
the community members as well as considering some other external influences.
We note that in this paper we talk about self-evolution, as opposed to evolution,
since we are interested evolution that is designed and directed by the community
itself.

This paper proposes a roadmap for self-evolving communities. It proposes a
set of building blocks needed for self-evolution, and we refer to these building
blocks as the community charter. The paper also presents an approach for each
of these blocks, helping us build the first prototype for self-evolving communities.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/45450225?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We say communities are formed around certain goals that community mem-
bers are interested in fulfilling. Their evolution is driven by the fulfilment (or
unfulfillment) and the evolution of these goals. Their fall is usually triggered ei-
ther by the fulfilment or the abandoning of such goals by community members.

In addition to goals, we say interactions are another fundamental constituent
of communities. A community, by definition, is a group of interacting peers
(where peers may be a combination of humans, agents, and services). Interac-
tions are the backbone that glues a community together. Without interactions,
a community is simply a number of individuals. However, we say a community’s
interactions should aim at fulfilling its goals. Otherwise, either its interactions
are ineffective, or its goals have not been properly thought-out.

Between goals and interaction protocols lie the community’s norms. Norms
may be thought of as describing the declarative rules, i.e. statements that de-
scribe what a rule is without going into the details of how to implement it. Norms
provide generic guidelines that help fulfil the community’s goals, and the inter-
action protocols (or the procedural rules) should be designed to abide by these
norms.

As such, we propose to define a community by its charter, which we say
is composed of the community’s goals, norms, and interaction protocols. The
concept of such a charter maps with the notion of traditional human commu-
nities, which are usually defined by their mission statement (the goals), their
bylaws (the norms), and their standard operating procedures (the interaction
protocols) [7].

Finally, we say unfulfilled goals can be one automated way for triggering
evolution, suggesting a flaw with the charter’s components. Different elements
of the charter may be modified during the evolution stage in the hope that a
more coherent charter is achieved.

The remainder of this paper elaborates further on each of the charter’s three
components in Sections 2, 3, and 4, respectively. Section 5 then provides a brief
insight on how the proposed model helps promote self-evolution, before conclud-
ing with Section 6.

2 Goals

A community usually has a general goal which may then be divided into more
concrete sub-goals. In human communities, these are defined by the community’s
mission statement.

For instance, we consider the u-Help community, whose software platform is
used “for building a community of helpful people and supports them in finding
volunteers for day-to-day tasks” [9]. Although the illustrative application for u-
Help is to allow parents find volunteers for picking their children up from school
or babysitting them, u-Help may be applied to any community with any needs
for services. The u-Help community’s mission statement may be paraphrased
accordingly: To help community members exchange services in a community with
high needs for such services.

This general mission statement may then be divided into more concrete goals,
whose fulfilment may be verified:

G1. To ensure the community’s needs for services are being addressed
G2. To ensure the satisfaction of requesters (i.e. to ensure good quality

of service)
G3. To ensure the satisfaction of volunteers

These goals are defined by the community members that establish this com-
munity. Although goals may evolve over time like any other charter component,
their evolution is usually much less frequent in comparison with the evolution
of norms, and interaction protocols. This is because communities are essentially
viewed as defined by their goals.

2.1 Goal Specification

In multiagent system, goals have been studied extensively as being part of an
agent’s belief-desire-intention (BDI) model [12]. In such models, goals are viewed
as the desires that the agent adopts for active pursuit. When an agent commits
to a specific plan for achieving a given goal, then the goal becomes an intention.

In this paper, we do not discuss agent goals, but community goals. Different
approaches and/or languages may be adopted for the specification of these goals.
We say one way to specify a goal is as a tuple:

〈GId,GSpecification, GDescription〉

where GId is the goal’s unique identifier, GSpecification is the goal’s specification
in first-order logic, and GDescription is the description of the goal in text, which
may be used to aid human users understand which goals have been fulfilled or
not during the evolution stage of a community (we assume community members
may be a mix between agents and human users).

Goal Specification Example. The uHelp community’s goals may be specified as:

〈G1,∃R′⊂R · (∀r∈R′ · ∃m∈M · volunteer(r)=m ∧majority(R′,R)),
“The majority of requests had volunteers to carry them out′′〉

〈G2,∃R′⊂R · (∀r∈R′ · ∃m∈M · volunteer(r)=m ∧ pstvRate(m,r) ∧majority(R′,R)),
“The majority of requesters are happy with the volunteers’ performance′′〉

〈G3,∃R′⊂R · (∀r∈R′ · ∃m∈M · requester(r)=m ∧ pstvRate(m,r) ∧majority(R′,R)),
“The majority of volunteers believe the requests are reasonable/doable′′〉

where, M is the set of all community members, R is the set of all requests for
help that community members have issued, majority(R′, R) implies that the
elements of set R′ constitute a majority with respect to the elements of the
set R, requester(r) = m specifies that the community member m requested
help with task r, volunteer(r) = m specifies that the community member m
has volunteered (and been assigned) to fulfil the request r, and pstvRate(m, r)

describes that the community member m has been positively rated for task
r. If m was a volunteer, then positively rating a volunteer will describe the
requester’s satisfaction with the volunteer’s performance. If m was a requester,
then positively rating a requester will describe the volunteer’s belief that the
request was for a reasonable (or doable) task with a reasonable deadline.

We note that in this specific example, goal G2 subsumes goal G1, and hence,
the community’s set of goals may be reduced to goals {G2, G3}.

2.2 Checking Goal Satisfaction

We say the unfulfillment of community’s goals is one of the triggers for self-
evolution. When such a situation arises, community members should be alerted
by the system, which would then suggest that the charter may need to be revised
as it is failing to fulfil its goals. Of course, there may be other triggers specified
by the norms and interaction protocol, which we do not discuss here, such as
stating which members are allowed to initiate evolution.

When to check for the satisfaction of community goals is also something that
needs to be specified by the interaction protocol. For instance, should this check
happen on a daily basis? Should it happen every time a new set of 100 requests is
issued? This is an issue to be decided by the community itself (or those members
who are given the right to do so) and specified accordingly by the interaction
protocol.

Nevertheless, we say the minimum requirement for implementation is for in-
teraction protocols to be capable of calling the goal satisfaction checker. Section 5
elaborates further on this.

3 Norms

Norms describe the rights and duties of community members. We say there
are two different types of norms, those that are regimented by the interaction
protocol, and those that are enforced by other means (such as punishments and
rewards) as they cannot be regimented by the interaction protocol. An example
of the former is the norm that states that a buyer cannot rate the seller more
than once, and the system prevents the buyer to do so. An example of the latter
is the norm that states that only people with sufficient credit can bid, where
the credit is private information that cannot be accessed and assessed by the
system.

3.1 Regimented Norms

Regimented Norms Specification Although numerous logics have been pro-
posed in the literature [6], mostly using some kind of modal logic, the most
common approach for specifying norms is through deontic logic, the logic of du-
ties that deals with concepts like permissions and prohibitions. We believe the
literature is rich enough with logics for one to choose from.

In this paper, we propose to specify regimented norms in a simplified deontic-
based approach:

〈NormId,NormType,Agents,Action,Condition〉

where NormId is the norm’s unique identifier, NormType = {permissible,
omissible, obligatory, impermissible, optional} specifies the type of the norm
(we define the main five deontic operators of the Traditional Scheme [11] that
describe what is: permissible, omissible, obligatory, impermissible, and optional),
Agents describes the set of agent roles that this norm applies to, Action specifies
the action the norm addresses, and Condition specifies the circumstances under
which the norm holds. Of course, as with goals, one may add a descriptive field to
norms to aid humans in comprehending the norms they are discussing or voting
on. Although this would raise a security concern of how to make sure the text
properly describes the logic.

Regimented Norms Example. As an example, we specify a couple of norms
from an existing service exchange community, the Time Bank community of the
Castlehaven Community Association (www.castlehaven.org.uk). The norm de-
scription (and number) is taken from the community’s time bank community
rules [17].

3. Volunteers can live outside Camden and join the Time Bank to join in activ-
ities and help those who live in the Time Bank area.

〈3, permissible,member(V), volunteer(V, Task),
live outside TB area(V)〉

5. Everyone who requests help from the Time Bank will be put on a waiting
list.

〈5, obligatory, system, put on waiting list(Task),
request(R, Task) ∧ ¬live outside TB area(R)〉

Regimented norm (3.) states that if a member (member(V)) lives outside the
Time Bank area (live outside TB area(V)), then he is permitted to volun-
teer for a task (volunteer(V, Task)). Regimented norm (5.) states that if a
requester R requests help with some task Task (request(R, Task)) and the
requester lives within the Time Bank area (¬live outside TB area(R)), then
the system is obliged to accept the task by putting it on the waiting list
(put on waiting list(Task)).

Verifying Norm Regimentation Naturally, when norms need to be regi-
mented by the interaction protocol, there should be means for automatically
verifying this regimentation each time the norms or the interaction protocols
change. As such, we say there is a need for automatic verification, which should
happen once at the formation of the community and then again after each evo-
lution.

Automated theorem proving or model checking are popular approaches with
rich existing literature [16]. We propose to use the model checker of [14] that
can help verify on the fly whether the norms specified in the proposed syntax
above are satisfied in an interaction model specified in LCC [15], which is a
lightweight process calculus for specifying multiagent interactions. Naturally,
other languages may be used for specifying both the norms and the interaction
model and other model checkers may be used for verification. However, in such
cases, an appropriate translator is needed to translate the chosen language into
the input language of the chosen model checker.

3.2 Enforced Norms

Enforced Norms Specification Enforced norms are norms that cannot be
regimented by the system. They are then enforced by alternative methods, such
as applying sanctions (punishments and rewards). Sanctions usually apply to
prohibitions and obligations. As such, while other modal logics may be used for
specifying regimented norms, enforced norms usually rely on deontic logic [1], as
it is the logic of prohibitions and obligations.

Although any of the existing logics may be chosen, in this paper, we propose
to specify enforced norms by extending the specification of regimented norms
with sanctioning information. The proposed approach follows the same style as
regimented norms and is coherent with many existing approaches [10, 2].

〈NormId,NormType,Agents,Action,Condition,
Reward, Punishment,Deadline〉

As in the case of regimented norms: NormId is the norm’s unique identifier,
Agents describes the set of agent roles that this norm applies to, Action spec-
ifies the action the norm addresses, and Condition specifies the circumstances
under which the norm holds and it is specified in first order logic. However,
NormType ∈ {impermissible, obligatory} is now restricted to obligations and
forbiddances only, as we shortly explain. Reward and Punishment specify the
rewards and punishments that an agent receives if they abide to or break the
norm, respectively. Last, Deadline specifies the deadline for an action to be
prohibited or obligatory. The use of deadlines is clarified further in Section 3.2.

Concerning the restriction of the norm type to obligations and prohibitions,
we say enforced norms rely on the concept of sanctions, and sanctions are usually
assigned not to permissible actions that one is free to perform or not, but to
negative permissions that describe what one is not permitted to perform. The
concept of punishment and reward only makes sense when addressing negative
permissions. We note that when defining deontic operators, one can pick any
of the operators to be the basic operator, and the remaining operators may be
defined in terms of the chosen basic operator. To illustrate our argument, we
choose the permissible operator to be the basic operator, as such:

permissible φ
omissible φ = permissible ¬φ

impermissible φ = ¬ permissible φ
obligatory φ = ¬ permissible ¬φ
optional φ = permissible φ ∨ permissible ¬φ

As enforced norms focus on negative permissions only, then the two operators
that describe negative permissions are prohibitions (describing impermissible
actions) and obligations.

A Note on Sanctions. It may be argued that punishment and reward is not
always the right approach for motivating the abidance to norms. Furthermore,
what may be considered a punishment for one may be viewed as a reward for
another. In this paper, we label post-conditions as rewards or punishments, al-
though they may simply be interpreted as the post-conditions of abiding with
or breaking the norm.

Enforced Norms Example. As an example, we specify the following two norms:

1. Volunteers are penalised by losing credit if they do not fulfil their duties on
time.

〈1, obligatory, volunteer(V), fulfil duty(V, Task), assigned duty(Task, V),
gain points(Task), lose points(Task), deadline(Task)〉

2. Requesters are not allowed to ask for tasks that are paid.

〈2, impermissible, requester(R), request help(R, Task), paid service(Task),
nil, prohibited to request(Next 10 days), nil〉

The first enforced norm states that if a task has been assigned to a volun-
teer V (assigned duty(Tasl, V)) then the volunteer is obliged to perform this
task (fulfil duty(V, Task)) within the task’s deadline (deadline(Task)). If he
succeeds, then he is rewarded by gaining a certain number of points (gain
points(Tasks)); and if he fails, he is punished by losing a certain number of
points (lose points(Taks)).

The second enforced norm states that a requester R is forbidden to re-
quest help (request help(R, Task)) if the requested task is a paid service (paid
service(Task)). This rule has no deadline (nil); i.e. it holds forever. Requesters
are not rewarded for not requesting help with paid services (nil), but punished
if they do by being prohibited by the system from requesting any help over the
next 10 days (prohibited to request(Next 10 days)).

Ensuring Norm Enforcement Several approaches exist that propose norm
enforcement mechanisms [13, 3]. In this paper, we propose a basic norm en-
forcement algorithm, whose pseudocode is presented by Figure 1. The algorithm

essentially states that norms become active (or are instantiated) for a given
community member if the condition of the norm holds for that given community
member. Community members are then either rewarded or punished either when
they perform the action in question or when the deadline passes and they have
not yet performed the action in question, depending on the type of the norm.
Note that the algorithm is event triggered: The event of having a norm’s con-
dition satisfied triggers the activation (and instantiation) of that norm, and the
events of performing an action or having a norm’s deadline pass trigger sanctions
and the removal of the instantiated norm.

OnEvent: Constraint C of norm n is satisfied for α
Do: Instantiate norm n for agent α

OnEvent: α performs action A and there exists an

instantiated norm n on α’s action A
Do: If norm n is of type impermissible Then

Agent α is punished and

the instantiated norm is deleted

Else
Agent α is rewarded and

the instantiated norm is deleted

OnEvent: Deadline of instantiated norm n passes

Do: If norm n is of type impermissible Then
The corresponding agent is rewarded and

the instantiated norm is deleted

Else
The corresponding agent is punished and

the instantiated norm is deleted

Fig. 1. Pseudocode for norm enforcement

We note that the system responsible for the execution of interactions should
also be responsible for the norm enforcement algorithm, as it needs to keep track
of which conditions are being satisfied, which actions are performed, and which
deadlines have passed.

4 Interaction Protocols

Interaction protocols describe the operational rules governing the interaction
between community members. In abstract terms, they may be specified via la-
belled transition systems or finite state machines. In multiagent systems, several
approaches have been used that one is free to choose from, such as using process
calculi [15], electronic institutions [5], or contracts and commitments [4].

Requester n

Requester 2
Requester 1

request_
help(t)

Volunteer n

Volunteer 2
Volunteer 1

get_
help_request(rx,t)

offer_help(rx,t)

get_
confirmation(t)

perform(t)

rate(rx,t)

get_
not_

chosen(t)

decline(rx,t)

||

get_
 offer(vi,t)

pick_
volunteer(vx,t)

get_
 no_
 offers(t)

rate(vx,t)

goal_
check(g1)

Voter n

Voter 2
Voter 1

get_
suggested_
change(x)

vote(x,v) abstain(x)

suggest_
change(x)

get_result(x,r)

get_
final_

charter(ch)

get_
result(x,r)

get_
result(x,r)

get_
unsatisfied_

goal(g1)

||

Fig. 2. Interaction protocol example

We say any approach may be adopted, as long as a model checker can verify
the specified interaction protocols against regimented norms. In this paper, how-
ever, we choose the lightweight coordination calculus (LCC) [15] as it is a process
calculus that is used both in the specification of multiagent systems as well as
in the execution of their interactions, and more importantly, it is the language
of [14]’s model checker. We believe that having the executable interaction model
fed directly to the model checker avoids the complexity of modelling the system
in another language and the possibility of introducing errors in doing so.

Interaction Protocol Example. Figure 2 provides an example of an interaction
protocol, where the nodes present the state of a process (or agent). The protocol
states that there can either be a number of volunteers and requesters playing at
the same time (note that one agent may play more than one instance for more
than one role at the same time), or a number of voters discussing the evolution of
the community. Note that || describes the parallel operator in process calculus.
As an example, we explain the voter’s role, and we leave it to the reader to
interpret the rest of the specification, as we believe the names of the agent roles
and actions are self-expressive.

The voter’s protocol states that when an agent plays the role of a voter,
first, it will receive a message stating the unsatisfied goal g1 that has initiated
the evolution stage (get unsatisfied goal(g1)). Then, either the voter suggests a
change x in the charter (suggest change(x)), or it receives a suggested change x
by some other voter (get suggested change(x)). In the first case, it will wait for
others to vote on its suggested change, before receiving the final result r of the
vote (get result(x, r)). In the latter case, it can either vote v (vote(x, v)), or it
can abstain from voting (abstain(x)). In both cases it will then be informed of
the final voting result r (get result(x, r)). As the arrows illustrate, the protocol
may loop several times with different voters suggesting new changes and voting

on the suggestions, before the final charter ch is agreed upon and the voter is
informed (get final charter(ch)).

The reader familiar with process calculi may note that mapping this specifi-
cation into a process calculus such as LCC becomes straightforward.

5 Self-Evolution

The interaction protocols are expected to specify the details of evolution. They
should specify when does evolution take place and how does the system trigger
evolution (such as when goals are not satisfied), which community members are
allowed to suggest evolution (such as permitting the community’s president to
trigger evolution whenever he sees fit), the minimum number of people required
to discuss evolution (such as stating that at least 30% of the community should
be present for discussing evolution), or who can suggest changes and how evo-
lution is discussed and agreed upon (such as following some predefined voting
mechanism).

Ideally, there would be specific processes dedicated for evolution. That is if
we are thinking of interaction protocols specified in a process calculus. For in-
stance, if one uses electronic institutions to model interaction protocols, then
one would think of a dedicated evolution scene. In the example presented by
Figure 2, the dotted processes, states, and actions are those related to evolution.
The processes defining the voters’ roles illustrate how voters may vote on recom-
mended changes. And it is the goal check(g1) action in the requester’s role that
is responsible for initiating evolution. Although, we note that for simplification,
the conditions that control the flow are omitted.

Naturally, there is the crucial issue of defining how the interaction needs
to be paused at a safe state from which it can be resumed after evolution is
completed. We leave this open issue for future research. However, we say after
evolution takes place and a new charter is agreed upon, all community members
need to be informed of the new charter.

6 Conclusion

This paper argues the need for self-evolving communities. We believe self-evolution
is still missing in the IT tools we are building and using. And we say that instead
of creating numerous rigid systems, we should aim at providing tools for creat-
ing self-evolving systems that adapt to the ever evolving community members’
needs.

The paper proposes a roadmap for self-evolving communities. It proposes a
set of building blocks, which we refer to as the community charter, and presents
a concrete approach for each of the proposed building blocks, which helps build
the initial prototype for self-evolving communities. We say a community charter
should define: (1) the community’s goals, (2) the community’s norms, and (3) the
interaction protocols, which include the evolution protocols.

One proposed approach for triggering evolution is for the system to signal
unfulfilled goals, suggesting the modification of the charter’s various components
in a way that helps address these unfulfilled goals. Future work could also make
use of the research on emergence and self-organisation in multiagent systems.

Finally, we note that our ongoing research considers semantics to be a fun-
damental component of any charter. For instance, unfulfilled community goals
might be the result of misunderstandings at the semantic level. In this line
of work, where community members are expected to propose and discuss new
goals, norms, and/or interaction protocols, ensuring that all members compre-
hend these elements in a consistent manner becomes a major and crucial chal-
lenge.

7 Acknowledgments

This work is supported by the PRAISE project (funded by the European Com-
mission under the FP7 STREP grant number 318770), the CBIT project (funded
by the Spanish Ministry of Science & Innovation under the grant number TIN2010-
16306), and the Agreement Technologies project (funded by CONSOLIDER CSD
2007-0022, INGENIO 2010).

References

1. Ågotnes, T., Broersen, J., Elgesem, D. (eds.): Deontic Logic in Computer Science
- 11th International Conference, DEON 2012, Bergen, Norway, July 16-18, 2012.
Proceedings, Lecture Notes in Computer Science, vol. 7393. Springer (2012)

2. Aldewereld, H., Dignum, F., Garca-Camino, A., Noriega, P., Rodrguez-Aguilar,
J., Sierra, C.: Operationalisation of norms for electronic institutions. In: Noriega,
P., Vzquez-Salceda, J., Boella, G., Boissier, O., Dignum, V., Fornara, N., Matson,
E. (eds.) Coordination, Organizations, Institutions, and Norms in Agent Systems
II, Lecture Notes in Computer Science, vol. 4386, pp. 163–176. Springer Berlin
Heidelberg (2007), http://dx.doi.org/10.1007/978-3-540-74459-7_11

3. Criado, N., Argente, E., Noriega, P., Botti, V.: A distributed architecture for
enforcing norms in open mas. In: Dechesne, F., Hattori, H., Mors, A., Such,
J., Weyns, D., Dignum, F. (eds.) Advanced Agent Technology, Lecture Notes
in Computer Science, vol. 7068, pp. 457–471. Springer Berlin Heidelberg (2012),
http://dx.doi.org/10.1007/978-3-642-27216-5_35

4. Dignum, V., Meyer, J.J., Weigand, H.: Towards an organizational model for agent
societies using contracts. In: Proceedings of the first international joint conference
on Autonomous agents and multiagent systems: part 2. pp. 694–695. AAMAS ’02,
ACM, New York, NY, USA (2002), http://doi.acm.org/10.1145/544862.544909

5. d’Inverno, M., Luck, M., Noriega, P., Rodriguez-Aguilar, J.A., Sierra, C.: Com-
municating open systems. Artificial Intelligence 186, 38–94 (Jul 2012), http:

//dx.doi.org/10.1016/j.artint.2012.03.004

6. Gabbay, D.M., Guenthner, F. (eds.): Handbook of Philosophical Logic. Springer
(2001 – to date)

7. Heimlich, J.E., Dresbach, S.H.: Written documents for community groups: Bylaws
and standard operating procedures. Fact Sheet on Community Development, Ohio
State University Extension, online: http://ohioline.osu.edu/cd-fact/co-bl.

html; Last accessed on 03 October 2013
8. Horling, B., Lesser, V.: A survey of multi-agent organizational paradigms.

Knowl. Eng. Rev. 19(4), 281–316 (Dec 2004), http://dx.doi.org/10.1017/

S0269888905000317

9. Koster, A., Madrenas-Ciurana, J., Osman, N., Schorlemmer, W.M., Sabater-Mir,
J., Sierra, C., Jonge, D.D., Fabregues, A., Puyol-Gruart, J., Garcia-Calves, P.: u-
help: Supporting helpful communities with information technology. In: Ossowski,
S., Toni, F., Vouros, G.A. (eds.) Proceedings of the 1st Int. Conf. on Agreement
Technologies. CEUR Workshop Proceedings, vol. 918, pp. 378–392. CEUR-WS.org
(2012)

10. Lpez, F.y., Luck, M., dInverno, M.: A normative framework for agent-based
systems. Computational & Mathematical Organization Theory 12(2-3), 227–250
(2006), http://dx.doi.org/10.1007/s10588-006-9545-7

11. McNamara, P.: Making room for going beyond the call. Mind 105(419), 415–450
(1996), http://mind.oxfordjournals.org/content/105/419/415.abstract

12. Meyer, J.J., Broersen, J., Herzig, A.: BDI logics. In: Ditmarsch, H.v., Halpern, J.,
van der Hoek, W., Kooi, B. (eds.) Handbook of Logics for Knowledge and Belief.
College Publications, http://www.collegepublications.co.uk/ (2013)

13. Modgil, S., Faci, N., Meneguzzi, F., Oren, N., Miles, S., Luck, M.: A framework
for monitoring agent-based normative systems. In: Proceedings of The 8th Inter-
national Conference on Autonomous Agents and Multiagent Systems - Volume 1.
pp. 153–160. AAMAS ’09, International Foundation for Autonomous Agents and
Multiagent Systems, Richland, SC (2009), http://dl.acm.org/citation.cfm?id=
1558013.1558034

14. Osman, N.: Runtime Verification of Deontic and Trust Models in Multiagent Inter-
actions. PhD thesis, School of Informatics, the University of Edinburgh, Edinburgh,
UK (2008)

15. Robertson, D.: A lightweight coordination calculus for agent systems. In: Leite, J.a.,
Omicini, A., Torroni, P., Yolum, p. (eds.) Declarative Agent Languages and Tech-
nologies II, Lecture Notes in Computer Science, vol. 3476, pp. 183–197. Springer
Berlin Heidelberg (2005), http://dx.doi.org/10.1007/11493402_11

16. Robinson, A., Voronkov, A. (eds.): Handbook of automated reasoning. Elsevier
Science Publishers B. V., Amsterdam, The Netherlands, The Netherlands (2001)

17. Time bank joining form. Castlehaven Community Association (May 2013), on-
line: http://www.castlehaven.org.uk/static/uploads/documents/timebank_

Application_form_May_2013.docx; Last accessed on 03 October 2013

