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Abstract The present study aimed to investigate the
in vitro antileishmanial activity of strychnobiflavone fla-
vonoid against Leishmania infantum, as well as its
mechanism of action, and evaluate the ex vivo
biodistribution profile of the flavonoid in naive
BALB/c mice. The antileishmanial activity (IC50 value)
of strychnobiflavone against stationary promastigote and
amastigote-like stages of the parasites was of 5.4 and
18.9 μM, respectively; with a 50% cytotoxic concentra-
tion (CC50) value of 125.0 μM on murine macrophages,

resulting in selectivity index (SI) of 23.2 and 6.6, re-
spectively. Amphotericin B, used as a positive control,
presented SI values of 7.6 and 3.3 for promastigote and
amastigote-like stages of L. infantum, respectively. The
strychnobiflavone was also effective in reducing in sig-
nificant levels the percentage of infected macrophages,
as well as the number of amastigotes per macrophage,
after the treatment of infected macrophages using the
flavonoid. By using different fluorescent probes, we in-
vestigated the bioenergetics metabolism of L. infantum
promastigotes and demonstrated that the flavonoid
caused the depolarization of the mitochondrial mem-
brane potential, without affecting the production of re-
active oxygen species. In addition, using SYTOX®

green as a fluorescent probe, the strychnobiflavone dem-
onstrated no interference in plasma membrane perme-
ability. For the ex vivo biodistribution assays, the flavo-
noid was labeled with technetium-99m and studied in a
mouse model by intraperitoneal route. After a single
dose administration, the scintigraphic images demon-
strated a highest uptake by the liver and spleen of the
animals within 60 min, resulting in low concentrations
after 24 h. The present study therefore demonstrated, for
the first time, the antileishmanial activity of the
strychnobiflavone against L. infantum, and suggests that
the mitochondria of the parasites may be the possible
target organelle. The preferential distribution of this
compound into the liver and spleen of the animals could
warrant its employ in the treatment of visceral
leishmaniasis.
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Introduction

Leishmaniasis is considered an important infectious disease in
the world, with a high incidence and ability to produce defor-
mities, as well as cause death. The disease affects approxi-
mately 12 million people in 98 countries and territories world-
wide (WHO, 2010; Alvar et al., 2012). Visceral leishmaniasis
(VL) caused by Leishmania donovani and Leishmania
infantum/Leishmania chagasi is an extremely serious disease,
leading to nearly 500,000 new cases and 50,000 deaths annu-
ally (Minodier and Parola 2007).

The parenteral administration of pentavalent antimony
compounds continues to be the first choice to treat leishman-
iasis; however, the occurrence of side effects, such as anorexy,
myalgias, arthralgias, chemical pancreatitis, leucopenia, and
cardiotoxicity are observed in patients (Grevelink & Lerner,
1996; Croft & Coombs, 2003). Amphotericin B, a second-line
drug, is a highly hydrophobic antifungal product with an ef-
fective antileishmanial activity; however, its clinical use is
also limited by its high toxicity (Annaloro et al., 2009;
Ribeiro et al., 2014). To improve the therapeutic index of
AmpB in an attempt to reduce its cytotoxicity, lipid-based
formulations have been developed, such as Ambisome®,
AmphocilH®, and Abelcet® (Bern et al., 2006). The World
Health Organization has recommended the use of liposomal
AmpB (L-AmpB) based on its high efficacy and safety
(WHO, 2010). Despite improvements in therapeutic indexes
for these lipid formulations, their use still remains limited due
mainly to their high cost (Egger et al. 2010).

Miltefosine has been also employed in the treatment for VL
as part of the Kalazar elimination program, launched to tackle
the widespread antimony-resistance in the Indian subconti-
nent, aiming to reduce the number of cases of the disease in
the next years (Mondal et al., 2009). Since miltefosine has a
long elimination half-life and requires a long treatment regi-
men, the development of drug resistance has been reported
(Dorlo et al., 2012; Rijal et al., 2013). Also, miltefosine ther-
apy has been linked to teratogenicity and should not be pre-
scribed to pregnant women or to those of childbearing age
(Bhattacharya et al., 2004). In addition, leishmaniasis has
emerged as an opportunistic infection in human immunodefi-
ciency virus-infected patients (Alvar et al., 1997; Cota et al.,
2014; Singh, 2015). Therefore, the development of new strat-
egies to treat leishmaniasis has become a priority (Goto,
2012).

Natural products have traditionally played an important
role in drug discovery and were the basis of most early med-
icines (Butler, 2005). It has been shown that the number of
natural product-derived drugs present in the total amount of
drug launchings in the market from 1981 to 2002 represented
a significant source of new compounds (Newman et al.,
2003). In recent years, considerable attention has been given
to secondary plant-purified products, in an attempt to search

for new antileishmanial drugs (Tiuman et al., 2005; Khaliq
et al., 2009; Vendrametto et al., 2010). The Strychnos genus
includes approximately 200 plant species, many of which are
known for their potential medicinal secondary metabolites
(Thongphasuk et al., 2003; Philippe et al., 2004). Strychnos
pseudoquina St. Hil. is a native cinchona-like tree of the
Brazilian Savanna, popularly known as “quina,”which is used
in folk medicine to treat hepatic and stomach diseases (Correa,
1952), as well as malaria (Andrade-Neto et al., 2003).

Recently, a study performed by the present study’s research
group using an ethyl acetate extract derived from
S. pseudoquina stem bark isolated two flavonoids, quercetin
3-O-methyl ether and strychnobiflavone, which presented an
effective antileishmanial activity against the L. amazonensis
species (Lage et al., 2013). In this study, it was shown that
both flavonoids presented an effective activity against in vitro
stationary promastigotes and amastigotes of L. amazonensis,
as well as a low toxicity in murine macrophages, in addition to
a null hemolytic activity in human red blood cells. Moreover,
strychnobiflavone proved to be effective in inhibiting macro-
phage infections caused by the parasites that had been pre-
incubated with the cells, as well as in reducing the parasite
burden in macrophages that had previously been infected with
L. amazonensis, and that were later treated with the flavonoid.

In this context, in the present study, the antileishmanial
activity and mechanism of action of the strychnobiflavone
was evaluated against the L. infantum species. Aimed at
performing future in vivo studies employing this flavonoid
in the treatment of VL, an ex vivo biodistribution study of
strychnobiflavone was also performed in BALB/c mice.

Materials and methods

Mice

Murine peritoneal macrophages were obtained from female
BALB/c mice (8 weeks old), which were purchased from
Institute of Biological Sciences from Federal University of
Minas Gerais (UFMG). Experiments were performed in com-
pliance with the National Guidelines of the Institutional
Animal Care and Use Committee for the Ethical Handling of
Research Animals (CEUA/UFMG), which approved this
study under protocol number 136/2012.

Parasite

Leishmania infantum (MHOM/BR/1970/BH46) strain was
used. Parasites were grown at 24°C in Schneider’s medium
(Sigma, St. Louis, MO, USA), which was supplemented with
20% heat-inactivated fetal bovine serum (FBS, Sigma-
Aldrich, USA) and 20 mM L-glutamine, at pH 7.4.
Stationary-phase promastigotes were cultured as described
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(Coelho et al., 2003). The amastigote-like stage of L. infantum
was prepared following a modified technical protocol (Doyle
et al., 1991). Briefly, 1 x 109 stationary promastigotes were
washed in sterile phosphate buffer saline (PBS). Then, para-
sites were incubated in 5 mL of FBS for 48 h at 37°C. After,
parasites were washed two times in sterile PBS, and visualized
in an optical light microscopy. The cellular density was esti-
mated by counting in a Newbauer chamber, and their mor-
phology was evaluated after staining by Giemsa (Valadares
et al., 2011).

In vitro antileishmanial activity

The inhibition of Leishmania spp. growth was assessed by
in vitro cultivating stationary-phase promastigotes of
L. infantum (1×106 cells) in the presence of strychnobiflavone
(0.4 to 16.0 μM), in 96-well culture plates (Nunc, Nunclon,
Roskilde, Denmark), for 48 h at 24°C. A previous titration
curve was performed to determine the best time of inhibition
of L. infantum growth incubating the evaluated product, and
the used concentrations were derived from Lage et al. (2013).
Cell viability was assessed by measuring the cleavage of
5 mg/mL of MTT [3-(4.5-dimethylthiazol-2-yl)-2.5-diphenyl
tetrazolium bromide] (Sigma). Absorbances were measured
by using a multiwell scanning spectrophotometer (Molecular
Devices, Spectra Max Plus, Canada), at 570 nm.
Amphotericin B (1μ M) was used as a control. The concen-
tration of the flavonoid needed to inhibit 50% of the
Leishmania spp. viability (IC50) was determined by applying
a sigmoidal regression of the dose-response curve, using dif-
ferent concentrations of the compound. Data shown are rep-
resentative of three independent experiments, performed in
triplicate, which presented similar results.

Cytotoxicity assay

The inhibition of 50% of the macrophages’ viability (CC50)
was calculated by cultivating macrophages (5×105 cells) with
different concentrations of strychnobiflavone (0.4 to
16.0 μM), in 96-well plates for 48 h at 37°C. A previous
titration curve was performed to determine the best time of
inhibition of macrophages’ viability incubating with the eval-
uated product. The cellular viability was assessed by the MTT
assay, and AmpB was used as a control. The selectivity index
(SI) was calculated by determining the ratio between the CC50

and IC50 values. Data shown are representative of three inde-
pendent experiments, performed in triplicate, which presented
similar results.

Treatment of infected macrophages

Murine macrophages were collected from BALB/c mice and
seeded on round glass coverslips within 24-wells plate, at a

concentration of 5 x 105 cells in RPMI 1640 medium, which
was supplemented with 20% FBS and 20 mM L-glutamine, at
pH 7.4. A recent promastigote in vitro culture passage (1–3)
was used to enrich the number of metacyclic promastigotes.
After 24 h of incubation of the macrophages at 37°C in 5%
CO2, stationary promastigotes of L. infantum (5 x 106) were
added to the wells (in a ratio of 10 parasites per one macro-
phage), and the cultures were incubated for 24 h at 37°C, 5%
CO2. Free parasites were removed by extensive washing with
RPMI 1640 medium, and infected macrophages were lately
treated with the strychnobiflavone (40, 80 and 160 μM) for
24, 48 and 72 h at 24°C, in 5% CO2. Amphotericin B (1, 10
and 50μM)was used as a positive control. After fixation with
4% paraformaldehyde, cells were stained by Giemsa and ob-
served in a light microscope to determine the percentage of
infected macrophages, as well as the number of intra-
macrophage amastigotes out of 200 macrophages (Valadares
et al., 2011). Data shown in this study represent the average ±
standard deviation of three independent experiments, per-
formed in triplicate.

Evaluation of reactive oxygen species production

Stationary-phase promastigotes of L. infantum (2×106 cells
per well) were washed in Hanks’ balanced salt solution
(HBSS, Sigma-Aldrich, USA) medium, and parasites were
incubated for 60 min with strychnobiflavone, using its IC99

value. Then, H2DCF-DA (5 μM) was added, and the cells
were incubated for 15 min at 24°C. The fluorescence intensity
was detected using a fluorimetric microplate reader
(FilterMax F5 Multi-Mode Microplate Reader, Molecular
Devices), at 485 and 520 nm for excitation and emission,
respectively. Sodium azide (10 mM) was used as a positive
control (Mesquita et al., 2013). The following internal con-
trols were used in the present investigation: (i) possible
strychnobiflavone fluorescence at 485 nm for excitation and
520 nm for emission and (ii) interference of the DMSO diluent
in the parasites. Non-treated promastigotes and medium with-
out cells were used as negative controls and blanks, respec-
tively. The samples were examined in triplicate.

Evaluation of cellular membrane permeability

Stationary-phase promastigotes of L. infantum (2×106 cells
per well) were washed in PBS 1× and incubated with 1 μM
SYTOX® green, for 15 min at 24°C (Pinto et al., 2013). Then,
strychnobiflavone was incubated with parasites using its IC99

value, and the fluorescence intensity was measured every
20min, for a total of 120min. Themaximum permeabilization
was obtained with 0.1% Triton X-100. Fluorescence intensity
was determined using a fluorimetric microplate reader, with
excitation and emission wavelengths of 485 and 520 nm, re-
spectively. The internal controls were following like described
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to the evaluation of the reactive oxygen species (ROS)
production.

Activity on mitochondrial membrane potential

Stationary-phase promastigotes of L. infantum (2×106

cells per well) were washed twice in HBSS medium,
seeded, and incubated with strychnobiflavone at the
IC99 value, for 60 and 120 min. Rhodamine 123
(0.3 μg/mL) was added, and the cells were incubated
for 10 min in the dark. The cells were washed twice
in HBSS, and the fluorescence intensity was measured
using a fluorimetric microplate reader, with excitation
and emission wavelengths of 485 and 520 nm, respec-
tively (Coimbra et al., 2002). Also, the internal controls
were the same of the evaluation of ROS production and
of the cellular membrane permeability.

Strychnobiflavone radiolabeling and radiochemical
purity

For strychnobiflavone radiolabeling, the flavonoid was
dissolved in a solution composed of ethanol and
SnCl2 2H2O, which was prepared in 0.25 N HCl. A
solution comprised of 500 μL of strychnobiflavone
(1 mg/mL), 20 μL of SnCl2 2H2O (1 mg/mL), and
200 μL of PBS 1×, at pH 7.6, was mixed in a 10-mL
glass vial, and 100 μL of sodium 99mTc-pertechnetate
solution (Na99mTcO4

−/63 MBq; IPEN, CNEN, São
Paulo, Brazil) was added. The mixture was kept at room
temperature for 30 min, and incubated for 15 min with
200 mg of silica, followed by centrifugation. The super-
natant was removed and the radiochemical purity (RP)
of 99mTc-strychnobiflavone was determined by thin-layer
chromatography on silica strips (TLC-SG, Merck,
Darmstadt, Germany). Acetone was used to quantify
the hydrolyzed technetium (99mTcO2), and PBS 1× was
used to determine the amount of free technetium
(99mTcO4

−). The 99mTc-strychnobiflavone usually
remained immobile on silica strips when PBS 1× was
used, while the radiolabeled compound migrated to the
top of the strip when acetone was used as a solvent.
Radioactivity was measured using a gamma counter
(Wallac 1470 Wizard Gamma Counter, Perkin Elmer,
Turku, Finland). The RP was determined from the fol-
lowing equation:

%RP ¼ cpm of99mTc−strychnobiflavone
X

cpm 99mTcO2þ99mTcO4
−þ99mTc−strychnobiflavoneð Þ

� 100

where: cpm = counts per minute

Ex vivo biodistribution studies

For the ex vivo biodistribution studies, BALB/c mice (n=3
per group) were used. For this, aliquots containing 3.2MBq of
99mTc-strychnobiflavone were administered into the tail vein
of the animals. At 1, 3, 6, and 24 h after injection, animals
were anesthetized with a solution containing ketamine
(80 mg/kg) and xylazine (15 mg/kg), and then euthanized.
Blood samples, heart, lungs, spleen, liver, stomach, and kid-
neys were harvested for analysis. Each organ or tissue was
weighed, and the radioactivity was determined using an auto-
matic gamma counter (Wizard, Finland). An aliquot of 99mTc-
strychnobiflavone containing the same injected dose was
counted simultaneously in a separate tube, which was defined
as 100% radioactivity. The experiments were repeated three
times and presented similar results. The results were expressed
as the percentage of the injected dose per gram of tissue (%
ID/g), according to the following equation:

% ID=g ¼ cpm=g tissueð Þ
standard dose

� 100

Scintigraphic images

For scintigraphic images, BALB/c mice (n=3 per group) were
used . A l iquo t s con t a in i ng 3 .2 MBq of 9 9mTc-
strychnobiflavone were administered into the tail vein of the
animals. At 1, 3, 6, and 24 h after administration, mice were
anesthetized with a solution containing ketamine (80 mg/kg)
and xylazine (15 mg/kg), and were placed in a supine position
under a gamma camera (Mediso, Budapest, Hungary), using a
low-energy high-resolution collimator. Images were acquired
with a 256×256×16 matrix size, with a 20% energy window
set at 140 keV for a period of 10 min. Experiments were
repeated three times and presented similar results.

Statistical analysis

The results were evaluated in Microsoft Excel (version 10.0)
and analyzed using GraphPad PrismTM (version 6.0 for
Windows). The IC50, CC50, and IC99 values were calculated
from the mean percentage reduction of the stationary-phase
promastigotes and amastigote-like (IC50) or macrophages
(CC50), respectively, compared to that in the non-treated con-
trols. The curves were determined by applying sigmoidal re-
gression to the logarithm concentration/response data. In the
assays where the mitochondrial function was evaluated, the
differences among the groups were statistically evaluated by
the two-tailed unpaired Student´s t test, and ANOVA test was
used to test its significance (P<0.05). In the biodistribution
studies, one-way ANOVA followed by Bonferroni’s post-test
was used to compare differences between different time

4628 Parasitol Res (2015) 114:4625–4635



points, and in each organ. Differences were considered signif-
icant when P<0.05.

Results

Antileishmanial activity, cytotoxicity, and treatment
of infected macrophages

The inhibition of L. infantum viability using the
strychnobiflavone flavonoid was evaluated against the
stationary promastigote and amastigote-like stages of
the parasites. In the results, it could be observed that
the flavonoid was effective against both L. infantum
stages, presenting IC50 values of 5.4 and 18.9 μ M
for the promastigotes and amastigotes-like, respectively;
whereas its CC50 value was of 125 μ M (Table 1).
Calculating the selectivity index for both stages of the
parasites, the values found were of 23.2 and 6.6 for the
promastigote and amastigote-like forms, respectively.
Amphotericin B was used as a positive control, and it
presented IC50 values of 1.0 and 2.3 μ M for the
promastigote and amastigote-like stages of L. infantum,
respectively; and a CC50 value of 7.6 μ M, and SI
values of 7.6 and 3.3, respectively (Table 1). To assess
the capacity of the strychnobiflavone in treating macro-
phages previously infected with L. infantum, cells were
pre-infected with stationary-phase promastigotes (in a
ratio of 10 parasites per 1 macrophage), and lately treat-
ed with 40, 80 or 160 μ M of the flavonoid (Table 2).
Amphotericin B (AmpB) was used as a positive control
(1, 5 or 10 μ M). It was possible to observe that when
the cells were previously infected and lately treated with
strychnobiflavone (at a concentration of 160 μ M) dur-
ing 48 or 72 hours, they presented reductions in the
infection degree about 50% and 78%, respectively,
when compared to untreated controls. AmpB (10 μ M)
was also effective in reducing the percentage of infected
macrophages after the treatment for 48 and 72 hours,
with percentage reduction in the infection degree by

94% and 96%, respectively, when compared to untreated
controls (Table 2). However, when the number of
amastigotes per cell was evaluated after treatments,
macrophages first infected and lately treated for 48 or
72 hours with the strychnobiflavone (160 μ M) present-
ed an average of 1.2 and 0.9 amastigotes per macro-
phage, whereas cells treated with AmpB (10 μ M)
showed an average of 2.8 and 2.2 amastigotes per mac-
rophage, respectively (Table 3). In this context, although
AmpB had been able to induce a more pronounced re-
duction in the percentage of infected macrophages, the
strychnobiflavone was more effective in reducing the
number of recovered amastigotes in the infected and
treated cells.

Evaluation of the lethal action of strychnobiflavone
on L. infantum promastigotes

Strychnobiflavone-treated promastigotes were incubated
with rhodamine 123 for the evaluation of mitochondrial
alterations. Our results showed a significant increase in
the fluorescence intensity in the order of 42%, when
compared to untreated cells, after 60 min of incubation
(Fig. 1a). Sodium azide was used as a positive control,
and resulted in a reduced potential when compared to
untreated cells. To evaluate the ROS production,
strychnobiflavone was incubated with stationary
promastigotes of L. infantum for 60 min, and this pro-
duction was evaluated using the fluorescent probe
H2DCF-DA. The fluorescence intensity levels of the
flavonoid-treated parasites proved not to be different
from the intensity levels of untreated cells, demonstrat-
ing no capacity to upregulate the ROS production
(Fig. 1b). Sodium azide was used as a positive control,
and it was effective to induce the ROS production in
the parasites. The possible alteration in the permeability
of the plasma membrane of L. infantum promastigotes
was also evaluated in the presence of the fluorescent
probe SYTOX® green. The results showed that the
strychnobiflavone did not induce any change in

Table 1 Antileishmanial activity, cytotoxicity, and selectivity index
found for the strychnobiflavone. Parasites (1 x 106) or macrophages (5
x 105) were incubated with different concentrations (0.4 to 16.0 μM) of
strychnobiflavone for 48 h at 24°C, when the cells´ viability was analyzed
byMTTassay. Amphotericin Bwas used as a positive control. The results

are expressed asmedium± standard deviation of the experimental groups.
aInhibitory concentration to 50% of promastigote and amastigote-like
stages of L. infantum. bInhibitory concentration to 50% of murine
macrophages. cSelectivity index was calculated by ratio between the
CC50 and IC50 levels

Compounds IC50 (μ M)a CC50 (μ M)b SIc

Pro Ama-like Pro Ama-like

Strychnobiflavone 5.4 ± 0.8 18.9 ± 2.1 125.0 ± 4.5 23.2 6.6

Amphotericin B 1.0 ± 0.9 2.3 ± 0.4 7.6 ± 1.3 7.6 3.3
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permeability, when compared to untreated cells
(Fig. 1c). The Tritox X-100 was used as a positive
control, and it induced 100% effect on plasma mem-
brane permeation.

Ex vivo biodistribution studies and scintigraphic images

The quality control of the 99mTc-strychnobiflavone dem-
onstrated a radiochemical purity in the order of 90.2%±
1.0%, allowing for its use in the ex vivo biodistribution
assay. The data demonst ra ted that the 99mTc-

strychnobiflavone had a high uptake by the animals’
liver and spleen. Although the levels of this compound
had been higher in the liver of the animals, after 6 h,
this concentration diminished in this organ, whereas in
the spleen, the levels were maintained stable during the
evaluated period of time (Fig. 2a). This evaluation was
also observed in the scintigraphic images, demonstrating
a high uptake of 99mTc-strychnobiflavone in the liver
and spleen of the evaluated animals. Also, the results
showed a decrease in the radioactivity in the animals’
abdominal region after 24 h of administration (Fig. 2b).

Table 2 Percentage of infected macrophages after the treatment using
the strychnobiflavone or AmpB. Murine peritoneal macrophages (5 x 105

cells) were seeded on round glass coverslips inside the wells of a 24-well
culture plate (Nunc, Nunclon) in RPMI 1640 medium, which was
supplemented with 20% inactivated fetal bovine serum, 20 mM L-
glutamine, 200 U/mL penicillin, and 100 μg/mL streptomycin, at pH
7.4. After 24 h of incubation at 37°C in 5% CO2; stationary-phase
promastigotes of L. infantum were added to the wells (in a ratio of 10
parasites per 1 macrophage), and the cultures were incubated for 24 h at
37°C in 5% CO2. Next, free parasites were removed by extensive

washing with RPMI 1640 medium, and infected macrophages were
treated with strychnobiflavone (40, 80 and 160 μM), for 48 h at 24°C
in 5% CO2. Amphotericin B (1, 5 and 10 μM) was used as a positive
control. The percentage of infected macrophages was determined by
counting 200 cells per coverslips. Data shown represent the average ±
standard deviation of three independent experiments, which were
performed in triplicate. * and ** indicate significant difference in
relation to the infected and untreated controls (after 48 and 72 hours of
infection, respectively)

Products Concentration (μM) Percentage of infected macrophages after treatment

24 h 48 h 72 h

Strychnobiflavone 160.0 38.7±4.5 32.2±2.1* 17.6±2.3**

80.0 49.6±6.6 47.8±3.2* 28.3±4.3**

40.0 59.7±7.7 59.0±4.0 33.8±6.6**

Amphotericin B 10.0 22.1±3.2 4.0±0.9* 2.8±0.2**

5.0 32.4±5.5 21.3±3.2* 18.4±2.6**

1.0 39.6±6.8 31.7±4.5* 25.2±3.6**

Control - 61.7±5.4 65.0±2.2 78.5±4.6

Table 3 Number of recovered amastigotes after the treatment of
infected macrophages using the strychnobiflavone or AmpB. Murine
peritoneal macrophages (5 x 105) were seeded on round glass
coverslips inside the wells of a 24-well culture plate (Nunc) in RPMI
1640 medium, which was supplemented with 20% inactivated fetal
bovine serum, 20 mM L-glutamine, 200 U/mL penicillin, and 100 μg/
mL streptomycin, at pH 7.4. After 24 h of incubation at 37°C in 5% CO2;
stationary promastigotes of L. infantum were added to the wells (5 x 106

cells), and the cultures were incubated for 24 h at 37°C in 5% CO2. Next,

free parasites were removed by extensive washing with RPMI 1640
medium, and infected macrophages were treated with strychnobiflavone
(40, 80 and 160 μM), for 48 h at 24°C in 5% CO2. Amphotericin B (1, 5
and 10 μM) was used as a positive control. The number of amastigotes
per cell was determined by counting 200 cells per coverslips. Data shown
represent the average ± standard deviation of three independent
experiments, which were performed in triplicate. * and ** indicate
significant difference in relation to the infected and untreated controls
(after 48 and 72 hours of infection, respectively)

Products Concentration (μM) Number of recovered amastigotes per cell after treatment

24 h 48 h 72 h

Strychnobiflavone 160.0 2.7±0.4 1.2±0.2* 0.9±0.1**

80.0 3.9±0.7 2.2±0.1* 1.8±0.2**

40.0 4.6±1.1 3.0±0.3* 2.4±0.5**

Amphotericin B 10.0 3.3±0.6 2.8±0.3* 2.2±0.7**

5.0 4.1±0.8 3.5±0.7* 2.7±0.9**

1.0 5.7±0.6 4.8±0.6* 3.8±1.1**

Control - 6.7±0.7 8.3±1.0 11.2±1.5
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Discussion

Natural compounds are an important source of new and selec-
tive drug prototypes for the treatment of tropical diseases
caused by protozoans, such as leishmaniasis (Delorenzi &
Attias, 2001; Valadares et al., 2011). The antileishmanial ac-
tivity observed in total extracts prepared from these materials
has been attributed to compounds belonging to diverse chem-
ical groups, such as isoquinoline alkaloids, indole alkaloids,

quinones, terpenes, steroids, carbohydrates, lignans, proteins,
and flavonoids (Rocha et al., 2005; Marín et al., 2009;
Valadares et al., 2011). Among these plant-derived products,
flavonoids represent a large family of polyphenolic com-
pounds found in vegetables and fruits. As humans consume
large amounts of flavonoids every day, it is generally accepted
that flavonoids are safe and not toxic (Wong et al., 2012).
Flavonoids have shown antiparasitic activity against a number
of organisms. They are a promising new class of immune
modulators for Leishmania spp. and have proven to bind to
the nucleotide-binding site of MDR proteins with a concom-
itant increase in intracellular drug accumulation (Pérez-
Victoria et al., 1999). Additionally, flavones potentiate the
antibiotics of berbine and norfloxacin in Staphylococcus
aureus, as well as artemisinin in Plasmodium falciparum
(Liu et al., 1992), indicating their potential combined use
within a chemotherapeutic regimen (Mead & McNair, 2006).

This research group has previously reported that
strychnobiflavone was effective against L. amazonensis and
has proven to be active in inhibiting the infection of phago-
cytic cells, as well as in reducing the parasite burden in previ-
ously infected macrophages. In addition, this flavonoid pre-
sented a low toxicity in murine macrophages, as well as a low

Fig. 1 Detection of reactive oxygen species, plasma membrane
permeability, and evaluation of the mitochondrial membrane potential.
The permeability of the L. infantum membrane incubated with
strychnobiflavone was analyzed using a vital dye SYTOX® green.
Stationary-phase promastigotes of the parasites were pre-treated with
the Triton X-100 for 100% permeabilization, as a positive control. An
untreated group was also included (a). The production of reactive oxygen
species (ROS) in L. infantum promastigotes incubated with
strychnobiflavone was determined. A fluorescent probe (H2DCf-DA)
was incubated with the cells, and sodium azide was used as a positive
control. An untreated group was also included (b). The evaluation of the
L. infantum mitochondrial membrane potential incubated with
strychnobiflavone was determined. Sodium azide was used as a positive
control (c). The results are expressed asmedium±standard deviation from
the experimental groups. Abbreviations: N.D. not detected, SPEA-2
strychnobiflavone. Statistically significant differences between the
groups were observed (***P<0.001)

Fig. 2 Ex vivo biodistribution profile of 99mTc-strychnobiflavone. The
biodistribution profile of the 99mTc-strychnobiflavone in the blood and
some organs was evaluated at different periods of time (1, 3, 6, and 24 h)
after its administration in naive BALB/c mice (a). The scintigraphic
images were obtained after the intravenous administration of
radiolabeled strychnobiflavone, which were evaluated at different
periods of time (1, 3, 6, and 24 h, b). Abbreviation: %ID/g percentage
of the injected dose per gram of tissue. * indicates statistically significant
difference in relation to the other groups (P<0.05)
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hemolytic activity in human red blood cells (Lage et al.,
2013). Hence, the antileishmanial activity and the mechanism
of action of the strychnobiflavone were evaluated in
L. infantum, as well as the ex vivo biodistribution profile in
a known murine model. The results showed that
strychnobiflavone was highly effective against L. infantum
promastigotes, as detected by the absence of mitochondrial
oxidation of MTT. Considering previous reports (Lage et al.,
2013), this compound demonstrated to be 1.7-fold more effec-
tive against the L. amazonensis than against the L. infantum
promastigotes presented in this study. Strychnobiflavone also
showed a low toxicity for murine macrophages, with an SI
value of 23.1, indicating a satisfactory selectivity of this sub-
stance (Osorio et al., 2007).

Previous reports have shown that the quercetin flavonoid,
which presen ts a s imi la r chemica l s t ruc ture to
strychnobiflavone, has a wide range of reported biological
effects, such as antioxidant, anti-hypertensive, anti-inflamma-
tory, antimicrobial, and antiprotozoan activities (Mamani-
Matsuda et al., 2004; Bischoff, 2008; Fonseca-Silva et al.,
2011). The intracellular amastigote stage has been logically
designated as the more relevant target for primary screening
against Leishmania spp. (De Muylder et al., 2011).
Compounds active against axenic parasites might be unable
to reach the intracellular amastigotes, because of their inability
to cross the host cell membranes, or maintain stability under
low pH, whereas other compounds may need to be metabo-
lized by macrophages to gain activity (Vermeersch et al.,
2009). This is in accordance with previous studies, which
found that only 4% of their hits identified in a promastigote
primary screening were actually active in an intracellular con-
text (Siqueira-Neto et al., 2010). Nonetheless, the present
study’s results showed that macrophages infected and later
treated with the flavonoid presented significant reductions in
the parasite burden in the order of 52% of the infection rate,
indicating that strychnobiflavone is active against intracellular
amastigotes.

Studies evaluating the mechanism of action of drugs in
parasites could provide important information about the de-
velopment of new compounds (Fumarola et al., 2004).
Mitochondria are essential cellular organelles that play a cen-
tral role in energy metabolism, and are considered critical for
the survival of any cell (Fidalgo & Gille, 2011). Several stud-
ies have demonstrated changes in the mitochondria morphol-
ogy of some Leishmania spp. previously treated with
antileishmanial agents (Delorenzi et al., 2001; Santa-Rita
et al., 2004; Ueda-Nakamura et al., 2006; Rodrigues et al.,
2007; Santos et al. 2008). These studies reported that signifi-
cant alterations in the mitochondria led to the loss of cell
viability and confirmed the importance of this organelle in
the viability of L. infantum (Fonseca-Silva et al., 2011). To
elucidate the possible mechanism of action induced by
strychnobiflavone in L. infantum, the mitochondrial potential

was investigated, due to the fact that previous studies have
shown that the single mitochondria of the kinetoplastid para-
sites can well be considered good indicators of cellular dys-
function (Luque-Ortega et al., 2001; Mehta & Shaha, 2006;
Menna-Barreto et al., 2009).

The maintenance of mitochondrial membrane potential
(ΔΨm) is vital for the metabolic process, as well as for cellular
survival (Mehta & Shaha, 2006; Souza et al., 2009). Studies
have shown that variations in ΔΨm induced by drugs are as-
sociated with survival in Trypanosoma cruzi (Mukherjee
et al., 2009; Menna-Barreto et al., 2009), L. donovani
(Mehta & Shaha, 2006), and L. amazonensis (Rodrigues
et al., 2007). In the present study, the evaluation of mitochon-
drial membrane potential was performed using fluorescent
rhodamine 123. The mitochondrial damage was confirmed
by an increase in the rhodamine 123 fluorescence, indicating
hyperpolarization and, consequently, an alteration of ΔΨm.
This may well have decreased the ATP synthesis, and resulted
in the parasites’ death. A previous study showed that the
epigallocatechin-3-gallate (EGCG) flavonoid promoted alter-
ations of ΔΨm in L. amazonensis, suggesting that EGCG
exerts its antileishmanial effect on L. amazonensis
promastigotes by affecting the parasites’ mitochondrial func-
tion (Inacio et al., 2012). Therefore, it can be concluded that
strychnobiflavone may well be exerting its antileishmanial
activity on L. infantum by affecting the parasites’ mitochon-
drial function.

To investigate the possible cause of the mitochondrial dys-
function induced by strychnobiflavone in L. infantum, the
production of ROS was also evaluated in parasites, using the
cell-permeant probe H2DCF-DA, which is a chemically re-
duced form of fluorescein used as a ROS indicator in cells
(Mesquita et al., 2013). The ROS products are mainly pro-
duced in the electron transport chain of mitochondria (mainly
in complex III) as a superoxide (O2−), and further converted to
H2O2 (Carvalho et al., 2010). This study’s data clearly showed
that strychnobiflavone had no influence in either the upregu-
lation of ROS or its detoxification system, since
strychnobiflavone-treated Leishmania spp. resulted in a non-
altered production of ROS. Damage to the plasma membranes
of Leishmania can rapidly change the cellular homeostasis,
resulting in cell damage, including a mitochondrial dysfunc-
tion (Diaz-Achirica et al., 1998). Therefore, this study inves-
t i g a t ed th e p l a sma membrane pe rmeab i l i t y o f
strychnobiflavone-treated parasites, using the fluorescent
probe SYTOX® green. The resulting data demonstrated that
strychnobiflavone had no effect on the plasma membrane per-
meability of L. infantum.

Visceral leishmaniasis (VL) is a systemic form of leish-
maniasis, and following a bite by an infected sand fly, para-
sites disseminate through the lymphatic and vascular systems
and they are taken by macrophages of the reticulum-
endothelial system in the liver, spleen, bone marrow, lymph
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nodes, and other organs (Chappuis et al., 2007). The liver
appears to serve as an indicator of the multiplication of para-
sites in the acute phase of the infection (Oliveira et al., 2012),
and granuloma formation has been associated with a self-
limiting hepatic infection, whereas these same granuloma fail
to take form in the spleen, where parasites more commonly
persist (Murray, 2001). Together, these observations suggest a
causal association between granuloma formation and host re-
sistance to visceralizing species of Leishmania spp., such as
L. infantum (Moore et al., 2013). The ex vivo biodistribution
studies and scintigraphic images performed here showed a
high radioactivity uptake of 99mTc-strychnobiflavone by the
animals’ liver and spleen. Taking this into account,
strychnobiflavone presents a high potential to be used in fu-
ture in vivo studies aimed at treating L. infantum infection.

Several geographical regions in the world are endemic for
multiple Leishmania spp., which is the case of South America,
where leishmaniasis is caused by at least eight different spe-
cies of parasites, each with its own different determining fac-
tors of virulence and pathogenesis, although many display
common areas of transmission (Lainson, 1983; Ashford,
2000; Lainson & Shaw, 2010). Taking this into account, it
would be desirable to develop active compounds against di-
verse Leishmania spp.; however, the in vitro evidences of
inter-species differences in the susceptibility of parasites to
antileishmanial drugs have also been reported (Escobar
et al., 2002; Obonaga et al., 2014). In recent years, consider-
able attention has been given to new compounds in an attempt
to search for new antileishmanial drugs (Croft & Coombs,
2003; Khaliq et al., 2009; Seifert et al., 2010; Vendrametto
et al., 2010). Despite the efficacy in our in vitro studies, it is
important to consider that the use of other Leishmania spp.
species and host cells can modify the current efficacy and IC50

values demonstrated in our study. Seifert et al., 2010, demon-
strated this variability when different host cells were used for
efficacy studies; including peritoneal murine macrophages,
mouse bone marrow-derived macrophages, human peripheral
blood monocyte-derived macrophages (THP-1 cells). This
fact can have direct impact the in vitro activity of compounds,
and also in the evaluation of drug susceptibility of clinical
isolates.

In conclusion, our study demonstrates the antileishmanial
activity of strychnobiflavone against L. infantum, and sug-
gests that its mechanism of action may well be associated with
alterations in the parasites’ mitochondrial membrane poten-
tial. Moreover, the higher uptake of this compound in the
animals’ liver and spleen, organs highly parasitized by
L. infantum; could benefit the targetability of this flavonoid,
which could be further explored as a potential candidate for
the treatment of VL.
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