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Hybrid synchronization in coupled ultracold atomic gases
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We study the time evolution of two coupled many-body quantum systems, one of which is assumed to be Bose
condensed. Specifically, we consider two ultracold atomic clouds each populating two localized single-particle
states, i.e., a two-component bosonic Josephson junction. The cold atom cloud can retain its coherence when
coupled to the condensate and displays synchronization with the latter, differing from usual entrainment. We term
this effect among the ultracold and the condensed clouds as hybrid synchronization. The onset of synchronization,
which we observe in the evolution of average properties of both gases when increasing their coupling, is found to
be related to the many-body properties of the quantum gas, e.g., condensed fraction quantum fluctuations of the
particle number differences. We discuss the effects of different initial preparations and the influence of unequal
particle numbers for the two clouds, and we explore the dependence on the initial quantum state, e.g., coherent

state, squeezed state, and Fock state, finding essentially the same phenomenology in all cases.
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I. INTRODUCTION

Synchronization has been described in physics, chemistry,
biology, and social behavior [1-3]. It has been extensively
studied in classical nonlinear dynamical systems [4], and
chaotic ones [5]. The same phenomena have been explored
recently in quantum systems, e.g., optomechanical devices [6],
damped harmonic oscillators [7,8], driven [9] and purely
dissipative spins [10], and nonlinear optical cavities [11].
Synchronization can refer to the mutual effect between
detuned but otherwise equivalent components adjusting their
rhythms (spontaneous synchronization) as, for instance, in
Refs. [7,8,10]. Otherwise, a slave system can be driven to
follow the dynamics of an external source leading to entrain-
ment or driven synchronization, as for instance in Refs. [6,9].
In quantum many-body physics connections between quantum
entanglement and mutual synchronization have been discussed
in continuous variable systems [7,8,12].

Ultracold atomic gases are particularly relevant quantum
many-body systems. Since the first experimental production
of Bose-Einstein condensates (BECs), they have evolved from
being a theoretical curiosity to versatile systems potentially
useful in a large number of fields [13]. Identifying the onset of
synchronization in these systems and proposing ways in which
such phenomena can be characterized both experimentally and
theoretically is a significant step forward in our understanding
of the dynamical evolution of coupled quantum many-body
systems.

Among the most promising applications are those that
stem from the macroscopic sizes of the condensates. BECs
are fantastic candidates for high accuracy interferometric
devices [14,15]. These devices rely on the high degree of
coherence maintained by BECs.

In recent years, experiments with bimodal ultracold atomic
gases have managed to produce entangled ensembles in
which the interferometric capabilities can be largely enhanced
[16-20]. These improved interferometric properties are di-
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rectly related to the pseudospin squeezing which can be
produced using several techniques [21-23]. One of the main
sources of decoherence in BECs are atom-atom interactions
which induce dephasing of the different Fock components [24].
Several possibilities, notably the generation of squeezed
states [23], have been proposed to increase the coherence times
and improve the interferometric capabilities, e.g., of the recent
Mach-Zehnder proposal [25].

In this paper we describe how decoherence effects due to the
atom-atom interaction can be largely suppressed if a quantum
many-body system is coupled to a Bose-Einstein condensate.
To be more specific, we consider two bosonic Josephson
junctions, a and b. Subsystem b is taken to be a BEC at all
times during the evolution [26], while subsystem a is a standard
bosonic Josephson junction, i.e., it may fragment during the
evolution [27-29]. The coupling between a and b is provided
by the contact interspecies interaction. Directly related to this
improvement in the coherence times of subsystem a is the
onset of a hybrid synchronization between a and b.

This synchronization is called hybrid because the two
coupled atomic samples are in different regimes, one being
a BEC described within a classical approximation and the
other being a cloud of cold atoms described with a fully
quantum formalism. We notice that in the literature the
term hybrid synchronization has also been used in other
contexts to describe, for instance, synchronization between
(classical) chaotic systems persisting despite the difference
in some variables [30] or to the coexistence of different
kinds of synchronization in composed (classical) systems like
cascade-coupled lasers [31].

The paper is organized as follows: In Sec. II we introduce
the model system, a two species two-site Bose-Hubbard
model. Assuming that one of the species is condensed, we
construct our mixed quantum-classical description. In Sec. III
the coupled dynamics is studied, particularly the onset of
hybrid synchronization and its relation to the condensed
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fraction of subsystem a. Finally, in Sec. IV we present our
conclusions.

II. MODEL

Let us consider two different kinds of bosons, a and b,
populating two single-particle states, L and R. The main
results described in this paper are essentially independent
of the nature of the single-particle states. A way to produce
them is by trapping ultracold atoms in a spatial double-well
potential [17,32]. A different possibility would be to populate
two hyperfine states of the atom and couple them linearly as
in Ref. [33]. A solid-state alternative could be provided by
extending the experiments in Ref. [34] to two different kinds
of exciton-polaritons.

The interaction between the bosons is assumed to be
described by a contact term with strength proportional to the
s-wave scattering length. For simplicity the bosons are taken
to be two different hyperfine states of the same atom, so that
the masses of both species a and b is the same. With these
simplifications, the many-body, Bose-Hubbard, Hamiltonian
for the system reads

H="Hy+ Hp + Hap (1)
where
Ho = —J (@) ag + aLak)
21t~ 1)+ g 8 — D),
Hy, = _Jb(I;JQBR + 5L£L) (2)
2 g~ 1)+ g x G — D),
Hap = Yar (gL — g, R)(Ap,L — Ap,R).

2

&TL(R)(&L(R)) and BTL(R)(IQL(R)) are creation (annihilation) op-
erators for the L or R modes of a and b. The Hamiltonian
includes tunneling terms, proportional to J,), which in the
absence of any interaction induce periodic Rabi oscillations
of the populations between the states. The contact interaction
translates into terms with strength proportional to U,, U,,
and U,, which gauge the aa, bb, and ab contact interactions.
The coupling between the two gases is solely due to the term
proportional to Uy, which is an on site interaction between
the atoms of the two species. As customary, we introduce
the definition of the population imbalance of each species as
2= (ﬁa,L - ﬁa,R)/Na and Z, = (ﬁb,L - ﬁb,R)/Nb-

The quantum [35] and classical (fully condensed) dynam-
ics [36—40] of this model have been previously studied compar-
ing different dimensional reductions of the three-dimensional
equations [41]. Also, measure synchronization [42] has been
studied in the classical [43] and full quantum case [44].

Hybrid, quantum and classical, description of the system

Our main interest is to study the combined evolution of a
and b. In particular, one of our aims is to discern whether
the coupling to a condensed system, b, will enhance the
degree of condensation of the ultracold gas, a. To answer
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this question, b is assumed to be condensed at all times.
Physically, this situation could be attained if the b component
has a large enough number of atoms. We thus neglect the
quantum fluctuations of the b cloud. In practice this is done
by replacing the operators by ¢ numbers, b, = Med’"»b,
br = Me"’lﬂ’*. We define the phase difference as ¢, =
bR — Pb.L-

The Hamiltonian is thus written as H = H, + H, + Hyp,
with

Hy = =2Jp/np 1.1y, g COS Pp

U
+ {(nb.L(nh,L — D+ nmprpr —1),  (3)

. Uy
A, =
)

(ﬁu,L - ﬁu,R)(Nbe)

where H,, is the c-number version of 7:(;,. To study the time
evolution we solve the following coupled set of equations:

i0,|W,) = H(t)|W,),

Zp = —2Jpy/ 1 — 2} singy, )
. z
dp =20 Apzp, +2J) ’  cos Oy + 20 Aap(24)(1)

,/l—zlz,

where we have introduced the dimensionless ratios, A, =
NaUa/(2Ja), Ap = NpUp/(2Jp), and Agp = NoUas /(2 Jp).

The time dependence of H stems from the time dependence
of z, and ¢;,. This set of equations is obtained considering
the b subsystem as a classical parametric driving for the
a subsystem and including the feedback effect of a on b.
Neglecting quantum fluctuations in one field (then classical),
still retaining feedback effects due to the interaction with the
other (fully quantum), is reminiscent of the “time-dependent
parametric approximation” [45], used to describe large quan-
tum fluctuations in a convectively unstable signal of an optical
parametric oscillator, when the pump field is approximated by
a classical field while the signal is quantum [46]. Furthermore,
here we are neglecting the effect of the quantum fluctuations
of Z, in evaluating the dynamical evolution of ¢,, as we
approximate Z, by its expectation value.

The coupled system of Egs. (4) is solved in the following
way. We use a fourth-order Runge-Kutta routine to integrate
the differential equation for z;, and ¢, coupled to a unitary
truncation of the Schrodinger equation for |¥,) of the form

W, (t + A1) = (1 ‘ﬂﬁ(t)>_l(1 'ﬁﬁz> W, (1)
| a(+ >—<+12h _lZH ()| a >’
5)

with At =~ 0.0002 frap;.

The solutions of Egs. (4) are numerically found to conserve
the average energy (W, |H(1)|W,) ~ (W,|H(0)|W¥,) in all the
calculations reported in this paper. It is worth emphasizing that
the coupling between a and b cannot simply be regarded as a
driving term for a. Conservation of the total average energy
implies on average a transfer of energy between the a and b
subsystems. The dynamics is thus radically different from the
case of a driven single-component Josephson junction [47,48],
which for instance would occur if z,() in our description was
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replaced by a periodic function. In such a case, energy would
not be conserved and subsystem a would gradually increase its
energy. In our formulation the exchange of energy allows for
the mutual synchronization of both species and differs from
entrainment as will be described in the following section.
Using the Fock basis of the N, + 1 dimensional space,

|na.L,nq.r) = {|Ng,0),...,]0,N,)}, the most general a state is
written as
Ny
Wo) =Y cx k.Ny — k). 6)
k=0

All many-body properties of the state are computed from the
¢S, e.g., the average population imbalance of the a cloud reads

N,
(Za) = Y lexlPzan (7)
k=0

with z, = (2k/N, — 1). The degree of condensation of the
cloud is given by its condensed fraction, i.e., the largest
eigenvalue, ny, of the single-particle density matrix p“(¢),
pi; () = Nl”<llla(t)|&j&j|\11a(t)>, i,j = L,R. The condensed
fraction is also referred to as single-particle coherence. With
this normalization, a fully condensed cloud of a would
correspond ton; = 1 and ny = 0. In the following sections we
discuss the time evolution of n; for different initial conditions
and couplings.

III. COUPLED QUANTUM AND CONDENSED DYNAMICS

In this section we will describe how the appearance of
synchronization in the combined evolution is found to be
directly related to a coherent, in the sense of not dephased,
evolution for the a subsystem.

A. From dephasing to coherent evolution

Let us first exemplify our discussion with one specific
configuration. We will choose as initial state a condensed
quantum state for a, i.e., all @ atoms populate the same single-
particle state 1/+/2(cos(6,/ 2)a2 + e'% sin(6,/ 2)aL)|vac). The
many-body state reads

N, N /2

Wa(0a$a)) = ) ( k“) [cos(8,/2)) [sin(8,/2)] Y~
k=0
x e MNeR% |k N, — k). (8)

In particular we will take cos(6,) = (Z,)(t = 0) = 0.4 and
¢, = 0. To emphasize the effect of the coupling term we
choose similar conditions for b, z;, = 0.4,¢, =0, N, = N;, =
30, J=J,=J,=1, and A, = A, = 1. The Rabi time is
frabi = 7/J,and the Rabi frequency is wrapi = 27/ frabi = 2J.

In absence of coupling between a and b, A,y = 0, the
quantum system a with a nonzero initial population imbalance
evolves with time in a well-studied fashion [27-29]. Due
to the atom-atom interactions which dephase the different
Fock components, the initial distribution of ¢; evolves in
time deforming its initial shape [see Fig. 1(a)]. For the first
oscillations, up to t 2 5 frahi the wave packet remains mostly
unchanged, which in turn is also reflected in the fact that
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the a component remains essentially condensed n; 2> 0.98
[see Fig. 2(b)]. For larger times, ¢t = 10fgqi, the original
shape is lost, the a component is no longer in a coherent
quantum state, and thus the condensed fraction drops below
0.95. Interaction among atoms a is thus seen to decrease
the degree of condensation of the subsystem fairly early.
Directly related is the increase in the uncertainty on the particle
number difference, 022 = (23) — (2,)%, shown in Fig. 2(a), also
appreciable in Fig. 1(a).

When coupling the quantum system a to the condensed
one, b, a distinctive dynamics is found. The dephasing due to
the atom-atom interaction disappears and the quantum system
remains condensed for longer times. As seen in Fig. 1(b) for
Aup = 0.1 the distribution of |¢¢ |> remains closer to a displaced
binomial one, which again reflects in a much larger condensed
fraction (see Fig. 2 and smaller insets in Fig. 1). Already with
this fairly small value of A,, we find a substantial increase in
the condensed fraction, which is now at all times larger than
0.97. Further increasing A, the effects are enhanced: The
quantum system remains close to condensed for long times,
see Fig. 1(c), and the distribution of |c | thus evolves, keeping
its original shape. The latter is also reflected in azz, see Fig. 2(a),
which is found to remain almost constant in the coupled case.
Effectively, the coupling to the condensed gas removes the
dephasing effects due to the atom-atom interaction, obtaining
an almost interaction-free evolution of the quantum system.

This phenomenon is persistent in a broad range of parame-
ters. For A, 2 0.01 and maintaining similar initial conditions,
the quantum evolution is essentially coherent, as shown in
Figs. 2(b) and 2(c).

Varying the values of A, = A, and A,y one finds the fol-
lowing picture. One can easily prove that within our formalism
for A, = 0, irrespective of the value of A,;, the condensed
fraction of @ remains 1. This behavior survives for small values
of A, < 0.5, for which a high degree of condensation for a
is also found (see Fig. 3). For A, = 0.5, increasing A, the
condensed fraction of the system is found to remain essentially
constant in time (see Fig. 3). Thus, the coupling between a and
b increases the coherence of the a system. However, for larger
values of Agp, in particular for A, > A, + 1, we observe
a decrease of the condensation of a (see Fig. 3). This can
be understood from the linear stability analysis of the classical
equations around z,,,z;, < 1. In this case, one of the two natural
modes [41] wy = wravi/1 + Ay — A,y becomes unstable if
Agp > Ay + 1, which induces decoherence of the a system.

A similar picture is obtained in the attractive interspecies
interaction case, A, < 0 (see Fig. 3). In particular, for values
of A, <4 we see that increasing the value of |A,| the
condensation of the a cloud is increased. Further increasing
|Agpl, as observed for A, >~ 1.5, the degree of condensation
decreases. The boundary of the classical stability region ob-
tained for small values of the imbalance is found by imposing

w1 = WRavi/1 + Ay + Agp tobereal, Ay, > —A, — 1.

B. Hybrid synchronization

We have described how the coupling between the subsys-
tems prevents the a subsystem from fragmenting during the
time evolution for certain coupling values. Now we show
how this effect is directly connected to the appearance of
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FIG. 1. (Color online) Evolution of the distribution of Fock coefficients, |c;|? in Eq. (6) for the quantum gas a as a function of time. We
show three different values of the coupling Ay, = 0 (a), Ag, = 0.1 (b), and Ay, = 1.0 (c). The insets depict the distribution |c|* (linked by
a line) for three specific times ¢ = frabi, 8fravi, and 15tr.,; and the three different couplings. In all cases N, = N, =30, J, = J, = 1, and
A, = A, = 1. The initial states are described in the text, (z,) = z, = 0.4 and ¢, = ¢, = 0. The value of |c;|? (color) is plotted as a function

of the imbalance of each Fock state, z,x = 2k/N, — 1),k =0,...,N,

synchronization between properties of both subsystems. This
synchronization, to which we refer as hybrid, stemming from
the hybrid nature of our coupled system, manifests itself in
average properties.

In the noncoupled case, Fig. 4(a), the population imbalance
of the condensed subsystem, zj, is fully periodic [26]. The
frequency seen in the figure, w =~ 1.38wgap; is close to
the one obtained linearizing around the z;, = 0 fixed point,
W = WRabi V1 + Ap = Wrani /2. The population imbalance
of subsystem a, (Z,), features characteristic collapses and
revivals, which are also present in the condensed fraction and
population imbalance dispersion shown in Fig. 2 [28].

Coupling both subsystems, Fig. 4(b), both signals are found
to be much more correlated. To quantify this we compare
in Fig. 5 the frequency spectra of these signals for different
values of A,p,. In the uncoupled case the quantum signal
is found to have several peaks around the same frequency
o >~ 1.38wgapi- The different equispaced peaks reflect the
long evolvent seen in Fig. 4 (upper panel). They arise from
the atom-atom interaction which makes the spectrum of the
many-body Hamiltonian depart from the equispaced case in
the uncoupled case producing quantum revivals [28,49].

As A,p is increased, the spread of the peaks in the quantum
case is reduced. For A,;, = 0.1 the Fourier decompositions of
both signals are very similar, showing a large peak at wig,p; =~
1.405. For this value of A,p, a is mostly condensed and the
classical description of the full system should approximately

hold [36,37]. Indeed, the found frequency is reproduced by the
classical equations [37]. For this particular case of similar ini-
tial conditions of a and b, the classical description of the binary
mixture predicts, linearizing around z < 1, just one frequency,
w1 = Orabiv/T + Aq + Agp = +/2.1 @ravi [37]. The deviation
observed is due to the departure from z < 1 of our initial
conditions (z,)(0) = z,(0) = 0.4.

The synchronization phenomenon, as seen in the Fourier
analysis of Fig. 5, goes from several different frequencies
for both subsystems in the uncoupled case to a single major
frequency in the coupled case. Thus the two subsystems get
frequency locked as the interaction is increased. It is also
worth noting again that in our description subsystem a can
also remain condensed, but b is not allowed to fragment. The
resulting scenario is that the coupling induces condensation in
subsystem a.

In order to have a quantitative characterization of the
synchronization, we calculate the time correlation coefficient
C, which can be used to judge whether two time series are
synchronized [7,8]. For two time signals, f(¢) and g(¢), it is
defined as

8f(n)dg(t)
Cf,g(t,A[) e — (9)
8f2(1) 8g*(1)
where the bar stands for a time average f(1)=
LA ar £(¢') with time window Ar and 8f(1) = f(1) —
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FIG. 2. (Color online) Evolution of two relevant many-body
properties for different values of the interspecies coupling, Agp.
Panels (a) and (b) depict the dispersion of the population imbalance
of the a cloud, o, and the condensed fraction of the a system, n,
respectively, for the values considered in Fig. 1, A, =0, 0.1, and
1.0. Panel (c) scrutinizes the evolution of the condensed fraction for a
broader range of values of 0 < A,, < 1. All other parameters are the
same as in Fig. 1. Note that the initial condensed fraction n;(0) = 1,
so that the plotted values are n;.

f(1). We choose a time window Af = 14 frap;. For in phase
(antiphase) synchronization C ~ 1 (—1), while it equals zero
for fully nonsynchronized cases.

In Fig. 6, we show C as a function of time for different
values of the coupling strength A,j. The figure has a similar
structure as that found when computing the condensed fraction
of the same subsystem in Fig. 2. The subsystem is seen to
remain condensed for the same values of A, for which the
two signals are synchronized.

For A, < 0, we have shown that the results were similar
to the A, > O case, that is, the condensation for the a cloud
is enhanced with enough coupling (see Fig. 3). As occurred
in the A,, > 0 case, the increase in condensation for A, < 0
is also accompanied by an increase in the time correlation
function between the average populations of both species,
e.g., for Ay, = —1.0 with the same parameters and initial
conditions as in Fig. 4, C ~ 1 is reached.

1. Effect of unequal populations

The hybrid system we are considering, with b remaining
fully coherent during the time evolution, is justified if the
number of b atoms is large enough. Up to now we have
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FIG. 3. (Color online) Time-averaged condensed fraction 77 =
[ ni(t)dt with T = 15 as a function of Ay and A, = Ay
The initial condition is again fully condensed for the a component
with (z,)(0) = z,(0) = 0.4. All other parameters are as in Fig. 1.
The dashed red lines correspondto 1 + A, — A, =0and 1 + A, +
A4, = 0; see text for details. Notice that the scale in the color bar is
nonlinear, and it spans all the values of the data.

discussed the case in which N, = N,, in order to isolate the
effect of the interspecies coupling.

Now, we consider a system with unequal population
Np/N, = 10. With N, =300, N, =30 and A, = 10A,,
A, = 1, so that we have U, = U,. We keep the initial state
and other parameters the same as in Fig. 1. The results show a
picture very similar to that of the case with equal populations.
In Fig. 7, we show the evolution of single-particle coherence,
n, for different values of A,;,. We observe an increase of the
condensed fraction as A, is increased. This is similar to what
has been shown in Fig. 2. However, to make a more quantitative
comparison of Figs. 2(c) and 7(b), we will notice that for the
case with unequal populations, in order to reach the same level
of single-particle coherence as for the case with N, = N;, a
relatively larger A, is needed now.

0.4 |

N

>

A
<

<N

N'\

<N
\Y

0.2
0
-0.2
-0.4

0.4
0.2
0
-0.2
-0.4

! I
‘||l|” |

T

2
t/t

Rabi

FIG. 4. (Color online) Evolution of (Z,)(¢) (dashed red) and z,,(¢)
(solid black) for two different values of the coupling (a) A,, = 0 and
(b) Ayp = 0.1. All other parameters are as in Fig. 1.
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FIG. 5. (Color online) Absolute value of the frequency spectrum
Z(w) (Fourier transform of the average population imbalances), for
different values of the coupling A ;. The frequency spectrum of the
quantum result (Z,)(w) is given in the left panels. z,(w) is depicted in
the right panels. The frequency spectra are obtained from time series
up to Tyax = 585fRrabi-

Figure 8 shows the hybrid synchronization for this case
(Np # N,). In the noncoupled case, Fig. 8(a), the population
imbalance of the condensed subsystem, z, is fully periodic.
Compared with the equal population case, we notice that the
frequencies of the two signals are very different. However, by
coupling both subsystems with A,, = 0.1, as seen in Fig. 8(b),
the signals are found to be more correlated. Further increasing

1 1 1 1 1 1
””””””””””””””” (a)
0.5 - -
O 0 -
Ap=0.0 ——
0.5 4 App=0.1 -t -
-1 Bl T T T T T B
0 5 10 15 20 25 30
1
0.75
0.5
0.25
0
-0.25
0 5 10 15 20 25 30
t/t Rabi

FIG. 6. (Color online) Time correlation coefficient C,, ,, de-
fined in Eq. (9) vs the coupling strength A,,. Panel (a) corresponds
to two specific values of A,, = 0, A,y = 0.1, while (b) contains the
time evolution of C_. .. ., for a broader set of A,;. At = 14tgqpi. All
other parameters are as in Fig. 1.
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FIG. 7. (Color online) Evolution of single-particle coherence n;
for different values of A,,. With unequal population % = 10. In all
cases we fixed A, =1, A, = 10A, and N, = 300, N, = 30. The
initial state and other parameters are as Fig. 1. Panel (a) corresponds
to the two values of A,;,. Panel (b) scrutinizes the same function for
a more detailed range of values of 0 < A,, < 1.

Agp, the two signals show synchronous dynamics due to this
coupling effect [Fig. 8(c)].

To quantify the hybrid synchronization, in Fig. 9 we show
the evolution of Cy, . for different values of A,,. With
Agp = 0, Fig. 9(a), the time correlation function is close to
zero as expected. With A, = 1, Fig. 9(a), the time correlation
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i 1 \ \
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FIG. 8. (Color online) Evolution of (2,)(¢) (dashed red) and z,(¢)
(solid black) with A, = 10A,, A, = 1, and unequal populations
N, =30, N, =300. Three different values of the coupling are
chosen, with (a) A, =0, (b) Ay = 0.1, and (¢) A,y = 0.6. All
other parameters are as in Fig. 7.
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FIG. 9. (Color online) Evolution of Cy,,, ., for different values
of A,,. With unequal population % = 10. In all cases we fixed
A, =1, A, =10A, and N, = 300, N, = 30. The initial state and
other parameters are as Fig. 1. Panel (a) corresponds to the two values
of A,;. Panel (b) scrutinizes the same function for a more detailed

range of values of 0 < A,y < 1.

function is close to 1 as hybrid synchronization occurs. By
comparing Figs. 9(b) and 6(b), one sees that in order to reach
hybrid synchronization in the case with unequal populations a
larger coupling strength A 45, is needed. This is a general feature
of synchronization arising when the coupling between systems
is large enough to overcome their detuning. Indeed here the
detuning between the two clouds increases with the difference
between the populations and needs to be compensated by a
larger reciprocal contact interaction.

2. Effects of different initial preparation

Up to now we have considered the same initial population
imbalance for @ and b. Now we consider a more general case, in
which the initial average population imbalance is not the same
for both subsystems. In particular we will consider (z,) =
0.4 and z;, = 0.2, while all other conditions are as in Fig. 1.
The main finding described earlier is again found: Coupling
a and b increases the coherence time of subsystem a. As
described above, the fragmentation of subsystem a which takes
place during the uncoupled evolution, see Fig. 10, decreases
as the coupling between a and b is increased. For values of
Agp = A, = Ap, a remains almost fully condensed during the
evolution.

Let us analyze the Fourier decomposition of the evolution of
the population imbalance. Following our previous discussion
in the case of decoupled clouds, we find that z; has only one
frequency, which now is closer to the one expected in the linear
regime, ® >~ wrapia/ 1 + Ap = V2 WRabi- The a subsystem, as
before, has a number of peaks, whose spread is related to the
deviation from the equispaced spectrum (which in this case is
smaller). As we couple the two subsystems, the spread in the a
subsystem disappears and two prominent frequencies appear
both for a and b. Already for A,, = 0.45, we have the same
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FIG. 10. (Color online) Evolution of the condensed fraction of
subsystem a, ny, as a function of time for different values of the
coupling A ,;,. The upper panel corresponds to the three values, A,, =
0, 0.1, and 1.0. The lower panel scrutinizes the same function for a
more detailed range of values of 0 < A,, < 1. Here we consider
different initial conditions, (Z,)(0) = 0.4, and z,(0) = 0.2.

Fourier structure in both cases, signaling the appearance of
hybrid synchronization.

The net effect is that for a strong enough coupling both
signals oscillate with the same frequency, which is different
from the free frequencies. As found in the case of equal initial
preparations, the fact that a remains mostly condensed makes
a fully classical description of the complete system plausible.
Indeed, the two frequencies remaining in the coupled case are
reproduced by the classical equations [37]. In summary, for
different preparation of initial imbalance, it is found that the
frequency locking with a single prominent peak appearing
as shown in Fig. 5 is replaced by frequency locking of
more complex dynamics featuring several spectral components
displayed in Fig. 11. This result reminds us of what happens
for two coupled classical systems, in which the coupling will
induce measure synchronization (MS) [43]. In classical MS,
the coupled dynamics will exhibit quasiperiodic motions, such
that the Fourier analysis of z, and z, shows many peaks
rather than one. And in this very special case, the hybrid
synchronization is accompanied by MS in the combined
dynamics. We emphasize that in general these two phenomena
do not need to arise together.

The overall picture as A, is varied, see Fig. 10, is similar
to the case of equal initial average population imbalance
(see Fig. 2). The effect is slightly degraded, finding a lower
condensed fraction for similar values of A, in the case of
different initial average population imbalances. We have also
considered different choices of the nonlinearity, i.e., A, = 2,
Ap = 1. This has a similar effect as the different preparation
of initial imbalances.

Up to now we have only considered hybrid synchronization
around stable phase-space points with ¢ = 0. In this case, the
classical description of the Josephson junction [26] shows a
single stable minimum for z = 0 with repulsive interactions.
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FIG. 11. (Color online) Absolute value of the frequency spec-
trum z(w) (Fourier transform of the average population imbalances),
for different values of the coupling A,,. Here we consider different
initial imbalance in the two subsystems, (Z,)(0) = 0.4, and z,(0) =
0.1. The frequency spectrum of the quantum result (Z,)(w) is given
in the left panels. z,(w) is depicted in right panels. The frequency
spectra are obtained from time series up to Ty.x = 140fgap;.

A similar single solution, nonbifurcated, is found for initial
preparations ¢, = ¢, = 7w if (A, < 1,A, < 1). In this case,
we find similar results as those reported above. A more
involved situation is found if we consider a bifurcated
region of the phase space of each individual Josephson
junction, for instance, ¢ = 7 and A > 1. In this case, the
classical description of the junction predicts a self-trapped
regime [50]. To illustrate this dynamical regime, we have
considered the initial condition (z,)(0) = z,(0) = 0.4 and
¢. = ¢p = 7w, with A, = A, = 1.2, such that the classical
description of each junction (uncoupled) would predict a
self-trapped regime. In the noncoupled case, see Fig. 12(a),

t/tRabi

FIG. 12. (Color online) Evolution of (Z,)(t) (dashed red) and
7,(1) (solid black) for two different values of the coupling (a) A, = 0
and (b) A,, = 0.2. The initial conditions are (z,)(0) = z,(0) = 0.4

and ¢, = ¢, = 7 for the m-phase mode, with A, = A, = 1.2 and
Na = Nh = 30
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FIG. 13. (Color online) Evolution of the condensed fraction of
the a system, n; (a), and time correlation coefficient C, ., (b),
for the values considered in Fig. 12. The initial condensed fraction
n(0) =1.

the population imbalance of the condensed subsystem, z,,
is fully periodic and self-trapped. The population imbalance
of subsystem a, (Z,), features a much more complicated
dynamics with no self-trapping. Coupling both subsystems
with A, = 0.2, Fig. 12(b), both signals are found to be much
more correlated. The time correlation coefficient Cy,,) ., goes
from ~0 for the uncoupled case, see Fig. 13(b), to a value
close to 0.8 for the coupled case (A,, = 0.2). Simultaneously,
the degree of condensation, similarly to the case of the
zero-phase mode discussed above, is found to increase with
the coupling between the two systems, although the increase is
less notable than in the zero-phase case. Furthermore, we have
tried different initial conditions for the m-phase mode in the
bifurcated region of the classical phase space, and find out that
due to the instability associated with the bifurcation [33] the
parameter space is much smaller compared with the zero-phase
mode in achieving hybrid synchronization.

3. Initially squeezed and Fock states

In all previous results the initial state considered was a
condensed many-body state, i.e., condensed fraction n; = 1.
Thus, the effect we have described up to now is how by
coupling the quantum to a condensed system the condensed
fraction of the quantum state was found to get closer to 1.
For that case, the coupling to the condensed state was thus
helping the quantum system to remain coherent during the
time evolution.

In this section we broaden the set of initial states to consider
squeezed and Fock states. Squeezed states are particularly
useful as they can be used to improve the efficiency of in-
terferometers made with ultracold atomic systems [18,19,21].
In brief what we find is that coupling the quantum system to
the condensed one has a similar effect as what was described
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FIG. 14. (Color online) Evolution of the condensed fraction of
the subsystem as a function of time for three different values of A,
In the upper panel the initial state is a squeezed state, with an initial
condensed fraction n;(0) = 0.9216. In the lower panel, the initial state
is the Fock state, |21,9), which has an average population imbalance
of 0.4 and an initial condensed fraction of 21/30 = 0.7. All other
parameters are the same as in Fig. 1.

before, i.e., the coupling mostly prevents the dephasing and
thus makes the condensed fraction of the quantum system
remain approximately constant with time.

In Fig. 14 we consider similar conditions as in Fig. 1, but
with squeezed and Fock initial states. The squeezed initial state

(a) L L L L L | 1
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FIG. 15. (Color online) Time correlation coefficient Cy,, ., de-
fined in Eq. (9) vs the coupling strength A, for the squeezed (upper
panel) and Fock (lower panel) cases considered in Fig. 14.
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(k—ko)?

isbuiltascy = e 22 /y/o4/m, where kj sets the value of the
population imbalance and o sets the squeezing of the state. The
coherent state considered above has ¢ = /N, /2. A smaller
value of o provides a squeezed initial state. In the figure we
have taken o = 1. The picture is very similar to the case of
an initial coherent state. Increasing the coupling between the
condensed and quantum subsystems the condensed fraction
is seen to remain closer to its initial value (not 1 in this
case).

For an initial Fock state, the behavior is similar and the
condensed fraction remains closer to its initial value for large
enough couplings (Fig. 14, lower panel). The initial state is in
this case the Fock state |21,9)(cy = 8k 21), with (z,)(0) = 0.4.

Finally, in Fig. 15 we present the time correlation for both
the squeezed and Fock states used in Fig. 14. For the squeezed
case, the picture is similar to the case of an initial coherent
preparation. The two subsystems get correlated for A,y >
0.01. In the Fock regime, the picture clearly degrades, and
although a certain synchronization is found it does not abide
in time.

IV. CONCLUSION

We have considered the coupled dynamics of two ultracold
atomic clouds, one of which is assumed to be Bose-Einstein
condensed during the evolution. Our main finding is that
by increasing the coupling between the two subsystems two
net effects take place: (1) the dephasing produced by atom-
atom interactions in the noncondensed subsystem is found to
decrease as the coupling is increased, and (2) the coherent
oscillations of both subsystems are found to synchronize.
This phase-locking phenomenon is characterized by studying
the evolution of the average population imbalance of each
subsystem under different conditions. When synchronization
appears, the a state is prevented to fragment and remains Bose-
Einstein condensed: this allows a comparison of the reported
phase locking with MS within a classical description. Even if
the role of the condensate is dominant, preventing the ultracold
cloud from losing coherence, the reported synchronization
differs from entrainment. The ultracold cloud is indeed driven
by the condensate but the latter is also influenced by the
feedback of the cloud and both systems evolve towards a
different oscillatory dynamics. Synchronization is therefore
hybrid (between a condensate driving the ultracold cloud to
remain coherent) but mutual, being the dynamics of both
clouds determined by the reciprocal coupling and in spite of
their different regime.

Our results are of relevance for future applications of
bimodal quantum many-body systems. In particular, since the
dephasing arising from the atom-atom interactions is found
to disappear for large enough coupling, we have a way to
prevent quantum many-body systems from dephasing. Thus,
the relevant properties stored in the system, such as a large
squeezing parameter or a large degree of condensation, are
preserved during the time evolution if the system is coupled
to a condensed one. The hybrid synchronization described,
which appears together with the coherent evolution, can be
used as an observable control parameter for the phase coherent
evolution.
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